1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "md-bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 /* 28 * Minimum journal space 4 MiB in sectors. 29 */ 30 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 31 32 static bool devices_handle_discard_safely = false; 33 34 /* 35 * The following flags are used by dm-raid.c to set up the array state. 36 * They must be cleared before md_run is called. 37 */ 38 #define FirstUse 10 /* rdev flag */ 39 40 struct raid_dev { 41 /* 42 * Two DM devices, one to hold metadata and one to hold the 43 * actual data/parity. The reason for this is to not confuse 44 * ti->len and give more flexibility in altering size and 45 * characteristics. 46 * 47 * While it is possible for this device to be associated 48 * with a different physical device than the data_dev, it 49 * is intended for it to be the same. 50 * |--------- Physical Device ---------| 51 * |- meta_dev -|------ data_dev ------| 52 */ 53 struct dm_dev *meta_dev; 54 struct dm_dev *data_dev; 55 struct md_rdev rdev; 56 }; 57 58 /* 59 * Bits for establishing rs->ctr_flags 60 * 61 * 1 = no flag value 62 * 2 = flag with value 63 */ 64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 76 /* New for v1.9.0 */ 77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 80 81 /* New for v1.10.0 */ 82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 83 84 /* New for v1.11.1 */ 85 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 86 87 /* 88 * Flags for rs->ctr_flags field. 89 */ 90 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 91 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 92 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 93 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 94 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 95 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 97 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 98 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 99 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 100 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 101 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 102 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 103 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 104 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 105 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 106 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 107 108 /* 109 * Definitions of various constructor flags to 110 * be used in checks of valid / invalid flags 111 * per raid level. 112 */ 113 /* Define all any sync flags */ 114 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 115 116 /* Define flags for options without argument (e.g. 'nosync') */ 117 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 118 CTR_FLAG_RAID10_USE_NEAR_SETS) 119 120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 122 CTR_FLAG_WRITE_MOSTLY | \ 123 CTR_FLAG_DAEMON_SLEEP | \ 124 CTR_FLAG_MIN_RECOVERY_RATE | \ 125 CTR_FLAG_MAX_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_WRITE_BEHIND | \ 127 CTR_FLAG_STRIPE_CACHE | \ 128 CTR_FLAG_REGION_SIZE | \ 129 CTR_FLAG_RAID10_COPIES | \ 130 CTR_FLAG_RAID10_FORMAT | \ 131 CTR_FLAG_DELTA_DISKS | \ 132 CTR_FLAG_DATA_OFFSET | \ 133 CTR_FLAG_JOURNAL_DEV | \ 134 CTR_FLAG_JOURNAL_MODE) 135 136 /* Valid options definitions per raid level... */ 137 138 /* "raid0" does only accept data offset */ 139 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 140 141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 142 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 143 CTR_FLAG_REBUILD | \ 144 CTR_FLAG_WRITE_MOSTLY | \ 145 CTR_FLAG_DAEMON_SLEEP | \ 146 CTR_FLAG_MIN_RECOVERY_RATE | \ 147 CTR_FLAG_MAX_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_WRITE_BEHIND | \ 149 CTR_FLAG_REGION_SIZE | \ 150 CTR_FLAG_DELTA_DISKS | \ 151 CTR_FLAG_DATA_OFFSET) 152 153 /* "raid10" does not accept any raid1 or stripe cache options */ 154 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 155 CTR_FLAG_REBUILD | \ 156 CTR_FLAG_DAEMON_SLEEP | \ 157 CTR_FLAG_MIN_RECOVERY_RATE | \ 158 CTR_FLAG_MAX_RECOVERY_RATE | \ 159 CTR_FLAG_REGION_SIZE | \ 160 CTR_FLAG_RAID10_COPIES | \ 161 CTR_FLAG_RAID10_FORMAT | \ 162 CTR_FLAG_DELTA_DISKS | \ 163 CTR_FLAG_DATA_OFFSET | \ 164 CTR_FLAG_RAID10_USE_NEAR_SETS) 165 166 /* 167 * "raid4/5/6" do not accept any raid1 or raid10 specific options 168 * 169 * "raid6" does not accept "nosync", because it is not guaranteed 170 * that both parity and q-syndrome are being written properly with 171 * any writes 172 */ 173 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 174 CTR_FLAG_REBUILD | \ 175 CTR_FLAG_DAEMON_SLEEP | \ 176 CTR_FLAG_MIN_RECOVERY_RATE | \ 177 CTR_FLAG_MAX_RECOVERY_RATE | \ 178 CTR_FLAG_STRIPE_CACHE | \ 179 CTR_FLAG_REGION_SIZE | \ 180 CTR_FLAG_DELTA_DISKS | \ 181 CTR_FLAG_DATA_OFFSET | \ 182 CTR_FLAG_JOURNAL_DEV | \ 183 CTR_FLAG_JOURNAL_MODE) 184 185 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 186 CTR_FLAG_REBUILD | \ 187 CTR_FLAG_DAEMON_SLEEP | \ 188 CTR_FLAG_MIN_RECOVERY_RATE | \ 189 CTR_FLAG_MAX_RECOVERY_RATE | \ 190 CTR_FLAG_STRIPE_CACHE | \ 191 CTR_FLAG_REGION_SIZE | \ 192 CTR_FLAG_DELTA_DISKS | \ 193 CTR_FLAG_DATA_OFFSET | \ 194 CTR_FLAG_JOURNAL_DEV | \ 195 CTR_FLAG_JOURNAL_MODE) 196 /* ...valid options definitions per raid level */ 197 198 /* 199 * Flags for rs->runtime_flags field 200 * (RT_FLAG prefix meaning "runtime flag") 201 * 202 * These are all internal and used to define runtime state, 203 * e.g. to prevent another resume from preresume processing 204 * the raid set all over again. 205 */ 206 #define RT_FLAG_RS_PRERESUMED 0 207 #define RT_FLAG_RS_RESUMED 1 208 #define RT_FLAG_RS_BITMAP_LOADED 2 209 #define RT_FLAG_UPDATE_SBS 3 210 #define RT_FLAG_RESHAPE_RS 4 211 #define RT_FLAG_RS_SUSPENDED 5 212 #define RT_FLAG_RS_IN_SYNC 6 213 #define RT_FLAG_RS_RESYNCING 7 214 #define RT_FLAG_RS_GROW 8 215 216 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 218 219 /* 220 * raid set level, layout and chunk sectors backup/restore 221 */ 222 struct rs_layout { 223 int new_level; 224 int new_layout; 225 int new_chunk_sectors; 226 }; 227 228 struct raid_set { 229 struct dm_target *ti; 230 231 uint32_t stripe_cache_entries; 232 unsigned long ctr_flags; 233 unsigned long runtime_flags; 234 235 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 236 237 int raid_disks; 238 int delta_disks; 239 int data_offset; 240 int raid10_copies; 241 int requested_bitmap_chunk_sectors; 242 243 struct mddev md; 244 struct raid_type *raid_type; 245 246 sector_t array_sectors; 247 sector_t dev_sectors; 248 249 /* Optional raid4/5/6 journal device */ 250 struct journal_dev { 251 struct dm_dev *dev; 252 struct md_rdev rdev; 253 int mode; 254 } journal_dev; 255 256 struct raid_dev dev[]; 257 }; 258 259 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 260 { 261 struct mddev *mddev = &rs->md; 262 263 l->new_level = mddev->new_level; 264 l->new_layout = mddev->new_layout; 265 l->new_chunk_sectors = mddev->new_chunk_sectors; 266 } 267 268 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 269 { 270 struct mddev *mddev = &rs->md; 271 272 mddev->new_level = l->new_level; 273 mddev->new_layout = l->new_layout; 274 mddev->new_chunk_sectors = l->new_chunk_sectors; 275 } 276 277 /* raid10 algorithms (i.e. formats) */ 278 #define ALGORITHM_RAID10_DEFAULT 0 279 #define ALGORITHM_RAID10_NEAR 1 280 #define ALGORITHM_RAID10_OFFSET 2 281 #define ALGORITHM_RAID10_FAR 3 282 283 /* Supported raid types and properties. */ 284 static struct raid_type { 285 const char *name; /* RAID algorithm. */ 286 const char *descr; /* Descriptor text for logging. */ 287 const unsigned int parity_devs; /* # of parity devices. */ 288 const unsigned int minimal_devs;/* minimal # of devices in set. */ 289 const unsigned int level; /* RAID level. */ 290 const unsigned int algorithm; /* RAID algorithm. */ 291 } raid_types[] = { 292 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 293 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 294 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 295 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 296 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 297 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 298 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 299 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 300 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 301 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 302 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 303 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 304 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 305 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 306 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 307 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 308 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 309 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 310 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 311 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 312 }; 313 314 /* True, if @v is in inclusive range [@min, @max] */ 315 static bool __within_range(long v, long min, long max) 316 { 317 return v >= min && v <= max; 318 } 319 320 /* All table line arguments are defined here */ 321 static struct arg_name_flag { 322 const unsigned long flag; 323 const char *name; 324 } __arg_name_flags[] = { 325 { CTR_FLAG_SYNC, "sync"}, 326 { CTR_FLAG_NOSYNC, "nosync"}, 327 { CTR_FLAG_REBUILD, "rebuild"}, 328 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 329 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 330 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 331 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 332 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 333 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 334 { CTR_FLAG_REGION_SIZE, "region_size"}, 335 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 336 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 337 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 338 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 339 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 340 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 341 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 342 }; 343 344 /* Return argument name string for given @flag */ 345 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 346 { 347 if (hweight32(flag) == 1) { 348 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 349 350 while (anf-- > __arg_name_flags) 351 if (flag & anf->flag) 352 return anf->name; 353 354 } else 355 DMERR("%s called with more than one flag!", __func__); 356 357 return NULL; 358 } 359 360 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 361 static struct { 362 const int mode; 363 const char *param; 364 } _raid456_journal_mode[] = { 365 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, 366 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } 367 }; 368 369 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 370 static int dm_raid_journal_mode_to_md(const char *mode) 371 { 372 int m = ARRAY_SIZE(_raid456_journal_mode); 373 374 while (m--) 375 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 376 return _raid456_journal_mode[m].mode; 377 378 return -EINVAL; 379 } 380 381 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 382 static const char *md_journal_mode_to_dm_raid(const int mode) 383 { 384 int m = ARRAY_SIZE(_raid456_journal_mode); 385 386 while (m--) 387 if (mode == _raid456_journal_mode[m].mode) 388 return _raid456_journal_mode[m].param; 389 390 return "unknown"; 391 } 392 393 /* 394 * Bool helpers to test for various raid levels of a raid set. 395 * It's level as reported by the superblock rather than 396 * the requested raid_type passed to the constructor. 397 */ 398 /* Return true, if raid set in @rs is raid0 */ 399 static bool rs_is_raid0(struct raid_set *rs) 400 { 401 return !rs->md.level; 402 } 403 404 /* Return true, if raid set in @rs is raid1 */ 405 static bool rs_is_raid1(struct raid_set *rs) 406 { 407 return rs->md.level == 1; 408 } 409 410 /* Return true, if raid set in @rs is raid10 */ 411 static bool rs_is_raid10(struct raid_set *rs) 412 { 413 return rs->md.level == 10; 414 } 415 416 /* Return true, if raid set in @rs is level 6 */ 417 static bool rs_is_raid6(struct raid_set *rs) 418 { 419 return rs->md.level == 6; 420 } 421 422 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 423 static bool rs_is_raid456(struct raid_set *rs) 424 { 425 return __within_range(rs->md.level, 4, 6); 426 } 427 428 /* Return true, if raid set in @rs is reshapable */ 429 static bool __is_raid10_far(int layout); 430 static bool rs_is_reshapable(struct raid_set *rs) 431 { 432 return rs_is_raid456(rs) || 433 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 434 } 435 436 /* Return true, if raid set in @rs is recovering */ 437 static bool rs_is_recovering(struct raid_set *rs) 438 { 439 return rs->md.recovery_cp < rs->md.dev_sectors; 440 } 441 442 /* Return true, if raid set in @rs is reshaping */ 443 static bool rs_is_reshaping(struct raid_set *rs) 444 { 445 return rs->md.reshape_position != MaxSector; 446 } 447 448 /* 449 * bool helpers to test for various raid levels of a raid type @rt 450 */ 451 452 /* Return true, if raid type in @rt is raid0 */ 453 static bool rt_is_raid0(struct raid_type *rt) 454 { 455 return !rt->level; 456 } 457 458 /* Return true, if raid type in @rt is raid1 */ 459 static bool rt_is_raid1(struct raid_type *rt) 460 { 461 return rt->level == 1; 462 } 463 464 /* Return true, if raid type in @rt is raid10 */ 465 static bool rt_is_raid10(struct raid_type *rt) 466 { 467 return rt->level == 10; 468 } 469 470 /* Return true, if raid type in @rt is raid4/5 */ 471 static bool rt_is_raid45(struct raid_type *rt) 472 { 473 return __within_range(rt->level, 4, 5); 474 } 475 476 /* Return true, if raid type in @rt is raid6 */ 477 static bool rt_is_raid6(struct raid_type *rt) 478 { 479 return rt->level == 6; 480 } 481 482 /* Return true, if raid type in @rt is raid4/5/6 */ 483 static bool rt_is_raid456(struct raid_type *rt) 484 { 485 return __within_range(rt->level, 4, 6); 486 } 487 /* END: raid level bools */ 488 489 /* Return valid ctr flags for the raid level of @rs */ 490 static unsigned long __valid_flags(struct raid_set *rs) 491 { 492 if (rt_is_raid0(rs->raid_type)) 493 return RAID0_VALID_FLAGS; 494 else if (rt_is_raid1(rs->raid_type)) 495 return RAID1_VALID_FLAGS; 496 else if (rt_is_raid10(rs->raid_type)) 497 return RAID10_VALID_FLAGS; 498 else if (rt_is_raid45(rs->raid_type)) 499 return RAID45_VALID_FLAGS; 500 else if (rt_is_raid6(rs->raid_type)) 501 return RAID6_VALID_FLAGS; 502 503 return 0; 504 } 505 506 /* 507 * Check for valid flags set on @rs 508 * 509 * Has to be called after parsing of the ctr flags! 