xref: /openbmc/linux/drivers/md/dm-raid.c (revision a2cab953)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "md-bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
21 
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26 
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define	MIN_RAID456_JOURNAL_SPACE (4*2048)
31 
32 static bool devices_handle_discard_safely = false;
33 
34 /*
35  * The following flags are used by dm-raid.c to set up the array state.
36  * They must be cleared before md_run is called.
37  */
38 #define FirstUse 10		/* rdev flag */
39 
40 struct raid_dev {
41 	/*
42 	 * Two DM devices, one to hold metadata and one to hold the
43 	 * actual data/parity.	The reason for this is to not confuse
44 	 * ti->len and give more flexibility in altering size and
45 	 * characteristics.
46 	 *
47 	 * While it is possible for this device to be associated
48 	 * with a different physical device than the data_dev, it
49 	 * is intended for it to be the same.
50 	 *    |--------- Physical Device ---------|
51 	 *    |- meta_dev -|------ data_dev ------|
52 	 */
53 	struct dm_dev *meta_dev;
54 	struct dm_dev *data_dev;
55 	struct md_rdev rdev;
56 };
57 
58 /*
59  * Bits for establishing rs->ctr_flags
60  *
61  * 1 = no flag value
62  * 2 = flag with value
63  */
64 #define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80 
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV		15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83 
84 /* New for v1.11.1 */
85 #define __CTR_FLAG_JOURNAL_MODE		16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86 
87 /*
88  * Flags for rs->ctr_flags field.
89  */
90 #define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
91 #define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
92 #define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
93 #define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
94 #define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95 #define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97 #define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
98 #define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
99 #define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
100 #define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
101 #define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
102 #define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
103 #define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
104 #define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105 #define CTR_FLAG_JOURNAL_DEV		(1 << __CTR_FLAG_JOURNAL_DEV)
106 #define CTR_FLAG_JOURNAL_MODE		(1 << __CTR_FLAG_JOURNAL_MODE)
107 
108 /*
109  * Definitions of various constructor flags to
110  * be used in checks of valid / invalid flags
111  * per raid level.
112  */
113 /* Define all any sync flags */
114 #define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115 
116 /* Define flags for options without argument (e.g. 'nosync') */
117 #define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
118 					 CTR_FLAG_RAID10_USE_NEAR_SETS)
119 
120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122 				  CTR_FLAG_WRITE_MOSTLY | \
123 				  CTR_FLAG_DAEMON_SLEEP | \
124 				  CTR_FLAG_MIN_RECOVERY_RATE | \
125 				  CTR_FLAG_MAX_RECOVERY_RATE | \
126 				  CTR_FLAG_MAX_WRITE_BEHIND | \
127 				  CTR_FLAG_STRIPE_CACHE | \
128 				  CTR_FLAG_REGION_SIZE | \
129 				  CTR_FLAG_RAID10_COPIES | \
130 				  CTR_FLAG_RAID10_FORMAT | \
131 				  CTR_FLAG_DELTA_DISKS | \
132 				  CTR_FLAG_DATA_OFFSET | \
133 				  CTR_FLAG_JOURNAL_DEV | \
134 				  CTR_FLAG_JOURNAL_MODE)
135 
136 /* Valid options definitions per raid level... */
137 
138 /* "raid0" does only accept data offset */
139 #define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
140 
141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
142 #define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
143 				 CTR_FLAG_REBUILD | \
144 				 CTR_FLAG_WRITE_MOSTLY | \
145 				 CTR_FLAG_DAEMON_SLEEP | \
146 				 CTR_FLAG_MIN_RECOVERY_RATE | \
147 				 CTR_FLAG_MAX_RECOVERY_RATE | \
148 				 CTR_FLAG_MAX_WRITE_BEHIND | \
149 				 CTR_FLAG_REGION_SIZE | \
150 				 CTR_FLAG_DELTA_DISKS | \
151 				 CTR_FLAG_DATA_OFFSET)
152 
153 /* "raid10" does not accept any raid1 or stripe cache options */
154 #define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
155 				 CTR_FLAG_REBUILD | \
156 				 CTR_FLAG_DAEMON_SLEEP | \
157 				 CTR_FLAG_MIN_RECOVERY_RATE | \
158 				 CTR_FLAG_MAX_RECOVERY_RATE | \
159 				 CTR_FLAG_REGION_SIZE | \
160 				 CTR_FLAG_RAID10_COPIES | \
161 				 CTR_FLAG_RAID10_FORMAT | \
162 				 CTR_FLAG_DELTA_DISKS | \
163 				 CTR_FLAG_DATA_OFFSET | \
164 				 CTR_FLAG_RAID10_USE_NEAR_SETS)
165 
166 /*
167  * "raid4/5/6" do not accept any raid1 or raid10 specific options
168  *
169  * "raid6" does not accept "nosync", because it is not guaranteed
170  * that both parity and q-syndrome are being written properly with
171  * any writes
172  */
173 #define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
174 				 CTR_FLAG_REBUILD | \
175 				 CTR_FLAG_DAEMON_SLEEP | \
176 				 CTR_FLAG_MIN_RECOVERY_RATE | \
177 				 CTR_FLAG_MAX_RECOVERY_RATE | \
178 				 CTR_FLAG_STRIPE_CACHE | \
179 				 CTR_FLAG_REGION_SIZE | \
180 				 CTR_FLAG_DELTA_DISKS | \
181 				 CTR_FLAG_DATA_OFFSET | \
182 				 CTR_FLAG_JOURNAL_DEV | \
183 				 CTR_FLAG_JOURNAL_MODE)
184 
185 #define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
186 				 CTR_FLAG_REBUILD | \
187 				 CTR_FLAG_DAEMON_SLEEP | \
188 				 CTR_FLAG_MIN_RECOVERY_RATE | \
189 				 CTR_FLAG_MAX_RECOVERY_RATE | \
190 				 CTR_FLAG_STRIPE_CACHE | \
191 				 CTR_FLAG_REGION_SIZE | \
192 				 CTR_FLAG_DELTA_DISKS | \
193 				 CTR_FLAG_DATA_OFFSET | \
194 				 CTR_FLAG_JOURNAL_DEV | \
195 				 CTR_FLAG_JOURNAL_MODE)
196 /* ...valid options definitions per raid level */
197 
198 /*
199  * Flags for rs->runtime_flags field
200  * (RT_FLAG prefix meaning "runtime flag")
201  *
202  * These are all internal and used to define runtime state,
203  * e.g. to prevent another resume from preresume processing
204  * the raid set all over again.
205  */
206 #define RT_FLAG_RS_PRERESUMED		0
207 #define RT_FLAG_RS_RESUMED		1
208 #define RT_FLAG_RS_BITMAP_LOADED	2
209 #define RT_FLAG_UPDATE_SBS		3
210 #define RT_FLAG_RESHAPE_RS		4
211 #define RT_FLAG_RS_SUSPENDED		5
212 #define RT_FLAG_RS_IN_SYNC		6
213 #define RT_FLAG_RS_RESYNCING		7
214 #define RT_FLAG_RS_GROW			8
215 
216 /* Array elements of 64 bit needed for rebuild/failed disk bits */
217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
218 
219 /*
220  * raid set level, layout and chunk sectors backup/restore
221  */
222 struct rs_layout {
223 	int new_level;
224 	int new_layout;
225 	int new_chunk_sectors;
226 };
227 
228 struct raid_set {
229 	struct dm_target *ti;
230 
231 	uint32_t stripe_cache_entries;
232 	unsigned long ctr_flags;
233 	unsigned long runtime_flags;
234 
235 	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
236 
237 	int raid_disks;
238 	int delta_disks;
239 	int data_offset;
240 	int raid10_copies;
241 	int requested_bitmap_chunk_sectors;
242 
243 	struct mddev md;
244 	struct raid_type *raid_type;
245 
246 	sector_t array_sectors;
247 	sector_t dev_sectors;
248 
249 	/* Optional raid4/5/6 journal device */
250 	struct journal_dev {
251 		struct dm_dev *dev;
252 		struct md_rdev rdev;
253 		int mode;
254 	} journal_dev;
255 
256 	struct raid_dev dev[];
257 };
258 
259 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
260 {
261 	struct mddev *mddev = &rs->md;
262 
263 	l->new_level = mddev->new_level;
264 	l->new_layout = mddev->new_layout;
265 	l->new_chunk_sectors = mddev->new_chunk_sectors;
266 }
267 
268 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
269 {
270 	struct mddev *mddev = &rs->md;
271 
272 	mddev->new_level = l->new_level;
273 	mddev->new_layout = l->new_layout;
274 	mddev->new_chunk_sectors = l->new_chunk_sectors;
275 }
276 
277 /* raid10 algorithms (i.e. formats) */
278 #define	ALGORITHM_RAID10_DEFAULT	0
279 #define	ALGORITHM_RAID10_NEAR		1
280 #define	ALGORITHM_RAID10_OFFSET		2
281 #define	ALGORITHM_RAID10_FAR		3
282 
283 /* Supported raid types and properties. */
284 static struct raid_type {
285 	const char *name;		/* RAID algorithm. */
286 	const char *descr;		/* Descriptor text for logging. */
287 	const unsigned int parity_devs;	/* # of parity devices. */
288 	const unsigned int minimal_devs;/* minimal # of devices in set. */
289 	const unsigned int level;	/* RAID level. */
290 	const unsigned int algorithm;	/* RAID algorithm. */
291 } raid_types[] = {
292 	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
293 	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
294 	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
295 	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
296 	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
297 	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
298 	{"raid4",	  "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
299 	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
300 	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
301 	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
302 	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
303 	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
304 	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
305 	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
306 	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
307 	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
308 	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
309 	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
310 	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
311 	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
312 };
313 
314 /* True, if @v is in inclusive range [@min, @max] */
315 static bool __within_range(long v, long min, long max)
316 {
317 	return v >= min && v <= max;
318 }
319 
320 /* All table line arguments are defined here */
321 static struct arg_name_flag {
322 	const unsigned long flag;
323 	const char *name;
324 } __arg_name_flags[] = {
325 	{ CTR_FLAG_SYNC, "sync"},
326 	{ CTR_FLAG_NOSYNC, "nosync"},
327 	{ CTR_FLAG_REBUILD, "rebuild"},
328 	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
329 	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
330 	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
331 	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
332 	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
333 	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
334 	{ CTR_FLAG_REGION_SIZE, "region_size"},
335 	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
336 	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
337 	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
338 	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
339 	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
340 	{ CTR_FLAG_JOURNAL_DEV, "journal_dev" },
341 	{ CTR_FLAG_JOURNAL_MODE, "journal_mode" },
342 };
343 
344 /* Return argument name string for given @flag */
345 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
346 {
347 	if (hweight32(flag) == 1) {
348 		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
349 
350 		while (anf-- > __arg_name_flags)
351 			if (flag & anf->flag)
352 				return anf->name;
353 
354 	} else
355 		DMERR("%s called with more than one flag!", __func__);
356 
357 	return NULL;
358 }
359 
360 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
361 static struct {
362 	const int mode;
363 	const char *param;
364 } _raid456_journal_mode[] = {
365 	{ R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
366 	{ R5C_JOURNAL_MODE_WRITE_BACK    , "writeback" }
367 };
368 
369 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
370 static int dm_raid_journal_mode_to_md(const char *mode)
371 {
372 	int m = ARRAY_SIZE(_raid456_journal_mode);
373 
374 	while (m--)
375 		if (!strcasecmp(mode, _raid456_journal_mode[m].param))
376 			return _raid456_journal_mode[m].mode;
377 
378 	return -EINVAL;
379 }
380 
381 /* Return dm-raid raid4/5/6 journal mode string for @mode */
382 static const char *md_journal_mode_to_dm_raid(const int mode)
383 {
384 	int m = ARRAY_SIZE(_raid456_journal_mode);
385 
386 	while (m--)
387 		if (mode == _raid456_journal_mode[m].mode)
388 			return _raid456_journal_mode[m].param;
389 
390 	return "unknown";
391 }
392 
393 /*
394  * Bool helpers to test for various raid levels of a raid set.
395  * It's level as reported by the superblock rather than
396  * the requested raid_type passed to the constructor.
397  */
398 /* Return true, if raid set in @rs is raid0 */
399 static bool rs_is_raid0(struct raid_set *rs)
400 {
401 	return !rs->md.level;
402 }
403 
404 /* Return true, if raid set in @rs is raid1 */
405 static bool rs_is_raid1(struct raid_set *rs)
406 {
407 	return rs->md.level == 1;
408 }
409 
410 /* Return true, if raid set in @rs is raid10 */
411 static bool rs_is_raid10(struct raid_set *rs)
412 {
413 	return rs->md.level == 10;
414 }
415 
416 /* Return true, if raid set in @rs is level 6 */
417 static bool rs_is_raid6(struct raid_set *rs)
418 {
419 	return rs->md.level == 6;
420 }
421 
422 /* Return true, if raid set in @rs is level 4, 5 or 6 */
423 static bool rs_is_raid456(struct raid_set *rs)
424 {
425 	return __within_range(rs->md.level, 4, 6);
426 }
427 
428 /* Return true, if raid set in @rs is reshapable */
429 static bool __is_raid10_far(int layout);
430 static bool rs_is_reshapable(struct raid_set *rs)
431 {
432 	return rs_is_raid456(rs) ||
433 	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
434 }
435 
436 /* Return true, if raid set in @rs is recovering */
437 static bool rs_is_recovering(struct raid_set *rs)
438 {
439 	return rs->md.recovery_cp < rs->md.dev_sectors;
440 }
441 
442 /* Return true, if raid set in @rs is reshaping */
443 static bool rs_is_reshaping(struct raid_set *rs)
444 {
445 	return rs->md.reshape_position != MaxSector;
446 }
447 
448 /*
449  * bool helpers to test for various raid levels of a raid type @rt
450  */
451 
452 /* Return true, if raid type in @rt is raid0 */
453 static bool rt_is_raid0(struct raid_type *rt)
454 {
455 	return !rt->level;
456 }
457 
458 /* Return true, if raid type in @rt is raid1 */
459 static bool rt_is_raid1(struct raid_type *rt)
460 {
461 	return rt->level == 1;
462 }
463 
464 /* Return true, if raid type in @rt is raid10 */
465 static bool rt_is_raid10(struct raid_type *rt)
466 {
467 	return rt->level == 10;
468 }
469 
470 /* Return true, if raid type in @rt is raid4/5 */
471 static bool rt_is_raid45(struct raid_type *rt)
472 {
473 	return __within_range(rt->level, 4, 5);
474 }
475 
476 /* Return true, if raid type in @rt is raid6 */
477 static bool rt_is_raid6(struct raid_type *rt)
478 {
479 	return rt->level == 6;
480 }
481 
482 /* Return true, if raid type in @rt is raid4/5/6 */
483 static bool rt_is_raid456(struct raid_type *rt)
484 {
485 	return __within_range(rt->level, 4, 6);
486 }
487 /* END: raid level bools */
488 
489 /* Return valid ctr flags for the raid level of @rs */
490 static unsigned long __valid_flags(struct raid_set *rs)
491 {
492 	if (rt_is_raid0(rs->raid_type))
493 		return RAID0_VALID_FLAGS;
494 	else if (rt_is_raid1(rs->raid_type))
495 		return RAID1_VALID_FLAGS;
496 	else if (rt_is_raid10(rs->raid_type))
497 		return RAID10_VALID_FLAGS;
498 	else if (rt_is_raid45(rs->raid_type))
499 		return RAID45_VALID_FLAGS;
500 	else if (rt_is_raid6(rs->raid_type))
501 		return RAID6_VALID_FLAGS;
502 
503 	return 0;
504 }
505 
506 /*
507  * Check for valid flags set on @rs
508  *
509  * Has to be called after parsing of the ctr flags!
