xref: /openbmc/linux/drivers/md/dm-raid.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "md-bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
21 
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26 
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define	MIN_RAID456_JOURNAL_SPACE (4*2048)
31 
32 /* Global list of all raid sets */
33 static LIST_HEAD(raid_sets);
34 
35 static bool devices_handle_discard_safely = false;
36 
37 /*
38  * The following flags are used by dm-raid.c to set up the array state.
39  * They must be cleared before md_run is called.
40  */
41 #define FirstUse 10		/* rdev flag */
42 
43 struct raid_dev {
44 	/*
45 	 * Two DM devices, one to hold metadata and one to hold the
46 	 * actual data/parity.	The reason for this is to not confuse
47 	 * ti->len and give more flexibility in altering size and
48 	 * characteristics.
49 	 *
50 	 * While it is possible for this device to be associated
51 	 * with a different physical device than the data_dev, it
52 	 * is intended for it to be the same.
53 	 *    |--------- Physical Device ---------|
54 	 *    |- meta_dev -|------ data_dev ------|
55 	 */
56 	struct dm_dev *meta_dev;
57 	struct dm_dev *data_dev;
58 	struct md_rdev rdev;
59 };
60 
61 /*
62  * Bits for establishing rs->ctr_flags
63  *
64  * 1 = no flag value
65  * 2 = flag with value
66  */
67 #define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
68 #define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
69 #define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
71 #define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
72 #define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
73 #define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
74 #define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
75 #define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
76 #define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
77 #define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
78 #define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
79 /* New for v1.9.0 */
80 #define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
81 #define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
82 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
83 
84 /* New for v1.10.0 */
85 #define __CTR_FLAG_JOURNAL_DEV		15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
86 
87 /* New for v1.11.1 */
88 #define __CTR_FLAG_JOURNAL_MODE		16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
89 
90 /*
91  * Flags for rs->ctr_flags field.
92  */
93 #define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
94 #define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
95 #define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
96 #define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
97 #define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
98 #define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
99 #define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
100 #define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
101 #define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
102 #define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
103 #define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
104 #define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
105 #define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
106 #define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
107 #define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
108 #define CTR_FLAG_JOURNAL_DEV		(1 << __CTR_FLAG_JOURNAL_DEV)
109 #define CTR_FLAG_JOURNAL_MODE		(1 << __CTR_FLAG_JOURNAL_MODE)
110 
111 /*
112  * Definitions of various constructor flags to
113  * be used in checks of valid / invalid flags
114  * per raid level.
115  */
116 /* Define all any sync flags */
117 #define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
118 
119 /* Define flags for options without argument (e.g. 'nosync') */
120 #define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
121 					 CTR_FLAG_RAID10_USE_NEAR_SETS)
122 
123 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
124 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
125 				  CTR_FLAG_WRITE_MOSTLY | \
126 				  CTR_FLAG_DAEMON_SLEEP | \
127 				  CTR_FLAG_MIN_RECOVERY_RATE | \
128 				  CTR_FLAG_MAX_RECOVERY_RATE | \
129 				  CTR_FLAG_MAX_WRITE_BEHIND | \
130 				  CTR_FLAG_STRIPE_CACHE | \
131 				  CTR_FLAG_REGION_SIZE | \
132 				  CTR_FLAG_RAID10_COPIES | \
133 				  CTR_FLAG_RAID10_FORMAT | \
134 				  CTR_FLAG_DELTA_DISKS | \
135 				  CTR_FLAG_DATA_OFFSET)
136 
137 /* Valid options definitions per raid level... */
138 
139 /* "raid0" does only accept data offset */
140 #define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
141 
142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143 #define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
144 				 CTR_FLAG_REBUILD | \
145 				 CTR_FLAG_WRITE_MOSTLY | \
146 				 CTR_FLAG_DAEMON_SLEEP | \
147 				 CTR_FLAG_MIN_RECOVERY_RATE | \
148 				 CTR_FLAG_MAX_RECOVERY_RATE | \
149 				 CTR_FLAG_MAX_WRITE_BEHIND | \
150 				 CTR_FLAG_REGION_SIZE | \
151 				 CTR_FLAG_DELTA_DISKS | \
152 				 CTR_FLAG_DATA_OFFSET)
153 
154 /* "raid10" does not accept any raid1 or stripe cache options */
155 #define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
156 				 CTR_FLAG_REBUILD | \
157 				 CTR_FLAG_DAEMON_SLEEP | \
158 				 CTR_FLAG_MIN_RECOVERY_RATE | \
159 				 CTR_FLAG_MAX_RECOVERY_RATE | \
160 				 CTR_FLAG_REGION_SIZE | \
161 				 CTR_FLAG_RAID10_COPIES | \
162 				 CTR_FLAG_RAID10_FORMAT | \
163 				 CTR_FLAG_DELTA_DISKS | \
164 				 CTR_FLAG_DATA_OFFSET | \
165 				 CTR_FLAG_RAID10_USE_NEAR_SETS)
166 
167 /*
168  * "raid4/5/6" do not accept any raid1 or raid10 specific options
169  *
170  * "raid6" does not accept "nosync", because it is not guaranteed
171  * that both parity and q-syndrome are being written properly with
172  * any writes
173  */
174 #define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
175 				 CTR_FLAG_REBUILD | \
176 				 CTR_FLAG_DAEMON_SLEEP | \
177 				 CTR_FLAG_MIN_RECOVERY_RATE | \
178 				 CTR_FLAG_MAX_RECOVERY_RATE | \
179 				 CTR_FLAG_STRIPE_CACHE | \
180 				 CTR_FLAG_REGION_SIZE | \
181 				 CTR_FLAG_DELTA_DISKS | \
182 				 CTR_FLAG_DATA_OFFSET | \
183 				 CTR_FLAG_JOURNAL_DEV | \
184 				 CTR_FLAG_JOURNAL_MODE)
185 
186 #define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
187 				 CTR_FLAG_REBUILD | \
188 				 CTR_FLAG_DAEMON_SLEEP | \
189 				 CTR_FLAG_MIN_RECOVERY_RATE | \
190 				 CTR_FLAG_MAX_RECOVERY_RATE | \
191 				 CTR_FLAG_STRIPE_CACHE | \
192 				 CTR_FLAG_REGION_SIZE | \
193 				 CTR_FLAG_DELTA_DISKS | \
194 				 CTR_FLAG_DATA_OFFSET | \
195 				 CTR_FLAG_JOURNAL_DEV | \
196 				 CTR_FLAG_JOURNAL_MODE)
197 /* ...valid options definitions per raid level */
198 
199 /*
200  * Flags for rs->runtime_flags field
201  * (RT_FLAG prefix meaning "runtime flag")
202  *
203  * These are all internal and used to define runtime state,
204  * e.g. to prevent another resume from preresume processing
205  * the raid set all over again.
206  */
207 #define RT_FLAG_RS_PRERESUMED		0
208 #define RT_FLAG_RS_RESUMED		1
209 #define RT_FLAG_RS_BITMAP_LOADED	2
210 #define RT_FLAG_UPDATE_SBS		3
211 #define RT_FLAG_RESHAPE_RS		4
212 #define RT_FLAG_RS_SUSPENDED		5
213 #define RT_FLAG_RS_IN_SYNC		6
214 #define RT_FLAG_RS_RESYNCING		7
215 
216 /* Array elements of 64 bit needed for rebuild/failed disk bits */
217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
218 
219 /*
220  * raid set level, layout and chunk sectors backup/restore
221  */
222 struct rs_layout {
223 	int new_level;
224 	int new_layout;
225 	int new_chunk_sectors;
226 };
227 
228 struct raid_set {
229 	struct dm_target *ti;
230 	struct list_head list;
231 
232 	uint32_t stripe_cache_entries;
233 	unsigned long ctr_flags;
234 	unsigned long runtime_flags;
235 
236 	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
237 
238 	int raid_disks;
239 	int delta_disks;
240 	int data_offset;
241 	int raid10_copies;
242 	int requested_bitmap_chunk_sectors;
243 
244 	struct mddev md;
245 	struct raid_type *raid_type;
246 	struct dm_target_callbacks callbacks;
247 
248 	/* Optional raid4/5/6 journal device */
249 	struct journal_dev {
250 		struct dm_dev *dev;
251 		struct md_rdev rdev;
252 		int mode;
253 	} journal_dev;
254 
255 	struct raid_dev dev[0];
256 };
257 
258 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
259 {
260 	struct mddev *mddev = &rs->md;
261 
262 	l->new_level = mddev->new_level;
263 	l->new_layout = mddev->new_layout;
264 	l->new_chunk_sectors = mddev->new_chunk_sectors;
265 }
266 
267 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
268 {
269 	struct mddev *mddev = &rs->md;
270 
271 	mddev->new_level = l->new_level;
272 	mddev->new_layout = l->new_layout;
273 	mddev->new_chunk_sectors = l->new_chunk_sectors;
274 }
275 
276 /* Find any raid_set in active slot for @rs on global list */
277 static struct raid_set *rs_find_active(struct raid_set *rs)
278 {
279 	struct raid_set *r;
280 	struct mapped_device *md = dm_table_get_md(rs->ti->table);
281 
282 	list_for_each_entry(r, &raid_sets, list)
283 		if (r != rs && dm_table_get_md(r->ti->table) == md)
284 			return r;
285 
286 	return NULL;
287 }
288 
289 /* raid10 algorithms (i.e. formats) */
290 #define	ALGORITHM_RAID10_DEFAULT	0
291 #define	ALGORITHM_RAID10_NEAR		1
292 #define	ALGORITHM_RAID10_OFFSET		2
293 #define	ALGORITHM_RAID10_FAR		3
294 
295 /* Supported raid types and properties. */
296 static struct raid_type {
297 	const char *name;		/* RAID algorithm. */
298 	const char *descr;		/* Descriptor text for logging. */
299 	const unsigned int parity_devs;	/* # of parity devices. */
300 	const unsigned int minimal_devs;/* minimal # of devices in set. */
301 	const unsigned int level;	/* RAID level. */
302 	const unsigned int algorithm;	/* RAID algorithm. */
303 } raid_types[] = {
304 	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
305 	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
306 	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
307 	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
308 	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
309 	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
310 	{"raid4",	  "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
311 	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
312 	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
313 	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
314 	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
315 	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
316 	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
317 	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
318 	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
319 	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
320 	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
321 	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
322 	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
323 	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
324 };
325 
326 /* True, if @v is in inclusive range [@min, @max] */
327 static bool __within_range(long v, long min, long max)
328 {
329 	return v >= min && v <= max;
330 }
331 
332 /* All table line arguments are defined here */
333 static struct arg_name_flag {
334 	const unsigned long flag;
335 	const char *name;
336 } __arg_name_flags[] = {
337 	{ CTR_FLAG_SYNC, "sync"},
338 	{ CTR_FLAG_NOSYNC, "nosync"},
339 	{ CTR_FLAG_REBUILD, "rebuild"},
340 	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
341 	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
342 	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
343 	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
344 	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
345 	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
346 	{ CTR_FLAG_REGION_SIZE, "region_size"},
347 	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
348 	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
349 	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
350 	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
351 	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
352 	{ CTR_FLAG_JOURNAL_DEV, "journal_dev" },
353 	{ CTR_FLAG_JOURNAL_MODE, "journal_mode" },
354 };
355 
356 /* Return argument name string for given @flag */
357 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
358 {
359 	if (hweight32(flag) == 1) {
360 		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
361 
362 		while (anf-- > __arg_name_flags)
363 			if (flag & anf->flag)
364 				return anf->name;
365 
366 	} else
367 		DMERR("%s called with more than one flag!", __func__);
368 
369 	return NULL;
370 }
371 
372 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
373 static struct {
374 	const int mode;
375 	const char *param;
376 } _raid456_journal_mode[] = {
377 	{ R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
378 	{ R5C_JOURNAL_MODE_WRITE_BACK    , "writeback" }
379 };
380 
381 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
382 static int dm_raid_journal_mode_to_md(const char *mode)
383 {
384 	int m = ARRAY_SIZE(_raid456_journal_mode);
385 
386 	while (m--)
387 		if (!strcasecmp(mode, _raid456_journal_mode[m].param))
388 			return _raid456_journal_mode[m].mode;
389 
390 	return -EINVAL;
391 }
392 
393 /* Return dm-raid raid4/5/6 journal mode string for @mode */
394 static const char *md_journal_mode_to_dm_raid(const int mode)
395 {
396 	int m = ARRAY_SIZE(_raid456_journal_mode);
397 
398 	while (m--)
399 		if (mode == _raid456_journal_mode[m].mode)
400 			return _raid456_journal_mode[m].param;
401 
402 	return "unknown";
403 }
404 
405 /*
406  * Bool helpers to test for various raid levels of a raid set.
407  * It's level as reported by the superblock rather than
408  * the requested raid_type passed to the constructor.
409  */
410 /* Return true, if raid set in @rs is raid0 */
411 static bool rs_is_raid0(struct raid_set *rs)
412 {
413 	return !rs->md.level;
414 }
415 
416 /* Return true, if raid set in @rs is raid1 */
417 static bool rs_is_raid1(struct raid_set *rs)
418 {
419 	return rs->md.level == 1;
420 }
421 
422 /* Return true, if raid set in @rs is raid10 */
423 static bool rs_is_raid10(struct raid_set *rs)
424 {
425 	return rs->md.level == 10;
426 }
427 
428 /* Return true, if raid set in @rs is level 6 */
429 static bool rs_is_raid6(struct raid_set *rs)
430 {
431 	return rs->md.level == 6;
432 }
433 
434 /* Return true, if raid set in @rs is level 4, 5 or 6 */
435 static bool rs_is_raid456(struct raid_set *rs)
436 {
437 	return __within_range(rs->md.level, 4, 6);
438 }
439 
440 /* Return true, if raid set in @rs is reshapable */
441 static bool __is_raid10_far(int layout);
442 static bool rs_is_reshapable(struct raid_set *rs)
443 {
444 	return rs_is_raid456(rs) ||
445 	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
446 }
447 
448 /* Return true, if raid set in @rs is recovering */
449 static bool rs_is_recovering(struct raid_set *rs)
450 {
451 	return rs->md.recovery_cp < rs->md.dev_sectors;
452 }
453 
454 /* Return true, if raid set in @rs is reshaping */
455 static bool rs_is_reshaping(struct raid_set *rs)
456 {
457 	return rs->md.reshape_position != MaxSector;
458 }
459 
460 /*
461  * bool helpers to test for various raid levels of a raid type @rt
462  */
463 
464 /* Return true, if raid type in @rt is raid0 */
465 static bool rt_is_raid0(struct raid_type *rt)
466 {
467 	return !rt->level;
468 }
469 
470 /* Return true, if raid type in @rt is raid1 */
471 static bool rt_is_raid1(struct raid_type *rt)
472 {
473 	return rt->level == 1;
474 }
475 
476 /* Return true, if raid type in @rt is raid10 */
477 static bool rt_is_raid10(struct raid_type *rt)
478 {
479 	return rt->level == 10;
480 }
481 
482 /* Return true, if raid type in @rt is raid4/5 */
483 static bool rt_is_raid45(struct raid_type *rt)
484 {
485 	return __within_range(rt->level, 4, 5);
486 }
487 
488 /* Return true, if raid type in @rt is raid6 */
489 static bool rt_is_raid6(struct raid_type *rt)
490 {
491 	return rt->level == 6;
492 }
493 
494 /* Return true, if raid type in @rt is raid4/5/6 */
495 static bool rt_is_raid456(struct raid_type *rt)
496 {
497 	return __within_range(rt->level, 4, 6);
498 }
499 /* END: raid level bools */
500 
501 /* Return valid ctr flags for the raid level of @rs */
502 static unsigned long __valid_flags(struct raid_set *rs)
503 {
504 	if (rt_is_raid0(rs->raid_type))
505 		return RAID0_VALID_FLAGS;
506 	else if (rt_is_raid1(rs->raid_type))
507 		return RAID1_VALID_FLAGS;
508 	else if (rt_is_raid10(rs->raid_type))
509 		return RAID10_VALID_FLAGS;
510 	else if (rt_is_raid45(rs->raid_type))
511 		return RAID45_VALID_FLAGS;
512 	else if (rt_is_raid6(rs->raid_type))
513 		return RAID6_VALID_FLAGS;
514 
515 	return 0;
516 }
517 
518 /*
519  * Check for valid flags set on @rs
520  *
521  * Has to be called after parsing of the ctr flags!