510 */ 511 static int rs_check_for_valid_flags(struct raid_set *rs) 512 { 513 if (rs->ctr_flags & ~__valid_flags(rs)) { 514 rs->ti->error = "Invalid flags combination"; 515 return -EINVAL; 516 } 517 518 return 0; 519 } 520 521 /* MD raid10 bit definitions and helpers */ 522 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 523 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 524 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 525 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 526 527 /* Return md raid10 near copies for @layout */ 528 static unsigned int __raid10_near_copies(int layout) 529 { 530 return layout & 0xFF; 531 } 532 533 /* Return md raid10 far copies for @layout */ 534 static unsigned int __raid10_far_copies(int layout) 535 { 536 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 537 } 538 539 /* Return true if md raid10 offset for @layout */ 540 static bool __is_raid10_offset(int layout) 541 { 542 return !!(layout & RAID10_OFFSET); 543 } 544 545 /* Return true if md raid10 near for @layout */ 546 static bool __is_raid10_near(int layout) 547 { 548 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 549 } 550 551 /* Return true if md raid10 far for @layout */ 552 static bool __is_raid10_far(int layout) 553 { 554 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 555 } 556 557 /* Return md raid10 layout string for @layout */ 558 static const char *raid10_md_layout_to_format(int layout) 559 { 560 /* 561 * Bit 16 stands for "offset" 562 * (i.e. adjacent stripes hold copies) 563 * 564 * Refer to MD's raid10.c for details 565 */ 566 if (__is_raid10_offset(layout)) 567 return "offset"; 568 569 if (__raid10_near_copies(layout) > 1) 570 return "near"; 571 572 if (__raid10_far_copies(layout) > 1) 573 return "far"; 574 575 return "unknown"; 576 } 577 578 /* Return md raid10 algorithm for @name */ 579 static int raid10_name_to_format(const char *name) 580 { 581 if (!strcasecmp(name, "near")) 582 return ALGORITHM_RAID10_NEAR; 583 else if (!strcasecmp(name, "offset")) 584 return ALGORITHM_RAID10_OFFSET; 585 else if (!strcasecmp(name, "far")) 586 return ALGORITHM_RAID10_FAR; 587 588 return -EINVAL; 589 } 590 591 /* Return md raid10 copies for @layout */ 592 static unsigned int raid10_md_layout_to_copies(int layout) 593 { 594 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 595 } 596 597 /* Return md raid10 format id for @format string */ 598 static int raid10_format_to_md_layout(struct raid_set *rs, 599 unsigned int algorithm, 600 unsigned int copies) 601 { 602 unsigned int n = 1, f = 1, r = 0; 603 604 /* 605 * MD resilienece flaw: 606 * 607 * enabling use_far_sets for far/offset formats causes copies 608 * to be colocated on the same devs together with their origins! 609 * 610 * -> disable it for now in the definition above 611 */ 612 if (algorithm == ALGORITHM_RAID10_DEFAULT || 613 algorithm == ALGORITHM_RAID10_NEAR) 614 n = copies; 615 616 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 617 f = copies; 618 r = RAID10_OFFSET; 619 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 620 r |= RAID10_USE_FAR_SETS; 621 622 } else if (algorithm == ALGORITHM_RAID10_FAR) { 623 f = copies; 624 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 625 r |= RAID10_USE_FAR_SETS; 626 627 } else 628 return -EINVAL; 629 630 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 631 } 632 /* END: MD raid10 bit definitions and helpers */ 633 634 /* Check for any of the raid10 algorithms */ 635 static bool __got_raid10(struct raid_type *rtp, const int layout) 636 { 637 if (rtp->level == 10) { 638 switch (rtp->algorithm) { 639 case ALGORITHM_RAID10_DEFAULT: 640 case ALGORITHM_RAID10_NEAR: 641 return __is_raid10_near(layout); 642 case ALGORITHM_RAID10_OFFSET: 643 return __is_raid10_offset(layout); 644 case ALGORITHM_RAID10_FAR: 645 return __is_raid10_far(layout); 646 default: 647 break; 648 } 649 } 650 651 return false; 652 } 653 654 /* Return raid_type for @name */ 655 static struct raid_type *get_raid_type(const char *name) 656 { 657 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 658 659 while (rtp-- > raid_types) 660 if (!strcasecmp(rtp->name, name)) 661 return rtp; 662 663 return NULL; 664 } 665 666 /* Return raid_type for @name based derived from @level and @layout */ 667 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 668 { 669 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 670 671 while (rtp-- > raid_types) { 672 /* RAID10 special checks based on @layout flags/properties */ 673 if (rtp->level == level && 674 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 675 return rtp; 676 } 677 678 return NULL; 679 } 680 681 /* Adjust rdev sectors */ 682 static void rs_set_rdev_sectors(struct raid_set *rs) 683 { 684 struct mddev *mddev = &rs->md; 685 struct md_rdev *rdev; 686 687 /* 688 * raid10 sets rdev->sector to the device size, which 689 * is unintended in case of out-of-place reshaping 690 */ 691 rdev_for_each(rdev, mddev) 692 if (!test_bit(Journal, &rdev->flags)) 693 rdev->sectors = mddev->dev_sectors; 694 } 695 696 /* 697 * Change bdev capacity of @rs in case of a disk add/remove reshape 698 */ 699 static void rs_set_capacity(struct raid_set *rs) 700 { 701 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 702 703 set_capacity(gendisk, rs->md.array_sectors); 704 revalidate_disk_size(gendisk, true); 705 } 706 707 /* 708 * Set the mddev properties in @rs to the current 709 * ones retrieved from the freshest superblock 710 */ 711 static void rs_set_cur(struct raid_set *rs) 712 { 713 struct mddev *mddev = &rs->md; 714 715 mddev->new_level = mddev->level; 716 mddev->new_layout = mddev->layout; 717 mddev->new_chunk_sectors = mddev->chunk_sectors; 718 } 719 720 /* 721 * Set the mddev properties in @rs to the new 722 * ones requested by the ctr 723 */ 724 static void rs_set_new(struct raid_set *rs) 725 { 726 struct mddev *mddev = &rs->md; 727 728 mddev->level = mddev->new_level; 729 mddev->layout = mddev->new_layout; 730 mddev->chunk_sectors = mddev->new_chunk_sectors; 731 mddev->raid_disks = rs->raid_disks; 732 mddev->delta_disks = 0; 733 } 734 735 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 736 unsigned int raid_devs) 737 { 738 unsigned int i; 739 struct raid_set *rs; 740 741 if (raid_devs <= raid_type->parity_devs) { 742 ti->error = "Insufficient number of devices"; 743 return ERR_PTR(-EINVAL); 744 } 745 746 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 747 if (!rs) { 748 ti->error = "Cannot allocate raid context"; 749 return ERR_PTR(-ENOMEM); 750 } 751 752 mddev_init(&rs->md); 753 754 rs->raid_disks = raid_devs; 755 rs->delta_disks = 0; 756 757 rs->ti = ti; 758 rs->raid_type = raid_type; 759 rs->stripe_cache_entries = 256; 760 rs->md.raid_disks = raid_devs; 761 rs->md.level = raid_type->level; 762 rs->md.new_level = rs->md.level; 763 rs->md.layout = raid_type->algorithm; 764 rs->md.new_layout = rs->md.layout; 765 rs->md.delta_disks = 0; 766 rs->md.recovery_cp = MaxSector; 767 768 for (i = 0; i < raid_devs; i++) 769 md_rdev_init(&rs->dev[i].rdev); 770 771 /* 772 * Remaining items to be initialized by further RAID params: 773 * rs->md.persistent 774 * rs->md.external 775 * rs->md.chunk_sectors 776 * rs->md.new_chunk_sectors 777 * rs->md.dev_sectors 778 */ 779 780 return rs; 781 } 782 783 /* Free all @rs allocations */ 784 static void raid_set_free(struct raid_set *rs) 785 { 786 int i; 787 788 if (rs->journal_dev.dev) { 789 md_rdev_clear(&rs->journal_dev.rdev); 790 dm_put_device(rs->ti, rs->journal_dev.dev); 791 } 792 793 for (i = 0; i < rs->raid_disks; i++) { 794 if (rs->dev[i].meta_dev) 795 dm_put_device(rs->ti, rs->dev[i].meta_dev); 796 md_rdev_clear(&rs->dev[i].rdev); 797 if (rs->dev[i].data_dev) 798 dm_put_device(rs->ti, rs->dev[i].data_dev); 799 } 800 801 kfree(rs); 802 } 803 804 /* 805 * For every device we have two words 806 * <meta_dev>: meta device name or '-' if missing 807 * <data_dev>: data device name or '-' if missing 808 * 809 * The following are permitted: 810 * - - 811 * - <data_dev> 812 * <meta_dev> <data_dev> 813 * 814 * The following is not allowed: 815 * <meta_dev> - 816 * 817 * This code parses those words. If there is a failure, 818 * the caller must use raid_set_free() to unwind the operations. 819 */ 820 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 821 { 822 int i; 823 int rebuild = 0; 824 int metadata_available = 0; 825 int r = 0; 826 const char *arg; 827 828 /* Put off the number of raid devices argument to get to dev pairs */ 829 arg = dm_shift_arg(as); 830 if (!arg) 831 return -EINVAL; 832 833 for (i = 0; i < rs->raid_disks; i++) { 834 rs->dev[i].rdev.raid_disk = i; 835 836 rs->dev[i].meta_dev = NULL; 837 rs->dev[i].data_dev = NULL; 838 839 /* 840 * There are no offsets initially. 841 * Out of place reshape will set them accordingly. 842 */ 843 rs->dev[i].rdev.data_offset = 0; 844 rs->dev[i].rdev.new_data_offset = 0; 845 rs->dev[i].rdev.mddev = &rs->md; 846 847 arg = dm_shift_arg(as); 848 if (!arg) 849 return -EINVAL; 850 851 if (strcmp(arg, "-")) { 852 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 853 &rs->dev[i].meta_dev); 854 if (r) { 855 rs->ti->error = "RAID metadata device lookup failure"; 856 return r; 857 } 858 859 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 860 if (!rs->dev[i].rdev.sb_page) { 861 rs->ti->error = "Failed to allocate superblock page"; 862 return -ENOMEM; 863 } 864 } 865 866 arg = dm_shift_arg(as); 867 if (!arg) 868 return -EINVAL; 869 870 if (!strcmp(arg, "-")) { 871 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 872 (!rs->dev[i].rdev.recovery_offset)) { 873 rs->ti->error = "Drive designated for rebuild not specified"; 874 return -EINVAL; 875 } 876 877 if (rs->dev[i].meta_dev) { 878 rs->ti->error = "No data device supplied with metadata device"; 879 return -EINVAL; 880 } 881 882 continue; 883 } 884 885 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 886 &rs->dev[i].data_dev); 887 if (r) { 888 rs->ti->error = "RAID device lookup failure"; 889 return r; 890 } 891 892 if (rs->dev[i].meta_dev) { 893 metadata_available = 1; 894 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 895 } 896 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 897 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 898 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 899 rebuild++; 900 } 901 902 if (rs->journal_dev.dev) 903 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 904 905 if (metadata_available) { 906 rs->md.external = 0; 907 rs->md.persistent = 1; 908 rs->md.major_version = 2; 909 } else if (rebuild && !rs->md.recovery_cp) { 910 /* 911 * Without metadata, we will not be able to tell if the array 912 * is in-sync or not - we must assume it is not. Therefore, 913 * it is impossible to rebuild a drive. 914 * 915 * Even if there is metadata, the on-disk information may 916 * indicate that the array is not in-sync and it will then 917 * fail at that time. 918 * 919 * User could specify 'nosync' option if desperate. 920 */ 921 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 922 return -EINVAL; 923 } 924 925 return 0; 926 } 927 928 /* 929 * validate_region_size 930 * @rs 931 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 932 * 933 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 934 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 935 * 936 * Returns: 0 on success, -EINVAL on failure. 937 */ 938 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 939 { 940 unsigned long min_region_size = rs->ti->len / (1 << 21); 941 942 if (rs_is_raid0(rs)) 943 return 0; 944 945 if (!region_size) { 946 /* 947 * Choose a reasonable default. All figures in sectors. 948 */ 949 if (min_region_size > (1 << 13)) { 950 /* If not a power of 2, make it the next power of 2 */ 951 region_size = roundup_pow_of_two(min_region_size); 952 DMINFO("Choosing default region size of %lu sectors", 953 region_size); 954 } else { 955 DMINFO("Choosing default region size of 4MiB"); 956 region_size = 1 << 13; /* sectors */ 957 } 958 } else { 959 /* 960 * Validate user-supplied value. 961 */ 962 if (region_size > rs->ti->len) { 963 rs->ti->error = "Supplied region size is too large"; 964 return -EINVAL; 965 } 966 967 if (region_size < min_region_size) { 968 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 969 region_size, min_region_size); 970 rs->ti->error = "Supplied region size is too small"; 971 return -EINVAL; 972 } 973 974 if (!is_power_of_2(region_size)) { 975 rs->ti->error = "Region size is not a power of 2"; 976 return -EINVAL; 977 } 978 979 if (region_size < rs->md.chunk_sectors) { 980 rs->ti->error = "Region size is smaller than the chunk size"; 981 return -EINVAL; 982 } 983 } 984 985 /* 986 * Convert sectors to bytes. 987 */ 988 rs->md.bitmap_info.chunksize = to_bytes(region_size); 989 990 return 0; 991 } 992 993 /* 994 * validate_raid_redundancy 995 * @rs 996 * 997 * Determine if there are enough devices in the array that haven't 998 * failed (or are being rebuilt) to form a usable array. 999 * 1000 * Returns: 0 on success, -EINVAL on failure. 1001 */ 1002 static int validate_raid_redundancy(struct raid_set *rs) 1003 { 1004 unsigned int i, rebuild_cnt = 0; 1005 unsigned int rebuilds_per_group = 0, copies; 1006 unsigned int group_size, last_group_start; 1007 1008 for (i = 0; i < rs->md.raid_disks; i++) 1009 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1010 !rs->dev[i].rdev.sb_page) 1011 rebuild_cnt++; 1012 1013 switch (rs->md.level) { 1014 case 0: 1015 break; 1016 case 1: 1017 if (rebuild_cnt >= rs->md.raid_disks) 1018 goto too_many; 1019 break; 1020 case 4: 1021 case 5: 1022 case 6: 1023 if (rebuild_cnt > rs->raid_type->parity_devs) 1024 goto too_many; 1025 break; 1026 case 10: 1027 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1028 if (copies < 2) { 1029 DMERR("Bogus raid10 data copies < 2!"); 1030 return -EINVAL; 1031 } 1032 1033 if (rebuild_cnt < copies) 1034 break; 1035 1036 /* 1037 * It is possible to have a higher rebuild count for RAID10, 1038 * as long as the failed devices occur in different mirror 1039 * groups (i.e. different stripes). 1040 * 1041 * When checking "near" format, make sure no adjacent devices 1042 * have failed beyond what can be handled. In addition to the 1043 * simple case where the number of devices is a multiple of the 1044 * number of copies, we must also handle cases where the number 1045 * of devices is not a multiple of the number of copies. 1046 * E.g. dev1 dev2 dev3 dev4 dev5 1047 * A A B B C 1048 * C D D E E 1049 */ 1050 if (__is_raid10_near(rs->md.new_layout)) { 1051 for (i = 0; i < rs->md.raid_disks; i++) { 1052 if (!(i % copies)) 1053 rebuilds_per_group = 0; 1054 if ((!rs->dev[i].rdev.sb_page || 1055 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1056 (++rebuilds_per_group >= copies)) 1057 goto too_many; 1058 } 1059 break; 1060 } 1061 1062 /* 1063 * When checking "far" and "offset" formats, we need to ensure 1064 * that the device that holds its copy is not also dead or 1065 * being rebuilt. (Note that "far" and "offset" formats only 1066 * support two copies right now. These formats also only ever 1067 * use the 'use_far_sets' variant.) 1068 * 1069 * This check is somewhat complicated by the need to account 1070 * for arrays that are not a multiple of (far) copies. This 1071 * results in the need to treat the last (potentially larger) 1072 * set differently. 1073 */ 1074 group_size = (rs->md.raid_disks / copies); 1075 last_group_start = (rs->md.raid_disks / group_size) - 1; 1076 last_group_start *= group_size; 1077 for (i = 0; i < rs->md.raid_disks; i++) { 1078 if (!(i % copies) && !