510  */
511 static int rs_check_for_valid_flags(struct raid_set *rs)
512 {
513 	if (rs->ctr_flags & ~__valid_flags(rs)) {
514 		rs->ti->error = "Invalid flags combination";
515 		return -EINVAL;
516 	}
517 
518 	return 0;
519 }
520 
521 /* MD raid10 bit definitions and helpers */
522 #define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
523 #define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
524 #define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
525 #define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
526 
527 /* Return md raid10 near copies for @layout */
528 static unsigned int __raid10_near_copies(int layout)
529 {
530 	return layout & 0xFF;
531 }
532 
533 /* Return md raid10 far copies for @layout */
534 static unsigned int __raid10_far_copies(int layout)
535 {
536 	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
537 }
538 
539 /* Return true if md raid10 offset for @layout */
540 static bool __is_raid10_offset(int layout)
541 {
542 	return !!(layout & RAID10_OFFSET);
543 }
544 
545 /* Return true if md raid10 near for @layout */
546 static bool __is_raid10_near(int layout)
547 {
548 	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
549 }
550 
551 /* Return true if md raid10 far for @layout */
552 static bool __is_raid10_far(int layout)
553 {
554 	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
555 }
556 
557 /* Return md raid10 layout string for @layout */
558 static const char *raid10_md_layout_to_format(int layout)
559 {
560 	/*
561 	 * Bit 16 stands for "offset"
562 	 * (i.e. adjacent stripes hold copies)
563 	 *
564 	 * Refer to MD's raid10.c for details
565 	 */
566 	if (__is_raid10_offset(layout))
567 		return "offset";
568 
569 	if (__raid10_near_copies(layout) > 1)
570 		return "near";
571 
572 	if (__raid10_far_copies(layout) > 1)
573 		return "far";
574 
575 	return "unknown";
576 }
577 
578 /* Return md raid10 algorithm for @name */
579 static int raid10_name_to_format(const char *name)
580 {
581 	if (!strcasecmp(name, "near"))
582 		return ALGORITHM_RAID10_NEAR;
583 	else if (!strcasecmp(name, "offset"))
584 		return ALGORITHM_RAID10_OFFSET;
585 	else if (!strcasecmp(name, "far"))
586 		return ALGORITHM_RAID10_FAR;
587 
588 	return -EINVAL;
589 }
590 
591 /* Return md raid10 copies for @layout */
592 static unsigned int raid10_md_layout_to_copies(int layout)
593 {
594 	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
595 }
596 
597 /* Return md raid10 format id for @format string */
598 static int raid10_format_to_md_layout(struct raid_set *rs,
599 				      unsigned int algorithm,
600 				      unsigned int copies)
601 {
602 	unsigned int n = 1, f = 1, r = 0;
603 
604 	/*
605 	 * MD resilienece flaw:
606 	 *
607 	 * enabling use_far_sets for far/offset formats causes copies
608 	 * to be colocated on the same devs together with their origins!
609 	 *
610 	 * -> disable it for now in the definition above
611 	 */
612 	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
613 	    algorithm == ALGORITHM_RAID10_NEAR)
614 		n = copies;
615 
616 	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
617 		f = copies;
618 		r = RAID10_OFFSET;
619 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
620 			r |= RAID10_USE_FAR_SETS;
621 
622 	} else if (algorithm == ALGORITHM_RAID10_FAR) {
623 		f = copies;
624 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
625 			r |= RAID10_USE_FAR_SETS;
626 
627 	} else
628 		return -EINVAL;
629 
630 	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
631 }
632 /* END: MD raid10 bit definitions and helpers */
633 
634 /* Check for any of the raid10 algorithms */
635 static bool __got_raid10(struct raid_type *rtp, const int layout)
636 {
637 	if (rtp->level == 10) {
638 		switch (rtp->algorithm) {
639 		case ALGORITHM_RAID10_DEFAULT:
640 		case ALGORITHM_RAID10_NEAR:
641 			return __is_raid10_near(layout);
642 		case ALGORITHM_RAID10_OFFSET:
643 			return __is_raid10_offset(layout);
644 		case ALGORITHM_RAID10_FAR:
645 			return __is_raid10_far(layout);
646 		default:
647 			break;
648 		}
649 	}
650 
651 	return false;
652 }
653 
654 /* Return raid_type for @name */
655 static struct raid_type *get_raid_type(const char *name)
656 {
657 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
658 
659 	while (rtp-- > raid_types)
660 		if (!strcasecmp(rtp->name, name))
661 			return rtp;
662 
663 	return NULL;
664 }
665 
666 /* Return raid_type for @name based derived from @level and @layout */
667 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
668 {
669 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
670 
671 	while (rtp-- > raid_types) {
672 		/* RAID10 special checks based on @layout flags/properties */
673 		if (rtp->level == level &&
674 		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
675 			return rtp;
676 	}
677 
678 	return NULL;
679 }
680 
681 /* Adjust rdev sectors */
682 static void rs_set_rdev_sectors(struct raid_set *rs)
683 {
684 	struct mddev *mddev = &rs->md;
685 	struct md_rdev *rdev;
686 
687 	/*
688 	 * raid10 sets rdev->sector to the device size, which
689 	 * is unintended in case of out-of-place reshaping
690 	 */
691 	rdev_for_each(rdev, mddev)
692 		if (!test_bit(Journal, &rdev->flags))
693 			rdev->sectors = mddev->dev_sectors;
694 }
695 
696 /*
697  * Change bdev capacity of @rs in case of a disk add/remove reshape
698  */
699 static void rs_set_capacity(struct raid_set *rs)
700 {
701 	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
702 
703 	set_capacity_and_notify(gendisk, rs->md.array_sectors);
704 }
705 
706 /*
707  * Set the mddev properties in @rs to the current
708  * ones retrieved from the freshest superblock
709  */
710 static void rs_set_cur(struct raid_set *rs)
711 {
712 	struct mddev *mddev = &rs->md;
713 
714 	mddev->new_level = mddev->level;
715 	mddev->new_layout = mddev->layout;
716 	mddev->new_chunk_sectors = mddev->chunk_sectors;
717 }
718 
719 /*
720  * Set the mddev properties in @rs to the new
721  * ones requested by the ctr
722  */
723 static void rs_set_new(struct raid_set *rs)
724 {
725 	struct mddev *mddev = &rs->md;
726 
727 	mddev->level = mddev->new_level;
728 	mddev->layout = mddev->new_layout;
729 	mddev->chunk_sectors = mddev->new_chunk_sectors;
730 	mddev->raid_disks = rs->raid_disks;
731 	mddev->delta_disks = 0;
732 }
733 
734 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
735 				       unsigned int raid_devs)
736 {
737 	unsigned int i;
738 	struct raid_set *rs;
739 
740 	if (raid_devs <= raid_type->parity_devs) {
741 		ti->error = "Insufficient number of devices";
742 		return ERR_PTR(-EINVAL);
743 	}
744 
745 	rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
746 	if (!rs) {
747 		ti->error = "Cannot allocate raid context";
748 		return ERR_PTR(-ENOMEM);
749 	}
750 
751 	mddev_init(&rs->md);
752 
753 	rs->raid_disks = raid_devs;
754 	rs->delta_disks = 0;
755 
756 	rs->ti = ti;
757 	rs->raid_type = raid_type;
758 	rs->stripe_cache_entries = 256;
759 	rs->md.raid_disks = raid_devs;
760 	rs->md.level = raid_type->level;
761 	rs->md.new_level = rs->md.level;
762 	rs->md.layout = raid_type->algorithm;
763 	rs->md.new_layout = rs->md.layout;
764 	rs->md.delta_disks = 0;
765 	rs->md.recovery_cp = MaxSector;
766 
767 	for (i = 0; i < raid_devs; i++)
768 		md_rdev_init(&rs->dev[i].rdev);
769 
770 	/*
771 	 * Remaining items to be initialized by further RAID params:
772 	 *  rs->md.persistent
773 	 *  rs->md.external
774 	 *  rs->md.chunk_sectors
775 	 *  rs->md.new_chunk_sectors
776 	 *  rs->md.dev_sectors
777 	 */
778 
779 	return rs;
780 }
781 
782 /* Free all @rs allocations */
783 static void raid_set_free(struct raid_set *rs)
784 {
785 	int i;
786 
787 	if (rs->journal_dev.dev) {
788 		md_rdev_clear(&rs->journal_dev.rdev);
789 		dm_put_device(rs->ti, rs->journal_dev.dev);
790 	}
791 
792 	for (i = 0; i < rs->raid_disks; i++) {
793 		if (rs->dev[i].meta_dev)
794 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
795 		md_rdev_clear(&rs->dev[i].rdev);
796 		if (rs->dev[i].data_dev)
797 			dm_put_device(rs->ti, rs->dev[i].data_dev);
798 	}
799 
800 	kfree(rs);
801 }
802 
803 /*
804  * For every device we have two words
805  *  <meta_dev>: meta device name or '-' if missing
806  *  <data_dev>: data device name or '-' if missing
807  *
808  * The following are permitted:
809  *    - -
810  *    - <data_dev>
811  *    <meta_dev> <data_dev>
812  *
813  * The following is not allowed:
814  *    <meta_dev> -
815  *
816  * This code parses those words.  If there is a failure,
817  * the caller must use raid_set_free() to unwind the operations.
818  */
819 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
820 {
821 	int i;
822 	int rebuild = 0;
823 	int metadata_available = 0;
824 	int r = 0;
825 	const char *arg;
826 
827 	/* Put off the number of raid devices argument to get to dev pairs */
828 	arg = dm_shift_arg(as);
829 	if (!arg)
830 		return -EINVAL;
831 
832 	for (i = 0; i < rs->raid_disks; i++) {
833 		rs->dev[i].rdev.raid_disk = i;
834 
835 		rs->dev[i].meta_dev = NULL;
836 		rs->dev[i].data_dev = NULL;
837 
838 		/*
839 		 * There are no offsets initially.
840 		 * Out of place reshape will set them accordingly.
841 		 */
842 		rs->dev[i].rdev.data_offset = 0;
843 		rs->dev[i].rdev.new_data_offset = 0;
844 		rs->dev[i].rdev.mddev = &rs->md;
845 
846 		arg = dm_shift_arg(as);
847 		if (!arg)
848 			return -EINVAL;
849 
850 		if (strcmp(arg, "-")) {
851 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
852 					  &rs->dev[i].meta_dev);
853 			if (r) {
854 				rs->ti->error = "RAID metadata device lookup failure";
855 				return r;
856 			}
857 
858 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
859 			if (!rs->dev[i].rdev.sb_page) {
860 				rs->ti->error = "Failed to allocate superblock page";
861 				return -ENOMEM;
862 			}
863 		}
864 
865 		arg = dm_shift_arg(as);
866 		if (!arg)
867 			return -EINVAL;
868 
869 		if (!strcmp(arg, "-")) {
870 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
871 			    (!rs->dev[i].rdev.recovery_offset)) {
872 				rs->ti->error = "Drive designated for rebuild not specified";
873 				return -EINVAL;
874 			}
875 
876 			if (rs->dev[i].meta_dev) {
877 				rs->ti->error = "No data device supplied with metadata device";
878 				return -EINVAL;
879 			}
880 
881 			continue;
882 		}
883 
884 		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
885 				  &rs->dev[i].data_dev);
886 		if (r) {
887 			rs->ti->error = "RAID device lookup failure";
888 			return r;
889 		}
890 
891 		if (rs->dev[i].meta_dev) {
892 			metadata_available = 1;
893 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
894 		}
895 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
896 		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
897 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
898 			rebuild++;
899 	}
900 
901 	if (rs->journal_dev.dev)
902 		list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
903 
904 	if (metadata_available) {
905 		rs->md.external = 0;
906 		rs->md.persistent = 1;
907 		rs->md.major_version = 2;
908 	} else if (rebuild && !rs->md.recovery_cp) {
909 		/*
910 		 * Without metadata, we will not be able to tell if the array
911 		 * is in-sync or not - we must assume it is not.  Therefore,
912 		 * it is impossible to rebuild a drive.
913 		 *
914 		 * Even if there is metadata, the on-disk information may
915 		 * indicate that the array is not in-sync and it will then
916 		 * fail at that time.
917 		 *
918 		 * User could specify 'nosync' option if desperate.
919 		 */
920 		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
921 		return -EINVAL;
922 	}
923 
924 	return 0;
925 }
926 
927 /*
928  * validate_region_size
929  * @rs
930  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
931  *
932  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
933  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
934  *
935  * Returns: 0 on success, -EINVAL on failure.
936  */
937 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
938 {
939 	unsigned long min_region_size = rs->ti->len / (1 << 21);
940 
941 	if (rs_is_raid0(rs))
942 		return 0;
943 
944 	if (!region_size) {
945 		/*
946 		 * Choose a reasonable default.	 All figures in sectors.
947 		 */
948 		if (min_region_size > (1 << 13)) {
949 			/* If not a power of 2, make it the next power of 2 */
950 			region_size = roundup_pow_of_two(min_region_size);
951 			DMINFO("Choosing default region size of %lu sectors",
952 			       region_size);
953 		} else {
954 			DMINFO("Choosing default region size of 4MiB");
955 			region_size = 1 << 13; /* sectors */
956 		}
957 	} else {
958 		/*
959 		 * Validate user-supplied value.
960 		 */
961 		if (region_size > rs->ti->len) {
962 			rs->ti->error = "Supplied region size is too large";
963 			return -EINVAL;
964 		}
965 
966 		if (region_size < min_region_size) {
967 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
968 			      region_size, min_region_size);
969 			rs->ti->error = "Supplied region size is too small";
970 			return -EINVAL;
971 		}
972 
973 		if (!is_power_of_2(region_size)) {
974 			rs->ti->error = "Region size is not a power of 2";
975 			return -EINVAL;
976 		}
977 
978 		if (region_size < rs->md.chunk_sectors) {
979 			rs->ti->error = "Region size is smaller than the chunk size";
980 			return -EINVAL;
981 		}
982 	}
983 
984 	/*
985 	 * Convert sectors to bytes.
986 	 */
987 	rs->md.bitmap_info.chunksize = to_bytes(region_size);
988 
989 	return 0;
990 }
991 
992 /*
993  * validate_raid_redundancy
994  * @rs
995  *
996  * Determine if there are enough devices in the array that haven't
997  * failed (or are being rebuilt) to form a usable array.
998  *
999  * Returns: 0 on success, -EINVAL on failure.
1000  */
1001 static int validate_raid_redundancy(struct raid_set *rs)
1002 {
1003 	unsigned int i, rebuild_cnt = 0;
1004 	unsigned int rebuilds_per_group = 0, copies, raid_disks;
1005 	unsigned int group_size, last_group_start;
1006 
1007 	for (i = 0; i < rs->raid_disks; i++)
1008 		if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1009 		    ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1010 		      !rs->dev[i].rdev.sb_page)))
1011 			rebuild_cnt++;
1012 
1013 	switch (rs->md.level) {
1014 	case 0:
1015 		break;
1016 	case 1:
1017 		if (rebuild_cnt >= rs->md.raid_disks)
1018 			goto too_many;
1019 		break;
1020 	case 4:
1021 	case 5:
1022 	case 6:
1023 		if (rebuild_cnt > rs->raid_type->parity_devs)
1024 			goto too_many;
1025 		break;
1026 	case 10:
1027 		copies = raid10_md_layout_to_copies(rs->md.new_layout);
1028 		if (copies < 2) {
1029 			DMERR("Bogus raid10 data copies < 2!");
1030 			return -EINVAL;
1031 		}
1032 
1033 		if (rebuild_cnt < copies)
1034 			break;
1035 
1036 		/*
1037 		 * It is possible to have a higher rebuild count for RAID10,
1038 		 * as long as the failed devices occur in different mirror
1039 		 * groups (i.e. different stripes).
1040 		 *
1041 		 * When checking "near" format, make sure no adjacent devices
1042 		 * have failed beyond what can be handled.  In addition to the
1043 		 * simple case where the number of devices is a multiple of the
1044 		 * number of copies, we must also handle cases where the number
1045 		 * of devices is not a multiple of the number of copies.