522  */
523 static int rs_check_for_valid_flags(struct raid_set *rs)
524 {
525 	if (rs->ctr_flags & ~__valid_flags(rs)) {
526 		rs->ti->error = "Invalid flags combination";
527 		return -EINVAL;
528 	}
529 
530 	return 0;
531 }
532 
533 /* MD raid10 bit definitions and helpers */
534 #define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
535 #define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
536 #define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
537 #define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
538 
539 /* Return md raid10 near copies for @layout */
540 static unsigned int __raid10_near_copies(int layout)
541 {
542 	return layout & 0xFF;
543 }
544 
545 /* Return md raid10 far copies for @layout */
546 static unsigned int __raid10_far_copies(int layout)
547 {
548 	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
549 }
550 
551 /* Return true if md raid10 offset for @layout */
552 static bool __is_raid10_offset(int layout)
553 {
554 	return !!(layout & RAID10_OFFSET);
555 }
556 
557 /* Return true if md raid10 near for @layout */
558 static bool __is_raid10_near(int layout)
559 {
560 	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
561 }
562 
563 /* Return true if md raid10 far for @layout */
564 static bool __is_raid10_far(int layout)
565 {
566 	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
567 }
568 
569 /* Return md raid10 layout string for @layout */
570 static const char *raid10_md_layout_to_format(int layout)
571 {
572 	/*
573 	 * Bit 16 stands for "offset"
574 	 * (i.e. adjacent stripes hold copies)
575 	 *
576 	 * Refer to MD's raid10.c for details
577 	 */
578 	if (__is_raid10_offset(layout))
579 		return "offset";
580 
581 	if (__raid10_near_copies(layout) > 1)
582 		return "near";
583 
584 	if (__raid10_far_copies(layout) > 1)
585 		return "far";
586 
587 	return "unknown";
588 }
589 
590 /* Return md raid10 algorithm for @name */
591 static const int raid10_name_to_format(const char *name)
592 {
593 	if (!strcasecmp(name, "near"))
594 		return ALGORITHM_RAID10_NEAR;
595 	else if (!strcasecmp(name, "offset"))
596 		return ALGORITHM_RAID10_OFFSET;
597 	else if (!strcasecmp(name, "far"))
598 		return ALGORITHM_RAID10_FAR;
599 
600 	return -EINVAL;
601 }
602 
603 /* Return md raid10 copies for @layout */
604 static unsigned int raid10_md_layout_to_copies(int layout)
605 {
606 	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
607 }
608 
609 /* Return md raid10 format id for @format string */
610 static int raid10_format_to_md_layout(struct raid_set *rs,
611 				      unsigned int algorithm,
612 				      unsigned int copies)
613 {
614 	unsigned int n = 1, f = 1, r = 0;
615 
616 	/*
617 	 * MD resilienece flaw:
618 	 *
619 	 * enabling use_far_sets for far/offset formats causes copies
620 	 * to be colocated on the same devs together with their origins!
621 	 *
622 	 * -> disable it for now in the definition above
623 	 */
624 	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
625 	    algorithm == ALGORITHM_RAID10_NEAR)
626 		n = copies;
627 
628 	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
629 		f = copies;
630 		r = RAID10_OFFSET;
631 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
632 			r |= RAID10_USE_FAR_SETS;
633 
634 	} else if (algorithm == ALGORITHM_RAID10_FAR) {
635 		f = copies;
636 		r = !RAID10_OFFSET;
637 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
638 			r |= RAID10_USE_FAR_SETS;
639 
640 	} else
641 		return -EINVAL;
642 
643 	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
644 }
645 /* END: MD raid10 bit definitions and helpers */
646 
647 /* Check for any of the raid10 algorithms */
648 static bool __got_raid10(struct raid_type *rtp, const int layout)
649 {
650 	if (rtp->level == 10) {
651 		switch (rtp->algorithm) {
652 		case ALGORITHM_RAID10_DEFAULT:
653 		case ALGORITHM_RAID10_NEAR:
654 			return __is_raid10_near(layout);
655 		case ALGORITHM_RAID10_OFFSET:
656 			return __is_raid10_offset(layout);
657 		case ALGORITHM_RAID10_FAR:
658 			return __is_raid10_far(layout);
659 		default:
660 			break;
661 		}
662 	}
663 
664 	return false;
665 }
666 
667 /* Return raid_type for @name */
668 static struct raid_type *get_raid_type(const char *name)
669 {
670 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671 
672 	while (rtp-- > raid_types)
673 		if (!strcasecmp(rtp->name, name))
674 			return rtp;
675 
676 	return NULL;
677 }
678 
679 /* Return raid_type for @name based derived from @level and @layout */
680 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
681 {
682 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
683 
684 	while (rtp-- > raid_types) {
685 		/* RAID10 special checks based on @layout flags/properties */
686 		if (rtp->level == level &&
687 		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
688 			return rtp;
689 	}
690 
691 	return NULL;
692 }
693 
694 /* Adjust rdev sectors */
695 static void rs_set_rdev_sectors(struct raid_set *rs)
696 {
697 	struct mddev *mddev = &rs->md;
698 	struct md_rdev *rdev;
699 
700 	/*
701 	 * raid10 sets rdev->sector to the device size, which
702 	 * is unintended in case of out-of-place reshaping
703 	 */
704 	rdev_for_each(rdev, mddev)
705 		if (!test_bit(Journal, &rdev->flags))
706 			rdev->sectors = mddev->dev_sectors;
707 }
708 
709 /*
710  * Change bdev capacity of @rs in case of a disk add/remove reshape
711  */
712 static void rs_set_capacity(struct raid_set *rs)
713 {
714 	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
715 
716 	set_capacity(gendisk, rs->md.array_sectors);
717 	revalidate_disk(gendisk);
718 }
719 
720 /*
721  * Set the mddev properties in @rs to the current
722  * ones retrieved from the freshest superblock
723  */
724 static void rs_set_cur(struct raid_set *rs)
725 {
726 	struct mddev *mddev = &rs->md;
727 
728 	mddev->new_level = mddev->level;
729 	mddev->new_layout = mddev->layout;
730 	mddev->new_chunk_sectors = mddev->chunk_sectors;
731 }
732 
733 /*
734  * Set the mddev properties in @rs to the new
735  * ones requested by the ctr
736  */
737 static void rs_set_new(struct raid_set *rs)
738 {
739 	struct mddev *mddev = &rs->md;
740 
741 	mddev->level = mddev->new_level;
742 	mddev->layout = mddev->new_layout;
743 	mddev->chunk_sectors = mddev->new_chunk_sectors;
744 	mddev->raid_disks = rs->raid_disks;
745 	mddev->delta_disks = 0;
746 }
747 
748 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
749 				       unsigned int raid_devs)
750 {
751 	unsigned int i;
752 	struct raid_set *rs;
753 
754 	if (raid_devs <= raid_type->parity_devs) {
755 		ti->error = "Insufficient number of devices";
756 		return ERR_PTR(-EINVAL);
757 	}
758 
759 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
760 	if (!rs) {
761 		ti->error = "Cannot allocate raid context";
762 		return ERR_PTR(-ENOMEM);
763 	}
764 
765 	mddev_init(&rs->md);
766 
767 	INIT_LIST_HEAD(&rs->list);
768 	rs->raid_disks = raid_devs;
769 	rs->delta_disks = 0;
770 
771 	rs->ti = ti;
772 	rs->raid_type = raid_type;
773 	rs->stripe_cache_entries = 256;
774 	rs->md.raid_disks = raid_devs;
775 	rs->md.level = raid_type->level;
776 	rs->md.new_level = rs->md.level;
777 	rs->md.layout = raid_type->algorithm;
778 	rs->md.new_layout = rs->md.layout;
779 	rs->md.delta_disks = 0;
780 	rs->md.recovery_cp = MaxSector;
781 
782 	for (i = 0; i < raid_devs; i++)
783 		md_rdev_init(&rs->dev[i].rdev);
784 
785 	/* Add @rs to global list. */
786 	list_add(&rs->list, &raid_sets);
787 
788 	/*
789 	 * Remaining items to be initialized by further RAID params:
790 	 *  rs->md.persistent
791 	 *  rs->md.external
792 	 *  rs->md.chunk_sectors
793 	 *  rs->md.new_chunk_sectors
794 	 *  rs->md.dev_sectors
795 	 */
796 
797 	return rs;
798 }
799 
800 /* Free all @rs allocations and remove it from global list. */
801 static void raid_set_free(struct raid_set *rs)
802 {
803 	int i;
804 
805 	if (rs->journal_dev.dev) {
806 		md_rdev_clear(&rs->journal_dev.rdev);
807 		dm_put_device(rs->ti, rs->journal_dev.dev);
808 	}
809 
810 	for (i = 0; i < rs->raid_disks; i++) {
811 		if (rs->dev[i].meta_dev)
812 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
813 		md_rdev_clear(&rs->dev[i].rdev);
814 		if (rs->dev[i].data_dev)
815 			dm_put_device(rs->ti, rs->dev[i].data_dev);
816 	}
817 
818 	list_del(&rs->list);
819 
820 	kfree(rs);
821 }
822 
823 /*
824  * For every device we have two words
825  *  <meta_dev>: meta device name or '-' if missing
826  *  <data_dev>: data device name or '-' if missing
827  *
828  * The following are permitted:
829  *    - -
830  *    - <data_dev>
831  *    <meta_dev> <data_dev>
832  *
833  * The following is not allowed:
834  *    <meta_dev> -
835  *
836  * This code parses those words.  If there is a failure,
837  * the caller must use raid_set_free() to unwind the operations.
838  */
839 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
840 {
841 	int i;
842 	int rebuild = 0;
843 	int metadata_available = 0;
844 	int r = 0;
845 	const char *arg;
846 
847 	/* Put off the number of raid devices argument to get to dev pairs */
848 	arg = dm_shift_arg(as);
849 	if (!arg)
850 		return -EINVAL;
851 
852 	for (i = 0; i < rs->raid_disks; i++) {
853 		rs->dev[i].rdev.raid_disk = i;
854 
855 		rs->dev[i].meta_dev = NULL;
856 		rs->dev[i].data_dev = NULL;
857 
858 		/*
859 		 * There are no offsets initially.
860 		 * Out of place reshape will set them accordingly.
861 		 */
862 		rs->dev[i].rdev.data_offset = 0;
863 		rs->dev[i].rdev.new_data_offset = 0;
864 		rs->dev[i].rdev.mddev = &rs->md;
865 
866 		arg = dm_shift_arg(as);
867 		if (!arg)
868 			return -EINVAL;
869 
870 		if (strcmp(arg, "-")) {
871 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
872 					  &rs->dev[i].meta_dev);
873 			if (r) {
874 				rs->ti->error = "RAID metadata device lookup failure";
875 				return r;
876 			}
877 
878 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
879 			if (!rs->dev[i].rdev.sb_page) {
880 				rs->ti->error = "Failed to allocate superblock page";
881 				return -ENOMEM;
882 			}
883 		}
884 
885 		arg = dm_shift_arg(as);
886 		if (!arg)
887 			return -EINVAL;
888 
889 		if (!strcmp(arg, "-")) {
890 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
891 			    (!rs->dev[i].rdev.recovery_offset)) {
892 				rs->ti->error = "Drive designated for rebuild not specified";
893 				return -EINVAL;
894 			}
895 
896 			if (rs->dev[i].meta_dev) {
897 				rs->ti->error = "No data device supplied with metadata device";
898 				return -EINVAL;
899 			}
900 
901 			continue;
902 		}
903 
904 		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
905 				  &rs->dev[i].data_dev);
906 		if (r) {
907 			rs->ti->error = "RAID device lookup failure";
908 			return r;
909 		}
910 
911 		if (rs->dev[i].meta_dev) {
912 			metadata_available = 1;
913 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
914 		}
915 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
916 		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
917 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
918 			rebuild++;
919 	}
920 
921 	if (rs->journal_dev.dev)
922 		list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
923 
924 	if (metadata_available) {
925 		rs->md.external = 0;
926 		rs->md.persistent = 1;
927 		rs->md.major_version = 2;
928 	} else if (rebuild && !rs->md.recovery_cp) {
929 		/*
930 		 * Without metadata, we will not be able to tell if the array
931 		 * is in-sync or not - we must assume it is not.  Therefore,
932 		 * it is impossible to rebuild a drive.
933 		 *
934 		 * Even if there is metadata, the on-disk information may
935 		 * indicate that the array is not in-sync and it will then
936 		 * fail at that time.
937 		 *
938 		 * User could specify 'nosync' option if desperate.
939 		 */
940 		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
941 		return -EINVAL;
942 	}
943 
944 	return 0;
945 }
946 
947 /*
948  * validate_region_size
949  * @rs
950  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
951  *
952  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
953  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
954  *
955  * Returns: 0 on success, -EINVAL on failure.
956  */
957 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
958 {
959 	unsigned long min_region_size = rs->ti->len / (1 << 21);
960 
961 	if (rs_is_raid0(rs))
962 		return 0;
963 
964 	if (!region_size) {
965 		/*
966 		 * Choose a reasonable default.	 All figures in sectors.
967 		 */
968 		if (min_region_size > (1 << 13)) {
969 			/* If not a power of 2, make it the next power of 2 */
970 			region_size = roundup_pow_of_two(min_region_size);
971 			DMINFO("Choosing default region size of %lu sectors",
972 			       region_size);
973 		} else {
974 			DMINFO("Choosing default region size of 4MiB");
975 			region_size = 1 << 13; /* sectors */
976 		}
977 	} else {
978 		/*
979 		 * Validate user-supplied value.
980 		 */
981 		if (region_size > rs->ti->len) {
982 			rs->ti->error = "Supplied region size is too large";
983 			return -EINVAL;
984 		}
985 
986 		if (region_size < min_region_size) {
987 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
988 			      region_size, min_region_size);
989 			rs->ti->error = "Supplied region size is too small";
990 			return -EINVAL;
991 		}
992 
993 		if (!is_power_of_2(region_size)) {
994 			rs->ti->error = "Region size is not a power of 2";
995 			return -EINVAL;
996 		}
997 
998 		if (region_size < rs->md.chunk_sectors) {
999 			rs->ti->error = "Region size is smaller than the chunk size";
1000 			return -EINVAL;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Convert sectors to bytes.
1006 	 */
1007 	rs->md.bitmap_info.chunksize = to_bytes(region_size);
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * validate_raid_redundancy
1014  * @rs
1015  *
1016  * Determine if there are enough devices in the array that haven't
1017  * failed (or are being rebuilt) to form a usable array.
1018  *
1019  * Returns: 0 on success, -EINVAL on failure.