(i > last_group_start)) 1079 rebuilds_per_group = 0; 1080 if ((!rs->dev[i].rdev.sb_page || 1081 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1082 (++rebuilds_per_group >= copies)) 1083 goto too_many; 1084 } 1085 break; 1086 default: 1087 if (rebuild_cnt) 1088 return -EINVAL; 1089 } 1090 1091 return 0; 1092 1093 too_many: 1094 return -EINVAL; 1095 } 1096 1097 /* 1098 * Possible arguments are... 1099 * <chunk_size> [optional_args] 1100 * 1101 * Argument definitions 1102 * <chunk_size> The number of sectors per disk that 1103 * will form the "stripe" 1104 * [[no]sync] Force or prevent recovery of the 1105 * entire array 1106 * [rebuild <idx>] Rebuild the drive indicated by the index 1107 * [daemon_sleep <ms>] Time between bitmap daemon work to 1108 * clear bits 1109 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1110 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1111 * [write_mostly <idx>] Indicate a write mostly drive via index 1112 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1113 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1114 * [region_size <sectors>] Defines granularity of bitmap 1115 * [journal_dev <dev>] raid4/5/6 journaling deviice 1116 * (i.e. write hole closing log) 1117 * 1118 * RAID10-only options: 1119 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1120 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1121 */ 1122 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1123 unsigned int num_raid_params) 1124 { 1125 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1126 unsigned int raid10_copies = 2; 1127 unsigned int i, write_mostly = 0; 1128 unsigned int region_size = 0; 1129 sector_t max_io_len; 1130 const char *arg, *key; 1131 struct raid_dev *rd; 1132 struct raid_type *rt = rs->raid_type; 1133 1134 arg = dm_shift_arg(as); 1135 num_raid_params--; /* Account for chunk_size argument */ 1136 1137 if (kstrtoint(arg, 10, &value) < 0) { 1138 rs->ti->error = "Bad numerical argument given for chunk_size"; 1139 return -EINVAL; 1140 } 1141 1142 /* 1143 * First, parse the in-order required arguments 1144 * "chunk_size" is the only argument of this type. 1145 */ 1146 if (rt_is_raid1(rt)) { 1147 if (value) 1148 DMERR("Ignoring chunk size parameter for RAID 1"); 1149 value = 0; 1150 } else if (!is_power_of_2(value)) { 1151 rs->ti->error = "Chunk size must be a power of 2"; 1152 return -EINVAL; 1153 } else if (value < 8) { 1154 rs->ti->error = "Chunk size value is too small"; 1155 return -EINVAL; 1156 } 1157 1158 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1159 1160 /* 1161 * We set each individual device as In_sync with a completed 1162 * 'recovery_offset'. If there has been a device failure or 1163 * replacement then one of the following cases applies: 1164 * 1165 * 1) User specifies 'rebuild'. 1166 * - Device is reset when param is read. 1167 * 2) A new device is supplied. 1168 * - No matching superblock found, resets device. 1169 * 3) Device failure was transient and returns on reload. 1170 * - Failure noticed, resets device for bitmap replay. 1171 * 4) Device hadn't completed recovery after previous failure. 1172 * - Superblock is read and overrides recovery_offset. 1173 * 1174 * What is found in the superblocks of the devices is always 1175 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1176 */ 1177 for (i = 0; i < rs->raid_disks; i++) { 1178 set_bit(In_sync, &rs->dev[i].rdev.flags); 1179 rs->dev[i].rdev.recovery_offset = MaxSector; 1180 } 1181 1182 /* 1183 * Second, parse the unordered optional arguments 1184 */ 1185 for (i = 0; i < num_raid_params; i++) { 1186 key = dm_shift_arg(as); 1187 if (!key) { 1188 rs->ti->error = "Not enough raid parameters given"; 1189 return -EINVAL; 1190 } 1191 1192 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1193 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1194 rs->ti->error = "Only one 'nosync' argument allowed"; 1195 return -EINVAL; 1196 } 1197 continue; 1198 } 1199 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1200 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1201 rs->ti->error = "Only one 'sync' argument allowed"; 1202 return -EINVAL; 1203 } 1204 continue; 1205 } 1206 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1207 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1208 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1209 return -EINVAL; 1210 } 1211 continue; 1212 } 1213 1214 arg = dm_shift_arg(as); 1215 i++; /* Account for the argument pairs */ 1216 if (!arg) { 1217 rs->ti->error = "Wrong number of raid parameters given"; 1218 return -EINVAL; 1219 } 1220 1221 /* 1222 * Parameters that take a string value are checked here. 1223 */ 1224 /* "raid10_format {near|offset|far} */ 1225 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1226 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1227 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1228 return -EINVAL; 1229 } 1230 if (!rt_is_raid10(rt)) { 1231 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1232 return -EINVAL; 1233 } 1234 raid10_format = raid10_name_to_format(arg); 1235 if (raid10_format < 0) { 1236 rs->ti->error = "Invalid 'raid10_format' value given"; 1237 return raid10_format; 1238 } 1239 continue; 1240 } 1241 1242 /* "journal_dev <dev>" */ 1243 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1244 int r; 1245 struct md_rdev *jdev; 1246 1247 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1248 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1249 return -EINVAL; 1250 } 1251 if (!rt_is_raid456(rt)) { 1252 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1253 return -EINVAL; 1254 } 1255 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1256 &rs->journal_dev.dev); 1257 if (r) { 1258 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1259 return r; 1260 } 1261 jdev = &rs->journal_dev.rdev; 1262 md_rdev_init(jdev); 1263 jdev->mddev = &rs->md; 1264 jdev->bdev = rs->journal_dev.dev->bdev; 1265 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode)); 1266 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1267 rs->ti->error = "No space for raid4/5/6 journal"; 1268 return -ENOSPC; 1269 } 1270 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1271 set_bit(Journal, &jdev->flags); 1272 continue; 1273 } 1274 1275 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1276 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1277 int r; 1278 1279 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1280 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1281 return -EINVAL; 1282 } 1283 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1284 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1285 return -EINVAL; 1286 } 1287 r = dm_raid_journal_mode_to_md(arg); 1288 if (r < 0) { 1289 rs->ti->error = "Invalid 'journal_mode' argument"; 1290 return r; 1291 } 1292 rs->journal_dev.mode = r; 1293 continue; 1294 } 1295 1296 /* 1297 * Parameters with number values from here on. 1298 */ 1299 if (kstrtoint(arg, 10, &value) < 0) { 1300 rs->ti->error = "Bad numerical argument given in raid params"; 1301 return -EINVAL; 1302 } 1303 1304 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1305 /* 1306 * "rebuild" is being passed in by userspace to provide 1307 * indexes of replaced devices and to set up additional 1308 * devices on raid level takeover. 1309 */ 1310 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1311 rs->ti->error = "Invalid rebuild index given"; 1312 return -EINVAL; 1313 } 1314 1315 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1316 rs->ti->error = "rebuild for this index already given"; 1317 return -EINVAL; 1318 } 1319 1320 rd = rs->dev + value; 1321 clear_bit(In_sync, &rd->rdev.flags); 1322 clear_bit(Faulty, &rd->rdev.flags); 1323 rd->rdev.recovery_offset = 0; 1324 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1325 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1326 if (!rt_is_raid1(rt)) { 1327 rs->ti->error = "write_mostly option is only valid for RAID1"; 1328 return -EINVAL; 1329 } 1330 1331 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1332 rs->ti->error = "Invalid write_mostly index given"; 1333 return -EINVAL; 1334 } 1335 1336 write_mostly++; 1337 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1338 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1339 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1340 if (!rt_is_raid1(rt)) { 1341 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1342 return -EINVAL; 1343 } 1344 1345 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1346 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1347 return -EINVAL; 1348 } 1349 1350 /* 1351 * In device-mapper, we specify things in sectors, but 1352 * MD records this value in kB 1353 */ 1354 if (value < 0 || value / 2 > COUNTER_MAX) { 1355 rs->ti->error = "Max write-behind limit out of range"; 1356 return -EINVAL; 1357 } 1358 1359 rs->md.bitmap_info.max_write_behind = value / 2; 1360 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1361 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1362 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1363 return -EINVAL; 1364 } 1365 if (value < 0) { 1366 rs->ti->error = "daemon sleep period out of range"; 1367 return -EINVAL; 1368 } 1369 rs->md.bitmap_info.daemon_sleep = value; 1370 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1371 /* Userspace passes new data_offset after having extended the the data image LV */ 1372 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1373 rs->ti->error = "Only one data_offset argument pair allowed"; 1374 return -EINVAL; 1375 } 1376 /* Ensure sensible data offset */ 1377 if (value < 0 || 1378 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1379 rs->ti->error = "Bogus data_offset value"; 1380 return -EINVAL; 1381 } 1382 rs->data_offset = value; 1383 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1384 /* Define the +/-# of disks to add to/remove from the given raid set */ 1385 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1386 rs->ti->error = "Only one delta_disks argument pair allowed"; 1387 return -EINVAL; 1388 } 1389 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1390 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1391 rs->ti->error = "Too many delta_disk requested"; 1392 return -EINVAL; 1393 } 1394 1395 rs->delta_disks = value; 1396 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1397 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1398 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1399 return -EINVAL; 1400 } 1401 1402 if (!rt_is_raid456(rt)) { 1403 rs->ti->error = "Inappropriate argument: stripe_cache"; 1404 return -EINVAL; 1405 } 1406 1407 if (value < 0) { 1408 rs->ti->error = "Bogus stripe cache entries value"; 1409 return -EINVAL; 1410 } 1411 rs->stripe_cache_entries = value; 1412 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1413 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1414 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1415 return -EINVAL; 1416 } 1417 1418 if (value < 0) { 1419 rs->ti->error = "min_recovery_rate out of range"; 1420 return -EINVAL; 1421 } 1422 rs->md.sync_speed_min = value; 1423 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1424 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1425 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1426 return -EINVAL; 1427 } 1428 1429 if (value < 0) { 1430 rs->ti->error = "max_recovery_rate out of range"; 1431 return -EINVAL; 1432 } 1433 rs->md.sync_speed_max = value; 1434 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1435 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1436 rs->ti->error = "Only one region_size argument pair allowed"; 1437 return -EINVAL; 1438 } 1439 1440 region_size = value; 1441 rs->requested_bitmap_chunk_sectors = value; 1442 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1443 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1444 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1445 return -EINVAL; 1446 } 1447 1448 if (!__within_range(value, 2, rs->md.raid_disks)) { 1449 rs->ti->error = "Bad value for 'raid10_copies'"; 1450 return -EINVAL; 1451 } 1452 1453 raid10_copies = value; 1454 } else { 1455 DMERR("Unable to parse RAID parameter: %s", key); 1456 rs->ti->error = "Unable to parse RAID parameter"; 1457 return -EINVAL; 1458 } 1459 } 1460 1461 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1462 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1463 rs->ti->error = "sync and nosync are mutually exclusive"; 1464 return -EINVAL; 1465 } 1466 1467 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1468 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1469 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1470 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1471 return -EINVAL; 1472 } 1473 1474 if (write_mostly >= rs->md.raid_disks) { 1475 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1476 return -EINVAL; 1477 } 1478 1479 if (rs->md.sync_speed_max && 1480 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1481 rs->ti->error = "Bogus recovery rates"; 1482 return -EINVAL; 1483 } 1484 1485 if (validate_region_size(rs, region_size)) 1486 return -EINVAL; 1487 1488 if (rs->md.chunk_sectors) 1489 max_io_len = rs->md.chunk_sectors; 1490 else 1491 max_io_len = region_size; 1492 1493 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1494 return -EINVAL; 1495 1496 if (rt_is_raid10(rt)) { 1497 if (raid10_copies > rs->md.raid_disks) { 1498 rs->ti->error = "Not enough devices to satisfy specification"; 1499 return -EINVAL; 1500 } 1501 1502 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1503 if (rs->md.new_layout < 0) { 1504 rs->ti->error = "Error getting raid10 format"; 1505 return rs->md.new_layout; 1506 } 1507 1508 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1509 if (!rt) { 1510 rs->ti->error = "Failed to recognize new raid10 layout"; 1511 return -EINVAL; 1512 } 1513 1514 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1515 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1516 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1517 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1518 return -EINVAL; 1519 } 1520 } 1521 1522 rs->raid10_copies = raid10_copies; 1523 1524 /* Assume there are no metadata devices until the drives are parsed */ 1525 rs->md.persistent = 0; 1526 rs->md.external = 1; 1527 1528 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1529 return rs_check_for_valid_flags(rs); 1530 } 1531 1532 /* Set raid4/5/6 cache size */ 1533 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1534 { 1535 int r; 1536 struct r5conf *conf; 1537 struct mddev *mddev = &rs->md; 1538 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1539 uint32_t nr_stripes = rs->stripe_cache_entries; 1540 1541 if (!rt_is_raid456(rs->raid_type)) { 1542 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1543 return -EINVAL; 1544 } 1545 1546 if (nr_stripes < min_stripes) { 1547 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1548 nr_stripes, min_stripes); 1549 nr_stripes = min_stripes; 1550 } 1551 1552 conf = mddev->private; 1553 if (!conf) { 1554 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1555 return -EINVAL; 1556 } 1557 1558 /* Try setting number of stripes in raid456 stripe cache */ 1559 if (conf->min_nr_stripes != nr_stripes) { 1560 r = raid5_set_cache_size(mddev, nr_stripes); 1561 if (r) { 1562 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1563 return r; 1564 } 1565 1566 DMINFO("%u stripe cache entries", nr_stripes); 1567 } 1568 1569 return 0; 1570 } 1571 1572 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1573 static unsigned int mddev_data_stripes(struct raid_set *rs) 1574 { 1575 return rs->md.raid_disks - rs->raid_type->parity_devs; 1576 } 1577 1578 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1579 static unsigned int rs_data_stripes(struct raid_set *rs) 1580 { 1581 return rs->raid_disks - rs->raid_type->parity_devs; 1582 } 1583 1584 /* 1585 * Retrieve rdev->sectors from any valid raid device of @rs 1586 * to allow userpace to pass in arbitray "- -" device tupples. 