1046 		 * E.g.	   dev1 dev2 dev3 dev4 dev5
1047 		 *	    A	 A    B	   B	C
1048 		 *	    C	 D    D	   E	E
1049 		 */
1050 		raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1051 		if (__is_raid10_near(rs->md.new_layout)) {
1052 			for (i = 0; i < raid_disks; i++) {
1053 				if (!(i % copies))
1054 					rebuilds_per_group = 0;
1055 				if ((!rs->dev[i].rdev.sb_page ||
1056 				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1057 				    (++rebuilds_per_group >= copies))
1058 					goto too_many;
1059 			}
1060 			break;
1061 		}
1062 
1063 		/*
1064 		 * When checking "far" and "offset" formats, we need to ensure
1065 		 * that the device that holds its copy is not also dead or
1066 		 * being rebuilt.  (Note that "far" and "offset" formats only
1067 		 * support two copies right now.  These formats also only ever
1068 		 * use the 'use_far_sets' variant.)
1069 		 *
1070 		 * This check is somewhat complicated by the need to account
1071 		 * for arrays that are not a multiple of (far) copies.	This
1072 		 * results in the need to treat the last (potentially larger)
1073 		 * set differently.
1074 		 */
1075 		group_size = (raid_disks / copies);
1076 		last_group_start = (raid_disks / group_size) - 1;
1077 		last_group_start *= group_size;
1078 		for (i = 0; i < raid_disks; i++) {
1079 			if (!(i % copies) && !(i > last_group_start))
1080 				rebuilds_per_group = 0;
1081 			if ((!rs->dev[i].rdev.sb_page ||
1082 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1083 			    (++rebuilds_per_group >= copies))
1084 					goto too_many;
1085 		}
1086 		break;
1087 	default:
1088 		if (rebuild_cnt)
1089 			return -EINVAL;
1090 	}
1091 
1092 	return 0;
1093 
1094 too_many:
1095 	return -EINVAL;
1096 }
1097 
1098 /*
1099  * Possible arguments are...
1100  *	<chunk_size> [optional_args]
1101  *
1102  * Argument definitions
1103  *    <chunk_size>			The number of sectors per disk that
1104  *					will form the "stripe"
1105  *    [[no]sync]			Force or prevent recovery of the
1106  *					entire array
1107  *    [rebuild <idx>]			Rebuild the drive indicated by the index
1108  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1109  *					clear bits
1110  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1111  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1112  *    [write_mostly <idx>]		Indicate a write mostly drive via index
1113  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1114  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1115  *    [region_size <sectors>]		Defines granularity of bitmap
1116  *    [journal_dev <dev>]		raid4/5/6 journaling deviice
1117  *    					(i.e. write hole closing log)
1118  *
1119  * RAID10-only options:
1120  *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1121  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1122  */
1123 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1124 			     unsigned int num_raid_params)
1125 {
1126 	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1127 	unsigned int raid10_copies = 2;
1128 	unsigned int i, write_mostly = 0;
1129 	unsigned int region_size = 0;
1130 	sector_t max_io_len;
1131 	const char *arg, *key;
1132 	struct raid_dev *rd;
1133 	struct raid_type *rt = rs->raid_type;
1134 
1135 	arg = dm_shift_arg(as);
1136 	num_raid_params--; /* Account for chunk_size argument */
1137 
1138 	if (kstrtoint(arg, 10, &value) < 0) {
1139 		rs->ti->error = "Bad numerical argument given for chunk_size";
1140 		return -EINVAL;
1141 	}
1142 
1143 	/*
1144 	 * First, parse the in-order required arguments
1145 	 * "chunk_size" is the only argument of this type.
1146 	 */
1147 	if (rt_is_raid1(rt)) {
1148 		if (value)
1149 			DMERR("Ignoring chunk size parameter for RAID 1");
1150 		value = 0;
1151 	} else if (!is_power_of_2(value)) {
1152 		rs->ti->error = "Chunk size must be a power of 2";
1153 		return -EINVAL;
1154 	} else if (value < 8) {
1155 		rs->ti->error = "Chunk size value is too small";
1156 		return -EINVAL;
1157 	}
1158 
1159 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1160 
1161 	/*
1162 	 * We set each individual device as In_sync with a completed
1163 	 * 'recovery_offset'.  If there has been a device failure or
1164 	 * replacement then one of the following cases applies:
1165 	 *
1166 	 *   1) User specifies 'rebuild'.
1167 	 *	- Device is reset when param is read.
1168 	 *   2) A new device is supplied.
1169 	 *	- No matching superblock found, resets device.
1170 	 *   3) Device failure was transient and returns on reload.
1171 	 *	- Failure noticed, resets device for bitmap replay.
1172 	 *   4) Device hadn't completed recovery after previous failure.
1173 	 *	- Superblock is read and overrides recovery_offset.
1174 	 *
1175 	 * What is found in the superblocks of the devices is always
1176 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1177 	 */
1178 	for (i = 0; i < rs->raid_disks; i++) {
1179 		set_bit(In_sync, &rs->dev[i].rdev.flags);
1180 		rs->dev[i].rdev.recovery_offset = MaxSector;
1181 	}
1182 
1183 	/*
1184 	 * Second, parse the unordered optional arguments
1185 	 */
1186 	for (i = 0; i < num_raid_params; i++) {
1187 		key = dm_shift_arg(as);
1188 		if (!key) {
1189 			rs->ti->error = "Not enough raid parameters given";
1190 			return -EINVAL;
1191 		}
1192 
1193 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1194 			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1195 				rs->ti->error = "Only one 'nosync' argument allowed";
1196 				return -EINVAL;
1197 			}
1198 			continue;
1199 		}
1200 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1201 			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1202 				rs->ti->error = "Only one 'sync' argument allowed";
1203 				return -EINVAL;
1204 			}
1205 			continue;
1206 		}
1207 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1208 			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1209 				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1210 				return -EINVAL;
1211 			}
1212 			continue;
1213 		}
1214 
1215 		arg = dm_shift_arg(as);
1216 		i++; /* Account for the argument pairs */
1217 		if (!arg) {
1218 			rs->ti->error = "Wrong number of raid parameters given";
1219 			return -EINVAL;
1220 		}
1221 
1222 		/*
1223 		 * Parameters that take a string value are checked here.
1224 		 */
1225 		/* "raid10_format {near|offset|far} */
1226 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1227 			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1228 				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1229 				return -EINVAL;
1230 			}
1231 			if (!rt_is_raid10(rt)) {
1232 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1233 				return -EINVAL;
1234 			}
1235 			raid10_format = raid10_name_to_format(arg);
1236 			if (raid10_format < 0) {
1237 				rs->ti->error = "Invalid 'raid10_format' value given";
1238 				return raid10_format;
1239 			}
1240 			continue;
1241 		}
1242 
1243 		/* "journal_dev <dev>" */
1244 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1245 			int r;
1246 			struct md_rdev *jdev;
1247 
1248 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1249 				rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1250 				return -EINVAL;
1251 			}
1252 			if (!rt_is_raid456(rt)) {
1253 				rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1254 				return -EINVAL;
1255 			}
1256 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1257 					  &rs->journal_dev.dev);
1258 			if (r) {
1259 				rs->ti->error = "raid4/5/6 journal device lookup failure";
1260 				return r;
1261 			}
1262 			jdev = &rs->journal_dev.rdev;
1263 			md_rdev_init(jdev);
1264 			jdev->mddev = &rs->md;
1265 			jdev->bdev = rs->journal_dev.dev->bdev;
1266 			jdev->sectors = bdev_nr_sectors(jdev->bdev);
1267 			if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1268 				rs->ti->error = "No space for raid4/5/6 journal";
1269 				return -ENOSPC;
1270 			}
1271 			rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1272 			set_bit(Journal, &jdev->flags);
1273 			continue;
1274 		}
1275 
1276 		/* "journal_mode <mode>" ("journal_dev" mandatory!) */
1277 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1278 			int r;
1279 
1280 			if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1281 				rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1282 				return -EINVAL;
1283 			}
1284 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1285 				rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1286 				return -EINVAL;
1287 			}
1288 			r = dm_raid_journal_mode_to_md(arg);
1289 			if (r < 0) {
1290 				rs->ti->error = "Invalid 'journal_mode' argument";
1291 				return r;
1292 			}
1293 			rs->journal_dev.mode = r;
1294 			continue;
1295 		}
1296 
1297 		/*
1298 		 * Parameters with number values from here on.
1299 		 */
1300 		if (kstrtoint(arg, 10, &value) < 0) {
1301 			rs->ti->error = "Bad numerical argument given in raid params";
1302 			return -EINVAL;
1303 		}
1304 
1305 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1306 			/*
1307 			 * "rebuild" is being passed in by userspace to provide
1308 			 * indexes of replaced devices and to set up additional
1309 			 * devices on raid level takeover.
1310 			 */
1311 			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1312 				rs->ti->error = "Invalid rebuild index given";
1313 				return -EINVAL;
1314 			}
1315 
1316 			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1317 				rs->ti->error = "rebuild for this index already given";
1318 				return -EINVAL;
1319 			}
1320 
1321 			rd = rs->dev + value;
1322 			clear_bit(In_sync, &rd->rdev.flags);
1323 			clear_bit(Faulty, &rd->rdev.flags);
1324 			rd->rdev.recovery_offset = 0;
1325 			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1326 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1327 			if (!rt_is_raid1(rt)) {
1328 				rs->ti->error = "write_mostly option is only valid for RAID1";
1329 				return -EINVAL;
1330 			}
1331 
1332 			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1333 				rs->ti->error = "Invalid write_mostly index given";
1334 				return -EINVAL;
1335 			}
1336 
1337 			write_mostly++;
1338 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1339 			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1340 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1341 			if (!rt_is_raid1(rt)) {
1342 				rs->ti->error = "max_write_behind option is only valid for RAID1";
1343 				return -EINVAL;
1344 			}
1345 
1346 			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1347 				rs->ti->error = "Only one max_write_behind argument pair allowed";
1348 				return -EINVAL;
1349 			}
1350 
1351 			/*
1352 			 * In device-mapper, we specify things in sectors, but
1353 			 * MD records this value in kB
1354 			 */
1355 			if (value < 0 || value / 2 > COUNTER_MAX) {
1356 				rs->ti->error = "Max write-behind limit out of range";
1357 				return -EINVAL;
1358 			}
1359 
1360 			rs->md.bitmap_info.max_write_behind = value / 2;
1361 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1362 			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1363 				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1364 				return -EINVAL;
1365 			}
1366 			if (value < 0) {
1367 				rs->ti->error = "daemon sleep period out of range";
1368 				return -EINVAL;
1369 			}
1370 			rs->md.bitmap_info.daemon_sleep = value;
1371 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1372 			/* Userspace passes new data_offset after having extended the data image LV */
1373 			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1374 				rs->ti->error = "Only one data_offset argument pair allowed";
1375 				return -EINVAL;
1376 			}
1377 			/* Ensure sensible data offset */
1378 			if (value < 0 ||
1379 			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1380 				rs->ti->error = "Bogus data_offset value";
1381 				return -EINVAL;
1382 			}
1383 			rs->data_offset = value;
1384 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1385 			/* Define the +/-# of disks to add to/remove from the given raid set */
1386 			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1387 				rs->ti->error = "Only one delta_disks argument pair allowed";
1388 				return -EINVAL;
1389 			}
1390 			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1391 			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1392 				rs->ti->error = "Too many delta_disk requested";
1393 				return -EINVAL;
1394 			}
1395 
1396 			rs->delta_disks = value;
1397 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1398 			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1399 				rs->ti->error = "Only one stripe_cache argument pair allowed";
1400 				return -EINVAL;
1401 			}
1402 
1403 			if (!rt_is_raid456(rt)) {
1404 				rs->ti->error = "Inappropriate argument: stripe_cache";
1405 				return -EINVAL;
1406 			}
1407 
1408 			if (value < 0) {
1409 				rs->ti->error = "Bogus stripe cache entries value";
1410 				return -EINVAL;
1411 			}
1412 			rs->stripe_cache_entries = value;
1413 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1414 			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1415 				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1416 				return -EINVAL;
1417 			}
1418 
1419 			if (value < 0) {
1420 				rs->ti->error = "min_recovery_rate out of range";
1421 				return -EINVAL;
1422 			}
1423 			rs->md.sync_speed_min = value;
1424 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1425 			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1426 				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1427 				return -EINVAL;
1428 			}
1429 
1430 			if (value < 0) {
1431 				rs->ti->error = "max_recovery_rate out of range";
1432 				return -EINVAL;
1433 			}
1434 			rs->md.sync_speed_max = value;
1435 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1436 			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1437 				rs->ti->error = "Only one region_size argument pair allowed";
1438 				return -EINVAL;
1439 			}
1440 
1441 			region_size = value;
1442 			rs->requested_bitmap_chunk_sectors = value;
1443 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1444 			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1445 				rs->ti->error = "Only one raid10_copies argument pair allowed";
1446 				return -EINVAL;
1447 			}
1448 
1449 			if (!__within_range(value, 2, rs->md.raid_disks)) {
1450 				rs->ti->error = "Bad value for 'raid10_copies'";
1451 				return -EINVAL;
1452 			}
1453 
1454 			raid10_copies = value;
1455 		} else {
1456 			DMERR("Unable to parse RAID parameter: %s", key);
1457 			rs->ti->error = "Unable to parse RAID parameter";
1458 			return -EINVAL;
1459 		}
1460 	}
1461 
1462 	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1463 	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1464 		rs->ti->error = "sync and nosync are mutually exclusive";
1465 		return -EINVAL;
1466 	}
1467 
1468 	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1469 	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1470 	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1471 		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1472 		return -EINVAL;
1473 	}
1474 
1475 	if (write_mostly >= rs->md.raid_disks) {
1476 		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1477 		return -EINVAL;
1478 	}
1479 
1480 	if (rs->md.sync_speed_max &&
1481 	    rs->md.sync_speed_min > rs->md.sync_speed_max) {
1482 		rs->ti->error = "Bogus recovery rates";
1483 		return -EINVAL;
1484 	}
1485 
1486 	if (validate_region_size(rs, region_size))
1487 		return -EINVAL;
1488 
1489 	if (rs->md.chunk_sectors)
1490 		max_io_len = rs->md.chunk_sectors;
1491 	else
1492 		max_io_len = region_size;
1493 
1494 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1495 		return -EINVAL;
1496 
1497 	if (rt_is_raid10(rt)) {
1498 		if (raid10_copies > rs->md.raid_disks) {
1499 			rs->ti->error = "Not enough devices to satisfy specification";
1500 			return -EINVAL;
1501 		}
1502 
1503 		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1504 		if (rs->md.new_layout < 0) {
1505 			rs->ti->error = "Error getting raid10 format";
1506 			return rs->md.new_layout;
1507 		}
1508 
1509 		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1510 		if (!rt) {
1511 			rs->ti->error = "Failed to recognize new raid10 layout";
1512 			return -EINVAL;
1513 		}
1514 
1515 		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1516 		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1517 		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1518 			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1519 			return -EINVAL;
1520 		}
1521 	}
1522 
1523 	rs->raid10_copies = raid10_copies;
1524 
1525 	/* Assume there are no metadata devices until the drives are parsed */
1526 	rs->md.persistent = 0;
1527 	rs->md.external = 1;
1528 
1529 	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1530 	return rs_check_for_valid_flags(rs);
1531 }
1532 
1533 /* Set raid4/5/6 cache size */
1534 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1535 {
1536 	int r;
1537 	struct r5conf *conf;
1538 	struct mddev *mddev = &rs->md;
1539 	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1540 	uint32_t nr_stripes = rs->stripe_cache_entries;
1541 
1542 	if (!rt_is_raid456(rs->raid_type)) {
1543 		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1544 		return -EINVAL;
1545 	}
1546 
1547 	if (nr_stripes < min_stripes) {
1548 		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1549 		       nr_stripes, min_stripes);
1550 		nr_stripes = min_stripes;
1551 	}
1552 
1553 	conf = mddev->private;
1554 	if (!conf) {
1555 		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1556 		return -EINVAL;
1557 	}
1558 
1559 	/* Try setting number of stripes in raid456 stripe cache */
1560 	if (conf->min_nr_stripes != nr_stripes) {
1561 		r = raid5_set_cache_size(mddev, nr_stripes);
1562 		if (r) {
1563 			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1564 			return r;
1565 		}
1566 
1567 		DMINFO("%u stripe cache entries", nr_stripes);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1574 static unsigned int mddev_data_stripes(struct raid_set *rs)
1575 {
1576 	return rs->md.raid_disks - rs->raid_type->parity_devs;
1577 }
1578 
1579 /* Return # of data stripes of @rs (i.e. as of ctr) */
1580 static unsigned int rs_data_stripes(struct raid_set *rs)
1581 {
1582 	return rs->raid_disks - rs->raid_type->parity_devs;
1583 }
1584 
1585 /*
1586  * Retrieve rdev->sectors from any valid raid device of @rs
1587  * to allow userpace to pass in arbitray "- -" device tupples.