1020  */
1021 static int validate_raid_redundancy(struct raid_set *rs)
1022 {
1023 	unsigned int i, rebuild_cnt = 0;
1024 	unsigned int rebuilds_per_group = 0, copies;
1025 	unsigned int group_size, last_group_start;
1026 
1027 	for (i = 0; i < rs->md.raid_disks; i++)
1028 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1029 		    !rs->dev[i].rdev.sb_page)
1030 			rebuild_cnt++;
1031 
1032 	switch (rs->md.level) {
1033 	case 0:
1034 		break;
1035 	case 1:
1036 		if (rebuild_cnt >= rs->md.raid_disks)
1037 			goto too_many;
1038 		break;
1039 	case 4:
1040 	case 5:
1041 	case 6:
1042 		if (rebuild_cnt > rs->raid_type->parity_devs)
1043 			goto too_many;
1044 		break;
1045 	case 10:
1046 		copies = raid10_md_layout_to_copies(rs->md.new_layout);
1047 		if (copies < 2) {
1048 			DMERR("Bogus raid10 data copies < 2!");
1049 			return -EINVAL;
1050 		}
1051 
1052 		if (rebuild_cnt < copies)
1053 			break;
1054 
1055 		/*
1056 		 * It is possible to have a higher rebuild count for RAID10,
1057 		 * as long as the failed devices occur in different mirror
1058 		 * groups (i.e. different stripes).
1059 		 *
1060 		 * When checking "near" format, make sure no adjacent devices
1061 		 * have failed beyond what can be handled.  In addition to the
1062 		 * simple case where the number of devices is a multiple of the
1063 		 * number of copies, we must also handle cases where the number
1064 		 * of devices is not a multiple of the number of copies.
1065 		 * E.g.	   dev1 dev2 dev3 dev4 dev5
1066 		 *	    A	 A    B	   B	C
1067 		 *	    C	 D    D	   E	E
1068 		 */
1069 		if (__is_raid10_near(rs->md.new_layout)) {
1070 			for (i = 0; i < rs->md.raid_disks; i++) {
1071 				if (!(i % copies))
1072 					rebuilds_per_group = 0;
1073 				if ((!rs->dev[i].rdev.sb_page ||
1074 				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1075 				    (++rebuilds_per_group >= copies))
1076 					goto too_many;
1077 			}
1078 			break;
1079 		}
1080 
1081 		/*
1082 		 * When checking "far" and "offset" formats, we need to ensure
1083 		 * that the device that holds its copy is not also dead or
1084 		 * being rebuilt.  (Note that "far" and "offset" formats only
1085 		 * support two copies right now.  These formats also only ever
1086 		 * use the 'use_far_sets' variant.)
1087 		 *
1088 		 * This check is somewhat complicated by the need to account
1089 		 * for arrays that are not a multiple of (far) copies.	This
1090 		 * results in the need to treat the last (potentially larger)
1091 		 * set differently.
1092 		 */
1093 		group_size = (rs->md.raid_disks / copies);
1094 		last_group_start = (rs->md.raid_disks / group_size) - 1;
1095 		last_group_start *= group_size;
1096 		for (i = 0; i < rs->md.raid_disks; i++) {
1097 			if (!(i % copies) && !(i > last_group_start))
1098 				rebuilds_per_group = 0;
1099 			if ((!rs->dev[i].rdev.sb_page ||
1100 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1101 			    (++rebuilds_per_group >= copies))
1102 					goto too_many;
1103 		}
1104 		break;
1105 	default:
1106 		if (rebuild_cnt)
1107 			return -EINVAL;
1108 	}
1109 
1110 	return 0;
1111 
1112 too_many:
1113 	return -EINVAL;
1114 }
1115 
1116 /*
1117  * Possible arguments are...
1118  *	<chunk_size> [optional_args]
1119  *
1120  * Argument definitions
1121  *    <chunk_size>			The number of sectors per disk that
1122  *					will form the "stripe"
1123  *    [[no]sync]			Force or prevent recovery of the
1124  *					entire array
1125  *    [rebuild <idx>]			Rebuild the drive indicated by the index
1126  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1127  *					clear bits
1128  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1129  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1130  *    [write_mostly <idx>]		Indicate a write mostly drive via index
1131  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1132  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1133  *    [region_size <sectors>]		Defines granularity of bitmap
1134  *    [journal_dev <dev>]		raid4/5/6 journaling deviice
1135  *    					(i.e. write hole closing log)
1136  *
1137  * RAID10-only options:
1138  *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1139  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1140  */
1141 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1142 			     unsigned int num_raid_params)
1143 {
1144 	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1145 	unsigned int raid10_copies = 2;
1146 	unsigned int i, write_mostly = 0;
1147 	unsigned int region_size = 0;
1148 	sector_t max_io_len;
1149 	const char *arg, *key;
1150 	struct raid_dev *rd;
1151 	struct raid_type *rt = rs->raid_type;
1152 
1153 	arg = dm_shift_arg(as);
1154 	num_raid_params--; /* Account for chunk_size argument */
1155 
1156 	if (kstrtoint(arg, 10, &value) < 0) {
1157 		rs->ti->error = "Bad numerical argument given for chunk_size";
1158 		return -EINVAL;
1159 	}
1160 
1161 	/*
1162 	 * First, parse the in-order required arguments
1163 	 * "chunk_size" is the only argument of this type.
1164 	 */
1165 	if (rt_is_raid1(rt)) {
1166 		if (value)
1167 			DMERR("Ignoring chunk size parameter for RAID 1");
1168 		value = 0;
1169 	} else if (!is_power_of_2(value)) {
1170 		rs->ti->error = "Chunk size must be a power of 2";
1171 		return -EINVAL;
1172 	} else if (value < 8) {
1173 		rs->ti->error = "Chunk size value is too small";
1174 		return -EINVAL;
1175 	}
1176 
1177 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1178 
1179 	/*
1180 	 * We set each individual device as In_sync with a completed
1181 	 * 'recovery_offset'.  If there has been a device failure or
1182 	 * replacement then one of the following cases applies:
1183 	 *
1184 	 *   1) User specifies 'rebuild'.
1185 	 *	- Device is reset when param is read.
1186 	 *   2) A new device is supplied.
1187 	 *	- No matching superblock found, resets device.
1188 	 *   3) Device failure was transient and returns on reload.
1189 	 *	- Failure noticed, resets device for bitmap replay.
1190 	 *   4) Device hadn't completed recovery after previous failure.
1191 	 *	- Superblock is read and overrides recovery_offset.
1192 	 *
1193 	 * What is found in the superblocks of the devices is always
1194 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1195 	 */
1196 	for (i = 0; i < rs->raid_disks; i++) {
1197 		set_bit(In_sync, &rs->dev[i].rdev.flags);
1198 		rs->dev[i].rdev.recovery_offset = MaxSector;
1199 	}
1200 
1201 	/*
1202 	 * Second, parse the unordered optional arguments
1203 	 */
1204 	for (i = 0; i < num_raid_params; i++) {
1205 		key = dm_shift_arg(as);
1206 		if (!key) {
1207 			rs->ti->error = "Not enough raid parameters given";
1208 			return -EINVAL;
1209 		}
1210 
1211 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1212 			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1213 				rs->ti->error = "Only one 'nosync' argument allowed";
1214 				return -EINVAL;
1215 			}
1216 			continue;
1217 		}
1218 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1219 			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1220 				rs->ti->error = "Only one 'sync' argument allowed";
1221 				return -EINVAL;
1222 			}
1223 			continue;
1224 		}
1225 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1226 			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1227 				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1228 				return -EINVAL;
1229 			}
1230 			continue;
1231 		}
1232 
1233 		arg = dm_shift_arg(as);
1234 		i++; /* Account for the argument pairs */
1235 		if (!arg) {
1236 			rs->ti->error = "Wrong number of raid parameters given";
1237 			return -EINVAL;
1238 		}
1239 
1240 		/*
1241 		 * Parameters that take a string value are checked here.
1242 		 */
1243 		/* "raid10_format {near|offset|far} */
1244 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1245 			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1246 				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1247 				return -EINVAL;
1248 			}
1249 			if (!rt_is_raid10(rt)) {
1250 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1251 				return -EINVAL;
1252 			}
1253 			raid10_format = raid10_name_to_format(arg);
1254 			if (raid10_format < 0) {
1255 				rs->ti->error = "Invalid 'raid10_format' value given";
1256 				return raid10_format;
1257 			}
1258 			continue;
1259 		}
1260 
1261 		/* "journal_dev <dev>" */
1262 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1263 			int r;
1264 			struct md_rdev *jdev;
1265 
1266 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1267 				rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1268 				return -EINVAL;
1269 			}
1270 			if (!rt_is_raid456(rt)) {
1271 				rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1272 				return -EINVAL;
1273 			}
1274 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1275 					  &rs->journal_dev.dev);
1276 			if (r) {
1277 				rs->ti->error = "raid4/5/6 journal device lookup failure";
1278 				return r;
1279 			}
1280 			jdev = &rs->journal_dev.rdev;
1281 			md_rdev_init(jdev);
1282 			jdev->mddev = &rs->md;
1283 			jdev->bdev = rs->journal_dev.dev->bdev;
1284 			jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1285 			if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1286 				rs->ti->error = "No space for raid4/5/6 journal";
1287 				return -ENOSPC;
1288 			}
1289 			rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1290 			set_bit(Journal, &jdev->flags);
1291 			continue;
1292 		}
1293 
1294 		/* "journal_mode <mode>" ("journal_dev" mandatory!) */
1295 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1296 			int r;
1297 
1298 			if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1299 				rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1300 				return -EINVAL;
1301 			}
1302 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1303 				rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1304 				return -EINVAL;
1305 			}
1306 			r = dm_raid_journal_mode_to_md(arg);
1307 			if (r < 0) {
1308 				rs->ti->error = "Invalid 'journal_mode' argument";
1309 				return r;
1310 			}
1311 			rs->journal_dev.mode = r;
1312 			continue;
1313 		}
1314 
1315 		/*
1316 		 * Parameters with number values from here on.
1317 		 */
1318 		if (kstrtoint(arg, 10, &value) < 0) {
1319 			rs->ti->error = "Bad numerical argument given in raid params";
1320 			return -EINVAL;
1321 		}
1322 
1323 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1324 			/*
1325 			 * "rebuild" is being passed in by userspace to provide
1326 			 * indexes of replaced devices and to set up additional
1327 			 * devices on raid level takeover.
1328 			 */
1329 			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1330 				rs->ti->error = "Invalid rebuild index given";
1331 				return -EINVAL;
1332 			}
1333 
1334 			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1335 				rs->ti->error = "rebuild for this index already given";
1336 				return -EINVAL;
1337 			}
1338 
1339 			rd = rs->dev + value;
1340 			clear_bit(In_sync, &rd->rdev.flags);
1341 			clear_bit(Faulty, &rd->rdev.flags);
1342 			rd->rdev.recovery_offset = 0;
1343 			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1344 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1345 			if (!rt_is_raid1(rt)) {
1346 				rs->ti->error = "write_mostly option is only valid for RAID1";
1347 				return -EINVAL;
1348 			}
1349 
1350 			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1351 				rs->ti->error = "Invalid write_mostly index given";
1352 				return -EINVAL;
1353 			}
1354 
1355 			write_mostly++;
1356 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1357 			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1358 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1359 			if (!rt_is_raid1(rt)) {
1360 				rs->ti->error = "max_write_behind option is only valid for RAID1";
1361 				return -EINVAL;
1362 			}
1363 
1364 			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1365 				rs->ti->error = "Only one max_write_behind argument pair allowed";
1366 				return -EINVAL;
1367 			}
1368 
1369 			/*
1370 			 * In device-mapper, we specify things in sectors, but
1371 			 * MD records this value in kB
1372 			 */
1373 			value /= 2;
1374 			if (value > COUNTER_MAX) {
1375 				rs->ti->error = "Max write-behind limit out of range";
1376 				return -EINVAL;
1377 			}
1378 
1379 			rs->md.bitmap_info.max_write_behind = value;
1380 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1381 			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1382 				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1383 				return -EINVAL;
1384 			}
1385 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1386 				rs->ti->error = "daemon sleep period out of range";
1387 				return -EINVAL;
1388 			}
1389 			rs->md.bitmap_info.daemon_sleep = value;
1390 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1391 			/* Userspace passes new data_offset after having extended the the data image LV */
1392 			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1393 				rs->ti->error = "Only one data_offset argument pair allowed";
1394 				return -EINVAL;
1395 			}
1396 			/* Ensure sensible data offset */
1397 			if (value < 0 ||
1398 			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1399 				rs->ti->error = "Bogus data_offset value";
1400 				return -EINVAL;
1401 			}
1402 			rs->data_offset = value;
1403 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1404 			/* Define the +/-# of disks to add to/remove from the given raid set */
1405 			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1406 				rs->ti->error = "Only one delta_disks argument pair allowed";
1407 				return -EINVAL;
1408 			}
1409 			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1410 			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1411 				rs->ti->error = "Too many delta_disk requested";
1412 				return -EINVAL;
1413 			}
1414 
1415 			rs->delta_disks = value;
1416 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1417 			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1418 				rs->ti->error = "Only one stripe_cache argument pair allowed";
1419 				return -EINVAL;
1420 			}
1421 
1422 			if (!rt_is_raid456(rt)) {
1423 				rs->ti->error = "Inappropriate argument: stripe_cache";
1424 				return -EINVAL;
1425 			}
1426 
1427 			rs->stripe_cache_entries = value;
1428 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1429 			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1430 				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1431 				return -EINVAL;
1432 			}
1433 			if (value > INT_MAX) {
1434 				rs->ti->error = "min_recovery_rate out of range";
1435 				return -EINVAL;
1436 			}
1437 			rs->md.sync_speed_min = (int)value;
1438 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1439 			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1440 				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1441 				return -EINVAL;
1442 			}
1443 			if (value > INT_MAX) {
1444 				rs->ti->error = "max_recovery_rate out of range";
1445 				return -EINVAL;
1446 			}
1447 			rs->md.sync_speed_max = (int)value;
1448 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1449 			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1450 				rs->ti->error = "Only one region_size argument pair allowed";
1451 				return -EINVAL;
1452 			}
1453 
1454 			region_size = value;
1455 			rs->requested_bitmap_chunk_sectors = value;
1456 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1457 			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1458 				rs->ti->error = "Only one raid10_copies argument pair allowed";
1459 				return -EINVAL;
1460 			}
1461 
1462 			if (!__within_range(value, 2, rs->md.raid_disks)) {
1463 				rs->ti->error = "Bad value for 'raid10_copies'";
1464 				return -EINVAL;
1465 			}
1466 
1467 			raid10_copies = value;
1468 		} else {
1469 			DMERR("Unable to parse RAID parameter: %s", key);
1470 			rs->ti->error = "Unable to parse RAID parameter";
1471 			return -EINVAL;
1472 		}
1473 	}
1474 
1475 	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1476 	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1477 		rs->ti->error = "sync and nosync are mutually exclusive";
1478 		return -EINVAL;
1479 	}
1480 
1481 	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1482 	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1483 	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1484 		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1485 		return -EINVAL;
1486 	}
1487 
1488 	if (write_mostly >= rs->md.raid_disks) {
1489 		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1490 		return -EINVAL;
1491 	}
1492 
1493 	if (validate_region_size(rs, region_size))
1494 		return -EINVAL;
1495 
1496 	if (rs->md.chunk_sectors)
1497 		max_io_len = rs->md.chunk_sectors;
1498 	else
1499 		max_io_len = region_size;
1500 
1501 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1502 		return -EINVAL;
1503 
1504 	if (rt_is_raid10(rt)) {
1505 		if (raid10_copies > rs->md.raid_disks) {
1506 			rs->ti->error = "Not enough devices to satisfy specification";
1507 			return -EINVAL;
1508 		}
1509 
1510 		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1511 		if (rs->md.new_layout < 0) {
1512 			rs->ti->error = "Error getting raid10 format";
1513 			return rs->md.new_layout;
1514 		}
1515 
1516 		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1517 		if (!rt) {
1518 			rs->ti->error = "Failed to recognize new raid10 layout";
1519 			return -EINVAL;
1520 		}
1521 
1522 		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1523 		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1524 		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1525 			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1526 			return -EINVAL;
1527 		}
1528 	}
1529 
1530 	rs->raid10_copies = raid10_copies;
1531 
1532 	/* Assume there are no metadata devices until the drives are parsed */
1533 	rs->md.persistent = 0;
1534 	rs->md.external = 1;
1535 
1536 	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1537 	return rs_check_for_valid_flags(rs);
1538 }
1539 
1540 /* Set raid4/5/6 cache size */
1541 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1542 {
1543 	int r;
1544 	struct r5conf *conf;
1545 	struct mddev *mddev = &rs->md;
1546 	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1547 	uint32_t nr_stripes = rs->stripe_cache_entries;
1548 
1549 	if (!rt_is_raid456(rs->raid_type)) {
1550 		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1551 		return -EINVAL;
1552 	}
1553 
1554 	if (nr_stripes < min_stripes) {
1555 		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1556 		       nr_stripes, min_stripes);
1557 		nr_stripes = min_stripes;
1558 	}
1559 
1560 	conf = mddev->private;
1561 	if (!conf) {
1562 		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1563 		return -EINVAL;
1564 	}
1565 
1566 	/* Try setting number of stripes in raid456 stripe cache */
1567 	if (conf->min_nr_stripes != nr_stripes) {
1568 		r = raid5_set_cache_size(mddev, nr_stripes);
1569 		if (r) {
1570 			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1571 			return r;
1572 		}
1573 
1574 		DMINFO("%u stripe cache entries", nr_stripes);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1581 static unsigned int mddev_data_stripes(struct raid_set *rs)
1582 {
1583 	return rs->md.raid_disks - rs->raid_type->parity_devs;
1584 }
1585 
1586 /* Return # of data stripes of @rs (i.e. as of ctr) */
1587 static unsigned int rs_data_stripes(struct raid_set *rs)
1588 {
1589 	return rs->raid_disks - rs->raid_type->parity_devs;
1590 }
1591 
1592 /*
1593  * Retrieve rdev->sectors from any valid raid device of @rs
1594  * to allow userpace to pass in arbitray "- -" device tupples.