1587 */ 1588 static sector_t __rdev_sectors(struct raid_set *rs) 1589 { 1590 int i; 1591 1592 for (i = 0; i < rs->md.raid_disks; i++) { 1593 struct md_rdev *rdev = &rs->dev[i].rdev; 1594 1595 if (!test_bit(Journal, &rdev->flags) && 1596 rdev->bdev && rdev->sectors) 1597 return rdev->sectors; 1598 } 1599 1600 return 0; 1601 } 1602 1603 /* Check that calculated dev_sectors fits all component devices. */ 1604 static int _check_data_dev_sectors(struct raid_set *rs) 1605 { 1606 sector_t ds = ~0; 1607 struct md_rdev *rdev; 1608 1609 rdev_for_each(rdev, &rs->md) 1610 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1611 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode))); 1612 if (ds < rs->md.dev_sectors) { 1613 rs->ti->error = "Component device(s) too small"; 1614 return -EINVAL; 1615 } 1616 } 1617 1618 return 0; 1619 } 1620 1621 /* Calculate the sectors per device and per array used for @rs */ 1622 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1623 { 1624 int delta_disks; 1625 unsigned int data_stripes; 1626 sector_t array_sectors = sectors, dev_sectors = sectors; 1627 struct mddev *mddev = &rs->md; 1628 1629 if (use_mddev) { 1630 delta_disks = mddev->delta_disks; 1631 data_stripes = mddev_data_stripes(rs); 1632 } else { 1633 delta_disks = rs->delta_disks; 1634 data_stripes = rs_data_stripes(rs); 1635 } 1636 1637 /* Special raid1 case w/o delta_disks support (yet) */ 1638 if (rt_is_raid1(rs->raid_type)) 1639 ; 1640 else if (rt_is_raid10(rs->raid_type)) { 1641 if (rs->raid10_copies < 2 || 1642 delta_disks < 0) { 1643 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1644 return -EINVAL; 1645 } 1646 1647 dev_sectors *= rs->raid10_copies; 1648 if (sector_div(dev_sectors, data_stripes)) 1649 goto bad; 1650 1651 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1652 if (sector_div(array_sectors, rs->raid10_copies)) 1653 goto bad; 1654 1655 } else if (sector_div(dev_sectors, data_stripes)) 1656 goto bad; 1657 1658 else 1659 /* Striped layouts */ 1660 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1661 1662 mddev->array_sectors = array_sectors; 1663 mddev->dev_sectors = dev_sectors; 1664 rs_set_rdev_sectors(rs); 1665 1666 return _check_data_dev_sectors(rs); 1667 bad: 1668 rs->ti->error = "Target length not divisible by number of data devices"; 1669 return -EINVAL; 1670 } 1671 1672 /* Setup recovery on @rs */ 1673 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1674 { 1675 /* raid0 does not recover */ 1676 if (rs_is_raid0(rs)) 1677 rs->md.recovery_cp = MaxSector; 1678 /* 1679 * A raid6 set has to be recovered either 1680 * completely or for the grown part to 1681 * ensure proper parity and Q-Syndrome 1682 */ 1683 else if (rs_is_raid6(rs)) 1684 rs->md.recovery_cp = dev_sectors; 1685 /* 1686 * Other raid set types may skip recovery 1687 * depending on the 'nosync' flag. 1688 */ 1689 else 1690 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1691 ? MaxSector : dev_sectors; 1692 } 1693 1694 static void do_table_event(struct work_struct *ws) 1695 { 1696 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1697 1698 smp_rmb(); /* Make sure we access most actual mddev properties */ 1699 if (!rs_is_reshaping(rs)) { 1700 if (rs_is_raid10(rs)) 1701 rs_set_rdev_sectors(rs); 1702 rs_set_capacity(rs); 1703 } 1704 dm_table_event(rs->ti->table); 1705 } 1706 1707 /* 1708 * Make sure a valid takover (level switch) is being requested on @rs 1709 * 1710 * Conversions of raid sets from one MD personality to another 1711 * have to conform to restrictions which are enforced here. 1712 */ 1713 static int rs_check_takeover(struct raid_set *rs) 1714 { 1715 struct mddev *mddev = &rs->md; 1716 unsigned int near_copies; 1717 1718 if (rs->md.degraded) { 1719 rs->ti->error = "Can't takeover degraded raid set"; 1720 return -EPERM; 1721 } 1722 1723 if (rs_is_reshaping(rs)) { 1724 rs->ti->error = "Can't takeover reshaping raid set"; 1725 return -EPERM; 1726 } 1727 1728 switch (mddev->level) { 1729 case 0: 1730 /* raid0 -> raid1/5 with one disk */ 1731 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1732 mddev->raid_disks == 1) 1733 return 0; 1734 1735 /* raid0 -> raid10 */ 1736 if (mddev->new_level == 10 && 1737 !(rs->raid_disks % mddev->raid_disks)) 1738 return 0; 1739 1740 /* raid0 with multiple disks -> raid4/5/6 */ 1741 if (__within_range(mddev->new_level, 4, 6) && 1742 mddev->new_layout == ALGORITHM_PARITY_N && 1743 mddev->raid_disks > 1) 1744 return 0; 1745 1746 break; 1747 1748 case 10: 1749 /* Can't takeover raid10_offset! */ 1750 if (__is_raid10_offset(mddev->layout)) 1751 break; 1752 1753 near_copies = __raid10_near_copies(mddev->layout); 1754 1755 /* raid10* -> raid0 */ 1756 if (mddev->new_level == 0) { 1757 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1758 if (near_copies > 1 && 1759 !(mddev->raid_disks % near_copies)) { 1760 mddev->raid_disks /= near_copies; 1761 mddev->delta_disks = mddev->raid_disks; 1762 return 0; 1763 } 1764 1765 /* Can takeover raid10_far */ 1766 if (near_copies == 1 && 1767 __raid10_far_copies(mddev->layout) > 1) 1768 return 0; 1769 1770 break; 1771 } 1772 1773 /* raid10_{near,far} -> raid1 */ 1774 if (mddev->new_level == 1 && 1775 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1776 return 0; 1777 1778 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1779 if (__within_range(mddev->new_level, 4, 5) && 1780 mddev->raid_disks == 2) 1781 return 0; 1782 break; 1783 1784 case 1: 1785 /* raid1 with 2 disks -> raid4/5 */ 1786 if (__within_range(mddev->new_level, 4, 5) && 1787 mddev->raid_disks == 2) { 1788 mddev->degraded = 1; 1789 return 0; 1790 } 1791 1792 /* raid1 -> raid0 */ 1793 if (mddev->new_level == 0 && 1794 mddev->raid_disks == 1) 1795 return 0; 1796 1797 /* raid1 -> raid10 */ 1798 if (mddev->new_level == 10) 1799 return 0; 1800 break; 1801 1802 case 4: 1803 /* raid4 -> raid0 */ 1804 if (mddev->new_level == 0) 1805 return 0; 1806 1807 /* raid4 -> raid1/5 with 2 disks */ 1808 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1809 mddev->raid_disks == 2) 1810 return 0; 1811 1812 /* raid4 -> raid5/6 with parity N */ 1813 if (__within_range(mddev->new_level, 5, 6) && 1814 mddev->layout == ALGORITHM_PARITY_N) 1815 return 0; 1816 break; 1817 1818 case 5: 1819 /* raid5 with parity N -> raid0 */ 1820 if (mddev->new_level == 0 && 1821 mddev->layout == ALGORITHM_PARITY_N) 1822 return 0; 1823 1824 /* raid5 with parity N -> raid4 */ 1825 if (mddev->new_level == 4 && 1826 mddev->layout == ALGORITHM_PARITY_N) 1827 return 0; 1828 1829 /* raid5 with 2 disks -> raid1/4/10 */ 1830 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1831 mddev->raid_disks == 2) 1832 return 0; 1833 1834 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1835 if (mddev->new_level == 6 && 1836 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1837 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1838 return 0; 1839 break; 1840 1841 case 6: 1842 /* raid6 with parity N -> raid0 */ 1843 if (mddev->new_level == 0 && 1844 mddev->layout == ALGORITHM_PARITY_N) 1845 return 0; 1846 1847 /* raid6 with parity N -> raid4 */ 1848 if (mddev->new_level == 4 && 1849 mddev->layout == ALGORITHM_PARITY_N) 1850 return 0; 1851 1852 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1853 if (mddev->new_level == 5 && 1854 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1855 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1856 return 0; 1857 1858 default: 1859 break; 1860 } 1861 1862 rs->ti->error = "takeover not possible"; 1863 return -EINVAL; 1864 } 1865 1866 /* True if @rs requested to be taken over */ 1867 static bool rs_takeover_requested(struct raid_set *rs) 1868 { 1869 return rs->md.new_level != rs->md.level; 1870 } 1871 1872 /* True if @rs is requested to reshape by ctr */ 1873 static bool rs_reshape_requested(struct raid_set *rs) 1874 { 1875 bool change; 1876 struct mddev *mddev = &rs->md; 1877 1878 if (rs_takeover_requested(rs)) 1879 return false; 1880 1881 if (rs_is_raid0(rs)) 1882 return false; 1883 1884 change = mddev->new_layout != mddev->layout || 1885 mddev->new_chunk_sectors != mddev->chunk_sectors || 1886 rs->delta_disks; 1887 1888 /* Historical case to support raid1 reshape without delta disks */ 1889 if (rs_is_raid1(rs)) { 1890 if (rs->delta_disks) 1891 return !!rs->delta_disks; 1892 1893 return !change && 1894 mddev->raid_disks != rs->raid_disks; 1895 } 1896 1897 if (rs_is_raid10(rs)) 1898 return change && 1899 !__is_raid10_far(mddev->new_layout) && 1900 rs->delta_disks >= 0; 1901 1902 return change; 1903 } 1904 1905 /* Features */ 1906 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1907 1908 /* State flags for sb->flags */ 1909 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1910 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1911 1912 /* 1913 * This structure is never routinely used by userspace, unlike md superblocks. 1914 * Devices with this superblock should only ever be accessed via device-mapper. 1915 */ 1916 #define DM_RAID_MAGIC 0x64526D44 1917 struct dm_raid_superblock { 1918 __le32 magic; /* "DmRd" */ 1919 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1920 1921 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1922 __le32 array_position; /* The position of this drive in the raid set */ 1923 1924 __le64 events; /* Incremented by md when superblock updated */ 1925 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1926 /* indicate failures (see extension below) */ 1927 1928 /* 1929 * This offset tracks the progress of the repair or replacement of 1930 * an individual drive. 1931 */ 1932 __le64 disk_recovery_offset; 1933 1934 /* 1935 * This offset tracks the progress of the initial raid set 1936 * synchronisation/parity calculation. 1937 */ 1938 __le64 array_resync_offset; 1939 1940 /* 1941 * raid characteristics 1942 */ 1943 __le32 level; 1944 __le32 layout; 1945 __le32 stripe_sectors; 1946 1947 /******************************************************************** 1948 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1949 * 1950 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1951 */ 1952 1953 __le32 flags; /* Flags defining array states for reshaping */ 1954 1955 /* 1956 * This offset tracks the progress of a raid 1957 * set reshape in order to be able to restart it 1958 */ 1959 __le64 reshape_position; 1960 1961 /* 1962 * These define the properties of the array in case of an interrupted reshape 1963 */ 1964 __le32 new_level; 1965 __le32 new_layout; 1966 __le32 new_stripe_sectors; 1967 __le32 delta_disks; 1968 1969 __le64 array_sectors; /* Array size in sectors */ 1970 1971 /* 1972 * Sector offsets to data on devices (reshaping). 1973 * Needed to support out of place reshaping, thus 1974 * not writing over any stripes whilst converting 1975 * them from old to new layout 1976 */ 1977 __le64 data_offset; 1978 __le64 new_data_offset; 1979 1980 __le64 sectors; /* Used device size in sectors */ 1981 1982 /* 1983 * Additonal Bit field of devices indicating failures to support 1984 * up to 256 devices with the 1.9.0 on-disk metadata format 1985 */ 1986 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 1987 1988 __le32 incompat_features; /* Used to indicate any incompatible features */ 1989 1990 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 1991 } __packed; 1992 1993 /* 1994 * Check for reshape constraints on raid set @rs: 1995 * 1996 * - reshape function non-existent 1997 * - degraded set 1998 * - ongoing recovery 1999 * - ongoing reshape 2000 * 2001 * Returns 0 if none or -EPERM if given constraint 2002 * and error message reference in @errmsg 2003 */ 2004 static int rs_check_reshape(struct raid_set *rs) 2005 { 2006 struct mddev *mddev = &rs->md; 2007 2008 if (!mddev->pers || !mddev->pers->check_reshape) 2009 rs->ti->error = "Reshape not supported"; 2010 else if (mddev->degraded) 2011 rs->ti->error = "Can't reshape degraded raid set"; 2012 else if (rs_is_recovering(rs)) 2013 rs->ti->error = "Convert request on recovering raid set prohibited"; 2014 else if (rs_is_reshaping(rs)) 2015 rs->ti->error = "raid set already reshaping!"; 2016 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2017 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2018 else 2019 return 0; 2020 2021 return -EPERM; 2022 } 2023 2024 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2025 { 2026 BUG_ON(!rdev->sb_page); 2027 2028 if (rdev->sb_loaded && !force_reload) 2029 return 0; 2030 2031 rdev->sb_loaded = 0; 2032 2033 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { 2034 DMERR("Failed to read superblock of device at position %d", 2035 rdev->raid_disk); 2036 md_error(rdev->mddev, rdev); 2037 set_bit(Faulty, &rdev->flags); 2038 return -EIO; 2039 } 2040 2041 rdev->sb_loaded = 1; 2042 2043 return 0; 2044 } 2045 2046 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2047 { 2048 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2049 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2050 2051 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2052 int i = ARRAY_SIZE(sb->extended_failed_devices); 2053 2054 while (i--) 2055 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2056 } 2057 } 2058 2059 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2060 { 2061 int i = ARRAY_SIZE(sb->extended_failed_devices); 2062 2063 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2064 while (i--) 2065 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2066 } 2067 2068 /* 2069 * Synchronize the superblock members with the raid set properties 2070 * 2071 * All superblock data is little endian. 