1588  */
1589 static sector_t __rdev_sectors(struct raid_set *rs)
1590 {
1591 	int i;
1592 
1593 	for (i = 0; i < rs->raid_disks; i++) {
1594 		struct md_rdev *rdev = &rs->dev[i].rdev;
1595 
1596 		if (!test_bit(Journal, &rdev->flags) &&
1597 		    rdev->bdev && rdev->sectors)
1598 			return rdev->sectors;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 /* Check that calculated dev_sectors fits all component devices. */
1605 static int _check_data_dev_sectors(struct raid_set *rs)
1606 {
1607 	sector_t ds = ~0;
1608 	struct md_rdev *rdev;
1609 
1610 	rdev_for_each(rdev, &rs->md)
1611 		if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1612 			ds = min(ds, bdev_nr_sectors(rdev->bdev));
1613 			if (ds < rs->md.dev_sectors) {
1614 				rs->ti->error = "Component device(s) too small";
1615 				return -EINVAL;
1616 			}
1617 		}
1618 
1619 	return 0;
1620 }
1621 
1622 /* Calculate the sectors per device and per array used for @rs */
1623 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1624 {
1625 	int delta_disks;
1626 	unsigned int data_stripes;
1627 	sector_t array_sectors = sectors, dev_sectors = sectors;
1628 	struct mddev *mddev = &rs->md;
1629 
1630 	if (use_mddev) {
1631 		delta_disks = mddev->delta_disks;
1632 		data_stripes = mddev_data_stripes(rs);
1633 	} else {
1634 		delta_disks = rs->delta_disks;
1635 		data_stripes = rs_data_stripes(rs);
1636 	}
1637 
1638 	/* Special raid1 case w/o delta_disks support (yet) */
1639 	if (rt_is_raid1(rs->raid_type))
1640 		;
1641 	else if (rt_is_raid10(rs->raid_type)) {
1642 		if (rs->raid10_copies < 2 ||
1643 		    delta_disks < 0) {
1644 			rs->ti->error = "Bogus raid10 data copies or delta disks";
1645 			return -EINVAL;
1646 		}
1647 
1648 		dev_sectors *= rs->raid10_copies;
1649 		if (sector_div(dev_sectors, data_stripes))
1650 			goto bad;
1651 
1652 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1653 		if (sector_div(array_sectors, rs->raid10_copies))
1654 			goto bad;
1655 
1656 	} else if (sector_div(dev_sectors, data_stripes))
1657 		goto bad;
1658 
1659 	else
1660 		/* Striped layouts */
1661 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1662 
1663 	mddev->array_sectors = array_sectors;
1664 	mddev->dev_sectors = dev_sectors;
1665 	rs_set_rdev_sectors(rs);
1666 
1667 	return _check_data_dev_sectors(rs);
1668 bad:
1669 	rs->ti->error = "Target length not divisible by number of data devices";
1670 	return -EINVAL;
1671 }
1672 
1673 /* Setup recovery on @rs */
1674 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1675 {
1676 	/* raid0 does not recover */
1677 	if (rs_is_raid0(rs))
1678 		rs->md.recovery_cp = MaxSector;
1679 	/*
1680 	 * A raid6 set has to be recovered either
1681 	 * completely or for the grown part to
1682 	 * ensure proper parity and Q-Syndrome
1683 	 */
1684 	else if (rs_is_raid6(rs))
1685 		rs->md.recovery_cp = dev_sectors;
1686 	/*
1687 	 * Other raid set types may skip recovery
1688 	 * depending on the 'nosync' flag.
1689 	 */
1690 	else
1691 		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1692 				     ? MaxSector : dev_sectors;
1693 }
1694 
1695 static void do_table_event(struct work_struct *ws)
1696 {
1697 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1698 
1699 	smp_rmb(); /* Make sure we access most actual mddev properties */
1700 	if (!rs_is_reshaping(rs)) {
1701 		if (rs_is_raid10(rs))
1702 			rs_set_rdev_sectors(rs);
1703 		rs_set_capacity(rs);
1704 	}
1705 	dm_table_event(rs->ti->table);
1706 }
1707 
1708 /*
1709  * Make sure a valid takover (level switch) is being requested on @rs
1710  *
1711  * Conversions of raid sets from one MD personality to another
1712  * have to conform to restrictions which are enforced here.
1713  */
1714 static int rs_check_takeover(struct raid_set *rs)
1715 {
1716 	struct mddev *mddev = &rs->md;
1717 	unsigned int near_copies;
1718 
1719 	if (rs->md.degraded) {
1720 		rs->ti->error = "Can't takeover degraded raid set";
1721 		return -EPERM;
1722 	}
1723 
1724 	if (rs_is_reshaping(rs)) {
1725 		rs->ti->error = "Can't takeover reshaping raid set";
1726 		return -EPERM;
1727 	}
1728 
1729 	switch (mddev->level) {
1730 	case 0:
1731 		/* raid0 -> raid1/5 with one disk */
1732 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1733 		    mddev->raid_disks == 1)
1734 			return 0;
1735 
1736 		/* raid0 -> raid10 */
1737 		if (mddev->new_level == 10 &&
1738 		    !(rs->raid_disks % mddev->raid_disks))
1739 			return 0;
1740 
1741 		/* raid0 with multiple disks -> raid4/5/6 */
1742 		if (__within_range(mddev->new_level, 4, 6) &&
1743 		    mddev->new_layout == ALGORITHM_PARITY_N &&
1744 		    mddev->raid_disks > 1)
1745 			return 0;
1746 
1747 		break;
1748 
1749 	case 10:
1750 		/* Can't takeover raid10_offset! */
1751 		if (__is_raid10_offset(mddev->layout))
1752 			break;
1753 
1754 		near_copies = __raid10_near_copies(mddev->layout);
1755 
1756 		/* raid10* -> raid0 */
1757 		if (mddev->new_level == 0) {
1758 			/* Can takeover raid10_near with raid disks divisable by data copies! */
1759 			if (near_copies > 1 &&
1760 			    !(mddev->raid_disks % near_copies)) {
1761 				mddev->raid_disks /= near_copies;
1762 				mddev->delta_disks = mddev->raid_disks;
1763 				return 0;
1764 			}
1765 
1766 			/* Can takeover raid10_far */
1767 			if (near_copies == 1 &&
1768 			    __raid10_far_copies(mddev->layout) > 1)
1769 				return 0;
1770 
1771 			break;
1772 		}
1773 
1774 		/* raid10_{near,far} -> raid1 */
1775 		if (mddev->new_level == 1 &&
1776 		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1777 			return 0;
1778 
1779 		/* raid10_{near,far} with 2 disks -> raid4/5 */
1780 		if (__within_range(mddev->new_level, 4, 5) &&
1781 		    mddev->raid_disks == 2)
1782 			return 0;
1783 		break;
1784 
1785 	case 1:
1786 		/* raid1 with 2 disks -> raid4/5 */
1787 		if (__within_range(mddev->new_level, 4, 5) &&
1788 		    mddev->raid_disks == 2) {
1789 			mddev->degraded = 1;
1790 			return 0;
1791 		}
1792 
1793 		/* raid1 -> raid0 */
1794 		if (mddev->new_level == 0 &&
1795 		    mddev->raid_disks == 1)
1796 			return 0;
1797 
1798 		/* raid1 -> raid10 */
1799 		if (mddev->new_level == 10)
1800 			return 0;
1801 		break;
1802 
1803 	case 4:
1804 		/* raid4 -> raid0 */
1805 		if (mddev->new_level == 0)
1806 			return 0;
1807 
1808 		/* raid4 -> raid1/5 with 2 disks */
1809 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1810 		    mddev->raid_disks == 2)
1811 			return 0;
1812 
1813 		/* raid4 -> raid5/6 with parity N */
1814 		if (__within_range(mddev->new_level, 5, 6) &&
1815 		    mddev->layout == ALGORITHM_PARITY_N)
1816 			return 0;
1817 		break;
1818 
1819 	case 5:
1820 		/* raid5 with parity N -> raid0 */
1821 		if (mddev->new_level == 0 &&
1822 		    mddev->layout == ALGORITHM_PARITY_N)
1823 			return 0;
1824 
1825 		/* raid5 with parity N -> raid4 */
1826 		if (mddev->new_level == 4 &&
1827 		    mddev->layout == ALGORITHM_PARITY_N)
1828 			return 0;
1829 
1830 		/* raid5 with 2 disks -> raid1/4/10 */
1831 		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1832 		    mddev->raid_disks == 2)
1833 			return 0;
1834 
1835 		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1836 		if (mddev->new_level == 6 &&
1837 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1838 		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1839 			return 0;
1840 		break;
1841 
1842 	case 6:
1843 		/* raid6 with parity N -> raid0 */
1844 		if (mddev->new_level == 0 &&
1845 		    mddev->layout == ALGORITHM_PARITY_N)
1846 			return 0;
1847 
1848 		/* raid6 with parity N -> raid4 */
1849 		if (mddev->new_level == 4 &&
1850 		    mddev->layout == ALGORITHM_PARITY_N)
1851 			return 0;
1852 
1853 		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1854 		if (mddev->new_level == 5 &&
1855 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1856 		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1857 			return 0;
1858 		break;
1859 
1860 	default:
1861 		break;
1862 	}
1863 
1864 	rs->ti->error = "takeover not possible";
1865 	return -EINVAL;
1866 }
1867 
1868 /* True if @rs requested to be taken over */
1869 static bool rs_takeover_requested(struct raid_set *rs)
1870 {
1871 	return rs->md.new_level != rs->md.level;
1872 }
1873 
1874 /* True if layout is set to reshape. */
1875 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1876 {
1877 	return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1878 	       rs->md.new_layout != rs->md.layout ||
1879 	       rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1880 }
1881 
1882 /* True if @rs is requested to reshape by ctr */
1883 static bool rs_reshape_requested(struct raid_set *rs)
1884 {
1885 	bool change;
1886 	struct mddev *mddev = &rs->md;
1887 
1888 	if (rs_takeover_requested(rs))
1889 		return false;
1890 
1891 	if (rs_is_raid0(rs))
1892 		return false;
1893 
1894 	change = rs_is_layout_change(rs, false);
1895 
1896 	/* Historical case to support raid1 reshape without delta disks */
1897 	if (rs_is_raid1(rs)) {
1898 		if (rs->delta_disks)
1899 			return !!rs->delta_disks;
1900 
1901 		return !change &&
1902 		       mddev->raid_disks != rs->raid_disks;
1903 	}
1904 
1905 	if (rs_is_raid10(rs))
1906 		return change &&
1907 		       !__is_raid10_far(mddev->new_layout) &&
1908 		       rs->delta_disks >= 0;
1909 
1910 	return change;
1911 }
1912 
1913 /*  Features */
1914 #define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1915 
1916 /* State flags for sb->flags */
1917 #define	SB_FLAG_RESHAPE_ACTIVE		0x1
1918 #define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1919 
1920 /*
1921  * This structure is never routinely used by userspace, unlike md superblocks.
1922  * Devices with this superblock should only ever be accessed via device-mapper.
1923  */
1924 #define DM_RAID_MAGIC 0x64526D44
1925 struct dm_raid_superblock {
1926 	__le32 magic;		/* "DmRd" */
1927 	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1928 
1929 	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1930 	__le32 array_position;	/* The position of this drive in the raid set */
1931 
1932 	__le64 events;		/* Incremented by md when superblock updated */
1933 	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1934 				/* indicate failures (see extension below) */
1935 
1936 	/*
1937 	 * This offset tracks the progress of the repair or replacement of
1938 	 * an individual drive.
1939 	 */
1940 	__le64 disk_recovery_offset;
1941 
1942 	/*
1943 	 * This offset tracks the progress of the initial raid set
1944 	 * synchronisation/parity calculation.
1945 	 */
1946 	__le64 array_resync_offset;
1947 
1948 	/*
1949 	 * raid characteristics
1950 	 */
1951 	__le32 level;
1952 	__le32 layout;
1953 	__le32 stripe_sectors;
1954 
1955 	/********************************************************************
1956 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1957 	 *
1958 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1959 	 */
1960 
1961 	__le32 flags; /* Flags defining array states for reshaping */
1962 
1963 	/*
1964 	 * This offset tracks the progress of a raid
1965 	 * set reshape in order to be able to restart it
1966 	 */
1967 	__le64 reshape_position;
1968 
1969 	/*
1970 	 * These define the properties of the array in case of an interrupted reshape
1971 	 */
1972 	__le32 new_level;
1973 	__le32 new_layout;
1974 	__le32 new_stripe_sectors;
1975 	__le32 delta_disks;
1976 
1977 	__le64 array_sectors; /* Array size in sectors */
1978 
1979 	/*
1980 	 * Sector offsets to data on devices (reshaping).
1981 	 * Needed to support out of place reshaping, thus
1982 	 * not writing over any stripes whilst converting
1983 	 * them from old to new layout
1984 	 */
1985 	__le64 data_offset;
1986 	__le64 new_data_offset;
1987 
1988 	__le64 sectors; /* Used device size in sectors */
1989 
1990 	/*
1991 	 * Additonal Bit field of devices indicating failures to support
1992 	 * up to 256 devices with the 1.9.0 on-disk metadata format
1993 	 */
1994 	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1995 
1996 	__le32 incompat_features;	/* Used to indicate any incompatible features */
1997 
1998 	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1999 } __packed;
2000 
2001 /*
2002  * Check for reshape constraints on raid set @rs:
2003  *
2004  * - reshape function non-existent
2005  * - degraded set
2006  * - ongoing recovery
2007  * - ongoing reshape
2008  *
2009  * Returns 0 if none or -EPERM if given constraint
2010  * and error message reference in @errmsg
2011  */
2012 static int rs_check_reshape(struct raid_set *rs)
2013 {
2014 	struct mddev *mddev = &rs->md;
2015 
2016 	if (!mddev->pers || !mddev->pers->check_reshape)
2017 		rs->ti->error = "Reshape not supported";
2018 	else if (mddev->degraded)
2019 		rs->ti->error = "Can't reshape degraded raid set";
2020 	else if (rs_is_recovering(rs))
2021 		rs->ti->error = "Convert request on recovering raid set prohibited";
2022 	else if (rs_is_reshaping(rs))
2023 		rs->ti->error = "raid set already reshaping!";
2024 	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2025 		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2026 	else
2027 		return 0;
2028 
2029 	return -EPERM;
2030 }
2031 
2032 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2033 {
2034 	BUG_ON(!rdev->sb_page);
2035 
2036 	if (rdev->sb_loaded && !force_reload)
2037 		return 0;
2038 
2039 	rdev->sb_loaded = 0;
2040 
2041 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2042 		DMERR("Failed to read superblock of device at position %d",
2043 		      rdev->raid_disk);
2044 		md_error(rdev->mddev, rdev);
2045 		set_bit(Faulty, &rdev->flags);
2046 		return -EIO;
2047 	}
2048 
2049 	rdev->sb_loaded = 1;
2050 
2051 	return 0;
2052 }
2053 
2054 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2055 {
2056 	failed_devices[0] = le64_to_cpu(sb->failed_devices);
2057 	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2058 
2059 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2060 		int i = ARRAY_SIZE(sb->extended_failed_devices);
2061 
2062 		while (i--)
2063 			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2064 	}
2065 }
2066 
2067 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2068 {
2069 	int i = ARRAY_SIZE(sb->extended_failed_devices);
2070 
2071 	sb->failed_devices = cpu_to_le64(failed_devices[0]);
2072 	while (i--)
2073 		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2074 }
2075 
2076 /*
2077  * Synchronize the superblock members with the raid set properties
2078  *
2079  * All superblock data is little endian.