1595  */
1596 static sector_t __rdev_sectors(struct raid_set *rs)
1597 {
1598 	int i;
1599 
1600 	for (i = 0; i < rs->md.raid_disks; i++) {
1601 		struct md_rdev *rdev = &rs->dev[i].rdev;
1602 
1603 		if (!test_bit(Journal, &rdev->flags) &&
1604 		    rdev->bdev && rdev->sectors)
1605 			return rdev->sectors;
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 /* Check that calculated dev_sectors fits all component devices. */
1612 static int _check_data_dev_sectors(struct raid_set *rs)
1613 {
1614 	sector_t ds = ~0;
1615 	struct md_rdev *rdev;
1616 
1617 	rdev_for_each(rdev, &rs->md)
1618 		if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1619 			ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1620 			if (ds < rs->md.dev_sectors) {
1621 				rs->ti->error = "Component device(s) too small";
1622 				return -EINVAL;
1623 			}
1624 		}
1625 
1626 	return 0;
1627 }
1628 
1629 /* Calculate the sectors per device and per array used for @rs */
1630 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1631 {
1632 	int delta_disks;
1633 	unsigned int data_stripes;
1634 	struct mddev *mddev = &rs->md;
1635 	struct md_rdev *rdev;
1636 	sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1637 
1638 	if (use_mddev) {
1639 		delta_disks = mddev->delta_disks;
1640 		data_stripes = mddev_data_stripes(rs);
1641 	} else {
1642 		delta_disks = rs->delta_disks;
1643 		data_stripes = rs_data_stripes(rs);
1644 	}
1645 
1646 	/* Special raid1 case w/o delta_disks support (yet) */
1647 	if (rt_is_raid1(rs->raid_type))
1648 		;
1649 	else if (rt_is_raid10(rs->raid_type)) {
1650 		if (rs->raid10_copies < 2 ||
1651 		    delta_disks < 0) {
1652 			rs->ti->error = "Bogus raid10 data copies or delta disks";
1653 			return -EINVAL;
1654 		}
1655 
1656 		dev_sectors *= rs->raid10_copies;
1657 		if (sector_div(dev_sectors, data_stripes))
1658 			goto bad;
1659 
1660 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1661 		if (sector_div(array_sectors, rs->raid10_copies))
1662 			goto bad;
1663 
1664 	} else if (sector_div(dev_sectors, data_stripes))
1665 		goto bad;
1666 
1667 	else
1668 		/* Striped layouts */
1669 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1670 
1671 	rdev_for_each(rdev, mddev)
1672 		if (!test_bit(Journal, &rdev->flags))
1673 			rdev->sectors = dev_sectors;
1674 
1675 	mddev->array_sectors = array_sectors;
1676 	mddev->dev_sectors = dev_sectors;
1677 
1678 	return _check_data_dev_sectors(rs);
1679 bad:
1680 	rs->ti->error = "Target length not divisible by number of data devices";
1681 	return -EINVAL;
1682 }
1683 
1684 /* Setup recovery on @rs */
1685 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1686 {
1687 	/* raid0 does not recover */
1688 	if (rs_is_raid0(rs))
1689 		rs->md.recovery_cp = MaxSector;
1690 	/*
1691 	 * A raid6 set has to be recovered either
1692 	 * completely or for the grown part to
1693 	 * ensure proper parity and Q-Syndrome
1694 	 */
1695 	else if (rs_is_raid6(rs))
1696 		rs->md.recovery_cp = dev_sectors;
1697 	/*
1698 	 * Other raid set types may skip recovery
1699 	 * depending on the 'nosync' flag.
1700 	 */
1701 	else
1702 		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1703 				     ? MaxSector : dev_sectors;
1704 }
1705 
1706 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1707 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1708 {
1709 	if (!dev_sectors)
1710 		/* New raid set or 'sync' flag provided */
1711 		__rs_setup_recovery(rs, 0);
1712 	else if (dev_sectors == MaxSector)
1713 		/* Prevent recovery */
1714 		__rs_setup_recovery(rs, MaxSector);
1715 	else if (__rdev_sectors(rs) < dev_sectors)
1716 		/* Grown raid set */
1717 		__rs_setup_recovery(rs, __rdev_sectors(rs));
1718 	else
1719 		__rs_setup_recovery(rs, MaxSector);
1720 }
1721 
1722 static void do_table_event(struct work_struct *ws)
1723 {
1724 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1725 
1726 	smp_rmb(); /* Make sure we access most actual mddev properties */
1727 	if (!rs_is_reshaping(rs)) {
1728 		if (rs_is_raid10(rs))
1729 			rs_set_rdev_sectors(rs);
1730 		rs_set_capacity(rs);
1731 	}
1732 	dm_table_event(rs->ti->table);
1733 }
1734 
1735 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1736 {
1737 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1738 
1739 	return mddev_congested(&rs->md, bits);
1740 }
1741 
1742 /*
1743  * Make sure a valid takover (level switch) is being requested on @rs
1744  *
1745  * Conversions of raid sets from one MD personality to another
1746  * have to conform to restrictions which are enforced here.
1747  */
1748 static int rs_check_takeover(struct raid_set *rs)
1749 {
1750 	struct mddev *mddev = &rs->md;
1751 	unsigned int near_copies;
1752 
1753 	if (rs->md.degraded) {
1754 		rs->ti->error = "Can't takeover degraded raid set";
1755 		return -EPERM;
1756 	}
1757 
1758 	if (rs_is_reshaping(rs)) {
1759 		rs->ti->error = "Can't takeover reshaping raid set";
1760 		return -EPERM;
1761 	}
1762 
1763 	switch (mddev->level) {
1764 	case 0:
1765 		/* raid0 -> raid1/5 with one disk */
1766 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1767 		    mddev->raid_disks == 1)
1768 			return 0;
1769 
1770 		/* raid0 -> raid10 */
1771 		if (mddev->new_level == 10 &&
1772 		    !(rs->raid_disks % mddev->raid_disks))
1773 			return 0;
1774 
1775 		/* raid0 with multiple disks -> raid4/5/6 */
1776 		if (__within_range(mddev->new_level, 4, 6) &&
1777 		    mddev->new_layout == ALGORITHM_PARITY_N &&
1778 		    mddev->raid_disks > 1)
1779 			return 0;
1780 
1781 		break;
1782 
1783 	case 10:
1784 		/* Can't takeover raid10_offset! */
1785 		if (__is_raid10_offset(mddev->layout))
1786 			break;
1787 
1788 		near_copies = __raid10_near_copies(mddev->layout);
1789 
1790 		/* raid10* -> raid0 */
1791 		if (mddev->new_level == 0) {
1792 			/* Can takeover raid10_near with raid disks divisable by data copies! */
1793 			if (near_copies > 1 &&
1794 			    !(mddev->raid_disks % near_copies)) {
1795 				mddev->raid_disks /= near_copies;
1796 				mddev->delta_disks = mddev->raid_disks;
1797 				return 0;
1798 			}
1799 
1800 			/* Can takeover raid10_far */
1801 			if (near_copies == 1 &&
1802 			    __raid10_far_copies(mddev->layout) > 1)
1803 				return 0;
1804 
1805 			break;
1806 		}
1807 
1808 		/* raid10_{near,far} -> raid1 */
1809 		if (mddev->new_level == 1 &&
1810 		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1811 			return 0;
1812 
1813 		/* raid10_{near,far} with 2 disks -> raid4/5 */
1814 		if (__within_range(mddev->new_level, 4, 5) &&
1815 		    mddev->raid_disks == 2)
1816 			return 0;
1817 		break;
1818 
1819 	case 1:
1820 		/* raid1 with 2 disks -> raid4/5 */
1821 		if (__within_range(mddev->new_level, 4, 5) &&
1822 		    mddev->raid_disks == 2) {
1823 			mddev->degraded = 1;
1824 			return 0;
1825 		}
1826 
1827 		/* raid1 -> raid0 */
1828 		if (mddev->new_level == 0 &&
1829 		    mddev->raid_disks == 1)
1830 			return 0;
1831 
1832 		/* raid1 -> raid10 */
1833 		if (mddev->new_level == 10)
1834 			return 0;
1835 		break;
1836 
1837 	case 4:
1838 		/* raid4 -> raid0 */
1839 		if (mddev->new_level == 0)
1840 			return 0;
1841 
1842 		/* raid4 -> raid1/5 with 2 disks */
1843 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1844 		    mddev->raid_disks == 2)
1845 			return 0;
1846 
1847 		/* raid4 -> raid5/6 with parity N */
1848 		if (__within_range(mddev->new_level, 5, 6) &&
1849 		    mddev->layout == ALGORITHM_PARITY_N)
1850 			return 0;
1851 		break;
1852 
1853 	case 5:
1854 		/* raid5 with parity N -> raid0 */
1855 		if (mddev->new_level == 0 &&
1856 		    mddev->layout == ALGORITHM_PARITY_N)
1857 			return 0;
1858 
1859 		/* raid5 with parity N -> raid4 */
1860 		if (mddev->new_level == 4 &&
1861 		    mddev->layout == ALGORITHM_PARITY_N)
1862 			return 0;
1863 
1864 		/* raid5 with 2 disks -> raid1/4/10 */
1865 		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1866 		    mddev->raid_disks == 2)
1867 			return 0;
1868 
1869 		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1870 		if (mddev->new_level == 6 &&
1871 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1872 		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1873 			return 0;
1874 		break;
1875 
1876 	case 6:
1877 		/* raid6 with parity N -> raid0 */
1878 		if (mddev->new_level == 0 &&
1879 		    mddev->layout == ALGORITHM_PARITY_N)
1880 			return 0;
1881 
1882 		/* raid6 with parity N -> raid4 */
1883 		if (mddev->new_level == 4 &&
1884 		    mddev->layout == ALGORITHM_PARITY_N)
1885 			return 0;
1886 
1887 		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1888 		if (mddev->new_level == 5 &&
1889 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1890 		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1891 			return 0;
1892 
1893 	default:
1894 		break;
1895 	}
1896 
1897 	rs->ti->error = "takeover not possible";
1898 	return -EINVAL;
1899 }
1900 
1901 /* True if @rs requested to be taken over */
1902 static bool rs_takeover_requested(struct raid_set *rs)
1903 {
1904 	return rs->md.new_level != rs->md.level;
1905 }
1906 
1907 /* True if @rs is requested to reshape by ctr */
1908 static bool rs_reshape_requested(struct raid_set *rs)
1909 {
1910 	bool change;
1911 	struct mddev *mddev = &rs->md;
1912 
1913 	if (rs_takeover_requested(rs))
1914 		return false;
1915 
1916 	if (rs_is_raid0(rs))
1917 		return false;
1918 
1919 	change = mddev->new_layout != mddev->layout ||
1920 		 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1921 		 rs->delta_disks;
1922 
1923 	/* Historical case to support raid1 reshape without delta disks */
1924 	if (rs_is_raid1(rs)) {
1925 		if (rs->delta_disks)
1926 			return !!rs->delta_disks;
1927 
1928 		return !change &&
1929 		       mddev->raid_disks != rs->raid_disks;
1930 	}
1931 
1932 	if (rs_is_raid10(rs))
1933 		return change &&
1934 		       !__is_raid10_far(mddev->new_layout) &&
1935 		       rs->delta_disks >= 0;
1936 
1937 	return change;
1938 }
1939 
1940 /*  Features */
1941 #define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1942 
1943 /* State flags for sb->flags */
1944 #define	SB_FLAG_RESHAPE_ACTIVE		0x1
1945 #define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1946 
1947 /*
1948  * This structure is never routinely used by userspace, unlike md superblocks.
1949  * Devices with this superblock should only ever be accessed via device-mapper.
1950  */
1951 #define DM_RAID_MAGIC 0x64526D44
1952 struct dm_raid_superblock {
1953 	__le32 magic;		/* "DmRd" */
1954 	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1955 
1956 	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1957 	__le32 array_position;	/* The position of this drive in the raid set */
1958 
1959 	__le64 events;		/* Incremented by md when superblock updated */
1960 	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1961 				/* indicate failures (see extension below) */
1962 
1963 	/*
1964 	 * This offset tracks the progress of the repair or replacement of
1965 	 * an individual drive.
1966 	 */
1967 	__le64 disk_recovery_offset;
1968 
1969 	/*
1970 	 * This offset tracks the progress of the initial raid set
1971 	 * synchronisation/parity calculation.
1972 	 */
1973 	__le64 array_resync_offset;
1974 
1975 	/*
1976 	 * raid characteristics
1977 	 */
1978 	__le32 level;
1979 	__le32 layout;
1980 	__le32 stripe_sectors;
1981 
1982 	/********************************************************************
1983 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1984 	 *
1985 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1986 	 */
1987 
1988 	__le32 flags; /* Flags defining array states for reshaping */
1989 
1990 	/*
1991 	 * This offset tracks the progress of a raid
1992 	 * set reshape in order to be able to restart it
1993 	 */
1994 	__le64 reshape_position;
1995 
1996 	/*
1997 	 * These define the properties of the array in case of an interrupted reshape
1998 	 */
1999 	__le32 new_level;
2000 	__le32 new_layout;
2001 	__le32 new_stripe_sectors;
2002 	__le32 delta_disks;
2003 
2004 	__le64 array_sectors; /* Array size in sectors */
2005 
2006 	/*
2007 	 * Sector offsets to data on devices (reshaping).