2072 */ 2073 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2074 { 2075 bool update_failed_devices = false; 2076 unsigned int i; 2077 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2078 struct dm_raid_superblock *sb; 2079 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2080 2081 /* No metadata device, no superblock */ 2082 if (!rdev->meta_bdev) 2083 return; 2084 2085 BUG_ON(!rdev->sb_page); 2086 2087 sb = page_address(rdev->sb_page); 2088 2089 sb_retrieve_failed_devices(sb, failed_devices); 2090 2091 for (i = 0; i < rs->raid_disks; i++) 2092 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2093 update_failed_devices = true; 2094 set_bit(i, (void *) failed_devices); 2095 } 2096 2097 if (update_failed_devices) 2098 sb_update_failed_devices(sb, failed_devices); 2099 2100 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2101 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2102 2103 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2104 sb->array_position = cpu_to_le32(rdev->raid_disk); 2105 2106 sb->events = cpu_to_le64(mddev->events); 2107 2108 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2109 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2110 2111 sb->level = cpu_to_le32(mddev->level); 2112 sb->layout = cpu_to_le32(mddev->layout); 2113 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2114 2115 /******************************************************************** 2116 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2117 * 2118 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2119 */ 2120 sb->new_level = cpu_to_le32(mddev->new_level); 2121 sb->new_layout = cpu_to_le32(mddev->new_layout); 2122 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2123 2124 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2125 2126 smp_rmb(); /* Make sure we access most recent reshape position */ 2127 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2128 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2129 /* Flag ongoing reshape */ 2130 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2131 2132 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2133 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2134 } else { 2135 /* Clear reshape flags */ 2136 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2137 } 2138 2139 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2140 sb->data_offset = cpu_to_le64(rdev->data_offset); 2141 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2142 sb->sectors = cpu_to_le64(rdev->sectors); 2143 sb->incompat_features = cpu_to_le32(0); 2144 2145 /* Zero out the rest of the payload after the size of the superblock */ 2146 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2147 } 2148 2149 /* 2150 * super_load 2151 * 2152 * This function creates a superblock if one is not found on the device 2153 * and will decide which superblock to use if there's a choice. 2154 * 2155 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2156 */ 2157 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2158 { 2159 int r; 2160 struct dm_raid_superblock *sb; 2161 struct dm_raid_superblock *refsb; 2162 uint64_t events_sb, events_refsb; 2163 2164 r = read_disk_sb(rdev, rdev->sb_size, false); 2165 if (r) 2166 return r; 2167 2168 sb = page_address(rdev->sb_page); 2169 2170 /* 2171 * Two cases that we want to write new superblocks and rebuild: 2172 * 1) New device (no matching magic number) 2173 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2174 */ 2175 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2176 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2177 super_sync(rdev->mddev, rdev); 2178 2179 set_bit(FirstUse, &rdev->flags); 2180 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2181 2182 /* Force writing of superblocks to disk */ 2183 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2184 2185 /* Any superblock is better than none, choose that if given */ 2186 return refdev ? 0 : 1; 2187 } 2188 2189 if (!refdev) 2190 return 1; 2191 2192 events_sb = le64_to_cpu(sb->events); 2193 2194 refsb = page_address(refdev->sb_page); 2195 events_refsb = le64_to_cpu(refsb->events); 2196 2197 return (events_sb > events_refsb) ? 1 : 0; 2198 } 2199 2200 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2201 { 2202 int role; 2203 unsigned int d; 2204 struct mddev *mddev = &rs->md; 2205 uint64_t events_sb; 2206 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2207 struct dm_raid_superblock *sb; 2208 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2209 struct md_rdev *r; 2210 struct dm_raid_superblock *sb2; 2211 2212 sb = page_address(rdev->sb_page); 2213 events_sb = le64_to_cpu(sb->events); 2214 2215 /* 2216 * Initialise to 1 if this is a new superblock. 2217 */ 2218 mddev->events = events_sb ? : 1; 2219 2220 mddev->reshape_position = MaxSector; 2221 2222 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2223 mddev->level = le32_to_cpu(sb->level); 2224 mddev->layout = le32_to_cpu(sb->layout); 2225 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2226 2227 /* 2228 * Reshaping is supported, e.g. reshape_position is valid 2229 * in superblock and superblock content is authoritative. 2230 */ 2231 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2232 /* Superblock is authoritative wrt given raid set layout! */ 2233 mddev->new_level = le32_to_cpu(sb->new_level); 2234 mddev->new_layout = le32_to_cpu(sb->new_layout); 2235 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2236 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2237 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2238 2239 /* raid was reshaping and got interrupted */ 2240 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2241 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2242 DMERR("Reshape requested but raid set is still reshaping"); 2243 return -EINVAL; 2244 } 2245 2246 if (mddev->delta_disks < 0 || 2247 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2248 mddev->reshape_backwards = 1; 2249 else 2250 mddev->reshape_backwards = 0; 2251 2252 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2253 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2254 } 2255 2256 } else { 2257 /* 2258 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2259 */ 2260 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2261 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2262 2263 if (rs_takeover_requested(rs)) { 2264 if (rt_cur && rt_new) 2265 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2266 rt_cur->name, rt_new->name); 2267 else 2268 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2269 return -EINVAL; 2270 } else if (rs_reshape_requested(rs)) { 2271 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2272 if (mddev->layout != mddev->new_layout) { 2273 if (rt_cur && rt_new) 2274 DMERR(" current layout %s vs new layout %s", 2275 rt_cur->name, rt_new->name); 2276 else 2277 DMERR(" current layout 0x%X vs new layout 0x%X", 2278 le32_to_cpu(sb->layout), mddev->new_layout); 2279 } 2280 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2281 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2282 mddev->chunk_sectors, mddev->new_chunk_sectors); 2283 if (rs->delta_disks) 2284 DMERR(" current %u disks vs new %u disks", 2285 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2286 if (rs_is_raid10(rs)) { 2287 DMERR(" Old layout: %s w/ %u copies", 2288 raid10_md_layout_to_format(mddev->layout), 2289 raid10_md_layout_to_copies(mddev->layout)); 2290 DMERR(" New layout: %s w/ %u copies", 2291 raid10_md_layout_to_format(mddev->new_layout), 2292 raid10_md_layout_to_copies(mddev->new_layout)); 2293 } 2294 return -EINVAL; 2295 } 2296 2297 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2298 } 2299 2300 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2301 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2302 2303 /* 2304 * During load, we set FirstUse if a new superblock was written. 2305 * There are two reasons we might not have a superblock: 2306 * 1) The raid set is brand new - in which case, all of the 2307 * devices must have their In_sync bit set. Also, 2308 * recovery_cp must be 0, unless forced. 2309 * 2) This is a new device being added to an old raid set 2310 * and the new device needs to be rebuilt - in which 2311 * case the In_sync bit will /not/ be set and 2312 * recovery_cp must be MaxSector. 2313 * 3) This is/are a new device(s) being added to an old 2314 * raid set during takeover to a higher raid level 2315 * to provide capacity for redundancy or during reshape 2316 * to add capacity to grow the raid set. 2317 */ 2318 d = 0; 2319 rdev_for_each(r, mddev) { 2320 if (test_bit(Journal, &rdev->flags)) 2321 continue; 2322 2323 if (test_bit(FirstUse, &r->flags)) 2324 new_devs++; 2325 2326 if (!test_bit(In_sync, &r->flags)) { 2327 DMINFO("Device %d specified for rebuild; clearing superblock", 2328 r->raid_disk); 2329 rebuilds++; 2330 2331 if (test_bit(FirstUse, &r->flags)) 2332 rebuild_and_new++; 2333 } 2334 2335 d++; 2336 } 2337 2338 if (new_devs == rs->raid_disks || !rebuilds) { 2339 /* Replace a broken device */ 2340 if (new_devs == rs->raid_disks) { 2341 DMINFO("Superblocks created for new raid set"); 2342 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2343 } else if (new_devs != rebuilds && 2344 new_devs != rs->delta_disks) { 2345 DMERR("New device injected into existing raid set without " 2346 "'delta_disks' or 'rebuild' parameter specified"); 2347 return -EINVAL; 2348 } 2349 } else if (new_devs && new_devs != rebuilds) { 2350 DMERR("%u 'rebuild' devices cannot be injected into" 2351 " a raid set with %u other first-time devices", 2352 rebuilds, new_devs); 2353 return -EINVAL; 2354 } else if (rebuilds) { 2355 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2356 DMERR("new device%s provided without 'rebuild'", 2357 new_devs > 1 ? "s" : ""); 2358 return -EINVAL; 2359 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2360 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2361 (unsigned long long) mddev->recovery_cp); 2362 return -EINVAL; 2363 } else if (rs_is_reshaping(rs)) { 2364 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2365 (unsigned long long) mddev->reshape_position); 2366 return -EINVAL; 2367 } 2368 } 2369 2370 /* 2371 * Now we set the Faulty bit for those devices that are 2372 * recorded in the superblock as failed. 2373 */ 2374 sb_retrieve_failed_devices(sb, failed_devices); 2375 rdev_for_each(r, mddev) { 2376 if (test_bit(Journal, &rdev->flags) || 2377 !r->sb_page) 2378 continue; 2379 sb2 = page_address(r->sb_page); 2380 sb2->failed_devices = 0; 2381 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2382 2383 /* 2384 * Check for any device re-ordering. 2385 */ 2386 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2387 role = le32_to_cpu(sb2->array_position); 2388 if (role < 0) 2389 continue; 2390 2391 if (role != r->raid_disk) { 2392 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2393 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2394 rs->raid_disks % rs->raid10_copies) { 2395 rs->ti->error = 2396 "Cannot change raid10 near set to odd # of devices!"; 2397 return -EINVAL; 2398 } 2399 2400 sb2->array_position = cpu_to_le32(r->raid_disk); 2401 2402 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2403 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2404 !rt_is_raid1(rs->raid_type)) { 2405 rs->ti->error = "Cannot change device positions in raid set"; 2406 return -EINVAL; 2407 } 2408 2409 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2410 } 2411 2412 /* 2413 * Partial recovery is performed on 2414 * returning failed devices. 2415 */ 2416 if (test_bit(role, (void *) failed_devices)) 2417 set_bit(Faulty, &r->flags); 2418 } 2419 } 2420 2421 return 0; 2422 } 2423 2424 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2425 { 2426 struct mddev *mddev = &rs->md; 2427 struct dm_raid_superblock *sb; 2428 2429 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2430 return 0; 2431 2432 sb = page_address(rdev->sb_page); 2433 2434 /* 2435 * If mddev->events is not set, we know we have not yet initialized 2436 * the array. 2437 */ 2438 if (!mddev->events && super_init_validation(rs, rdev)) 2439 return -EINVAL; 2440 2441 if (le32_to_cpu(sb->compat_features) && 2442 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2443 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2444 return -EINVAL; 2445 } 2446 2447 if (sb->incompat_features) { 2448 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2449 return -EINVAL; 2450 } 2451 2452 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2453 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2454 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2455 2456 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2457 /* 2458 * Retrieve rdev size stored in superblock to be prepared for shrink. 2459 * Check extended superblock members are present otherwise the size 2460 * will not be set! 2461 */ 2462 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2463 rdev->sectors = le64_to_cpu(sb->sectors); 2464 2465 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2466 if (rdev->recovery_offset == MaxSector) 2467 set_bit(In_sync, &rdev->flags); 2468 /* 2469 * If no reshape in progress -> we're recovering single 2470 * disk(s) and have to set the device(s) to out-of-sync 2471 */ 2472 else if (!rs_is_reshaping(rs)) 2473 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2474 } 2475 2476 /* 2477 * If a device comes back, set it as not In_sync and no longer faulty. 2478 */ 2479 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2480 rdev->recovery_offset = 0; 2481 clear_bit(In_sync, &rdev->flags); 2482 rdev->saved_raid_disk = rdev->raid_disk; 2483 } 2484 2485 /* Reshape support -> restore repective data offsets */ 2486 rdev->data_offset = le64_to_cpu(sb->data_offset); 2487 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2488 2489 return 0; 2490 } 2491 2492 /* 2493 * Analyse superblocks and select the freshest. 2494 */ 2495 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2496 { 2497 int r; 2498 struct md_rdev *rdev, *freshest; 2499 struct mddev *mddev = &rs->md; 2500 2501 freshest = NULL; 2502 rdev_for_each(rdev, mddev) { 2503 if (test_bit(Journal, &rdev->flags)) 2504 continue; 2505 2506 if (!rdev->meta_bdev) 2507 continue; 2508 2509 /* Set superblock offset/size for metadata device. */ 2510 rdev->sb_start = 0; 2511 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2512 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2513 DMERR("superblock size of a logical block is no longer valid"); 2514 return -EINVAL; 2515 } 2516 2517 /* 2518 * Skipping super_load due to CTR_FLAG_SYNC will cause 2519 * the array to undergo initialization again as 2520 * though it were new. This is the intended effect 2521 * of the "sync" directive. 2522 * 2523 * With reshaping capability added, we must ensure that 2524 * that the "sync" directive is disallowed during the reshape. 2525 */ 2526 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2527 continue; 2528 2529 r = super_load(rdev, freshest); 2530 2531 switch (r) { 2532 case 1: 2533 freshest = rdev; 2534 break; 2535 case 0: 2536 break; 2537 default: 2538 /* This is a failure to read the superblock from the metadata device. */ 2539 /* 2540 * We have to keep any raid0 data/metadata device pairs or 2541 * the MD raid0 personality will fail to start the array. 2542 */ 2543 if (rs_is_raid0(rs)) 2544 continue; 2545 2546 /* 2547 * We keep the dm_devs to be able to emit the device tuple 2548 * properly on the table line in raid_status() (rather than 2549 * mistakenly acting as if '- -' got passed into the constructor). 2550 * 2551 * The rdev has to stay on the same_set list to allow for 2552 * the attempt to restore faulty devices on second resume. 2553 */ 2554 rdev->raid_disk = rdev->saved_raid_disk = -1; 2555 break; 2556 } 2557 } 2558 2559 if (!freshest) 2560 return 0; 2561 2562 /* 2563 * Validation of the freshest device provides the source of 2564 * validation for the remaining devices. 2565 */ 2566 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2567 if (super_validate(rs, freshest)) 2568 return -EINVAL; 2569 2570 if (validate_raid_redundancy(rs)) { 2571 rs->ti->error = "Insufficient redundancy to activate array"; 2572 return -EINVAL; 2573 } 2574 2575 rdev_for_each(rdev, mddev) 2576 if (!test_bit(Journal, &rdev->flags) && 2577 rdev != freshest && 2578 super_validate(rs, rdev)) 2579 return -EINVAL; 2580 return 0; 2581 } 2582 2583 /* 2584 * Adjust data_offset and new_data_offset on all disk members of @rs 2585 * for out of place reshaping if requested by contructor 2586 * 2587 * We need free space at the beginning of each raid disk for forward 2588 * and at the end for backward reshapes which userspace has to provide 2589 * via remapping/reordering of space. 