2080  */
2081 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2082 {
2083 	bool update_failed_devices = false;
2084 	unsigned int i;
2085 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2086 	struct dm_raid_superblock *sb;
2087 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
2088 
2089 	/* No metadata device, no superblock */
2090 	if (!rdev->meta_bdev)
2091 		return;
2092 
2093 	BUG_ON(!rdev->sb_page);
2094 
2095 	sb = page_address(rdev->sb_page);
2096 
2097 	sb_retrieve_failed_devices(sb, failed_devices);
2098 
2099 	for (i = 0; i < rs->raid_disks; i++)
2100 		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2101 			update_failed_devices = true;
2102 			set_bit(i, (void *) failed_devices);
2103 		}
2104 
2105 	if (update_failed_devices)
2106 		sb_update_failed_devices(sb, failed_devices);
2107 
2108 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2109 	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2110 
2111 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
2112 	sb->array_position = cpu_to_le32(rdev->raid_disk);
2113 
2114 	sb->events = cpu_to_le64(mddev->events);
2115 
2116 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2117 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2118 
2119 	sb->level = cpu_to_le32(mddev->level);
2120 	sb->layout = cpu_to_le32(mddev->layout);
2121 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2122 
2123 	/********************************************************************
2124 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2125 	 *
2126 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2127 	 */
2128 	sb->new_level = cpu_to_le32(mddev->new_level);
2129 	sb->new_layout = cpu_to_le32(mddev->new_layout);
2130 	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2131 
2132 	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2133 
2134 	smp_rmb(); /* Make sure we access most recent reshape position */
2135 	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2136 	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2137 		/* Flag ongoing reshape */
2138 		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2139 
2140 		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2141 			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2142 	} else {
2143 		/* Clear reshape flags */
2144 		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2145 	}
2146 
2147 	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2148 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2149 	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2150 	sb->sectors = cpu_to_le64(rdev->sectors);
2151 	sb->incompat_features = cpu_to_le32(0);
2152 
2153 	/* Zero out the rest of the payload after the size of the superblock */
2154 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2155 }
2156 
2157 /*
2158  * super_load
2159  *
2160  * This function creates a superblock if one is not found on the device
2161  * and will decide which superblock to use if there's a choice.
2162  *
2163  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2164  */
2165 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2166 {
2167 	int r;
2168 	struct dm_raid_superblock *sb;
2169 	struct dm_raid_superblock *refsb;
2170 	uint64_t events_sb, events_refsb;
2171 
2172 	r = read_disk_sb(rdev, rdev->sb_size, false);
2173 	if (r)
2174 		return r;
2175 
2176 	sb = page_address(rdev->sb_page);
2177 
2178 	/*
2179 	 * Two cases that we want to write new superblocks and rebuild:
2180 	 * 1) New device (no matching magic number)
2181 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2182 	 */
2183 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2184 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2185 		super_sync(rdev->mddev, rdev);
2186 
2187 		set_bit(FirstUse, &rdev->flags);
2188 		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2189 
2190 		/* Force writing of superblocks to disk */
2191 		set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2192 
2193 		/* Any superblock is better than none, choose that if given */
2194 		return refdev ? 0 : 1;
2195 	}
2196 
2197 	if (!refdev)
2198 		return 1;
2199 
2200 	events_sb = le64_to_cpu(sb->events);
2201 
2202 	refsb = page_address(refdev->sb_page);
2203 	events_refsb = le64_to_cpu(refsb->events);
2204 
2205 	return (events_sb > events_refsb) ? 1 : 0;
2206 }
2207 
2208 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2209 {
2210 	int role;
2211 	unsigned int d;
2212 	struct mddev *mddev = &rs->md;
2213 	uint64_t events_sb;
2214 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2215 	struct dm_raid_superblock *sb;
2216 	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2217 	struct md_rdev *r;
2218 	struct dm_raid_superblock *sb2;
2219 
2220 	sb = page_address(rdev->sb_page);
2221 	events_sb = le64_to_cpu(sb->events);
2222 
2223 	/*
2224 	 * Initialise to 1 if this is a new superblock.
2225 	 */
2226 	mddev->events = events_sb ? : 1;
2227 
2228 	mddev->reshape_position = MaxSector;
2229 
2230 	mddev->raid_disks = le32_to_cpu(sb->num_devices);
2231 	mddev->level = le32_to_cpu(sb->level);
2232 	mddev->layout = le32_to_cpu(sb->layout);
2233 	mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2234 
2235 	/*
2236 	 * Reshaping is supported, e.g. reshape_position is valid
2237 	 * in superblock and superblock content is authoritative.
2238 	 */
2239 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2240 		/* Superblock is authoritative wrt given raid set layout! */
2241 		mddev->new_level = le32_to_cpu(sb->new_level);
2242 		mddev->new_layout = le32_to_cpu(sb->new_layout);
2243 		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2244 		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2245 		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2246 
2247 		/* raid was reshaping and got interrupted */
2248 		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2249 			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2250 				DMERR("Reshape requested but raid set is still reshaping");
2251 				return -EINVAL;
2252 			}
2253 
2254 			if (mddev->delta_disks < 0 ||
2255 			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2256 				mddev->reshape_backwards = 1;
2257 			else
2258 				mddev->reshape_backwards = 0;
2259 
2260 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2261 			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2262 		}
2263 
2264 	} else {
2265 		/*
2266 		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2267 		 */
2268 		struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2269 		struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2270 
2271 		if (rs_takeover_requested(rs)) {
2272 			if (rt_cur && rt_new)
2273 				DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2274 				      rt_cur->name, rt_new->name);
2275 			else
2276 				DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2277 			return -EINVAL;
2278 		} else if (rs_reshape_requested(rs)) {
2279 			DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2280 			if (mddev->layout != mddev->new_layout) {
2281 				if (rt_cur && rt_new)
2282 					DMERR("	 current layout %s vs new layout %s",
2283 					      rt_cur->name, rt_new->name);
2284 				else
2285 					DMERR("	 current layout 0x%X vs new layout 0x%X",
2286 					      le32_to_cpu(sb->layout), mddev->new_layout);
2287 			}
2288 			if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2289 				DMERR("	 current stripe sectors %u vs new stripe sectors %u",
2290 				      mddev->chunk_sectors, mddev->new_chunk_sectors);
2291 			if (rs->delta_disks)
2292 				DMERR("	 current %u disks vs new %u disks",
2293 				      mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2294 			if (rs_is_raid10(rs)) {
2295 				DMERR("	 Old layout: %s w/ %u copies",
2296 				      raid10_md_layout_to_format(mddev->layout),
2297 				      raid10_md_layout_to_copies(mddev->layout));
2298 				DMERR("	 New layout: %s w/ %u copies",
2299 				      raid10_md_layout_to_format(mddev->new_layout),
2300 				      raid10_md_layout_to_copies(mddev->new_layout));
2301 			}
2302 			return -EINVAL;
2303 		}
2304 
2305 		DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2306 	}
2307 
2308 	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2309 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2310 
2311 	/*
2312 	 * During load, we set FirstUse if a new superblock was written.
2313 	 * There are two reasons we might not have a superblock:
2314 	 * 1) The raid set is brand new - in which case, all of the
2315 	 *    devices must have their In_sync bit set.	Also,
2316 	 *    recovery_cp must be 0, unless forced.
2317 	 * 2) This is a new device being added to an old raid set
2318 	 *    and the new device needs to be rebuilt - in which
2319 	 *    case the In_sync bit will /not/ be set and
2320 	 *    recovery_cp must be MaxSector.
2321 	 * 3) This is/are a new device(s) being added to an old
2322 	 *    raid set during takeover to a higher raid level
2323 	 *    to provide capacity for redundancy or during reshape
2324 	 *    to add capacity to grow the raid set.
2325 	 */
2326 	d = 0;
2327 	rdev_for_each(r, mddev) {
2328 		if (test_bit(Journal, &rdev->flags))
2329 			continue;
2330 
2331 		if (test_bit(FirstUse, &r->flags))
2332 			new_devs++;
2333 
2334 		if (!test_bit(In_sync, &r->flags)) {
2335 			DMINFO("Device %d specified for rebuild; clearing superblock",
2336 				r->raid_disk);
2337 			rebuilds++;
2338 
2339 			if (test_bit(FirstUse, &r->flags))
2340 				rebuild_and_new++;
2341 		}
2342 
2343 		d++;
2344 	}
2345 
2346 	if (new_devs == rs->raid_disks || !rebuilds) {
2347 		/* Replace a broken device */
2348 		if (new_devs == rs->raid_disks) {
2349 			DMINFO("Superblocks created for new raid set");
2350 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2351 		} else if (new_devs != rebuilds &&
2352 			   new_devs != rs->delta_disks) {
2353 			DMERR("New device injected into existing raid set without "
2354 			      "'delta_disks' or 'rebuild' parameter specified");
2355 			return -EINVAL;
2356 		}
2357 	} else if (new_devs && new_devs != rebuilds) {
2358 		DMERR("%u 'rebuild' devices cannot be injected into"
2359 		      " a raid set with %u other first-time devices",
2360 		      rebuilds, new_devs);
2361 		return -EINVAL;
2362 	} else if (rebuilds) {
2363 		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2364 			DMERR("new device%s provided without 'rebuild'",
2365 			      new_devs > 1 ? "s" : "");
2366 			return -EINVAL;
2367 		} else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2368 			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2369 			      (unsigned long long) mddev->recovery_cp);
2370 			return -EINVAL;
2371 		} else if (rs_is_reshaping(rs)) {
2372 			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2373 			      (unsigned long long) mddev->reshape_position);
2374 			return -EINVAL;
2375 		}
2376 	}
2377 
2378 	/*
2379 	 * Now we set the Faulty bit for those devices that are
2380 	 * recorded in the superblock as failed.
2381 	 */
2382 	sb_retrieve_failed_devices(sb, failed_devices);
2383 	rdev_for_each(r, mddev) {
2384 		if (test_bit(Journal, &rdev->flags) ||
2385 		    !r->sb_page)
2386 			continue;
2387 		sb2 = page_address(r->sb_page);
2388 		sb2->failed_devices = 0;
2389 		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2390 
2391 		/*
2392 		 * Check for any device re-ordering.
2393 		 */
2394 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2395 			role = le32_to_cpu(sb2->array_position);
2396 			if (role < 0)
2397 				continue;
2398 
2399 			if (role != r->raid_disk) {
2400 				if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2401 					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2402 					    rs->raid_disks % rs->raid10_copies) {
2403 						rs->ti->error =
2404 							"Cannot change raid10 near set to odd # of devices!";
2405 						return -EINVAL;
2406 					}
2407 
2408 					sb2->array_position = cpu_to_le32(r->raid_disk);
2409 
2410 				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2411 					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2412 					   !rt_is_raid1(rs->raid_type)) {
2413 					rs->ti->error = "Cannot change device positions in raid set";
2414 					return -EINVAL;
2415 				}
2416 
2417 				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2418 			}
2419 
2420 			/*
2421 			 * Partial recovery is performed on
2422 			 * returning failed devices.
2423 			 */
2424 			if (test_bit(role, (void *) failed_devices))
2425 				set_bit(Faulty, &r->flags);
2426 		}
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2433 {
2434 	struct mddev *mddev = &rs->md;
2435 	struct dm_raid_superblock *sb;
2436 
2437 	if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2438 		return 0;
2439 
2440 	sb = page_address(rdev->sb_page);
2441 
2442 	/*
2443 	 * If mddev->events is not set, we know we have not yet initialized
2444 	 * the array.
2445 	 */
2446 	if (!mddev->events && super_init_validation(rs, rdev))
2447 		return -EINVAL;
2448 
2449 	if (le32_to_cpu(sb->compat_features) &&
2450 	    le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2451 		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2452 		return -EINVAL;
2453 	}
2454 
2455 	if (sb->incompat_features) {
2456 		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2457 		return -EINVAL;
2458 	}
2459 
2460 	/* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2461 	mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2462 	mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2463 
2464 	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2465 		/*
2466 		 * Retrieve rdev size stored in superblock to be prepared for shrink.
2467 		 * Check extended superblock members are present otherwise the size
2468 		 * will not be set!
2469 		 */
2470 		if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2471 			rdev->sectors = le64_to_cpu(sb->sectors);
2472 
2473 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2474 		if (rdev->recovery_offset == MaxSector)
2475 			set_bit(In_sync, &rdev->flags);
2476 		/*
2477 		 * If no reshape in progress -> we're recovering single
2478 		 * disk(s) and have to set the device(s) to out-of-sync
2479 		 */
2480 		else if (!rs_is_reshaping(rs))
2481 			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2482 	}
2483 
2484 	/*
2485 	 * If a device comes back, set it as not In_sync and no longer faulty.
2486 	 */
2487 	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2488 		rdev->recovery_offset = 0;
2489 		clear_bit(In_sync, &rdev->flags);
2490 		rdev->saved_raid_disk = rdev->raid_disk;
2491 	}
2492 
2493 	/* Reshape support -> restore repective data offsets */
2494 	rdev->data_offset = le64_to_cpu(sb->data_offset);
2495 	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2496 
2497 	return 0;
2498 }
2499 
2500 /*
2501  * Analyse superblocks and select the freshest.
2502  */
2503 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2504 {
2505 	int r;
2506 	struct md_rdev *rdev, *freshest;
2507 	struct mddev *mddev = &rs->md;
2508 
2509 	freshest = NULL;
2510 	rdev_for_each(rdev, mddev) {
2511 		if (test_bit(Journal, &rdev->flags))
2512 			continue;
2513 
2514 		if (!rdev->meta_bdev)
2515 			continue;
2516 
2517 		/* Set superblock offset/size for metadata device. */
2518 		rdev->sb_start = 0;
2519 		rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2520 		if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2521 			DMERR("superblock size of a logical block is no longer valid");
2522 			return -EINVAL;
2523 		}
2524 
2525 		/*
2526 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2527 		 * the array to undergo initialization again as
2528 		 * though it were new.	This is the intended effect
2529 		 * of the "sync" directive.
2530 		 *
2531 		 * With reshaping capability added, we must ensure that
2532 		 * the "sync" directive is disallowed during the reshape.
2533 		 */
2534 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2535 			continue;
2536 
2537 		r = super_load(rdev, freshest);
2538 
2539 		switch (r) {
2540 		case 1:
2541 			freshest = rdev;
2542 			break;
2543 		case 0:
2544 			break;
2545 		default:
2546 			/* This is a failure to read the superblock from the metadata device. */
2547 			/*
2548 			 * We have to keep any raid0 data/metadata device pairs or
2549 			 * the MD raid0 personality will fail to start the array.
2550 			 */
2551 			if (rs_is_raid0(rs))
2552 				continue;
2553 
2554 			/*
2555 			 * We keep the dm_devs to be able to emit the device tuple
2556 			 * properly on the table line in raid_status() (rather than
2557 			 * mistakenly acting as if '- -' got passed into the constructor).
2558 			 *
2559 			 * The rdev has to stay on the same_set list to allow for
2560 			 * the attempt to restore faulty devices on second resume.
2561 			 */
2562 			rdev->raid_disk = rdev->saved_raid_disk = -1;
2563 			break;
2564 		}
2565 	}
2566 
2567 	if (!freshest)
2568 		return 0;
2569 
2570 	/*
2571 	 * Validation of the freshest device provides the source of
2572 	 * validation for the remaining devices.
2573 	 */
2574 	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2575 	if (super_validate(rs, freshest))
2576 		return -EINVAL;
2577 
2578 	if (validate_raid_redundancy(rs)) {
2579 		rs->ti->error = "Insufficient redundancy to activate array";
2580 		return -EINVAL;
2581 	}
2582 
2583 	rdev_for_each(rdev, mddev)
2584 		if (!test_bit(Journal, &rdev->flags) &&
2585 		    rdev != freshest &&
2586 		    super_validate(rs, rdev))
2587 			return -EINVAL;
2588 	return 0;
2589 }
2590 
2591 /*
2592  * Adjust data_offset and new_data_offset on all disk members of @rs
2593  * for out of place reshaping if requested by constructor
2594  *
2595  * We need free space at the beginning of each raid disk for forward
2596  * and at the end for backward reshapes which userspace has to provide
2597  * via remapping/reordering of space.