2008 	 * Needed to support out of place reshaping, thus
2009 	 * not writing over any stripes whilst converting
2010 	 * them from old to new layout
2011 	 */
2012 	__le64 data_offset;
2013 	__le64 new_data_offset;
2014 
2015 	__le64 sectors; /* Used device size in sectors */
2016 
2017 	/*
2018 	 * Additonal Bit field of devices indicating failures to support
2019 	 * up to 256 devices with the 1.9.0 on-disk metadata format
2020 	 */
2021 	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2022 
2023 	__le32 incompat_features;	/* Used to indicate any incompatible features */
2024 
2025 	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2026 } __packed;
2027 
2028 /*
2029  * Check for reshape constraints on raid set @rs:
2030  *
2031  * - reshape function non-existent
2032  * - degraded set
2033  * - ongoing recovery
2034  * - ongoing reshape
2035  *
2036  * Returns 0 if none or -EPERM if given constraint
2037  * and error message reference in @errmsg
2038  */
2039 static int rs_check_reshape(struct raid_set *rs)
2040 {
2041 	struct mddev *mddev = &rs->md;
2042 
2043 	if (!mddev->pers || !mddev->pers->check_reshape)
2044 		rs->ti->error = "Reshape not supported";
2045 	else if (mddev->degraded)
2046 		rs->ti->error = "Can't reshape degraded raid set";
2047 	else if (rs_is_recovering(rs))
2048 		rs->ti->error = "Convert request on recovering raid set prohibited";
2049 	else if (rs_is_reshaping(rs))
2050 		rs->ti->error = "raid set already reshaping!";
2051 	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2052 		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2053 	else
2054 		return 0;
2055 
2056 	return -EPERM;
2057 }
2058 
2059 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2060 {
2061 	BUG_ON(!rdev->sb_page);
2062 
2063 	if (rdev->sb_loaded && !force_reload)
2064 		return 0;
2065 
2066 	rdev->sb_loaded = 0;
2067 
2068 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2069 		DMERR("Failed to read superblock of device at position %d",
2070 		      rdev->raid_disk);
2071 		md_error(rdev->mddev, rdev);
2072 		set_bit(Faulty, &rdev->flags);
2073 		return -EIO;
2074 	}
2075 
2076 	rdev->sb_loaded = 1;
2077 
2078 	return 0;
2079 }
2080 
2081 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2082 {
2083 	failed_devices[0] = le64_to_cpu(sb->failed_devices);
2084 	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2085 
2086 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2087 		int i = ARRAY_SIZE(sb->extended_failed_devices);
2088 
2089 		while (i--)
2090 			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2091 	}
2092 }
2093 
2094 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2095 {
2096 	int i = ARRAY_SIZE(sb->extended_failed_devices);
2097 
2098 	sb->failed_devices = cpu_to_le64(failed_devices[0]);
2099 	while (i--)
2100 		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2101 }
2102 
2103 /*
2104  * Synchronize the superblock members with the raid set properties
2105  *
2106  * All superblock data is little endian.
2107  */
2108 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2109 {
2110 	bool update_failed_devices = false;
2111 	unsigned int i;
2112 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2113 	struct dm_raid_superblock *sb;
2114 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
2115 
2116 	/* No metadata device, no superblock */
2117 	if (!rdev->meta_bdev)
2118 		return;
2119 
2120 	BUG_ON(!rdev->sb_page);
2121 
2122 	sb = page_address(rdev->sb_page);
2123 
2124 	sb_retrieve_failed_devices(sb, failed_devices);
2125 
2126 	for (i = 0; i < rs->raid_disks; i++)
2127 		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2128 			update_failed_devices = true;
2129 			set_bit(i, (void *) failed_devices);
2130 		}
2131 
2132 	if (update_failed_devices)
2133 		sb_update_failed_devices(sb, failed_devices);
2134 
2135 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2136 	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2137 
2138 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
2139 	sb->array_position = cpu_to_le32(rdev->raid_disk);
2140 
2141 	sb->events = cpu_to_le64(mddev->events);
2142 
2143 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2144 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2145 
2146 	sb->level = cpu_to_le32(mddev->level);
2147 	sb->layout = cpu_to_le32(mddev->layout);
2148 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2149 
2150 	/********************************************************************
2151 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2152 	 *
2153 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2154 	 */
2155 	sb->new_level = cpu_to_le32(mddev->new_level);
2156 	sb->new_layout = cpu_to_le32(mddev->new_layout);
2157 	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2158 
2159 	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2160 
2161 	smp_rmb(); /* Make sure we access most recent reshape position */
2162 	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2163 	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2164 		/* Flag ongoing reshape */
2165 		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2166 
2167 		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2168 			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2169 	} else {
2170 		/* Clear reshape flags */
2171 		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2172 	}
2173 
2174 	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2175 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2176 	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2177 	sb->sectors = cpu_to_le64(rdev->sectors);
2178 	sb->incompat_features = cpu_to_le32(0);
2179 
2180 	/* Zero out the rest of the payload after the size of the superblock */
2181 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2182 }
2183 
2184 /*
2185  * super_load
2186  *
2187  * This function creates a superblock if one is not found on the device
2188  * and will decide which superblock to use if there's a choice.
2189  *
2190  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2191  */
2192 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2193 {
2194 	int r;
2195 	struct dm_raid_superblock *sb;
2196 	struct dm_raid_superblock *refsb;
2197 	uint64_t events_sb, events_refsb;
2198 
2199 	r = read_disk_sb(rdev, rdev->sb_size, false);
2200 	if (r)
2201 		return r;
2202 
2203 	sb = page_address(rdev->sb_page);
2204 
2205 	/*
2206 	 * Two cases that we want to write new superblocks and rebuild:
2207 	 * 1) New device (no matching magic number)
2208 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2209 	 */
2210 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2211 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2212 		super_sync(rdev->mddev, rdev);
2213 
2214 		set_bit(FirstUse, &rdev->flags);
2215 		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2216 
2217 		/* Force writing of superblocks to disk */
2218 		set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2219 
2220 		/* Any superblock is better than none, choose that if given */
2221 		return refdev ? 0 : 1;
2222 	}
2223 
2224 	if (!refdev)
2225 		return 1;
2226 
2227 	events_sb = le64_to_cpu(sb->events);
2228 
2229 	refsb = page_address(refdev->sb_page);
2230 	events_refsb = le64_to_cpu(refsb->events);
2231 
2232 	return (events_sb > events_refsb) ? 1 : 0;
2233 }
2234 
2235 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2236 {
2237 	int role;
2238 	unsigned int d;
2239 	struct mddev *mddev = &rs->md;
2240 	uint64_t events_sb;
2241 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2242 	struct dm_raid_superblock *sb;
2243 	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2244 	struct md_rdev *r;
2245 	struct dm_raid_superblock *sb2;
2246 
2247 	sb = page_address(rdev->sb_page);
2248 	events_sb = le64_to_cpu(sb->events);
2249 
2250 	/*
2251 	 * Initialise to 1 if this is a new superblock.
2252 	 */
2253 	mddev->events = events_sb ? : 1;
2254 
2255 	mddev->reshape_position = MaxSector;
2256 
2257 	mddev->raid_disks = le32_to_cpu(sb->num_devices);
2258 	mddev->level = le32_to_cpu(sb->level);
2259 	mddev->layout = le32_to_cpu(sb->layout);
2260 	mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2261 
2262 	/*
2263 	 * Reshaping is supported, e.g. reshape_position is valid
2264 	 * in superblock and superblock content is authoritative.
2265 	 */
2266 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2267 		/* Superblock is authoritative wrt given raid set layout! */
2268 		mddev->new_level = le32_to_cpu(sb->new_level);
2269 		mddev->new_layout = le32_to_cpu(sb->new_layout);
2270 		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2271 		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2272 		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2273 
2274 		/* raid was reshaping and got interrupted */
2275 		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2276 			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2277 				DMERR("Reshape requested but raid set is still reshaping");
2278 				return -EINVAL;
2279 			}
2280 
2281 			if (mddev->delta_disks < 0 ||
2282 			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2283 				mddev->reshape_backwards = 1;
2284 			else
2285 				mddev->reshape_backwards = 0;
2286 
2287 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2288 			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2289 		}
2290 
2291 	} else {
2292 		/*
2293 		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2294 		 */
2295 		struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2296 		struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2297 
2298 		if (rs_takeover_requested(rs)) {
2299 			if (rt_cur && rt_new)
2300 				DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2301 				      rt_cur->name, rt_new->name);
2302 			else
2303 				DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2304 			return -EINVAL;
2305 		} else if (rs_reshape_requested(rs)) {
2306 			DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2307 			if (mddev->layout != mddev->new_layout) {
2308 				if (rt_cur && rt_new)
2309 					DMERR("	 current layout %s vs new layout %s",
2310 					      rt_cur->name, rt_new->name);
2311 				else
2312 					DMERR("	 current layout 0x%X vs new layout 0x%X",
2313 					      le32_to_cpu(sb->layout), mddev->new_layout);
2314 			}
2315 			if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2316 				DMERR("	 current stripe sectors %u vs new stripe sectors %u",
2317 				      mddev->chunk_sectors, mddev->new_chunk_sectors);
2318 			if (rs->delta_disks)
2319 				DMERR("	 current %u disks vs new %u disks",
2320 				      mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2321 			if (rs_is_raid10(rs)) {
2322 				DMERR("	 Old layout: %s w/ %u copies",
2323 				      raid10_md_layout_to_format(mddev->layout),
2324 				      raid10_md_layout_to_copies(mddev->layout));
2325 				DMERR("	 New layout: %s w/ %u copies",
2326 				      raid10_md_layout_to_format(mddev->new_layout),
2327 				      raid10_md_layout_to_copies(mddev->new_layout));
2328 			}
2329 			return -EINVAL;
2330 		}
2331 
2332 		DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2333 	}
2334 
2335 	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2336 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2337 
2338 	/*
2339 	 * During load, we set FirstUse if a new superblock was written.
2340 	 * There are two reasons we might not have a superblock:
2341 	 * 1) The raid set is brand new - in which case, all of the
2342 	 *    devices must have their In_sync bit set.	Also,
2343 	 *    recovery_cp must be 0, unless forced.
2344 	 * 2) This is a new device being added to an old raid set
2345 	 *    and the new device needs to be rebuilt - in which
2346 	 *    case the In_sync bit will /not/ be set and
2347 	 *    recovery_cp must be MaxSector.
2348 	 * 3) This is/are a new device(s) being added to an old
2349 	 *    raid set during takeover to a higher raid level
2350 	 *    to provide capacity for redundancy or during reshape
2351 	 *    to add capacity to grow the raid set.
2352 	 */
2353 	d = 0;
2354 	rdev_for_each(r, mddev) {
2355 		if (test_bit(Journal, &rdev->flags))
2356 			continue;
2357 
2358 		if (test_bit(FirstUse, &r->flags))
2359 			new_devs++;
2360 
2361 		if (!test_bit(In_sync, &r->flags)) {
2362 			DMINFO("Device %d specified for rebuild; clearing superblock",
2363 				r->raid_disk);
2364 			rebuilds++;
2365 
2366 			if (test_bit(FirstUse, &r->flags))
2367 				rebuild_and_new++;
2368 		}
2369 
2370 		d++;
2371 	}
2372 
2373 	if (new_devs == rs->raid_disks || !rebuilds) {
2374 		/* Replace a broken device */
2375 		if (new_devs == 1 && !rs->delta_disks)
2376 			;
2377 		if (new_devs == rs->raid_disks) {
2378 			DMINFO("Superblocks created for new raid set");
2379 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2380 		} else if (new_devs != rebuilds &&
2381 			   new_devs != rs->delta_disks) {
2382 			DMERR("New device injected into existing raid set without "
2383 			      "'delta_disks' or 'rebuild' parameter specified");
2384 			return -EINVAL;
2385 		}
2386 	} else if (new_devs && new_devs != rebuilds) {
2387 		DMERR("%u 'rebuild' devices cannot be injected into"
2388 		      " a raid set with %u other first-time devices",
2389 		      rebuilds, new_devs);
2390 		return -EINVAL;
2391 	} else if (rebuilds) {
2392 		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2393 			DMERR("new device%s provided without 'rebuild'",
2394 			      new_devs > 1 ? "s" : "");
2395 			return -EINVAL;
2396 		} else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2397 			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2398 			      (unsigned long long) mddev->recovery_cp);
2399 			return -EINVAL;
2400 		} else if (rs_is_reshaping(rs)) {
2401 			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2402 			      (unsigned long long) mddev->reshape_position);
2403 			return -EINVAL;
2404 		}
2405 	}
2406 
2407 	/*
2408 	 * Now we set the Faulty bit for those devices that are
2409 	 * recorded in the superblock as failed.
2410 	 */
2411 	sb_retrieve_failed_devices(sb, failed_devices);
2412 	rdev_for_each(r, mddev) {
2413 		if (test_bit(Journal, &rdev->flags) ||
2414 		    !r->sb_page)
2415 			continue;
2416 		sb2 = page_address(r->sb_page);
2417 		sb2->failed_devices = 0;
2418 		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2419 
2420 		/*
2421 		 * Check for any device re-ordering.
2422 		 */
2423 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2424 			role = le32_to_cpu(sb2->array_position);
2425 			if (role < 0)
2426 				continue;
2427 
2428 			if (role != r->raid_disk) {
2429 				if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2430 					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2431 					    rs->raid_disks % rs->raid10_copies) {
2432 						rs->ti->error =
2433 							"Cannot change raid10 near set to odd # of devices!";
2434 						return -EINVAL;
2435 					}
2436 
2437 					sb2->array_position = cpu_to_le32(r->raid_disk);
2438 
2439 				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2440 					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2441 					   !rt_is_raid1(rs->raid_type)) {
2442 					rs->ti->error = "Cannot change device positions in raid set";
2443 					return -EINVAL;
2444 				}
2445 
2446 				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2447 			}
2448 
2449 			/*
2450 			 * Partial recovery is performed on
2451 			 * returning failed devices.
2452 			 */
2453 			if (test_bit(role, (void *) failed_devices))
2454 				set_bit(Faulty, &r->flags);
2455 		}
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2462 {
2463 	struct mddev *mddev = &rs->md;
2464 	struct dm_raid_superblock *sb;
2465 
2466 	if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2467 		return 0;
2468 
2469 	sb = page_address(rdev->sb_page);
2470 
2471 	/*
2472 	 * If mddev->events is not set, we know we have not yet initialized
2473 	 * the array.
2474 	 */
2475 	if (!mddev->events && super_init_validation(rs, rdev))
2476 		return -EINVAL;
2477 
2478 	if (le32_to_cpu(sb->compat_features) &&
2479 	    le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2480 		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2481 		return -EINVAL;
2482 	}
2483 
2484 	if (sb->incompat_features) {
2485 		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2486 		return -EINVAL;
2487 	}
2488 
2489 	/* Enable bitmap creation for RAID levels != 0 */
2490 	mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2491 	mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2492 
2493 	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2494 		/*
2495 		 * Retrieve rdev size stored in superblock to be prepared for shrink.
2496 		 * Check extended superblock members are present otherwise the size
2497 		 * will not be set!
2498 		 */
2499 		if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2500 			rdev->sectors = le64_to_cpu(sb->sectors);
2501 
2502 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2503 		if (rdev->recovery_offset == MaxSector)
2504 			set_bit(In_sync, &rdev->flags);
2505 		/*
2506 		 * If no reshape in progress -> we're recovering single
2507 		 * disk(s) and have to set the device(s) to out-of-sync
2508 		 */
2509 		else if (!rs_is_reshaping(rs))
2510 			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2511 	}
2512 
2513 	/*
2514 	 * If a device comes back, set it as not In_sync and no longer faulty.