2590 */ 2591 static int rs_adjust_data_offsets(struct raid_set *rs) 2592 { 2593 sector_t data_offset = 0, new_data_offset = 0; 2594 struct md_rdev *rdev; 2595 2596 /* Constructor did not request data offset change */ 2597 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2598 if (!rs_is_reshapable(rs)) 2599 goto out; 2600 2601 return 0; 2602 } 2603 2604 /* HM FIXME: get In_Sync raid_dev? */ 2605 rdev = &rs->dev[0].rdev; 2606 2607 if (rs->delta_disks < 0) { 2608 /* 2609 * Removing disks (reshaping backwards): 2610 * 2611 * - before reshape: data is at offset 0 and free space 2612 * is at end of each component LV 2613 * 2614 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2615 */ 2616 data_offset = 0; 2617 new_data_offset = rs->data_offset; 2618 2619 } else if (rs->delta_disks > 0) { 2620 /* 2621 * Adding disks (reshaping forwards): 2622 * 2623 * - before reshape: data is at offset rs->data_offset != 0 and 2624 * free space is at begin of each component LV 2625 * 2626 * - after reshape: data is at offset 0 on each component LV 2627 */ 2628 data_offset = rs->data_offset; 2629 new_data_offset = 0; 2630 2631 } else { 2632 /* 2633 * User space passes in 0 for data offset after having removed reshape space 2634 * 2635 * - or - (data offset != 0) 2636 * 2637 * Changing RAID layout or chunk size -> toggle offsets 2638 * 2639 * - before reshape: data is at offset rs->data_offset 0 and 2640 * free space is at end of each component LV 2641 * -or- 2642 * data is at offset rs->data_offset != 0 and 2643 * free space is at begin of each component LV 2644 * 2645 * - after reshape: data is at offset 0 if it was at offset != 0 2646 * or at offset != 0 if it was at offset 0 2647 * on each component LV 2648 * 2649 */ 2650 data_offset = rs->data_offset ? rdev->data_offset : 0; 2651 new_data_offset = data_offset ? 0 : rs->data_offset; 2652 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2653 } 2654 2655 /* 2656 * Make sure we got a minimum amount of free sectors per device 2657 */ 2658 if (rs->data_offset && 2659 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2660 rs->ti->error = data_offset ? "No space for forward reshape" : 2661 "No space for backward reshape"; 2662 return -ENOSPC; 2663 } 2664 out: 2665 /* 2666 * Raise recovery_cp in case data_offset != 0 to 2667 * avoid false recovery positives in the constructor. 2668 */ 2669 if (rs->md.recovery_cp < rs->md.dev_sectors) 2670 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2671 2672 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2673 rdev_for_each(rdev, &rs->md) { 2674 if (!test_bit(Journal, &rdev->flags)) { 2675 rdev->data_offset = data_offset; 2676 rdev->new_data_offset = new_data_offset; 2677 } 2678 } 2679 2680 return 0; 2681 } 2682 2683 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2684 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2685 { 2686 int i = 0; 2687 struct md_rdev *rdev; 2688 2689 rdev_for_each(rdev, &rs->md) { 2690 if (!test_bit(Journal, &rdev->flags)) { 2691 rdev->raid_disk = i++; 2692 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2693 } 2694 } 2695 } 2696 2697 /* 2698 * Setup @rs for takeover by a different raid level 2699 */ 2700 static int rs_setup_takeover(struct raid_set *rs) 2701 { 2702 struct mddev *mddev = &rs->md; 2703 struct md_rdev *rdev; 2704 unsigned int d = mddev->raid_disks = rs->raid_disks; 2705 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2706 2707 if (rt_is_raid10(rs->raid_type)) { 2708 if (rs_is_raid0(rs)) { 2709 /* Userpace reordered disks -> adjust raid_disk indexes */ 2710 __reorder_raid_disk_indexes(rs); 2711 2712 /* raid0 -> raid10_far layout */ 2713 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2714 rs->raid10_copies); 2715 } else if (rs_is_raid1(rs)) 2716 /* raid1 -> raid10_near layout */ 2717 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2718 rs->raid_disks); 2719 else 2720 return -EINVAL; 2721 2722 } 2723 2724 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2725 mddev->recovery_cp = MaxSector; 2726 2727 while (d--) { 2728 rdev = &rs->dev[d].rdev; 2729 2730 if (test_bit(d, (void *) rs->rebuild_disks)) { 2731 clear_bit(In_sync, &rdev->flags); 2732 clear_bit(Faulty, &rdev->flags); 2733 mddev->recovery_cp = rdev->recovery_offset = 0; 2734 /* Bitmap has to be created when we do an "up" takeover */ 2735 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2736 } 2737 2738 rdev->new_data_offset = new_data_offset; 2739 } 2740 2741 return 0; 2742 } 2743 2744 /* Prepare @rs for reshape */ 2745 static int rs_prepare_reshape(struct raid_set *rs) 2746 { 2747 bool reshape; 2748 struct mddev *mddev = &rs->md; 2749 2750 if (rs_is_raid10(rs)) { 2751 if (rs->raid_disks != mddev->raid_disks && 2752 __is_raid10_near(mddev->layout) && 2753 rs->raid10_copies && 2754 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2755 /* 2756 * raid disk have to be multiple of data copies to allow this conversion, 2757 * 2758 * This is actually not a reshape it is a 2759 * rebuild of any additional mirrors per group 2760 */ 2761 if (rs->raid_disks % rs->raid10_copies) { 2762 rs->ti->error = "Can't reshape raid10 mirror groups"; 2763 return -EINVAL; 2764 } 2765 2766 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2767 __reorder_raid_disk_indexes(rs); 2768 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2769 rs->raid10_copies); 2770 mddev->new_layout = mddev->layout; 2771 reshape = false; 2772 } else 2773 reshape = true; 2774 2775 } else if (rs_is_raid456(rs)) 2776 reshape = true; 2777 2778 else if (rs_is_raid1(rs)) { 2779 if (rs->delta_disks) { 2780 /* Process raid1 via delta_disks */ 2781 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2782 reshape = true; 2783 } else { 2784 /* Process raid1 without delta_disks */ 2785 mddev->raid_disks = rs->raid_disks; 2786 reshape = false; 2787 } 2788 } else { 2789 rs->ti->error = "Called with bogus raid type"; 2790 return -EINVAL; 2791 } 2792 2793 if (reshape) { 2794 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2795 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2796 } else if (mddev->raid_disks < rs->raid_disks) 2797 /* Create new superblocks and bitmaps, if any new disks */ 2798 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2799 2800 return 0; 2801 } 2802 2803 /* Get reshape sectors from data_offsets or raid set */ 2804 static sector_t _get_reshape_sectors(struct raid_set *rs) 2805 { 2806 struct md_rdev *rdev; 2807 sector_t reshape_sectors = 0; 2808 2809 rdev_for_each(rdev, &rs->md) 2810 if (!test_bit(Journal, &rdev->flags)) { 2811 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2812 rdev->data_offset - rdev->new_data_offset : 2813 rdev->new_data_offset - rdev->data_offset; 2814 break; 2815 } 2816 2817 return max(reshape_sectors, (sector_t) rs->data_offset); 2818 } 2819 2820 /* 2821 * 2822 * - change raid layout 2823 * - change chunk size 2824 * - add disks 2825 * - remove disks 2826 */ 2827 static int rs_setup_reshape(struct raid_set *rs) 2828 { 2829 int r = 0; 2830 unsigned int cur_raid_devs, d; 2831 sector_t reshape_sectors = _get_reshape_sectors(rs); 2832 struct mddev *mddev = &rs->md; 2833 struct md_rdev *rdev; 2834 2835 mddev->delta_disks = rs->delta_disks; 2836 cur_raid_devs = mddev->raid_disks; 2837 2838 /* Ignore impossible layout change whilst adding/removing disks */ 2839 if (mddev->delta_disks && 2840 mddev->layout != mddev->new_layout) { 2841 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2842 mddev->new_layout = mddev->layout; 2843 } 2844 2845 /* 2846 * Adjust array size: 2847 * 2848 * - in case of adding disk(s), array size has 2849 * to grow after the disk adding reshape, 2850 * which'll hapen in the event handler; 2851 * reshape will happen forward, so space has to 2852 * be available at the beginning of each disk 2853 * 2854 * - in case of removing disk(s), array size 2855 * has to shrink before starting the reshape, 2856 * which'll happen here; 2857 * reshape will happen backward, so space has to 2858 * be available at the end of each disk 2859 * 2860 * - data_offset and new_data_offset are 2861 * adjusted for aforementioned out of place 2862 * reshaping based on userspace passing in 2863 * the "data_offset <sectors>" key/value 2864 * pair via the constructor 2865 */ 2866 2867 /* Add disk(s) */ 2868 if (rs->delta_disks > 0) { 2869 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2870 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2871 rdev = &rs->dev[d].rdev; 2872 clear_bit(In_sync, &rdev->flags); 2873 2874 /* 2875 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2876 * by md, which'll store that erroneously in the superblock on reshape 2877 */ 2878 rdev->saved_raid_disk = -1; 2879 rdev->raid_disk = d; 2880 2881 rdev->sectors = mddev->dev_sectors; 2882 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2883 } 2884 2885 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2886 2887 /* Remove disk(s) */ 2888 } else if (rs->delta_disks < 0) { 2889 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2890 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2891 2892 /* Change layout and/or chunk size */ 2893 } else { 2894 /* 2895 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2896 * 2897 * keeping number of disks and do layout change -> 2898 * 2899 * toggle reshape_backward depending on data_offset: 2900 * 2901 * - free space upfront -> reshape forward 2902 * 2903 * - free space at the end -> reshape backward 2904 * 2905 * 2906 * This utilizes free reshape space avoiding the need 2907 * for userspace to move (parts of) LV segments in 2908 * case of layout/chunksize change (for disk 2909 * adding/removing reshape space has to be at 2910 * the proper address (see above with delta_disks): 2911 * 2912 * add disk(s) -> begin 2913 * remove disk(s)-> end 2914 */ 2915 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2916 } 2917 2918 /* 2919 * Adjust device size for forward reshape 2920 * because md_finish_reshape() reduces it. 2921 */ 2922 if (!mddev->reshape_backwards) 2923 rdev_for_each(rdev, &rs->md) 2924 if (!test_bit(Journal, &rdev->flags)) 2925 rdev->sectors += reshape_sectors; 2926 2927 return r; 2928 } 2929 2930 /* 2931 * Enable/disable discard support on RAID set depending on 2932 * RAID level and discard properties of underlying RAID members. 2933 */ 2934 static void configure_discard_support(struct raid_set *rs) 2935 { 2936 int i; 2937 bool raid456; 2938 struct dm_target *ti = rs->ti; 2939 2940 /* 2941 * XXX: RAID level 4,5,6 require zeroing for safety. 2942 */ 2943 raid456 = rs_is_raid456(rs); 2944 2945 for (i = 0; i < rs->raid_disks; i++) { 2946 struct request_queue *q; 2947 2948 if (!rs->dev[i].rdev.bdev) 2949 continue; 2950 2951 q = bdev_get_queue(rs->dev[i].rdev.bdev); 2952 if (!q || !blk_queue_discard(q)) 2953 return; 2954 2955 if (raid456) { 2956 if (!devices_handle_discard_safely) { 2957 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2958 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2959 return; 2960 } 2961 } 2962 } 2963 2964 ti->num_discard_bios = 1; 2965 } 2966 2967 /* 2968 * Construct a RAID0/1/10/4/5/6 mapping: 2969 * Args: 2970 * <raid_type> <#raid_params> <raid_params>{0,} \ 2971 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2972 * 2973 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2974 * details on possible <raid_params>. 2975 * 2976 * Userspace is free to initialize the metadata devices, hence the superblocks to 2977 * enforce recreation based on the passed in table parameters. 2978 * 2979 */ 2980 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2981 { 2982 int r; 2983 bool resize = false; 2984 struct raid_type *rt; 2985 unsigned int num_raid_params, num_raid_devs; 2986 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 2987 struct raid_set *rs = NULL; 2988 const char *arg; 2989 struct rs_layout rs_layout; 2990 struct dm_arg_set as = { argc, argv }, as_nrd; 2991 struct dm_arg _args[] = { 2992 { 0, as.argc, "Cannot understand number of raid parameters" }, 2993 { 1, 254, "Cannot understand number of raid devices parameters" } 2994 }; 2995 2996 arg = dm_shift_arg(&as); 2997 if (!arg) { 2998 ti->error = "No arguments"; 2999 return -EINVAL; 3000 } 3001 3002 rt = get_raid_type(arg); 3003 if (!rt) { 3004 ti->error = "Unrecognised raid_type"; 3005 return -EINVAL; 3006 } 3007 3008 /* Must have <#raid_params> */ 3009 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3010 return -EINVAL; 3011 3012 /* number of raid device tupples <meta_dev data_dev> */ 3013 as_nrd = as; 3014 dm_consume_args(&as_nrd, num_raid_params); 3015 _args[1].max = (as_nrd.argc - 1) / 2; 3016 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3017 return -EINVAL; 3018 3019 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3020 ti->error = "Invalid number of supplied raid devices"; 3021 return -EINVAL; 3022 } 3023 3024 rs = raid_set_alloc(ti, rt, num_raid_devs); 3025 if (IS_ERR(rs)) 3026 return PTR_ERR(rs); 3027 3028 r = parse_raid_params(rs, &as, num_raid_params); 3029 if (r) 3030 goto bad; 3031 3032 r = parse_dev_params(rs, &as); 3033 if (r) 3034 goto bad; 3035 3036 rs->md.sync_super = super_sync; 3037 3038 /* 3039 * Calculate ctr requested array and device sizes to allow 3040 * for superblock analysis needing device sizes defined. 3041 * 3042 * Any existing superblock will overwrite the array and device sizes 3043 */ 3044 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3045 if (r) 3046 goto bad; 3047 3048 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3049 rs->array_sectors = rs->md.array_sectors; 3050 rs->dev_sectors = rs->md.dev_sectors; 3051 3052 /* 3053 * Backup any new raid set level, layout, ... 3054 * requested to be able to compare to superblock 3055 * members for conversion decisions. 3056 */ 3057 rs_config_backup(rs, &rs_layout); 3058 3059 r = analyse_superblocks(ti, rs); 3060 if (r) 3061 goto bad; 3062 3063 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3064 sb_array_sectors = rs->md.array_sectors; 3065 rdev_sectors = __rdev_sectors(rs); 3066 if (!rdev_sectors) { 3067 ti->error = "Invalid rdev size"; 3068 r = -EINVAL; 3069 goto bad; 3070 } 3071 3072 3073 reshape_sectors = _get_reshape_sectors(rs); 3074 if (rs->dev_sectors != rdev_sectors) { 3075 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3076 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3077 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3078 } 3079 3080 INIT_WORK(&rs->md.event_work, do_table_event); 3081 ti->private = rs; 3082 ti->num_flush_bios = 1; 3083 3084 /* Restore any requested new layout for conversion decision */ 3085 rs_config_restore(rs, &rs_layout); 3086 3087 /* 3088 * Now that we have any superblock metadata available, 3089 * check for new, recovering, reshaping, to be taken over, 3090 * to be reshaped or an existing, unchanged raid set to 3091 * run in sequence. 