2598  */
2599 static int rs_adjust_data_offsets(struct raid_set *rs)
2600 {
2601 	sector_t data_offset = 0, new_data_offset = 0;
2602 	struct md_rdev *rdev;
2603 
2604 	/* Constructor did not request data offset change */
2605 	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2606 		if (!rs_is_reshapable(rs))
2607 			goto out;
2608 
2609 		return 0;
2610 	}
2611 
2612 	/* HM FIXME: get In_Sync raid_dev? */
2613 	rdev = &rs->dev[0].rdev;
2614 
2615 	if (rs->delta_disks < 0) {
2616 		/*
2617 		 * Removing disks (reshaping backwards):
2618 		 *
2619 		 * - before reshape: data is at offset 0 and free space
2620 		 *		     is at end of each component LV
2621 		 *
2622 		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2623 		 */
2624 		data_offset = 0;
2625 		new_data_offset = rs->data_offset;
2626 
2627 	} else if (rs->delta_disks > 0) {
2628 		/*
2629 		 * Adding disks (reshaping forwards):
2630 		 *
2631 		 * - before reshape: data is at offset rs->data_offset != 0 and
2632 		 *		     free space is at begin of each component LV
2633 		 *
2634 		 * - after reshape: data is at offset 0 on each component LV
2635 		 */
2636 		data_offset = rs->data_offset;
2637 		new_data_offset = 0;
2638 
2639 	} else {
2640 		/*
2641 		 * User space passes in 0 for data offset after having removed reshape space
2642 		 *
2643 		 * - or - (data offset != 0)
2644 		 *
2645 		 * Changing RAID layout or chunk size -> toggle offsets
2646 		 *
2647 		 * - before reshape: data is at offset rs->data_offset 0 and
2648 		 *		     free space is at end of each component LV
2649 		 *		     -or-
2650 		 *                   data is at offset rs->data_offset != 0 and
2651 		 *		     free space is at begin of each component LV
2652 		 *
2653 		 * - after reshape: data is at offset 0 if it was at offset != 0
2654 		 *                  or at offset != 0 if it was at offset 0
2655 		 *                  on each component LV
2656 		 *
2657 		 */
2658 		data_offset = rs->data_offset ? rdev->data_offset : 0;
2659 		new_data_offset = data_offset ? 0 : rs->data_offset;
2660 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2661 	}
2662 
2663 	/*
2664 	 * Make sure we got a minimum amount of free sectors per device
2665 	 */
2666 	if (rs->data_offset &&
2667 	    bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2668 		rs->ti->error = data_offset ? "No space for forward reshape" :
2669 					      "No space for backward reshape";
2670 		return -ENOSPC;
2671 	}
2672 out:
2673 	/*
2674 	 * Raise recovery_cp in case data_offset != 0 to
2675 	 * avoid false recovery positives in the constructor.
2676 	 */
2677 	if (rs->md.recovery_cp < rs->md.dev_sectors)
2678 		rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2679 
2680 	/* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2681 	rdev_for_each(rdev, &rs->md) {
2682 		if (!test_bit(Journal, &rdev->flags)) {
2683 			rdev->data_offset = data_offset;
2684 			rdev->new_data_offset = new_data_offset;
2685 		}
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2692 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2693 {
2694 	int i = 0;
2695 	struct md_rdev *rdev;
2696 
2697 	rdev_for_each(rdev, &rs->md) {
2698 		if (!test_bit(Journal, &rdev->flags)) {
2699 			rdev->raid_disk = i++;
2700 			rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2701 		}
2702 	}
2703 }
2704 
2705 /*
2706  * Setup @rs for takeover by a different raid level
2707  */
2708 static int rs_setup_takeover(struct raid_set *rs)
2709 {
2710 	struct mddev *mddev = &rs->md;
2711 	struct md_rdev *rdev;
2712 	unsigned int d = mddev->raid_disks = rs->raid_disks;
2713 	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2714 
2715 	if (rt_is_raid10(rs->raid_type)) {
2716 		if (rs_is_raid0(rs)) {
2717 			/* Userpace reordered disks -> adjust raid_disk indexes */
2718 			__reorder_raid_disk_indexes(rs);
2719 
2720 			/* raid0 -> raid10_far layout */
2721 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2722 								   rs->raid10_copies);
2723 		} else if (rs_is_raid1(rs))
2724 			/* raid1 -> raid10_near layout */
2725 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2726 								   rs->raid_disks);
2727 		else
2728 			return -EINVAL;
2729 
2730 	}
2731 
2732 	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2733 	mddev->recovery_cp = MaxSector;
2734 
2735 	while (d--) {
2736 		rdev = &rs->dev[d].rdev;
2737 
2738 		if (test_bit(d, (void *) rs->rebuild_disks)) {
2739 			clear_bit(In_sync, &rdev->flags);
2740 			clear_bit(Faulty, &rdev->flags);
2741 			mddev->recovery_cp = rdev->recovery_offset = 0;
2742 			/* Bitmap has to be created when we do an "up" takeover */
2743 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2744 		}
2745 
2746 		rdev->new_data_offset = new_data_offset;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 /* Prepare @rs for reshape */
2753 static int rs_prepare_reshape(struct raid_set *rs)
2754 {
2755 	bool reshape;
2756 	struct mddev *mddev = &rs->md;
2757 
2758 	if (rs_is_raid10(rs)) {
2759 		if (rs->raid_disks != mddev->raid_disks &&
2760 		    __is_raid10_near(mddev->layout) &&
2761 		    rs->raid10_copies &&
2762 		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2763 			/*
2764 			 * raid disk have to be multiple of data copies to allow this conversion,
2765 			 *
2766 			 * This is actually not a reshape it is a
2767 			 * rebuild of any additional mirrors per group
2768 			 */
2769 			if (rs->raid_disks % rs->raid10_copies) {
2770 				rs->ti->error = "Can't reshape raid10 mirror groups";
2771 				return -EINVAL;
2772 			}
2773 
2774 			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2775 			__reorder_raid_disk_indexes(rs);
2776 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2777 								   rs->raid10_copies);
2778 			mddev->new_layout = mddev->layout;
2779 			reshape = false;
2780 		} else
2781 			reshape = true;
2782 
2783 	} else if (rs_is_raid456(rs))
2784 		reshape = true;
2785 
2786 	else if (rs_is_raid1(rs)) {
2787 		if (rs->delta_disks) {
2788 			/* Process raid1 via delta_disks */
2789 			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2790 			reshape = true;
2791 		} else {
2792 			/* Process raid1 without delta_disks */
2793 			mddev->raid_disks = rs->raid_disks;
2794 			reshape = false;
2795 		}
2796 	} else {
2797 		rs->ti->error = "Called with bogus raid type";
2798 		return -EINVAL;
2799 	}
2800 
2801 	if (reshape) {
2802 		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2803 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2804 	} else if (mddev->raid_disks < rs->raid_disks)
2805 		/* Create new superblocks and bitmaps, if any new disks */
2806 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2807 
2808 	return 0;
2809 }
2810 
2811 /* Get reshape sectors from data_offsets or raid set */
2812 static sector_t _get_reshape_sectors(struct raid_set *rs)
2813 {
2814 	struct md_rdev *rdev;
2815 	sector_t reshape_sectors = 0;
2816 
2817 	rdev_for_each(rdev, &rs->md)
2818 		if (!test_bit(Journal, &rdev->flags)) {
2819 			reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2820 					rdev->data_offset - rdev->new_data_offset :
2821 					rdev->new_data_offset - rdev->data_offset;
2822 			break;
2823 		}
2824 
2825 	return max(reshape_sectors, (sector_t) rs->data_offset);
2826 }
2827 
2828 /*
2829  * Reshape:
2830  * - change raid layout
2831  * - change chunk size
2832  * - add disks
2833  * - remove disks
2834  */
2835 static int rs_setup_reshape(struct raid_set *rs)
2836 {
2837 	int r = 0;
2838 	unsigned int cur_raid_devs, d;
2839 	sector_t reshape_sectors = _get_reshape_sectors(rs);
2840 	struct mddev *mddev = &rs->md;
2841 	struct md_rdev *rdev;
2842 
2843 	mddev->delta_disks = rs->delta_disks;
2844 	cur_raid_devs = mddev->raid_disks;
2845 
2846 	/* Ignore impossible layout change whilst adding/removing disks */
2847 	if (mddev->delta_disks &&
2848 	    mddev->layout != mddev->new_layout) {
2849 		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2850 		mddev->new_layout = mddev->layout;
2851 	}
2852 
2853 	/*
2854 	 * Adjust array size:
2855 	 *
2856 	 * - in case of adding disk(s), array size has
2857 	 *   to grow after the disk adding reshape,
2858 	 *   which'll hapen in the event handler;
2859 	 *   reshape will happen forward, so space has to
2860 	 *   be available at the beginning of each disk
2861 	 *
2862 	 * - in case of removing disk(s), array size
2863 	 *   has to shrink before starting the reshape,
2864 	 *   which'll happen here;
2865 	 *   reshape will happen backward, so space has to
2866 	 *   be available at the end of each disk
2867 	 *
2868 	 * - data_offset and new_data_offset are
2869 	 *   adjusted for aforementioned out of place
2870 	 *   reshaping based on userspace passing in
2871 	 *   the "data_offset <sectors>" key/value
2872 	 *   pair via the constructor
2873 	 */
2874 
2875 	/* Add disk(s) */
2876 	if (rs->delta_disks > 0) {
2877 		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2878 		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2879 			rdev = &rs->dev[d].rdev;
2880 			clear_bit(In_sync, &rdev->flags);
2881 
2882 			/*
2883 			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2884 			 * by md, which'll store that erroneously in the superblock on reshape
2885 			 */
2886 			rdev->saved_raid_disk = -1;
2887 			rdev->raid_disk = d;
2888 
2889 			rdev->sectors = mddev->dev_sectors;
2890 			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2891 		}
2892 
2893 		mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2894 
2895 	/* Remove disk(s) */
2896 	} else if (rs->delta_disks < 0) {
2897 		r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2898 		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2899 
2900 	/* Change layout and/or chunk size */
2901 	} else {
2902 		/*
2903 		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2904 		 *
2905 		 * keeping number of disks and do layout change ->
2906 		 *
2907 		 * toggle reshape_backward depending on data_offset:
2908 		 *
2909 		 * - free space upfront -> reshape forward
2910 		 *
2911 		 * - free space at the end -> reshape backward
2912 		 *
2913 		 *
2914 		 * This utilizes free reshape space avoiding the need
2915 		 * for userspace to move (parts of) LV segments in
2916 		 * case of layout/chunksize change  (for disk
2917 		 * adding/removing reshape space has to be at
2918 		 * the proper address (see above with delta_disks):
2919 		 *
2920 		 * add disk(s)   -> begin
2921 		 * remove disk(s)-> end
2922 		 */
2923 		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2924 	}
2925 
2926 	/*
2927 	 * Adjust device size for forward reshape
2928 	 * because md_finish_reshape() reduces it.
2929 	 */
2930 	if (!mddev->reshape_backwards)
2931 		rdev_for_each(rdev, &rs->md)
2932 			if (!test_bit(Journal, &rdev->flags))
2933 				rdev->sectors += reshape_sectors;
2934 
2935 	return r;
2936 }
2937 
2938 /*
2939  * If the md resync thread has updated superblock with max reshape position
2940  * at the end of a reshape but not (yet) reset the layout configuration
2941  * changes -> reset the latter.
2942  */
2943 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2944 {
2945 	if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2946 		rs_set_cur(rs);
2947 		rs->md.delta_disks = 0;
2948 		rs->md.reshape_backwards = 0;
2949 	}
2950 }
2951 
2952 /*
2953  * Enable/disable discard support on RAID set depending on
2954  * RAID level and discard properties of underlying RAID members.
2955  */
2956 static void configure_discard_support(struct raid_set *rs)
2957 {
2958 	int i;
2959 	bool raid456;
2960 	struct dm_target *ti = rs->ti;
2961 
2962 	/*
2963 	 * XXX: RAID level 4,5,6 require zeroing for safety.
2964 	 */
2965 	raid456 = rs_is_raid456(rs);
2966 
2967 	for (i = 0; i < rs->raid_disks; i++) {
2968 		if (!rs->dev[i].rdev.bdev ||
2969 		    !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2970 			return;
2971 
2972 		if (raid456) {
2973 			if (!devices_handle_discard_safely) {
2974 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2975 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2976 				return;
2977 			}
2978 		}
2979 	}
2980 
2981 	ti->num_discard_bios = 1;
2982 }
2983 
2984 /*
2985  * Construct a RAID0/1/10/4/5/6 mapping:
2986  * Args:
2987  *	<raid_type> <#raid_params> <raid_params>{0,}	\
2988  *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
2989  *
2990  * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
2991  * details on possible <raid_params>.
2992  *
2993  * Userspace is free to initialize the metadata devices, hence the superblocks to
2994  * enforce recreation based on the passed in table parameters.
2995  *
2996  */
2997 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2998 {
2999 	int r;
3000 	bool resize = false;
3001 	struct raid_type *rt;
3002 	unsigned int num_raid_params, num_raid_devs;
3003 	sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3004 	struct raid_set *rs = NULL;
3005 	const char *arg;
3006 	struct rs_layout rs_layout;
3007 	struct dm_arg_set as = { argc, argv }, as_nrd;
3008 	struct dm_arg _args[] = {
3009 		{ 0, as.argc, "Cannot understand number of raid parameters" },
3010 		{ 1, 254, "Cannot understand number of raid devices parameters" }
3011 	};
3012 
3013 	arg = dm_shift_arg(&as);
3014 	if (!arg) {
3015 		ti->error = "No arguments";
3016 		return -EINVAL;
3017 	}
3018 
3019 	rt = get_raid_type(arg);
3020 	if (!rt) {
3021 		ti->error = "Unrecognised raid_type";
3022 		return -EINVAL;
3023 	}
3024 
3025 	/* Must have <#raid_params> */
3026 	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3027 		return -EINVAL;
3028 
3029 	/* number of raid device tupples <meta_dev data_dev> */
3030 	as_nrd = as;
3031 	dm_consume_args(&as_nrd, num_raid_params);
3032 	_args[1].max = (as_nrd.argc - 1) / 2;
3033 	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3034 		return -EINVAL;
3035 
3036 	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3037 		ti->error = "Invalid number of supplied raid devices";
3038 		return -EINVAL;
3039 	}
3040 
3041 	rs = raid_set_alloc(ti, rt, num_raid_devs);
3042 	if (IS_ERR(rs))
3043 		return PTR_ERR(rs);
3044 
3045 	r = parse_raid_params(rs, &as, num_raid_params);
3046 	if (r)
3047 		goto bad;
3048 
3049 	r = parse_dev_params(rs, &as);
3050 	if (r)
3051 		goto bad;
3052 
3053 	rs->md.sync_super = super_sync;
3054 
3055 	/*
3056 	 * Calculate ctr requested array and device sizes to allow
3057 	 * for superblock analysis needing device sizes defined.
3058 	 *
3059 	 * Any existing superblock will overwrite the array and device sizes
3060 	 */
3061 	r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3062 	if (r)
3063 		goto bad;
3064 
3065 	/* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3066 	rs->array_sectors = rs->md.array_sectors;
3067 	rs->dev_sectors = rs->md.dev_sectors;
3068 
3069 	/*
3070 	 * Backup any new raid set level, layout, ...
3071 	 * requested to be able to compare to superblock
3072 	 * members for conversion decisions.