2515 	 */
2516 	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2517 		rdev->recovery_offset = 0;
2518 		clear_bit(In_sync, &rdev->flags);
2519 		rdev->saved_raid_disk = rdev->raid_disk;
2520 	}
2521 
2522 	/* Reshape support -> restore repective data offsets */
2523 	rdev->data_offset = le64_to_cpu(sb->data_offset);
2524 	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2525 
2526 	return 0;
2527 }
2528 
2529 /*
2530  * Analyse superblocks and select the freshest.
2531  */
2532 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2533 {
2534 	int r;
2535 	struct md_rdev *rdev, *freshest;
2536 	struct mddev *mddev = &rs->md;
2537 
2538 	freshest = NULL;
2539 	rdev_for_each(rdev, mddev) {
2540 		if (test_bit(Journal, &rdev->flags))
2541 			continue;
2542 
2543 		if (!rdev->meta_bdev)
2544 			continue;
2545 
2546 		/* Set superblock offset/size for metadata device. */
2547 		rdev->sb_start = 0;
2548 		rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2549 		if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2550 			DMERR("superblock size of a logical block is no longer valid");
2551 			return -EINVAL;
2552 		}
2553 
2554 		/*
2555 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2556 		 * the array to undergo initialization again as
2557 		 * though it were new.	This is the intended effect
2558 		 * of the "sync" directive.
2559 		 *
2560 		 * With reshaping capability added, we must ensure that
2561 		 * that the "sync" directive is disallowed during the reshape.
2562 		 */
2563 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2564 			continue;
2565 
2566 		r = super_load(rdev, freshest);
2567 
2568 		switch (r) {
2569 		case 1:
2570 			freshest = rdev;
2571 			break;
2572 		case 0:
2573 			break;
2574 		default:
2575 			/* This is a failure to read the superblock from the metadata device. */
2576 			/*
2577 			 * We have to keep any raid0 data/metadata device pairs or
2578 			 * the MD raid0 personality will fail to start the array.
2579 			 */
2580 			if (rs_is_raid0(rs))
2581 				continue;
2582 
2583 			/*
2584 			 * We keep the dm_devs to be able to emit the device tuple
2585 			 * properly on the table line in raid_status() (rather than
2586 			 * mistakenly acting as if '- -' got passed into the constructor).
2587 			 *
2588 			 * The rdev has to stay on the same_set list to allow for
2589 			 * the attempt to restore faulty devices on second resume.
2590 			 */
2591 			rdev->raid_disk = rdev->saved_raid_disk = -1;
2592 			break;
2593 		}
2594 	}
2595 
2596 	if (!freshest)
2597 		return 0;
2598 
2599 	/*
2600 	 * Validation of the freshest device provides the source of
2601 	 * validation for the remaining devices.
2602 	 */
2603 	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2604 	if (super_validate(rs, freshest))
2605 		return -EINVAL;
2606 
2607 	if (validate_raid_redundancy(rs)) {
2608 		rs->ti->error = "Insufficient redundancy to activate array";
2609 		return -EINVAL;
2610 	}
2611 
2612 	rdev_for_each(rdev, mddev)
2613 		if (!test_bit(Journal, &rdev->flags) &&
2614 		    rdev != freshest &&
2615 		    super_validate(rs, rdev))
2616 			return -EINVAL;
2617 	return 0;
2618 }
2619 
2620 /*
2621  * Adjust data_offset and new_data_offset on all disk members of @rs
2622  * for out of place reshaping if requested by contructor
2623  *
2624  * We need free space at the beginning of each raid disk for forward
2625  * and at the end for backward reshapes which userspace has to provide
2626  * via remapping/reordering of space.
2627  */
2628 static int rs_adjust_data_offsets(struct raid_set *rs)
2629 {
2630 	sector_t data_offset = 0, new_data_offset = 0;
2631 	struct md_rdev *rdev;
2632 
2633 	/* Constructor did not request data offset change */
2634 	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2635 		if (!rs_is_reshapable(rs))
2636 			goto out;
2637 
2638 		return 0;
2639 	}
2640 
2641 	/* HM FIXME: get InSync raid_dev? */
2642 	rdev = &rs->dev[0].rdev;
2643 
2644 	if (rs->delta_disks < 0) {
2645 		/*
2646 		 * Removing disks (reshaping backwards):
2647 		 *
2648 		 * - before reshape: data is at offset 0 and free space
2649 		 *		     is at end of each component LV
2650 		 *
2651 		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2652 		 */
2653 		data_offset = 0;
2654 		new_data_offset = rs->data_offset;
2655 
2656 	} else if (rs->delta_disks > 0) {
2657 		/*
2658 		 * Adding disks (reshaping forwards):
2659 		 *
2660 		 * - before reshape: data is at offset rs->data_offset != 0 and
2661 		 *		     free space is at begin of each component LV
2662 		 *
2663 		 * - after reshape: data is at offset 0 on each component LV
2664 		 */
2665 		data_offset = rs->data_offset;
2666 		new_data_offset = 0;
2667 
2668 	} else {
2669 		/*
2670 		 * User space passes in 0 for data offset after having removed reshape space
2671 		 *
2672 		 * - or - (data offset != 0)
2673 		 *
2674 		 * Changing RAID layout or chunk size -> toggle offsets
2675 		 *
2676 		 * - before reshape: data is at offset rs->data_offset 0 and
2677 		 *		     free space is at end of each component LV
2678 		 *		     -or-
2679 		 *                   data is at offset rs->data_offset != 0 and
2680 		 *		     free space is at begin of each component LV
2681 		 *
2682 		 * - after reshape: data is at offset 0 if it was at offset != 0
2683 		 *                  or at offset != 0 if it was at offset 0
2684 		 *                  on each component LV
2685 		 *
2686 		 */
2687 		data_offset = rs->data_offset ? rdev->data_offset : 0;
2688 		new_data_offset = data_offset ? 0 : rs->data_offset;
2689 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2690 	}
2691 
2692 	/*
2693 	 * Make sure we got a minimum amount of free sectors per device
2694 	 */
2695 	if (rs->data_offset &&
2696 	    to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2697 		rs->ti->error = data_offset ? "No space for forward reshape" :
2698 					      "No space for backward reshape";
2699 		return -ENOSPC;
2700 	}
2701 out:
2702 	/*
2703 	 * Raise recovery_cp in case data_offset != 0 to
2704 	 * avoid false recovery positives in the constructor.
2705 	 */
2706 	if (rs->md.recovery_cp < rs->md.dev_sectors)
2707 		rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2708 
2709 	/* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2710 	rdev_for_each(rdev, &rs->md) {
2711 		if (!test_bit(Journal, &rdev->flags)) {
2712 			rdev->data_offset = data_offset;
2713 			rdev->new_data_offset = new_data_offset;
2714 		}
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2721 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2722 {
2723 	int i = 0;
2724 	struct md_rdev *rdev;
2725 
2726 	rdev_for_each(rdev, &rs->md) {
2727 		if (!test_bit(Journal, &rdev->flags)) {
2728 			rdev->raid_disk = i++;
2729 			rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2730 		}
2731 	}
2732 }
2733 
2734 /*
2735  * Setup @rs for takeover by a different raid level
2736  */
2737 static int rs_setup_takeover(struct raid_set *rs)
2738 {
2739 	struct mddev *mddev = &rs->md;
2740 	struct md_rdev *rdev;
2741 	unsigned int d = mddev->raid_disks = rs->raid_disks;
2742 	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2743 
2744 	if (rt_is_raid10(rs->raid_type)) {
2745 		if (rs_is_raid0(rs)) {
2746 			/* Userpace reordered disks -> adjust raid_disk indexes */
2747 			__reorder_raid_disk_indexes(rs);
2748 
2749 			/* raid0 -> raid10_far layout */
2750 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2751 								   rs->raid10_copies);
2752 		} else if (rs_is_raid1(rs))
2753 			/* raid1 -> raid10_near layout */
2754 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2755 								   rs->raid_disks);
2756 		else
2757 			return -EINVAL;
2758 
2759 	}
2760 
2761 	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2762 	mddev->recovery_cp = MaxSector;
2763 
2764 	while (d--) {
2765 		rdev = &rs->dev[d].rdev;
2766 
2767 		if (test_bit(d, (void *) rs->rebuild_disks)) {
2768 			clear_bit(In_sync, &rdev->flags);
2769 			clear_bit(Faulty, &rdev->flags);
2770 			mddev->recovery_cp = rdev->recovery_offset = 0;
2771 			/* Bitmap has to be created when we do an "up" takeover */
2772 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2773 		}
2774 
2775 		rdev->new_data_offset = new_data_offset;
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 /* Prepare @rs for reshape */
2782 static int rs_prepare_reshape(struct raid_set *rs)
2783 {
2784 	bool reshape;
2785 	struct mddev *mddev = &rs->md;
2786 
2787 	if (rs_is_raid10(rs)) {
2788 		if (rs->raid_disks != mddev->raid_disks &&
2789 		    __is_raid10_near(mddev->layout) &&
2790 		    rs->raid10_copies &&
2791 		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2792 			/*
2793 			 * raid disk have to be multiple of data copies to allow this conversion,
2794 			 *
2795 			 * This is actually not a reshape it is a
2796 			 * rebuild of any additional mirrors per group
2797 			 */
2798 			if (rs->raid_disks % rs->raid10_copies) {
2799 				rs->ti->error = "Can't reshape raid10 mirror groups";
2800 				return -EINVAL;
2801 			}
2802 
2803 			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2804 			__reorder_raid_disk_indexes(rs);
2805 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2806 								   rs->raid10_copies);
2807 			mddev->new_layout = mddev->layout;
2808 			reshape = false;
2809 		} else
2810 			reshape = true;
2811 
2812 	} else if (rs_is_raid456(rs))
2813 		reshape = true;
2814 
2815 	else if (rs_is_raid1(rs)) {
2816 		if (rs->delta_disks) {
2817 			/* Process raid1 via delta_disks */
2818 			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2819 			reshape = true;
2820 		} else {
2821 			/* Process raid1 without delta_disks */
2822 			mddev->raid_disks = rs->raid_disks;
2823 			reshape = false;
2824 		}
2825 	} else {
2826 		rs->ti->error = "Called with bogus raid type";
2827 		return -EINVAL;
2828 	}
2829 
2830 	if (reshape) {
2831 		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2832 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2833 	} else if (mddev->raid_disks < rs->raid_disks)
2834 		/* Create new superblocks and bitmaps, if any new disks */
2835 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2836 
2837 	return 0;
2838 }
2839 
2840 /* Get reshape sectors from data_offsets or raid set */
2841 static sector_t _get_reshape_sectors(struct raid_set *rs)
2842 {
2843 	struct md_rdev *rdev;
2844 	sector_t reshape_sectors = 0;
2845 
2846 	rdev_for_each(rdev, &rs->md)
2847 		if (!test_bit(Journal, &rdev->flags)) {
2848 			reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2849 					rdev->data_offset - rdev->new_data_offset :
2850 					rdev->new_data_offset - rdev->data_offset;
2851 			break;
2852 		}
2853 
2854 	return max(reshape_sectors, (sector_t) rs->data_offset);
2855 }
2856 
2857 /*
2858  *
2859  * - change raid layout
2860  * - change chunk size
2861  * - add disks
2862  * - remove disks
2863  */
2864 static int rs_setup_reshape(struct raid_set *rs)
2865 {
2866 	int r = 0;
2867 	unsigned int cur_raid_devs, d;
2868 	sector_t reshape_sectors = _get_reshape_sectors(rs);
2869 	struct mddev *mddev = &rs->md;
2870 	struct md_rdev *rdev;
2871 
2872 	mddev->delta_disks = rs->delta_disks;
2873 	cur_raid_devs = mddev->raid_disks;
2874 
2875 	/* Ignore impossible layout change whilst adding/removing disks */
2876 	if (mddev->delta_disks &&
2877 	    mddev->layout != mddev->new_layout) {
2878 		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2879 		mddev->new_layout = mddev->layout;
2880 	}
2881 
2882 	/*
2883 	 * Adjust array size:
2884 	 *
2885 	 * - in case of adding disk(s), array size has
2886 	 *   to grow after the disk adding reshape,
2887 	 *   which'll hapen in the event handler;
2888 	 *   reshape will happen forward, so space has to
2889 	 *   be available at the beginning of each disk
2890 	 *
2891 	 * - in case of removing disk(s), array size
2892 	 *   has to shrink before starting the reshape,
2893 	 *   which'll happen here;
2894 	 *   reshape will happen backward, so space has to
2895 	 *   be available at the end of each disk
2896 	 *
2897 	 * - data_offset and new_data_offset are
2898 	 *   adjusted for aforementioned out of place
2899 	 *   reshaping based on userspace passing in
2900 	 *   the "data_offset <sectors>" key/value
2901 	 *   pair via the constructor
2902 	 */
2903 
2904 	/* Add disk(s) */
2905 	if (rs->delta_disks > 0) {
2906 		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2907 		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2908 			rdev = &rs->dev[d].rdev;
2909 			clear_bit(In_sync, &rdev->flags);
2910 
2911 			/*
2912 			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2913 			 * by md, which'll store that erroneously in the superblock on reshape
2914 			 */
2915 			rdev->saved_raid_disk = -1;
2916 			rdev->raid_disk = d;
2917 
2918 			rdev->sectors = mddev->dev_sectors;
2919 			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2920 		}
2921 
2922 		mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2923 
2924 	/* Remove disk(s) */
2925 	} else if (rs->delta_disks < 0) {
2926 		r = rs_set_dev_and_array_sectors(rs, true);
2927 		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2928 
2929 	/* Change layout and/or chunk size */
2930 	} else {
2931 		/*
2932 		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2933 		 *
2934 		 * keeping number of disks and do layout change ->
2935 		 *
2936 		 * toggle reshape_backward depending on data_offset:
2937 		 *
2938 		 * - free space upfront -> reshape forward
2939 		 *
2940 		 * - free space at the end -> reshape backward
2941 		 *
2942 		 *
2943 		 * This utilizes free reshape space avoiding the need
2944 		 * for userspace to move (parts of) LV segments in
2945 		 * case of layout/chunksize change  (for disk
2946 		 * adding/removing reshape space has to be at
2947 		 * the proper address (see above with delta_disks):
2948 		 *
2949 		 * add disk(s)   -> begin
2950 		 * remove disk(s)-> end
2951 		 */
2952 		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2953 	}
2954 
2955 	/*
2956 	 * Adjust device size for forward reshape
2957 	 * because md_finish_reshape() reduces it.
2958 	 */
2959 	if (!mddev->reshape_backwards)
2960 		rdev_for_each(rdev, &rs->md)
2961 			if (!test_bit(Journal, &rdev->flags))
2962 				rdev->sectors += reshape_sectors;
2963 
2964 	return r;
2965 }
2966 
2967 /*
2968  * Enable/disable discard support on RAID set depending on
2969  * RAID level and discard properties of underlying RAID members.
2970  */
2971 static void configure_discard_support(struct raid_set *rs)
2972 {
2973 	int i;
2974 	bool raid456;
2975 	struct dm_target *ti = rs->ti;
2976 
2977 	/*
2978 	 * XXX: RAID level 4,5,6 require zeroing for safety.