3092 */ 3093 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3094 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3095 if (rs_is_raid6(rs) && 3096 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3097 ti->error = "'nosync' not allowed for new raid6 set"; 3098 r = -EINVAL; 3099 goto bad; 3100 } 3101 rs_setup_recovery(rs, 0); 3102 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3103 rs_set_new(rs); 3104 } else if (rs_is_recovering(rs)) { 3105 /* A recovering raid set may be resized */ 3106 goto size_check; 3107 } else if (rs_is_reshaping(rs)) { 3108 /* Have to reject size change request during reshape */ 3109 if (resize) { 3110 ti->error = "Can't resize a reshaping raid set"; 3111 r = -EPERM; 3112 goto bad; 3113 } 3114 /* skip setup rs */ 3115 } else if (rs_takeover_requested(rs)) { 3116 if (rs_is_reshaping(rs)) { 3117 ti->error = "Can't takeover a reshaping raid set"; 3118 r = -EPERM; 3119 goto bad; 3120 } 3121 3122 /* We can't takeover a journaled raid4/5/6 */ 3123 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3124 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3125 r = -EPERM; 3126 goto bad; 3127 } 3128 3129 /* 3130 * If a takeover is needed, userspace sets any additional 3131 * devices to rebuild and we can check for a valid request here. 3132 * 3133 * If acceptible, set the level to the new requested 3134 * one, prohibit requesting recovery, allow the raid 3135 * set to run and store superblocks during resume. 3136 */ 3137 r = rs_check_takeover(rs); 3138 if (r) 3139 goto bad; 3140 3141 r = rs_setup_takeover(rs); 3142 if (r) 3143 goto bad; 3144 3145 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3146 /* Takeover ain't recovery, so disable recovery */ 3147 rs_setup_recovery(rs, MaxSector); 3148 rs_set_new(rs); 3149 } else if (rs_reshape_requested(rs)) { 3150 /* Only request grow on raid set size extensions, not on reshapes. */ 3151 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3152 3153 /* 3154 * No need to check for 'ongoing' takeover here, because takeover 3155 * is an instant operation as oposed to an ongoing reshape. 3156 */ 3157 3158 /* We can't reshape a journaled raid4/5/6 */ 3159 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3160 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3161 r = -EPERM; 3162 goto bad; 3163 } 3164 3165 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3166 if (reshape_sectors || rs_is_raid1(rs)) { 3167 /* 3168 * We can only prepare for a reshape here, because the 3169 * raid set needs to run to provide the repective reshape 3170 * check functions via its MD personality instance. 3171 * 3172 * So do the reshape check after md_run() succeeded. 3173 */ 3174 r = rs_prepare_reshape(rs); 3175 if (r) 3176 goto bad; 3177 3178 /* Reshaping ain't recovery, so disable recovery */ 3179 rs_setup_recovery(rs, MaxSector); 3180 } 3181 rs_set_cur(rs); 3182 } else { 3183 size_check: 3184 /* May not set recovery when a device rebuild is requested */ 3185 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3186 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3187 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3188 rs_setup_recovery(rs, MaxSector); 3189 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3190 /* 3191 * Set raid set to current size, i.e. size as of 3192 * superblocks to grow to larger size in preresume. 3193 */ 3194 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3195 if (r) 3196 goto bad; 3197 3198 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3199 } else { 3200 /* This is no size change or it is shrinking, update size and record in superblocks */ 3201 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3202 if (r) 3203 goto bad; 3204 3205 if (sb_array_sectors > rs->array_sectors) 3206 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3207 } 3208 rs_set_cur(rs); 3209 } 3210 3211 /* If constructor requested it, change data and new_data offsets */ 3212 r = rs_adjust_data_offsets(rs); 3213 if (r) 3214 goto bad; 3215 3216 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3217 rs->md.ro = 1; 3218 rs->md.in_sync = 1; 3219 3220 /* Keep array frozen */ 3221 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3222 3223 /* Has to be held on running the array */ 3224 mddev_lock_nointr(&rs->md); 3225 r = md_run(&rs->md); 3226 rs->md.in_sync = 0; /* Assume already marked dirty */ 3227 if (r) { 3228 ti->error = "Failed to run raid array"; 3229 mddev_unlock(&rs->md); 3230 goto bad; 3231 } 3232 3233 r = md_start(&rs->md); 3234 3235 if (r) { 3236 ti->error = "Failed to start raid array"; 3237 mddev_unlock(&rs->md); 3238 goto bad_md_start; 3239 } 3240 3241 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3242 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3243 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3244 if (r) { 3245 ti->error = "Failed to set raid4/5/6 journal mode"; 3246 mddev_unlock(&rs->md); 3247 goto bad_journal_mode_set; 3248 } 3249 } 3250 3251 mddev_suspend(&rs->md); 3252 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3253 3254 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3255 if (rs_is_raid456(rs)) { 3256 r = rs_set_raid456_stripe_cache(rs); 3257 if (r) 3258 goto bad_stripe_cache; 3259 } 3260 3261 /* Now do an early reshape check */ 3262 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3263 r = rs_check_reshape(rs); 3264 if (r) 3265 goto bad_check_reshape; 3266 3267 /* Restore new, ctr requested layout to perform check */ 3268 rs_config_restore(rs, &rs_layout); 3269 3270 if (rs->md.pers->start_reshape) { 3271 r = rs->md.pers->check_reshape(&rs->md); 3272 if (r) { 3273 ti->error = "Reshape check failed"; 3274 goto bad_check_reshape; 3275 } 3276 } 3277 } 3278 3279 /* Disable/enable discard support on raid set. */ 3280 configure_discard_support(rs); 3281 3282 mddev_unlock(&rs->md); 3283 return 0; 3284 3285 bad_md_start: 3286 bad_journal_mode_set: 3287 bad_stripe_cache: 3288 bad_check_reshape: 3289 md_stop(&rs->md); 3290 bad: 3291 raid_set_free(rs); 3292 3293 return r; 3294 } 3295 3296 static void raid_dtr(struct dm_target *ti) 3297 { 3298 struct raid_set *rs = ti->private; 3299 3300 md_stop(&rs->md); 3301 raid_set_free(rs); 3302 } 3303 3304 static int raid_map(struct dm_target *ti, struct bio *bio) 3305 { 3306 struct raid_set *rs = ti->private; 3307 struct mddev *mddev = &rs->md; 3308 3309 /* 3310 * If we're reshaping to add disk(s)), ti->len and 3311 * mddev->array_sectors will differ during the process 3312 * (ti->len > mddev->array_sectors), so we have to requeue 3313 * bios with addresses > mddev->array_sectors here or 3314 * there will occur accesses past EOD of the component 3315 * data images thus erroring the raid set. 3316 */ 3317 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3318 return DM_MAPIO_REQUEUE; 3319 3320 md_handle_request(mddev, bio); 3321 3322 return DM_MAPIO_SUBMITTED; 3323 } 3324 3325 /* Return sync state string for @state */ 3326 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3327 static const char *sync_str(enum sync_state state) 3328 { 3329 /* Has to be in above sync_state order! */ 3330 static const char *sync_strs[] = { 3331 "frozen", 3332 "reshape", 3333 "resync", 3334 "check", 3335 "repair", 3336 "recover", 3337 "idle" 3338 }; 3339 3340 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3341 }; 3342 3343 /* Return enum sync_state for @mddev derived from @recovery flags */ 3344 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3345 { 3346 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3347 return st_frozen; 3348 3349 /* The MD sync thread can be done with io or be interrupted but still be running */ 3350 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3351 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3352 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3353 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3354 return st_reshape; 3355 3356 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3357 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3358 return st_resync; 3359 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3360 return st_check; 3361 return st_repair; 3362 } 3363 3364 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3365 return st_recover; 3366 3367 if (mddev->reshape_position != MaxSector) 3368 return st_reshape; 3369 } 3370 3371 return st_idle; 3372 } 3373 3374 /* 3375 * Return status string for @rdev 3376 * 3377 * Status characters: 3378 * 3379 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3380 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3381 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3382 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3383 */ 3384 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3385 { 3386 if (!rdev->bdev) 3387 return "-"; 3388 else if (test_bit(Faulty, &rdev->flags)) 3389 return "D"; 3390 else if (test_bit(Journal, &rdev->flags)) 3391 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3392 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3393 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3394 !test_bit(In_sync, &rdev->flags))) 3395 return "a"; 3396 else 3397 return "A"; 3398 } 3399 3400 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3401 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3402 enum sync_state state, sector_t resync_max_sectors) 3403 { 3404 sector_t r; 3405 struct mddev *mddev = &rs->md; 3406 3407 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3408 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3409 3410 if (rs_is_raid0(rs)) { 3411 r = resync_max_sectors; 3412 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3413 3414 } else { 3415 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3416 r = mddev->recovery_cp; 3417 else 3418 r = mddev->curr_resync_completed; 3419 3420 if (state == st_idle && r >= resync_max_sectors) { 3421 /* 3422 * Sync complete. 3423 */ 3424 /* In case we have finished recovering, the array is in sync. */ 3425 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3426 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3427 3428 } else if (state == st_recover) 3429 /* 3430 * In case we are recovering, the array is not in sync 3431 * and health chars should show the recovering legs. 3432 * 3433 * Already retrieved recovery offset from curr_resync_completed above. 3434 */ 3435 ; 3436 3437 else if (state == st_resync || state == st_reshape) 3438 /* 3439 * If "resync/reshape" is occurring, the raid set 3440 * is or may be out of sync hence the health 3441 * characters shall be 'a'. 3442 */ 3443 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3444 3445 else if (state == st_check || state == st_repair) 3446 /* 3447 * If "check" or "repair" is occurring, the raid set has 3448 * undergone an initial sync and the health characters 3449 * should not be 'a' anymore. 3450 */ 3451 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3452 3453 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3454 /* 3455 * We are idle and recovery is needed, prevent 'A' chars race 3456 * caused by components still set to in-sync by constructor. 3457 */ 3458 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3459 3460 else { 3461 /* 3462 * We are idle and the raid set may be doing an initial 3463 * sync, or it may be rebuilding individual components. 3464 * If all the devices are In_sync, then it is the raid set 3465 * that is being initialized. 3466 */ 3467 struct md_rdev *rdev; 3468 3469 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3470 rdev_for_each(rdev, mddev) 3471 if (!test_bit(Journal, &rdev->flags) && 3472 !test_bit(In_sync, &rdev->flags)) { 3473 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3474 break; 3475 } 3476 } 3477 } 3478 3479 return min(r, resync_max_sectors); 3480 } 3481 3482 /* Helper to return @dev name or "-" if !@dev */ 3483 static const char *__get_dev_name(struct dm_dev *dev) 3484 { 3485 return dev ? dev->name : "-"; 3486 } 3487 3488 static void raid_status(struct dm_target *ti, status_type_t type, 3489 unsigned int status_flags, char *result, unsigned int maxlen) 3490 { 3491 struct raid_set *rs = ti->private; 3492 struct mddev *mddev = &rs->md; 3493 struct r5conf *conf = mddev->private; 3494 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3495 unsigned long recovery; 3496 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3497 unsigned int sz = 0; 3498 unsigned int rebuild_writemostly_count = 0; 3499 sector_t progress, resync_max_sectors, resync_mismatches; 3500 enum sync_state state; 3501 struct raid_type *rt; 3502 3503 switch (type) { 3504 case STATUSTYPE_INFO: 3505 /* *Should* always succeed */ 3506 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3507 if (!rt) 3508 return; 3509 3510 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3511 3512 /* Access most recent mddev properties for status output */ 3513 smp_rmb(); 3514 /* Get sensible max sectors even if raid set not yet started */ 3515 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3516 mddev->resync_max_sectors : mddev->dev_sectors; 3517 recovery = rs->md.recovery; 3518 state = decipher_sync_action(mddev, recovery); 3519 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3520 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3521 atomic64_read(&mddev->resync_mismatches) : 0; 3522 3523 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3524 for (i = 0; i < rs->raid_disks; i++) 3525 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3526 3527 /* 3528 * In-sync/Reshape ratio: 3529 * The in-sync ratio shows the progress of: 3530 * - Initializing the raid set 3531 * - Rebuilding a subset of devices of the raid set 3532 * The user can distinguish between the two by referring 3533 * to the status characters. 3534 * 3535 * The reshape ratio shows the progress of 3536 * changing the raid layout or the number of 3537 * disks of a raid set 3538 */ 3539 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3540 (unsigned long long) resync_max_sectors); 3541 3542 /* 3543 * v1.5.0+: 3544 * 3545 * Sync action: 3546 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3547 * information on each of these states. 3548 */ 3549 DMEMIT(" %s", sync_str(state)); 3550 3551 /* 3552 * v1.5.0+: 3553 * 3554 * resync_mismatches/mismatch_cnt 3555 * This field shows the number of discrepancies found when 3556 * performing a "check" of the raid set. 3557 */ 3558 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3559 3560 /* 3561 * v1.9.0+: 3562 * 3563 * data_offset (needed for out of space reshaping) 3564 * This field shows the data offset into the data 3565 * image LV where the first stripes data starts. 3566 * 3567 * We keep data_offset equal on all raid disks of the set, 3568 * so retrieving it from the first raid disk is sufficient. 3569 */ 3570 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3571 3572 /* 3573 * v1.10.0+: 3574 */ 3575 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3576 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3577 break; 3578 3579 case STATUSTYPE_TABLE: 3580 /* Report the table line string you would use to construct this raid set */ 3581 3582 /* 3583 * Count any rebuild or writemostly argument pairs and subtract the 3584 * hweight count being added below of any rebuild and writemostly ctr flags. 