3073 	 */
3074 	rs_config_backup(rs, &rs_layout);
3075 
3076 	r = analyse_superblocks(ti, rs);
3077 	if (r)
3078 		goto bad;
3079 
3080 	/* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3081 	sb_array_sectors = rs->md.array_sectors;
3082 	rdev_sectors = __rdev_sectors(rs);
3083 	if (!rdev_sectors) {
3084 		ti->error = "Invalid rdev size";
3085 		r = -EINVAL;
3086 		goto bad;
3087 	}
3088 
3089 
3090 	reshape_sectors = _get_reshape_sectors(rs);
3091 	if (rs->dev_sectors != rdev_sectors) {
3092 		resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3093 		if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3094 			set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3095 	}
3096 
3097 	INIT_WORK(&rs->md.event_work, do_table_event);
3098 	ti->private = rs;
3099 	ti->num_flush_bios = 1;
3100 	ti->needs_bio_set_dev = true;
3101 
3102 	/* Restore any requested new layout for conversion decision */
3103 	rs_config_restore(rs, &rs_layout);
3104 
3105 	/*
3106 	 * Now that we have any superblock metadata available,
3107 	 * check for new, recovering, reshaping, to be taken over,
3108 	 * to be reshaped or an existing, unchanged raid set to
3109 	 * run in sequence.
3110 	 */
3111 	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3112 		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3113 		if (rs_is_raid6(rs) &&
3114 		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3115 			ti->error = "'nosync' not allowed for new raid6 set";
3116 			r = -EINVAL;
3117 			goto bad;
3118 		}
3119 		rs_setup_recovery(rs, 0);
3120 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3121 		rs_set_new(rs);
3122 	} else if (rs_is_recovering(rs)) {
3123 		/* A recovering raid set may be resized */
3124 		goto size_check;
3125 	} else if (rs_is_reshaping(rs)) {
3126 		/* Have to reject size change request during reshape */
3127 		if (resize) {
3128 			ti->error = "Can't resize a reshaping raid set";
3129 			r = -EPERM;
3130 			goto bad;
3131 		}
3132 		/* skip setup rs */
3133 	} else if (rs_takeover_requested(rs)) {
3134 		if (rs_is_reshaping(rs)) {
3135 			ti->error = "Can't takeover a reshaping raid set";
3136 			r = -EPERM;
3137 			goto bad;
3138 		}
3139 
3140 		/* We can't takeover a journaled raid4/5/6 */
3141 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3142 			ti->error = "Can't takeover a journaled raid4/5/6 set";
3143 			r = -EPERM;
3144 			goto bad;
3145 		}
3146 
3147 		/*
3148 		 * If a takeover is needed, userspace sets any additional
3149 		 * devices to rebuild and we can check for a valid request here.
3150 		 *
3151 		 * If acceptible, set the level to the new requested
3152 		 * one, prohibit requesting recovery, allow the raid
3153 		 * set to run and store superblocks during resume.
3154 		 */
3155 		r = rs_check_takeover(rs);
3156 		if (r)
3157 			goto bad;
3158 
3159 		r = rs_setup_takeover(rs);
3160 		if (r)
3161 			goto bad;
3162 
3163 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3164 		/* Takeover ain't recovery, so disable recovery */
3165 		rs_setup_recovery(rs, MaxSector);
3166 		rs_set_new(rs);
3167 	} else if (rs_reshape_requested(rs)) {
3168 		/* Only request grow on raid set size extensions, not on reshapes. */
3169 		clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3170 
3171 		/*
3172 		 * No need to check for 'ongoing' takeover here, because takeover
3173 		 * is an instant operation as oposed to an ongoing reshape.
3174 		 */
3175 
3176 		/* We can't reshape a journaled raid4/5/6 */
3177 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3178 			ti->error = "Can't reshape a journaled raid4/5/6 set";
3179 			r = -EPERM;
3180 			goto bad;
3181 		}
3182 
3183 		/* Out-of-place space has to be available to allow for a reshape unless raid1! */
3184 		if (reshape_sectors || rs_is_raid1(rs)) {
3185 			/*
3186 			  * We can only prepare for a reshape here, because the
3187 			  * raid set needs to run to provide the repective reshape
3188 			  * check functions via its MD personality instance.
3189 			  *
3190 			  * So do the reshape check after md_run() succeeded.
3191 			  */
3192 			r = rs_prepare_reshape(rs);
3193 			if (r)
3194 				goto bad;
3195 
3196 			/* Reshaping ain't recovery, so disable recovery */
3197 			rs_setup_recovery(rs, MaxSector);
3198 		}
3199 		rs_set_cur(rs);
3200 	} else {
3201 size_check:
3202 		/* May not set recovery when a device rebuild is requested */
3203 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3204 			clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3205 			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3206 			rs_setup_recovery(rs, MaxSector);
3207 		} else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3208 			/*
3209 			 * Set raid set to current size, i.e. size as of
3210 			 * superblocks to grow to larger size in preresume.
3211 			 */
3212 			r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3213 			if (r)
3214 				goto bad;
3215 
3216 			rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3217 		} else {
3218 			/* This is no size change or it is shrinking, update size and record in superblocks */
3219 			r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3220 			if (r)
3221 				goto bad;
3222 
3223 			if (sb_array_sectors > rs->array_sectors)
3224 				set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3225 		}
3226 		rs_set_cur(rs);
3227 	}
3228 
3229 	/* If constructor requested it, change data and new_data offsets */
3230 	r = rs_adjust_data_offsets(rs);
3231 	if (r)
3232 		goto bad;
3233 
3234 	/* Catch any inconclusive reshape superblock content. */
3235 	rs_reset_inconclusive_reshape(rs);
3236 
3237 	/* Start raid set read-only and assumed clean to change in raid_resume() */
3238 	rs->md.ro = 1;
3239 	rs->md.in_sync = 1;
3240 
3241 	/* Keep array frozen until resume. */
3242 	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3243 
3244 	/* Has to be held on running the array */
3245 	mddev_lock_nointr(&rs->md);
3246 	r = md_run(&rs->md);
3247 	rs->md.in_sync = 0; /* Assume already marked dirty */
3248 	if (r) {
3249 		ti->error = "Failed to run raid array";
3250 		mddev_unlock(&rs->md);
3251 		goto bad;
3252 	}
3253 
3254 	r = md_start(&rs->md);
3255 	if (r) {
3256 		ti->error = "Failed to start raid array";
3257 		mddev_unlock(&rs->md);
3258 		goto bad_md_start;
3259 	}
3260 
3261 	/* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3262 	if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3263 		r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3264 		if (r) {
3265 			ti->error = "Failed to set raid4/5/6 journal mode";
3266 			mddev_unlock(&rs->md);
3267 			goto bad_journal_mode_set;
3268 		}
3269 	}
3270 
3271 	mddev_suspend(&rs->md);
3272 	set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3273 
3274 	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3275 	if (rs_is_raid456(rs)) {
3276 		r = rs_set_raid456_stripe_cache(rs);
3277 		if (r)
3278 			goto bad_stripe_cache;
3279 	}
3280 
3281 	/* Now do an early reshape check */
3282 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3283 		r = rs_check_reshape(rs);
3284 		if (r)
3285 			goto bad_check_reshape;
3286 
3287 		/* Restore new, ctr requested layout to perform check */
3288 		rs_config_restore(rs, &rs_layout);
3289 
3290 		if (rs->md.pers->start_reshape) {
3291 			r = rs->md.pers->check_reshape(&rs->md);
3292 			if (r) {
3293 				ti->error = "Reshape check failed";
3294 				goto bad_check_reshape;
3295 			}
3296 		}
3297 	}
3298 
3299 	/* Disable/enable discard support on raid set. */
3300 	configure_discard_support(rs);
3301 
3302 	mddev_unlock(&rs->md);
3303 	return 0;
3304 
3305 bad_md_start:
3306 bad_journal_mode_set:
3307 bad_stripe_cache:
3308 bad_check_reshape:
3309 	md_stop(&rs->md);
3310 bad:
3311 	raid_set_free(rs);
3312 
3313 	return r;
3314 }
3315 
3316 static void raid_dtr(struct dm_target *ti)
3317 {
3318 	struct raid_set *rs = ti->private;
3319 
3320 	md_stop(&rs->md);
3321 	raid_set_free(rs);
3322 }
3323 
3324 static int raid_map(struct dm_target *ti, struct bio *bio)
3325 {
3326 	struct raid_set *rs = ti->private;
3327 	struct mddev *mddev = &rs->md;
3328 
3329 	/*
3330 	 * If we're reshaping to add disk(s)), ti->len and
3331 	 * mddev->array_sectors will differ during the process
3332 	 * (ti->len > mddev->array_sectors), so we have to requeue
3333 	 * bios with addresses > mddev->array_sectors here or
3334 	 * there will occur accesses past EOD of the component
3335 	 * data images thus erroring the raid set.
3336 	 */
3337 	if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3338 		return DM_MAPIO_REQUEUE;
3339 
3340 	md_handle_request(mddev, bio);
3341 
3342 	return DM_MAPIO_SUBMITTED;
3343 }
3344 
3345 /* Return sync state string for @state */
3346 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3347 static const char *sync_str(enum sync_state state)
3348 {
3349 	/* Has to be in above sync_state order! */
3350 	static const char *sync_strs[] = {
3351 		"frozen",
3352 		"reshape",
3353 		"resync",
3354 		"check",
3355 		"repair",
3356 		"recover",
3357 		"idle"
3358 	};
3359 
3360 	return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3361 };
3362 
3363 /* Return enum sync_state for @mddev derived from @recovery flags */
3364 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3365 {
3366 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3367 		return st_frozen;
3368 
3369 	/* The MD sync thread can be done with io or be interrupted but still be running */
3370 	if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3371 	    (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3372 	     (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3373 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3374 			return st_reshape;
3375 
3376 		if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3377 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3378 				return st_resync;
3379 			if (test_bit(MD_RECOVERY_CHECK, &recovery))
3380 				return st_check;
3381 			return st_repair;
3382 		}
3383 
3384 		if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3385 			return st_recover;
3386 
3387 		if (mddev->reshape_position != MaxSector)
3388 			return st_reshape;
3389 	}
3390 
3391 	return st_idle;
3392 }
3393 
3394 /*
3395  * Return status string for @rdev
3396  *
3397  * Status characters:
3398  *
3399  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3400  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3401  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3402  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3403  */
3404 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3405 {
3406 	if (!rdev->bdev)
3407 		return "-";
3408 	else if (test_bit(Faulty, &rdev->flags))
3409 		return "D";
3410 	else if (test_bit(Journal, &rdev->flags))
3411 		return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3412 	else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3413 		 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3414 		  !test_bit(In_sync, &rdev->flags)))
3415 		return "a";
3416 	else
3417 		return "A";
3418 }
3419 
3420 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3421 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3422 				enum sync_state state, sector_t resync_max_sectors)
3423 {
3424 	sector_t r;
3425 	struct mddev *mddev = &rs->md;
3426 
3427 	clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3428 	clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3429 
3430 	if (rs_is_raid0(rs)) {
3431 		r = resync_max_sectors;
3432 		set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3433 
3434 	} else {
3435 		if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3436 			r = mddev->recovery_cp;
3437 		else
3438 			r = mddev->curr_resync_completed;
3439 
3440 		if (state == st_idle && r >= resync_max_sectors) {
3441 			/*
3442 			 * Sync complete.
3443 			 */
3444 			/* In case we have finished recovering, the array is in sync. */
3445 			if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3446 				set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3447 
3448 		} else if (state == st_recover)
3449 			/*
3450 			 * In case we are recovering, the array is not in sync
3451 			 * and health chars should show the recovering legs.
3452 			 *
3453 			 * Already retrieved recovery offset from curr_resync_completed above.
3454 			 */
3455 			;
3456 
3457 		else if (state == st_resync || state == st_reshape)
3458 			/*
3459 			 * If "resync/reshape" is occurring, the raid set
3460 			 * is or may be out of sync hence the health
3461 			 * characters shall be 'a'.
3462 			 */
3463 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3464 
3465 		else if (state == st_check || state == st_repair)
3466 			/*
3467 			 * If "check" or "repair" is occurring, the raid set has
3468 			 * undergone an initial sync and the health characters
3469 			 * should not be 'a' anymore.
3470 			 */
3471 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3472 
3473 		else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3474 			/*
3475 			 * We are idle and recovery is needed, prevent 'A' chars race
3476 			 * caused by components still set to in-sync by constructor.
3477 			 */
3478 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3479 
3480 		else {
3481 			/*
3482 			 * We are idle and the raid set may be doing an initial
3483 			 * sync, or it may be rebuilding individual components.
3484 			 * If all the devices are In_sync, then it is the raid set
3485 			 * that is being initialized.
3486 			 */
3487 			struct md_rdev *rdev;
3488 
3489 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3490 			rdev_for_each(rdev, mddev)
3491 				if (!test_bit(Journal, &rdev->flags) &&
3492 				    !test_bit(In_sync, &rdev->flags)) {
3493 					clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3494 					break;
3495 				}
3496 		}
3497 	}
3498 
3499 	return min(r, resync_max_sectors);
3500 }
3501 
3502 /* Helper to return @dev name or "-" if !@dev */
3503 static const char *__get_dev_name(struct dm_dev *dev)
3504 {
3505 	return dev ? dev->name : "-";
3506 }
3507 
3508 static void raid_status(struct dm_target *ti, status_type_t type,
3509 			unsigned int status_flags, char *result, unsigned int maxlen)
3510 {
3511 	struct raid_set *rs = ti->private;
3512 	struct mddev *mddev = &rs->md;
3513 	struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3514 	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3515 	unsigned long recovery;
3516 	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3517 	unsigned int sz = 0;
3518 	unsigned int rebuild_writemostly_count = 0;
3519 	sector_t progress, resync_max_sectors, resync_mismatches;
3520 	enum sync_state state;
3521 	struct raid_type *rt;
3522 
3523 	switch (type) {
3524 	case STATUSTYPE_INFO:
3525 		/* *Should* always succeed */
3526 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3527 		if (!rt)
3528 			return;
3529 
3530 		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3531 
3532 		/* Access most recent mddev properties for status output */
3533 		smp_rmb();
3534 		/* Get sensible max sectors even if raid set not yet started */
3535 		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3536 				      mddev->resync_max_sectors : mddev->dev_sectors;
3537 		recovery = rs->md.recovery;
3538 		state = decipher_sync_action(mddev, recovery);
3539 		progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3540 		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3541 				    atomic64_read(&mddev->resync_mismatches) : 0;
3542 
3543 		/* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3544 		for (i = 0; i < rs->raid_disks; i++)
3545 			DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3546 
3547 		/*
3548 		 * In-sync/Reshape ratio:
3549 		 *  The in-sync ratio shows the progress of:
3550 		 *   - Initializing the raid set
3551 		 *   - Rebuilding a subset of devices of the raid set
3552 		 *  The user can distinguish between the two by referring
3553 		 *  to the status characters.
3554 		 *
3555 		 *  The reshape ratio shows the progress of
3556 		 *  changing the raid layout or the number of
3557 		 *  disks of a raid set
3558 		 */
3559 		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3560 				     (unsigned long long) resync_max_sectors);
3561 
3562 		/*
3563 		 * v1.5.0+:
3564 		 *
3565 		 * Sync action:
3566 		 *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3567 		 *   information on each of these states.
3568 		 */
3569 		DMEMIT(" %s", sync_str(state));
3570 
3571 		/*
3572 		 * v1.5.0+:
3573 		 *
3574 		 * resync_mismatches/mismatch_cnt
3575 		 *   This field shows the number of discrepancies found when
3576 		 *   performing a "check" of the raid set.
3577 		 */
3578 		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3579 
3580 		/*
3581 		 * v1.9.0+:
3582 		 *
3583 		 * data_offset (needed for out of space reshaping)
3584 		 *   This field shows the data offset into the data
3585 		 *   image LV where the first stripes data starts.
3586 		 *
3587 		 * We keep data_offset equal on all raid disks of the set,
3588 		 * so retrieving it from the first raid disk is sufficient.
3589 		 */
3590 		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3591 
3592 		/*
3593 		 * v1.10.0+:
3594 		 */
3595 		DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3596 			      __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3597 		break;
3598 
3599 	case STATUSTYPE_TABLE:
3600 		/* Report the table line string you would use to construct this raid set */
3601 
3602 		/*
3603 		 * Count any rebuild or writemostly argument pairs and subtract the
3604 		 * hweight count being added below of any rebuild and writemostly ctr flags.