2979 	 */
2980 	raid456 = rs_is_raid456(rs);
2981 
2982 	for (i = 0; i < rs->raid_disks; i++) {
2983 		struct request_queue *q;
2984 
2985 		if (!rs->dev[i].rdev.bdev)
2986 			continue;
2987 
2988 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
2989 		if (!q || !blk_queue_discard(q))
2990 			return;
2991 
2992 		if (raid456) {
2993 			if (!devices_handle_discard_safely) {
2994 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2995 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2996 				return;
2997 			}
2998 		}
2999 	}
3000 
3001 	/*
3002 	 * RAID1 and RAID10 personalities require bio splitting,
3003 	 * RAID0/4/5/6 don't and process large discard bios properly.
3004 	 */
3005 	ti->split_discard_bios = !!(rs_is_raid1(rs) || rs_is_raid10(rs));
3006 	ti->num_discard_bios = 1;
3007 }
3008 
3009 /*
3010  * Construct a RAID0/1/10/4/5/6 mapping:
3011  * Args:
3012  *	<raid_type> <#raid_params> <raid_params>{0,}	\
3013  *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
3014  *
3015  * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
3016  * details on possible <raid_params>.
3017  *
3018  * Userspace is free to initialize the metadata devices, hence the superblocks to
3019  * enforce recreation based on the passed in table parameters.
3020  *
3021  */
3022 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3023 {
3024 	int r;
3025 	bool resize = false;
3026 	struct raid_type *rt;
3027 	unsigned int num_raid_params, num_raid_devs;
3028 	sector_t calculated_dev_sectors, rdev_sectors, reshape_sectors;
3029 	struct raid_set *rs = NULL;
3030 	const char *arg;
3031 	struct rs_layout rs_layout;
3032 	struct dm_arg_set as = { argc, argv }, as_nrd;
3033 	struct dm_arg _args[] = {
3034 		{ 0, as.argc, "Cannot understand number of raid parameters" },
3035 		{ 1, 254, "Cannot understand number of raid devices parameters" }
3036 	};
3037 
3038 	/* Must have <raid_type> */
3039 	arg = dm_shift_arg(&as);
3040 	if (!arg) {
3041 		ti->error = "No arguments";
3042 		return -EINVAL;
3043 	}
3044 
3045 	rt = get_raid_type(arg);
3046 	if (!rt) {
3047 		ti->error = "Unrecognised raid_type";
3048 		return -EINVAL;
3049 	}
3050 
3051 	/* Must have <#raid_params> */
3052 	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3053 		return -EINVAL;
3054 
3055 	/* number of raid device tupples <meta_dev data_dev> */
3056 	as_nrd = as;
3057 	dm_consume_args(&as_nrd, num_raid_params);
3058 	_args[1].max = (as_nrd.argc - 1) / 2;
3059 	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3060 		return -EINVAL;
3061 
3062 	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3063 		ti->error = "Invalid number of supplied raid devices";
3064 		return -EINVAL;
3065 	}
3066 
3067 	rs = raid_set_alloc(ti, rt, num_raid_devs);
3068 	if (IS_ERR(rs))
3069 		return PTR_ERR(rs);
3070 
3071 	r = parse_raid_params(rs, &as, num_raid_params);
3072 	if (r)
3073 		goto bad;
3074 
3075 	r = parse_dev_params(rs, &as);
3076 	if (r)
3077 		goto bad;
3078 
3079 	rs->md.sync_super = super_sync;
3080 
3081 	/*
3082 	 * Calculate ctr requested array and device sizes to allow
3083 	 * for superblock analysis needing device sizes defined.
3084 	 *
3085 	 * Any existing superblock will overwrite the array and device sizes
3086 	 */
3087 	r = rs_set_dev_and_array_sectors(rs, false);
3088 	if (r)
3089 		goto bad;
3090 
3091 	calculated_dev_sectors = rs->md.dev_sectors;
3092 
3093 	/*
3094 	 * Backup any new raid set level, layout, ...
3095 	 * requested to be able to compare to superblock
3096 	 * members for conversion decisions.
3097 	 */
3098 	rs_config_backup(rs, &rs_layout);
3099 
3100 	r = analyse_superblocks(ti, rs);
3101 	if (r)
3102 		goto bad;
3103 
3104 	rdev_sectors = __rdev_sectors(rs);
3105 	if (!rdev_sectors) {
3106 		ti->error = "Invalid rdev size";
3107 		r = -EINVAL;
3108 		goto bad;
3109 	}
3110 
3111 
3112 	reshape_sectors = _get_reshape_sectors(rs);
3113 	if (calculated_dev_sectors != rdev_sectors)
3114 		resize = calculated_dev_sectors != (reshape_sectors ? rdev_sectors - reshape_sectors : rdev_sectors);
3115 
3116 	INIT_WORK(&rs->md.event_work, do_table_event);
3117 	ti->private = rs;
3118 	ti->num_flush_bios = 1;
3119 
3120 	/* Restore any requested new layout for conversion decision */
3121 	rs_config_restore(rs, &rs_layout);
3122 
3123 	/*
3124 	 * Now that we have any superblock metadata available,
3125 	 * check for new, recovering, reshaping, to be taken over,
3126 	 * to be reshaped or an existing, unchanged raid set to
3127 	 * run in sequence.
3128 	 */
3129 	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3130 		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3131 		if (rs_is_raid6(rs) &&
3132 		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3133 			ti->error = "'nosync' not allowed for new raid6 set";
3134 			r = -EINVAL;
3135 			goto bad;
3136 		}
3137 		rs_setup_recovery(rs, 0);
3138 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3139 		rs_set_new(rs);
3140 	} else if (rs_is_recovering(rs)) {
3141 		/* A recovering raid set may be resized */
3142 		; /* skip setup rs */
3143 	} else if (rs_is_reshaping(rs)) {
3144 		/* Have to reject size change request during reshape */
3145 		if (resize) {
3146 			ti->error = "Can't resize a reshaping raid set";
3147 			r = -EPERM;
3148 			goto bad;
3149 		}
3150 		/* skip setup rs */
3151 	} else if (rs_takeover_requested(rs)) {
3152 		if (rs_is_reshaping(rs)) {
3153 			ti->error = "Can't takeover a reshaping raid set";
3154 			r = -EPERM;
3155 			goto bad;
3156 		}
3157 
3158 		/* We can't takeover a journaled raid4/5/6 */
3159 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3160 			ti->error = "Can't takeover a journaled raid4/5/6 set";
3161 			r = -EPERM;
3162 			goto bad;
3163 		}
3164 
3165 		/*
3166 		 * If a takeover is needed, userspace sets any additional
3167 		 * devices to rebuild and we can check for a valid request here.
3168 		 *
3169 		 * If acceptible, set the level to the new requested
3170 		 * one, prohibit requesting recovery, allow the raid
3171 		 * set to run and store superblocks during resume.
3172 		 */
3173 		r = rs_check_takeover(rs);
3174 		if (r)
3175 			goto bad;
3176 
3177 		r = rs_setup_takeover(rs);
3178 		if (r)
3179 			goto bad;
3180 
3181 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3182 		/* Takeover ain't recovery, so disable recovery */
3183 		rs_setup_recovery(rs, MaxSector);
3184 		rs_set_new(rs);
3185 	} else if (rs_reshape_requested(rs)) {
3186 		/*
3187 		 * No need to check for 'ongoing' takeover here, because takeover
3188 		 * is an instant operation as oposed to an ongoing reshape.
3189 		 */
3190 
3191 		/* We can't reshape a journaled raid4/5/6 */
3192 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3193 			ti->error = "Can't reshape a journaled raid4/5/6 set";
3194 			r = -EPERM;
3195 			goto bad;
3196 		}
3197 
3198 		/* Out-of-place space has to be available to allow for a reshape unless raid1! */
3199 		if (reshape_sectors || rs_is_raid1(rs)) {
3200 			/*
3201 			  * We can only prepare for a reshape here, because the
3202 			  * raid set needs to run to provide the repective reshape
3203 			  * check functions via its MD personality instance.
3204 			  *
3205 			  * So do the reshape check after md_run() succeeded.
3206 			  */
3207 			r = rs_prepare_reshape(rs);
3208 			if (r)
3209 				return r;
3210 
3211 			/* Reshaping ain't recovery, so disable recovery */
3212 			rs_setup_recovery(rs, MaxSector);
3213 		}
3214 		rs_set_cur(rs);
3215 	} else {
3216 		/* May not set recovery when a device rebuild is requested */
3217 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3218 			rs_setup_recovery(rs, MaxSector);
3219 			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3220 		} else
3221 			rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3222 					      0 : (resize ? calculated_dev_sectors : MaxSector));
3223 		rs_set_cur(rs);
3224 	}
3225 
3226 	/* If constructor requested it, change data and new_data offsets */
3227 	r = rs_adjust_data_offsets(rs);
3228 	if (r)
3229 		goto bad;
3230 
3231 	/* Start raid set read-only and assumed clean to change in raid_resume() */
3232 	rs->md.ro = 1;
3233 	rs->md.in_sync = 1;
3234 	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3235 
3236 	/* Has to be held on running the array */
3237 	mddev_lock_nointr(&rs->md);
3238 	r = md_run(&rs->md);
3239 	rs->md.in_sync = 0; /* Assume already marked dirty */
3240 	if (r) {
3241 		ti->error = "Failed to run raid array";
3242 		mddev_unlock(&rs->md);
3243 		goto bad;
3244 	}
3245 
3246 	r = md_start(&rs->md);
3247 
3248 	if (r) {
3249 		ti->error = "Failed to start raid array";
3250 		mddev_unlock(&rs->md);
3251 		goto bad_md_start;
3252 	}
3253 
3254 	rs->callbacks.congested_fn = raid_is_congested;
3255 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3256 
3257 	/* If raid4/5/6 journal mode explictely requested (only possible with journal dev) -> set it */
3258 	if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3259 		r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3260 		if (r) {
3261 			ti->error = "Failed to set raid4/5/6 journal mode";
3262 			mddev_unlock(&rs->md);
3263 			goto bad_journal_mode_set;
3264 		}
3265 	}
3266 
3267 	mddev_suspend(&rs->md);
3268 	set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3269 
3270 	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3271 	if (rs_is_raid456(rs)) {
3272 		r = rs_set_raid456_stripe_cache(rs);
3273 		if (r)
3274 			goto bad_stripe_cache;
3275 	}
3276 
3277 	/* Now do an early reshape check */
3278 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3279 		r = rs_check_reshape(rs);
3280 		if (r)
3281 			goto bad_check_reshape;
3282 
3283 		/* Restore new, ctr requested layout to perform check */
3284 		rs_config_restore(rs, &rs_layout);
3285 
3286 		if (rs->md.pers->start_reshape) {
3287 			r = rs->md.pers->check_reshape(&rs->md);
3288 			if (r) {
3289 				ti->error = "Reshape check failed";
3290 				goto bad_check_reshape;
3291 			}
3292 		}
3293 	}
3294 
3295 	/* Disable/enable discard support on raid set. */
3296 	configure_discard_support(rs);
3297 
3298 	mddev_unlock(&rs->md);
3299 	return 0;
3300 
3301 bad_md_start:
3302 bad_journal_mode_set:
3303 bad_stripe_cache:
3304 bad_check_reshape:
3305 	md_stop(&rs->md);
3306 bad:
3307 	raid_set_free(rs);
3308 
3309 	return r;
3310 }
3311 
3312 static void raid_dtr(struct dm_target *ti)
3313 {
3314 	struct raid_set *rs = ti->private;
3315 
3316 	list_del_init(&rs->callbacks.list);
3317 	md_stop(&rs->md);
3318 	raid_set_free(rs);
3319 }
3320 
3321 static int raid_map(struct dm_target *ti, struct bio *bio)
3322 {
3323 	struct raid_set *rs = ti->private;
3324 	struct mddev *mddev = &rs->md;
3325 
3326 	/*
3327 	 * If we're reshaping to add disk(s)), ti->len and
3328 	 * mddev->array_sectors will differ during the process
3329 	 * (ti->len > mddev->array_sectors), so we have to requeue
3330 	 * bios with addresses > mddev->array_sectors here or
3331 	 * there will occur accesses past EOD of the component
3332 	 * data images thus erroring the raid set.
3333 	 */
3334 	if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3335 		return DM_MAPIO_REQUEUE;
3336 
3337 	md_handle_request(mddev, bio);
3338 
3339 	return DM_MAPIO_SUBMITTED;
3340 }
3341 
3342 /* Return string describing the current sync action of @mddev */
3343 static const char *decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3344 {
3345 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3346 		return "frozen";
3347 
3348 	/* The MD sync thread can be done with io but still be running */
3349 	if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3350 	    (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3351 	     (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3352 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3353 			return "reshape";
3354 
3355 		if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3356 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3357 				return "resync";
3358 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
3359 				return "check";
3360 			return "repair";
3361 		}
3362 
3363 		if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3364 			return "recover";
3365 	}
3366 
3367 	return "idle";
3368 }
3369 
3370 /*
3371  * Return status string for @rdev
3372  *
3373  * Status characters:
3374  *
3375  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3376  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3377  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3378  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3379  */
3380 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3381 {
3382 	if (!rdev->bdev)
3383 		return "-";
3384 	else if (test_bit(Faulty, &rdev->flags))
3385 		return "D";
3386 	else if (test_bit(Journal, &rdev->flags))
3387 		return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3388 	else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3389 		 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3390 		  !test_bit(In_sync, &rdev->flags)))
3391 		return "a";
3392 	else
3393 		return "A";
3394 }
3395 
3396 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3397 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3398 				sector_t resync_max_sectors)
3399 {
3400 	sector_t r;
3401 	struct mddev *mddev = &rs->md;
3402 
3403 	clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3404 	clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3405 
3406 	if (rs_is_raid0(rs)) {
3407 		r = resync_max_sectors;
3408 		set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3409 
3410 	} else {
3411 		if (test_bit(MD_RECOVERY_NEEDED, &recovery) ||
3412 		    test_bit(MD_RECOVERY_RESHAPE, &recovery) ||
3413 		    test_bit(MD_RECOVERY_RUNNING, &recovery))
3414 			r = mddev->curr_resync_completed;
3415 		else
3416 			r = mddev->recovery_cp;
3417 
3418 		if (r >= resync_max_sectors &&
3419 		    (!test_bit(MD_RECOVERY_REQUESTED, &recovery) ||
3420 		     (!test_bit(MD_RECOVERY_FROZEN, &recovery) &&
3421 		      !test_bit(MD_RECOVERY_NEEDED, &recovery) &&
3422 		      !test_bit(MD_RECOVERY_RUNNING, &recovery)))) {
3423 			/*
3424 			 * Sync complete.
3425 			 */
3426 			/* In case we have finished recovering, the array is in sync. */
3427 			if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3428 				set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3429 
3430 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) {
3431 			/*
3432 			 * In case we are recovering, the array is not in sync
3433 			 * and health chars should show the recovering legs.
3434 			 */
3435 			;
3436 
3437 		} else if (test_bit(MD_RECOVERY_SYNC, &recovery) &&
3438 			   !test_bit(MD_RECOVERY_REQUESTED, &recovery)) {
3439 			/*
3440 			 * If "resync" is occurring, the raid set
3441 			 * is or may be out of sync hence the health
3442 			 * characters shall be 'a'.
3443 			 */
3444 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3445 
3446 		} else if (test_bit(MD_RECOVERY_RESHAPE, &recovery) &&
3447 			   !test_bit(MD_RECOVERY_REQUESTED, &recovery)) {
3448 			/*
3449 			 * If "reshape" is occurring, the raid set
3450 			 * is or may be out of sync hence the health
3451 			 * characters shall be 'a'.
3452 			 */
3453 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3454 
3455 		} else if (test_bit(MD_RECOVERY_REQUESTED, &recovery)) {
3456 			/*
3457 			 * If "check" or "repair" is occurring, the raid set has
3458 			 * undergone an initial sync and the health characters
3459 			 * should not be 'a' anymore.