3585 */ 3586 for (i = 0; i < rs->raid_disks; i++) { 3587 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3588 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3589 } 3590 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3591 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3592 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3593 raid_param_cnt += rebuild_writemostly_count + 3594 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3595 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3596 /* Emit table line */ 3597 /* This has to be in the documented order for userspace! */ 3598 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3599 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3600 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3601 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3602 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3603 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3604 for (i = 0; i < rs->raid_disks; i++) 3605 if (test_bit(i, (void *) rs->rebuild_disks)) 3606 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3607 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3608 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3609 mddev->bitmap_info.daemon_sleep); 3610 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3611 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3612 mddev->sync_speed_min); 3613 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3614 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3615 mddev->sync_speed_max); 3616 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3617 for (i = 0; i < rs->raid_disks; i++) 3618 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3619 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3620 rs->dev[i].rdev.raid_disk); 3621 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3622 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3623 mddev->bitmap_info.max_write_behind); 3624 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3625 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3626 max_nr_stripes); 3627 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3628 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3629 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3630 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3631 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3632 raid10_md_layout_to_copies(mddev->layout)); 3633 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3634 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3635 raid10_md_layout_to_format(mddev->layout)); 3636 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3637 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3638 max(rs->delta_disks, mddev->delta_disks)); 3639 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3640 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3641 (unsigned long long) rs->data_offset); 3642 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3643 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3644 __get_dev_name(rs->journal_dev.dev)); 3645 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3646 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3647 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3648 DMEMIT(" %d", rs->raid_disks); 3649 for (i = 0; i < rs->raid_disks; i++) 3650 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3651 __get_dev_name(rs->dev[i].data_dev)); 3652 } 3653 } 3654 3655 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3656 char *result, unsigned maxlen) 3657 { 3658 struct raid_set *rs = ti->private; 3659 struct mddev *mddev = &rs->md; 3660 3661 if (!mddev->pers || !mddev->pers->sync_request) 3662 return -EINVAL; 3663 3664 if (!strcasecmp(argv[0], "frozen")) 3665 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3666 else 3667 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3668 3669 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3670 if (mddev->sync_thread) { 3671 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3672 md_reap_sync_thread(mddev); 3673 } 3674 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3675 return -EBUSY; 3676 else if (!strcasecmp(argv[0], "resync")) 3677 ; /* MD_RECOVERY_NEEDED set below */ 3678 else if (!strcasecmp(argv[0], "recover")) 3679 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3680 else { 3681 if (!strcasecmp(argv[0], "check")) { 3682 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3683 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3684 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3685 } else if (!strcasecmp(argv[0], "repair")) { 3686 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3687 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3688 } else 3689 return -EINVAL; 3690 } 3691 if (mddev->ro == 2) { 3692 /* A write to sync_action is enough to justify 3693 * canceling read-auto mode 3694 */ 3695 mddev->ro = 0; 3696 if (!mddev->suspended && mddev->sync_thread) 3697 md_wakeup_thread(mddev->sync_thread); 3698 } 3699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3700 if (!mddev->suspended && mddev->thread) 3701 md_wakeup_thread(mddev->thread); 3702 3703 return 0; 3704 } 3705 3706 static int raid_iterate_devices(struct dm_target *ti, 3707 iterate_devices_callout_fn fn, void *data) 3708 { 3709 struct raid_set *rs = ti->private; 3710 unsigned int i; 3711 int r = 0; 3712 3713 for (i = 0; !r && i < rs->md.raid_disks; i++) 3714 if (rs->dev[i].data_dev) 3715 r = fn(ti, 3716 rs->dev[i].data_dev, 3717 0, /* No offset on data devs */ 3718 rs->md.dev_sectors, 3719 data); 3720 3721 return r; 3722 } 3723 3724 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3725 { 3726 struct raid_set *rs = ti->private; 3727 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3728 3729 blk_limits_io_min(limits, chunk_size_bytes); 3730 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); 3731 } 3732 3733 static void raid_postsuspend(struct dm_target *ti) 3734 { 3735 struct raid_set *rs = ti->private; 3736 3737 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3738 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3739 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3740 md_stop_writes(&rs->md); 3741 3742 mddev_lock_nointr(&rs->md); 3743 mddev_suspend(&rs->md); 3744 mddev_unlock(&rs->md); 3745 } 3746 } 3747 3748 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3749 { 3750 int i; 3751 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3752 unsigned long flags; 3753 bool cleared = false; 3754 struct dm_raid_superblock *sb; 3755 struct mddev *mddev = &rs->md; 3756 struct md_rdev *r; 3757 3758 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3759 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3760 return; 3761 3762 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3763 3764 for (i = 0; i < mddev->raid_disks; i++) { 3765 r = &rs->dev[i].rdev; 3766 /* HM FIXME: enhance journal device recovery processing */ 3767 if (test_bit(Journal, &r->flags)) 3768 continue; 3769 3770 if (test_bit(Faulty, &r->flags) && 3771 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3772 DMINFO("Faulty %s device #%d has readable super block." 3773 " Attempting to revive it.", 3774 rs->raid_type->name, i); 3775 3776 /* 3777 * Faulty bit may be set, but sometimes the array can 3778 * be suspended before the personalities can respond 3779 * by removing the device from the array (i.e. calling 3780 * 'hot_remove_disk'). If they haven't yet removed 3781 * the failed device, its 'raid_disk' number will be 3782 * '>= 0' - meaning we must call this function 3783 * ourselves. 3784 */ 3785 flags = r->flags; 3786 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3787 if (r->raid_disk >= 0) { 3788 if (mddev->pers->hot_remove_disk(mddev, r)) { 3789 /* Failed to revive this device, try next */ 3790 r->flags = flags; 3791 continue; 3792 } 3793 } else 3794 r->raid_disk = r->saved_raid_disk = i; 3795 3796 clear_bit(Faulty, &r->flags); 3797 clear_bit(WriteErrorSeen, &r->flags); 3798 3799 if (mddev->pers->hot_add_disk(mddev, r)) { 3800 /* Failed to revive this device, try next */ 3801 r->raid_disk = r->saved_raid_disk = -1; 3802 r->flags = flags; 3803 } else { 3804 clear_bit(In_sync, &r->flags); 3805 r->recovery_offset = 0; 3806 set_bit(i, (void *) cleared_failed_devices); 3807 cleared = true; 3808 } 3809 } 3810 } 3811 3812 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3813 if (cleared) { 3814 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3815 3816 rdev_for_each(r, &rs->md) { 3817 if (test_bit(Journal, &r->flags)) 3818 continue; 3819 3820 sb = page_address(r->sb_page); 3821 sb_retrieve_failed_devices(sb, failed_devices); 3822 3823 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3824 failed_devices[i] &= ~cleared_failed_devices[i]; 3825 3826 sb_update_failed_devices(sb, failed_devices); 3827 } 3828 } 3829 } 3830 3831 static int __load_dirty_region_bitmap(struct raid_set *rs) 3832 { 3833 int r = 0; 3834 3835 /* Try loading the bitmap unless "raid0", which does not have one */ 3836 if (!rs_is_raid0(rs) && 3837 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3838 r = md_bitmap_load(&rs->md); 3839 if (r) 3840 DMERR("Failed to load bitmap"); 3841 } 3842 3843 return r; 3844 } 3845 3846 /* Enforce updating all superblocks */ 3847 static void rs_update_sbs(struct raid_set *rs) 3848 { 3849 struct mddev *mddev = &rs->md; 3850 int ro = mddev->ro; 3851 3852 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3853 mddev->ro = 0; 3854 md_update_sb(mddev, 1); 3855 mddev->ro = ro; 3856 } 3857 3858 /* 3859 * Reshape changes raid algorithm of @rs to new one within personality 3860 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3861 * disks from a raid set thus growing/shrinking it or resizes the set 3862 * 3863 * Call mddev_lock_nointr() before! 3864 */ 3865 static int rs_start_reshape(struct raid_set *rs) 3866 { 3867 int r; 3868 struct mddev *mddev = &rs->md; 3869 struct md_personality *pers = mddev->pers; 3870 3871 /* Don't allow the sync thread to work until the table gets reloaded. */ 3872 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3873 3874 r = rs_setup_reshape(rs); 3875 if (r) 3876 return r; 3877 3878 /* 3879 * Check any reshape constraints enforced by the personalility 3880 * 3881 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3882 */ 3883 r = pers->check_reshape(mddev); 3884 if (r) { 3885 rs->ti->error = "pers->check_reshape() failed"; 3886 return r; 3887 } 3888 3889 /* 3890 * Personality may not provide start reshape method in which 3891 * case check_reshape above has already covered everything 3892 */ 3893 if (pers->start_reshape) { 3894 r = pers->start_reshape(mddev); 3895 if (r) { 3896 rs->ti->error = "pers->start_reshape() failed"; 3897 return r; 3898 } 3899 } 3900 3901 /* 3902 * Now reshape got set up, update superblocks to 3903 * reflect the fact so that a table reload will 3904 * access proper superblock content in the ctr. 3905 */ 3906 rs_update_sbs(rs); 3907 3908 return 0; 3909 } 3910 3911 static int raid_preresume(struct dm_target *ti) 3912 { 3913 int r; 3914 struct raid_set *rs = ti->private; 3915 struct mddev *mddev = &rs->md; 3916 3917 /* This is a resume after a suspend of the set -> it's already started. */ 3918 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3919 return 0; 3920 3921 /* 3922 * The superblocks need to be updated on disk if the 3923 * array is new or new devices got added (thus zeroed 3924 * out by userspace) or __load_dirty_region_bitmap 3925 * will overwrite them in core with old data or fail. 3926 */ 3927 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3928 rs_update_sbs(rs); 3929 3930 /* Load the bitmap from disk unless raid0 */ 3931 r = __load_dirty_region_bitmap(rs); 3932 if (r) 3933 return r; 3934 3935 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 3936 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3937 mddev->array_sectors = rs->array_sectors; 3938 mddev->dev_sectors = rs->dev_sectors; 3939 rs_set_rdev_sectors(rs); 3940 rs_set_capacity(rs); 3941 } 3942 3943 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 3944 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 3945 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 3946 (rs->requested_bitmap_chunk_sectors && 3947 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 3948 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 3949 3950 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); 3951 if (r) 3952 DMERR("Failed to resize bitmap"); 3953 } 3954 3955 /* Check for any resize/reshape on @rs and adjust/initiate */ 3956 /* Be prepared for mddev_resume() in raid_resume() */ 3957 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3958 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 3959 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3960 mddev->resync_min = mddev->recovery_cp; 3961 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 3962 mddev->resync_max_sectors = mddev->dev_sectors; 3963 } 3964 3965 /* Check for any reshape request unless new raid set */ 3966 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3967 /* Initiate a reshape. */ 3968 rs_set_rdev_sectors(rs); 3969 mddev_lock_nointr(mddev); 3970 r = rs_start_reshape(rs); 3971 mddev_unlock(mddev); 3972 if (r) 3973 DMWARN("Failed to check/start reshape, continuing without change"); 3974 r = 0; 3975 } 3976 3977 return r; 3978 } 3979 3980 static void raid_resume(struct dm_target *ti) 3981 { 3982 struct raid_set *rs = ti->private; 3983 struct mddev *mddev = &rs->md; 3984 3985 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 3986 /* 3987 * A secondary resume while the device is active. 3988 * Take this opportunity to check whether any failed 3989 * devices are reachable again. 3990 */ 3991 attempt_restore_of_faulty_devices(rs); 3992 } 3993 3994 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3995 /* Only reduce raid set size before running a disk removing reshape. */ 3996 if (mddev->delta_disks < 0) 3997 rs_set_capacity(rs); 3998 3999 mddev_lock_nointr(mddev); 4000 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4001 mddev->ro = 0; 4002 mddev->in_sync = 0; 4003 mddev_resume(mddev); 4004 mddev_unlock(mddev); 4005 } 4006 } 4007 4008 static struct target_type raid_target = { 4009 .name = "raid", 4010 .version = {1, 15, 1}, 4011 .module = THIS_MODULE, 4012 .ctr = raid_ctr, 4013 .dtr = raid_dtr, 4014 .map = raid_map, 4015 .status = raid_status, 4016 .message = raid_message, 4017 .iterate_devices = raid_iterate_devices, 4018 .io_hints = raid_io_hints, 4019 .postsuspend = raid_postsuspend, 4020 .preresume = raid_preresume, 4021 .resume = raid_resume, 4022 }; 4023 4024 static int __init dm_raid_init(void) 4025 { 4026 DMINFO("Loading target version %u.%u.%u", 4027 raid_target.version[0], 4028 raid_target.version[1], 4029 raid_target.version[2]); 4030 return dm_register_target(&raid_target); 4031 } 4032 4033 static void __exit dm_raid_exit(void) 4034 { 4035 dm_unregister_target(&raid_target); 4036 } 4037 4038 module_init(dm_raid_init); 4039 module_exit(dm_raid_exit); 4040 4041 module_param(devices_handle_discard_safely, bool, 0644); 4042 MODULE_PARM_DESC(devices_handle_discard_safely, 4043 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4044 4045 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4046 MODULE_ALIAS("dm-raid0"); 4047 MODULE_ALIAS("dm-raid1"); 4048 MODULE_ALIAS("dm-raid10"); 4049 MODULE_ALIAS("dm-raid4"); 4050 MODULE_ALIAS("dm-raid5"); 4051 MODULE_ALIAS("dm-raid6"); 4052 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4053 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4054 MODULE_LICENSE("GPL"); 4055