3605 		 */
3606 		for (i = 0; i < rs->raid_disks; i++) {
3607 			rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3608 						     (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3609 		}
3610 		rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3611 					     (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3612 		/* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3613 		raid_param_cnt += rebuild_writemostly_count +
3614 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3615 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3616 		/* Emit table line */
3617 		/* This has to be in the documented order for userspace! */
3618 		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3619 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3620 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3621 		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3622 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3623 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3624 			for (i = 0; i < rs->raid_disks; i++)
3625 				if (test_bit(i, (void *) rs->rebuild_disks))
3626 					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3627 		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3628 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3629 					  mddev->bitmap_info.daemon_sleep);
3630 		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3631 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3632 					 mddev->sync_speed_min);
3633 		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3634 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3635 					 mddev->sync_speed_max);
3636 		if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3637 			for (i = 0; i < rs->raid_disks; i++)
3638 				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3639 					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3640 					       rs->dev[i].rdev.raid_disk);
3641 		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3642 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3643 					  mddev->bitmap_info.max_write_behind);
3644 		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3645 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3646 					 max_nr_stripes);
3647 		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3648 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3649 					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3650 		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3651 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3652 					 raid10_md_layout_to_copies(mddev->layout));
3653 		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3654 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3655 					 raid10_md_layout_to_format(mddev->layout));
3656 		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3657 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3658 					 max(rs->delta_disks, mddev->delta_disks));
3659 		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3660 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3661 					   (unsigned long long) rs->data_offset);
3662 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3663 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3664 					__get_dev_name(rs->journal_dev.dev));
3665 		if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3666 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3667 					 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3668 		DMEMIT(" %d", rs->raid_disks);
3669 		for (i = 0; i < rs->raid_disks; i++)
3670 			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3671 					 __get_dev_name(rs->dev[i].data_dev));
3672 		break;
3673 
3674 	case STATUSTYPE_IMA:
3675 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3676 		if (!rt)
3677 			return;
3678 
3679 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3680 		DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3681 
3682 		/* Access most recent mddev properties for status output */
3683 		smp_rmb();
3684 		recovery = rs->md.recovery;
3685 		state = decipher_sync_action(mddev, recovery);
3686 		DMEMIT(",raid_state=%s", sync_str(state));
3687 
3688 		for (i = 0; i < rs->raid_disks; i++) {
3689 			DMEMIT(",raid_device_%d_status=", i);
3690 			DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3691 		}
3692 
3693 		if (rt_is_raid456(rt)) {
3694 			DMEMIT(",journal_dev_mode=");
3695 			switch (rs->journal_dev.mode) {
3696 			case R5C_JOURNAL_MODE_WRITE_THROUGH:
3697 				DMEMIT("%s",
3698 				       _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3699 				break;
3700 			case R5C_JOURNAL_MODE_WRITE_BACK:
3701 				DMEMIT("%s",
3702 				       _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3703 				break;
3704 			default:
3705 				DMEMIT("invalid");
3706 				break;
3707 			}
3708 		}
3709 		DMEMIT(";");
3710 		break;
3711 	}
3712 }
3713 
3714 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3715 			char *result, unsigned maxlen)
3716 {
3717 	struct raid_set *rs = ti->private;
3718 	struct mddev *mddev = &rs->md;
3719 
3720 	if (!mddev->pers || !mddev->pers->sync_request)
3721 		return -EINVAL;
3722 
3723 	if (!strcasecmp(argv[0], "frozen"))
3724 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3725 	else
3726 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3727 
3728 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3729 		if (mddev->sync_thread) {
3730 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3731 			md_unregister_thread(&mddev->sync_thread);
3732 			md_reap_sync_thread(mddev);
3733 		}
3734 	} else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3735 		return -EBUSY;
3736 	else if (!strcasecmp(argv[0], "resync"))
3737 		; /* MD_RECOVERY_NEEDED set below */
3738 	else if (!strcasecmp(argv[0], "recover"))
3739 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3740 	else {
3741 		if (!strcasecmp(argv[0], "check")) {
3742 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3743 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3744 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3745 		} else if (!strcasecmp(argv[0], "repair")) {
3746 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3747 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3748 		} else
3749 			return -EINVAL;
3750 	}
3751 	if (mddev->ro == 2) {
3752 		/* A write to sync_action is enough to justify
3753 		 * canceling read-auto mode
3754 		 */
3755 		mddev->ro = 0;
3756 		if (!mddev->suspended && mddev->sync_thread)
3757 			md_wakeup_thread(mddev->sync_thread);
3758 	}
3759 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3760 	if (!mddev->suspended && mddev->thread)
3761 		md_wakeup_thread(mddev->thread);
3762 
3763 	return 0;
3764 }
3765 
3766 static int raid_iterate_devices(struct dm_target *ti,
3767 				iterate_devices_callout_fn fn, void *data)
3768 {
3769 	struct raid_set *rs = ti->private;
3770 	unsigned int i;
3771 	int r = 0;
3772 
3773 	for (i = 0; !r && i < rs->raid_disks; i++) {
3774 		if (rs->dev[i].data_dev) {
3775 			r = fn(ti, rs->dev[i].data_dev,
3776 			       0, /* No offset on data devs */
3777 			       rs->md.dev_sectors, data);
3778 		}
3779 	}
3780 
3781 	return r;
3782 }
3783 
3784 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3785 {
3786 	struct raid_set *rs = ti->private;
3787 	unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3788 
3789 	blk_limits_io_min(limits, chunk_size_bytes);
3790 	blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3791 }
3792 
3793 static void raid_postsuspend(struct dm_target *ti)
3794 {
3795 	struct raid_set *rs = ti->private;
3796 
3797 	if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3798 		/* Writes have to be stopped before suspending to avoid deadlocks. */
3799 		if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3800 			md_stop_writes(&rs->md);
3801 
3802 		mddev_lock_nointr(&rs->md);
3803 		mddev_suspend(&rs->md);
3804 		mddev_unlock(&rs->md);
3805 	}
3806 }
3807 
3808 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3809 {
3810 	int i;
3811 	uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3812 	unsigned long flags;
3813 	bool cleared = false;
3814 	struct dm_raid_superblock *sb;
3815 	struct mddev *mddev = &rs->md;
3816 	struct md_rdev *r;
3817 
3818 	/* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3819 	if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3820 		return;
3821 
3822 	memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3823 
3824 	for (i = 0; i < rs->raid_disks; i++) {
3825 		r = &rs->dev[i].rdev;
3826 		/* HM FIXME: enhance journal device recovery processing */
3827 		if (test_bit(Journal, &r->flags))
3828 			continue;
3829 
3830 		if (test_bit(Faulty, &r->flags) &&
3831 		    r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3832 			DMINFO("Faulty %s device #%d has readable super block."
3833 			       "  Attempting to revive it.",
3834 			       rs->raid_type->name, i);
3835 
3836 			/*
3837 			 * Faulty bit may be set, but sometimes the array can
3838 			 * be suspended before the personalities can respond
3839 			 * by removing the device from the array (i.e. calling
3840 			 * 'hot_remove_disk').	If they haven't yet removed
3841 			 * the failed device, its 'raid_disk' number will be
3842 			 * '>= 0' - meaning we must call this function
3843 			 * ourselves.
3844 			 */
3845 			flags = r->flags;
3846 			clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3847 			if (r->raid_disk >= 0) {
3848 				if (mddev->pers->hot_remove_disk(mddev, r)) {
3849 					/* Failed to revive this device, try next */
3850 					r->flags = flags;
3851 					continue;
3852 				}
3853 			} else
3854 				r->raid_disk = r->saved_raid_disk = i;
3855 
3856 			clear_bit(Faulty, &r->flags);
3857 			clear_bit(WriteErrorSeen, &r->flags);
3858 
3859 			if (mddev->pers->hot_add_disk(mddev, r)) {
3860 				/* Failed to revive this device, try next */
3861 				r->raid_disk = r->saved_raid_disk = -1;
3862 				r->flags = flags;
3863 			} else {
3864 				clear_bit(In_sync, &r->flags);
3865 				r->recovery_offset = 0;
3866 				set_bit(i, (void *) cleared_failed_devices);
3867 				cleared = true;
3868 			}
3869 		}
3870 	}
3871 
3872 	/* If any failed devices could be cleared, update all sbs failed_devices bits */
3873 	if (cleared) {
3874 		uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3875 
3876 		rdev_for_each(r, &rs->md) {
3877 			if (test_bit(Journal, &r->flags))
3878 				continue;
3879 
3880 			sb = page_address(r->sb_page);
3881 			sb_retrieve_failed_devices(sb, failed_devices);
3882 
3883 			for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3884 				failed_devices[i] &= ~cleared_failed_devices[i];
3885 
3886 			sb_update_failed_devices(sb, failed_devices);
3887 		}
3888 	}
3889 }
3890 
3891 static int __load_dirty_region_bitmap(struct raid_set *rs)
3892 {
3893 	int r = 0;
3894 
3895 	/* Try loading the bitmap unless "raid0", which does not have one */
3896 	if (!rs_is_raid0(rs) &&
3897 	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3898 		r = md_bitmap_load(&rs->md);
3899 		if (r)
3900 			DMERR("Failed to load bitmap");
3901 	}
3902 
3903 	return r;
3904 }
3905 
3906 /* Enforce updating all superblocks */
3907 static void rs_update_sbs(struct raid_set *rs)
3908 {
3909 	struct mddev *mddev = &rs->md;
3910 	int ro = mddev->ro;
3911 
3912 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3913 	mddev->ro = 0;
3914 	md_update_sb(mddev, 1);
3915 	mddev->ro = ro;
3916 }
3917 
3918 /*
3919  * Reshape changes raid algorithm of @rs to new one within personality
3920  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3921  * disks from a raid set thus growing/shrinking it or resizes the set
3922  *
3923  * Call mddev_lock_nointr() before!
3924  */
3925 static int rs_start_reshape(struct raid_set *rs)
3926 {
3927 	int r;
3928 	struct mddev *mddev = &rs->md;
3929 	struct md_personality *pers = mddev->pers;
3930 
3931 	/* Don't allow the sync thread to work until the table gets reloaded. */
3932 	set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3933 
3934 	r = rs_setup_reshape(rs);
3935 	if (r)
3936 		return r;
3937 
3938 	/*
3939 	 * Check any reshape constraints enforced by the personalility
3940 	 *
3941 	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3942 	 */
3943 	r = pers->check_reshape(mddev);
3944 	if (r) {
3945 		rs->ti->error = "pers->check_reshape() failed";
3946 		return r;
3947 	}
3948 
3949 	/*
3950 	 * Personality may not provide start reshape method in which
3951 	 * case check_reshape above has already covered everything
3952 	 */
3953 	if (pers->start_reshape) {
3954 		r = pers->start_reshape(mddev);
3955 		if (r) {
3956 			rs->ti->error = "pers->start_reshape() failed";
3957 			return r;
3958 		}
3959 	}
3960 
3961 	/*
3962 	 * Now reshape got set up, update superblocks to
3963 	 * reflect the fact so that a table reload will
3964 	 * access proper superblock content in the ctr.
3965 	 */
3966 	rs_update_sbs(rs);
3967 
3968 	return 0;
3969 }
3970 
3971 static int raid_preresume(struct dm_target *ti)
3972 {
3973 	int r;
3974 	struct raid_set *rs = ti->private;
3975 	struct mddev *mddev = &rs->md;
3976 
3977 	/* This is a resume after a suspend of the set -> it's already started. */
3978 	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3979 		return 0;
3980 
3981 	/*
3982 	 * The superblocks need to be updated on disk if the
3983 	 * array is new or new devices got added (thus zeroed
3984 	 * out by userspace) or __load_dirty_region_bitmap
3985 	 * will overwrite them in core with old data or fail.
3986 	 */
3987 	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3988 		rs_update_sbs(rs);
3989 
3990 	/* Load the bitmap from disk unless raid0 */
3991 	r = __load_dirty_region_bitmap(rs);
3992 	if (r)
3993 		return r;
3994 
3995 	/* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3996 	if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3997 		mddev->array_sectors = rs->array_sectors;
3998 		mddev->dev_sectors = rs->dev_sectors;
3999 		rs_set_rdev_sectors(rs);
4000 		rs_set_capacity(rs);
4001 	}
4002 
4003 	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
4004         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
4005 	    (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4006 	     (rs->requested_bitmap_chunk_sectors &&
4007 	       mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4008 		int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4009 
4010 		r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4011 		if (r)
4012 			DMERR("Failed to resize bitmap");
4013 	}
4014 
4015 	/* Check for any resize/reshape on @rs and adjust/initiate */
4016 	/* Be prepared for mddev_resume() in raid_resume() */
4017 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4018 	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4019 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4020 		mddev->resync_min = mddev->recovery_cp;
4021 		if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4022 			mddev->resync_max_sectors = mddev->dev_sectors;
4023 	}
4024 
4025 	/* Check for any reshape request unless new raid set */
4026 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4027 		/* Initiate a reshape. */
4028 		rs_set_rdev_sectors(rs);
4029 		mddev_lock_nointr(mddev);
4030 		r = rs_start_reshape(rs);
4031 		mddev_unlock(mddev);
4032 		if (r)
4033 			DMWARN("Failed to check/start reshape, continuing without change");
4034 		r = 0;
4035 	}
4036 
4037 	return r;
4038 }
4039 
4040 static void raid_resume(struct dm_target *ti)
4041 {
4042 	struct raid_set *rs = ti->private;
4043 	struct mddev *mddev = &rs->md;
4044 
4045 	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4046 		/*
4047 		 * A secondary resume while the device is active.
4048 		 * Take this opportunity to check whether any failed
4049 		 * devices are reachable again.
4050 		 */
4051 		attempt_restore_of_faulty_devices(rs);
4052 	}
4053 
4054 	if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4055 		/* Only reduce raid set size before running a disk removing reshape. */
4056 		if (mddev->delta_disks < 0)
4057 			rs_set_capacity(rs);
4058 
4059 		mddev_lock_nointr(mddev);
4060 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4061 		mddev->ro = 0;
4062 		mddev->in_sync = 0;
4063 		mddev_resume(mddev);
4064 		mddev_unlock(mddev);
4065 	}
4066 }
4067 
4068 static struct target_type raid_target = {
4069 	.name = "raid",
4070 	.version = {1, 15, 1},
4071 	.module = THIS_MODULE,
4072 	.ctr = raid_ctr,
4073 	.dtr = raid_dtr,
4074 	.map = raid_map,
4075 	.status = raid_status,
4076 	.message = raid_message,
4077 	.iterate_devices = raid_iterate_devices,
4078 	.io_hints = raid_io_hints,
4079 	.postsuspend = raid_postsuspend,
4080 	.preresume = raid_preresume,
4081 	.resume = raid_resume,
4082 };
4083 
4084 static int __init dm_raid_init(void)
4085 {
4086 	DMINFO("Loading target version %u.%u.%u",
4087 	       raid_target.version[0],
4088 	       raid_target.version[1],
4089 	       raid_target.version[2]);
4090 	return dm_register_target(&raid_target);
4091 }
4092 
4093 static void __exit dm_raid_exit(void)
4094 {
4095 	dm_unregister_target(&raid_target);
4096 }
4097 
4098 module_init(dm_raid_init);
4099 module_exit(dm_raid_exit);
4100 
4101 module_param(devices_handle_discard_safely, bool, 0644);
4102 MODULE_PARM_DESC(devices_handle_discard_safely,
4103 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4104 
4105 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4106 MODULE_ALIAS("dm-raid0");
4107 MODULE_ALIAS("dm-raid1");
4108 MODULE_ALIAS("dm-raid10");
4109 MODULE_ALIAS("dm-raid4");
4110 MODULE_ALIAS("dm-raid5");
4111 MODULE_ALIAS("dm-raid6");
4112 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4113 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4114 MODULE_LICENSE("GPL");
4115