3460 			 */
3461 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3462 
3463 		} else {
3464 			struct md_rdev *rdev;
3465 
3466 			/*
3467 			 * We are idle and recovery is needed, prevent 'A' chars race
3468 			 * caused by components still set to in-sync by constrcuctor.
3469 			 */
3470 			if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3471 				set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3472 
3473 			/*
3474 			 * The raid set may be doing an initial sync, or it may
3475 			 * be rebuilding individual components.	 If all the
3476 			 * devices are In_sync, then it is the raid set that is
3477 			 * being initialized.
3478 			 */
3479 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3480 			rdev_for_each(rdev, mddev)
3481 				if (!test_bit(Journal, &rdev->flags) &&
3482 				    !test_bit(In_sync, &rdev->flags)) {
3483 					clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3484 					break;
3485 				}
3486 		}
3487 	}
3488 
3489 	return min(r, resync_max_sectors);
3490 }
3491 
3492 /* Helper to return @dev name or "-" if !@dev */
3493 static const char *__get_dev_name(struct dm_dev *dev)
3494 {
3495 	return dev ? dev->name : "-";
3496 }
3497 
3498 static void raid_status(struct dm_target *ti, status_type_t type,
3499 			unsigned int status_flags, char *result, unsigned int maxlen)
3500 {
3501 	struct raid_set *rs = ti->private;
3502 	struct mddev *mddev = &rs->md;
3503 	struct r5conf *conf = mddev->private;
3504 	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3505 	unsigned long recovery;
3506 	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3507 	unsigned int sz = 0;
3508 	unsigned int rebuild_disks;
3509 	unsigned int write_mostly_params = 0;
3510 	sector_t progress, resync_max_sectors, resync_mismatches;
3511 	const char *sync_action;
3512 	struct raid_type *rt;
3513 
3514 	switch (type) {
3515 	case STATUSTYPE_INFO:
3516 		/* *Should* always succeed */
3517 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3518 		if (!rt)
3519 			return;
3520 
3521 		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3522 
3523 		/* Access most recent mddev properties for status output */
3524 		smp_rmb();
3525 		recovery = rs->md.recovery;
3526 		/* Get sensible max sectors even if raid set not yet started */
3527 		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3528 				      mddev->resync_max_sectors : mddev->dev_sectors;
3529 		progress = rs_get_progress(rs, recovery, resync_max_sectors);
3530 		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3531 				    atomic64_read(&mddev->resync_mismatches) : 0;
3532 		sync_action = decipher_sync_action(&rs->md, recovery);
3533 
3534 		/* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3535 		for (i = 0; i < rs->raid_disks; i++)
3536 			DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3537 
3538 		/*
3539 		 * In-sync/Reshape ratio:
3540 		 *  The in-sync ratio shows the progress of:
3541 		 *   - Initializing the raid set
3542 		 *   - Rebuilding a subset of devices of the raid set
3543 		 *  The user can distinguish between the two by referring
3544 		 *  to the status characters.
3545 		 *
3546 		 *  The reshape ratio shows the progress of
3547 		 *  changing the raid layout or the number of
3548 		 *  disks of a raid set
3549 		 */
3550 		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3551 				     (unsigned long long) resync_max_sectors);
3552 
3553 		/*
3554 		 * v1.5.0+:
3555 		 *
3556 		 * Sync action:
3557 		 *   See Documentation/device-mapper/dm-raid.txt for
3558 		 *   information on each of these states.
3559 		 */
3560 		DMEMIT(" %s", sync_action);
3561 
3562 		/*
3563 		 * v1.5.0+:
3564 		 *
3565 		 * resync_mismatches/mismatch_cnt
3566 		 *   This field shows the number of discrepancies found when
3567 		 *   performing a "check" of the raid set.
3568 		 */
3569 		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3570 
3571 		/*
3572 		 * v1.9.0+:
3573 		 *
3574 		 * data_offset (needed for out of space reshaping)
3575 		 *   This field shows the data offset into the data
3576 		 *   image LV where the first stripes data starts.
3577 		 *
3578 		 * We keep data_offset equal on all raid disks of the set,
3579 		 * so retrieving it from the first raid disk is sufficient.
3580 		 */
3581 		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3582 
3583 		/*
3584 		 * v1.10.0+:
3585 		 */
3586 		DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3587 			      __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3588 		break;
3589 
3590 	case STATUSTYPE_TABLE:
3591 		/* Report the table line string you would use to construct this raid set */
3592 
3593 		/* Calculate raid parameter count */
3594 		for (i = 0; i < rs->raid_disks; i++)
3595 			if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3596 				write_mostly_params += 2;
3597 		rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3598 		raid_param_cnt += rebuild_disks * 2 +
3599 				  write_mostly_params +
3600 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3601 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3602 				  (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) +
3603 				  (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0);
3604 
3605 		/* Emit table line */
3606 		/* This has to be in the documented order for userspace! */
3607 		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3608 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3609 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3610 		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3611 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3612 		if (rebuild_disks)
3613 			for (i = 0; i < rs->raid_disks; i++)
3614 				if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3615 					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3616 							 rs->dev[i].rdev.raid_disk);
3617 		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3618 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3619 					  mddev->bitmap_info.daemon_sleep);
3620 		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3621 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3622 					 mddev->sync_speed_min);
3623 		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3624 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3625 					 mddev->sync_speed_max);
3626 		if (write_mostly_params)
3627 			for (i = 0; i < rs->raid_disks; i++)
3628 				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3629 					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3630 					       rs->dev[i].rdev.raid_disk);
3631 		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3632 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3633 					  mddev->bitmap_info.max_write_behind);
3634 		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3635 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3636 					 max_nr_stripes);
3637 		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3638 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3639 					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3640 		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3641 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3642 					 raid10_md_layout_to_copies(mddev->layout));
3643 		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3644 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3645 					 raid10_md_layout_to_format(mddev->layout));
3646 		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3647 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3648 					 max(rs->delta_disks, mddev->delta_disks));
3649 		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3650 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3651 					   (unsigned long long) rs->data_offset);
3652 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3653 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3654 					__get_dev_name(rs->journal_dev.dev));
3655 		if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3656 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3657 					 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3658 		DMEMIT(" %d", rs->raid_disks);
3659 		for (i = 0; i < rs->raid_disks; i++)
3660 			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3661 					 __get_dev_name(rs->dev[i].data_dev));
3662 	}
3663 }
3664 
3665 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3666 {
3667 	struct raid_set *rs = ti->private;
3668 	struct mddev *mddev = &rs->md;
3669 
3670 	if (!mddev->pers || !mddev->pers->sync_request)
3671 		return -EINVAL;
3672 
3673 	if (!strcasecmp(argv[0], "frozen"))
3674 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3675 	else
3676 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3677 
3678 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3679 		if (mddev->sync_thread) {
3680 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3681 			md_reap_sync_thread(mddev);
3682 		}
3683 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3684 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3685 		return -EBUSY;
3686 	else if (!strcasecmp(argv[0], "resync"))
3687 		; /* MD_RECOVERY_NEEDED set below */
3688 	else if (!strcasecmp(argv[0], "recover"))
3689 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3690 	else {
3691 		if (!strcasecmp(argv[0], "check")) {
3692 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3693 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3694 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3695 		} else if (!strcasecmp(argv[0], "repair")) {
3696 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3697 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3698 		} else
3699 			return -EINVAL;
3700 	}
3701 	if (mddev->ro == 2) {
3702 		/* A write to sync_action is enough to justify
3703 		 * canceling read-auto mode
3704 		 */
3705 		mddev->ro = 0;
3706 		if (!mddev->suspended && mddev->sync_thread)
3707 			md_wakeup_thread(mddev->sync_thread);
3708 	}
3709 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3710 	if (!mddev->suspended && mddev->thread)
3711 		md_wakeup_thread(mddev->thread);
3712 
3713 	return 0;
3714 }
3715 
3716 static int raid_iterate_devices(struct dm_target *ti,
3717 				iterate_devices_callout_fn fn, void *data)
3718 {
3719 	struct raid_set *rs = ti->private;
3720 	unsigned int i;
3721 	int r = 0;
3722 
3723 	for (i = 0; !r && i < rs->md.raid_disks; i++)
3724 		if (rs->dev[i].data_dev)
3725 			r = fn(ti,
3726 				 rs->dev[i].data_dev,
3727 				 0, /* No offset on data devs */
3728 				 rs->md.dev_sectors,
3729 				 data);
3730 
3731 	return r;
3732 }
3733 
3734 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3735 {
3736 	struct raid_set *rs = ti->private;
3737 	unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3738 
3739 	blk_limits_io_min(limits, chunk_size);
3740 	blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3741 }
3742 
3743 static void raid_postsuspend(struct dm_target *ti)
3744 {
3745 	struct raid_set *rs = ti->private;
3746 
3747 	if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3748 		/* Writes have to be stopped before suspending to avoid deadlocks. */
3749 		if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3750 			md_stop_writes(&rs->md);
3751 
3752 		mddev_lock_nointr(&rs->md);
3753 		mddev_suspend(&rs->md);
3754 		mddev_unlock(&rs->md);
3755 	}
3756 }
3757 
3758 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3759 {
3760 	int i;
3761 	uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3762 	unsigned long flags;
3763 	bool cleared = false;
3764 	struct dm_raid_superblock *sb;
3765 	struct mddev *mddev = &rs->md;
3766 	struct md_rdev *r;
3767 
3768 	/* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3769 	if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3770 		return;
3771 
3772 	memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3773 
3774 	for (i = 0; i < mddev->raid_disks; i++) {
3775 		r = &rs->dev[i].rdev;
3776 		/* HM FIXME: enhance journal device recovery processing */
3777 		if (test_bit(Journal, &r->flags))
3778 			continue;
3779 
3780 		if (test_bit(Faulty, &r->flags) &&
3781 		    r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3782 			DMINFO("Faulty %s device #%d has readable super block."
3783 			       "  Attempting to revive it.",
3784 			       rs->raid_type->name, i);
3785 
3786 			/*
3787 			 * Faulty bit may be set, but sometimes the array can
3788 			 * be suspended before the personalities can respond
3789 			 * by removing the device from the array (i.e. calling
3790 			 * 'hot_remove_disk').	If they haven't yet removed
3791 			 * the failed device, its 'raid_disk' number will be
3792 			 * '>= 0' - meaning we must call this function
3793 			 * ourselves.
3794 			 */
3795 			flags = r->flags;
3796 			clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3797 			if (r->raid_disk >= 0) {
3798 				if (mddev->pers->hot_remove_disk(mddev, r)) {
3799 					/* Failed to revive this device, try next */
3800 					r->flags = flags;
3801 					continue;
3802 				}
3803 			} else
3804 				r->raid_disk = r->saved_raid_disk = i;
3805 
3806 			clear_bit(Faulty, &r->flags);
3807 			clear_bit(WriteErrorSeen, &r->flags);
3808 
3809 			if (mddev->pers->hot_add_disk(mddev, r)) {
3810 				/* Failed to revive this device, try next */
3811 				r->raid_disk = r->saved_raid_disk = -1;
3812 				r->flags = flags;
3813 			} else {
3814 				clear_bit(In_sync, &r->flags);
3815 				r->recovery_offset = 0;
3816 				set_bit(i, (void *) cleared_failed_devices);
3817 				cleared = true;
3818 			}
3819 		}
3820 	}
3821 
3822 	/* If any failed devices could be cleared, update all sbs failed_devices bits */
3823 	if (cleared) {
3824 		uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3825 
3826 		rdev_for_each(r, &rs->md) {
3827 			if (test_bit(Journal, &r->flags))
3828 				continue;
3829 
3830 			sb = page_address(r->sb_page);
3831 			sb_retrieve_failed_devices(sb, failed_devices);
3832 
3833 			for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3834 				failed_devices[i] &= ~cleared_failed_devices[i];
3835 
3836 			sb_update_failed_devices(sb, failed_devices);
3837 		}
3838 	}
3839 }
3840 
3841 static int __load_dirty_region_bitmap(struct raid_set *rs)
3842 {
3843 	int r = 0;
3844 
3845 	/* Try loading the bitmap unless "raid0", which does not have one */
3846 	if (!rs_is_raid0(rs) &&
3847 	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3848 		r = bitmap_load(&rs->md);
3849 		if (r)
3850 			DMERR("Failed to load bitmap");
3851 	}
3852 
3853 	return r;
3854 }
3855 
3856 /* Enforce updating all superblocks */
3857 static void rs_update_sbs(struct raid_set *rs)
3858 {
3859 	struct mddev *mddev = &rs->md;
3860 	int ro = mddev->ro;
3861 
3862 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3863 	mddev->ro = 0;
3864 	md_update_sb(mddev, 1);
3865 	mddev->ro = ro;
3866 }
3867 
3868 /*
3869  * Reshape changes raid algorithm of @rs to new one within personality
3870  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3871  * disks from a raid set thus growing/shrinking it or resizes the set
3872  *
3873  * Call mddev_lock_nointr() before!
3874  */
3875 static int rs_start_reshape(struct raid_set *rs)
3876 {
3877 	int r;
3878 	struct mddev *mddev = &rs->md;
3879 	struct md_personality *pers = mddev->pers;
3880 
3881 	r = rs_setup_reshape(rs);
3882 	if (r)
3883 		return r;
3884 
3885 	/* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3886 	if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags))
3887 		mddev_resume(mddev);
3888 
3889 	/*
3890 	 * Check any reshape constraints enforced by the personalility
3891 	 *
3892 	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3893 	 */
3894 	r = pers->check_reshape(mddev);
3895 	if (r) {
3896 		rs->ti->error = "pers->check_reshape() failed";
3897 		return r;
3898 	}
3899 
3900 	/*
3901 	 * Personality may not provide start reshape method in which
3902 	 * case check_reshape above has already covered everything
3903 	 */
3904 	if (pers->start_reshape) {
3905 		r = pers->start_reshape(mddev);
3906 		if (r) {
3907 			rs->ti->error = "pers->start_reshape() failed";
3908 			return r;
3909 		}
3910 	}
3911 
3912 	/* Suspend because a resume will happen in raid_resume() */
3913 	set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3914 	mddev_suspend(mddev);
3915 
3916 	/*
3917 	 * Now reshape got set up, update superblocks to
3918 	 * reflect the fact so that a table reload will
3919 	 * access proper superblock content in the ctr.
3920 	 */
3921 	rs_update_sbs(rs);
3922 
3923 	return 0;
3924 }
3925 
3926 static int raid_preresume(struct dm_target *ti)
3927 {
3928 	int r;
3929 	struct raid_set *rs = ti->private;
3930 	struct mddev *mddev = &rs->md;
3931 
3932 	/* This is a resume after a suspend of the set -> it's already started. */
3933 	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3934 		return 0;
3935 
3936 	if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3937 		struct raid_set *rs_active = rs_find_active(rs);
3938 
3939 		if (rs_active) {
3940 			/*
3941 			 * In case no rebuilds have been requested
3942 			 * and an active table slot exists, copy
3943 			 * current resynchonization completed and
3944 			 * reshape position pointers across from
3945 			 * suspended raid set in the active slot.
3946 			 *
3947 			 * This resumes the new mapping at current
3948 			 * offsets to continue recover/reshape without
3949 			 * necessarily redoing a raid set partially or
3950 			 * causing data corruption in case of a reshape.
3951 			 */
3952 			if (rs_active->md.curr_resync_completed != MaxSector)
3953 				mddev->curr_resync_completed = rs_active->md.curr_resync_completed;
3954 			if (rs_active->md.reshape_position != MaxSector)
3955 				mddev->reshape_position = rs_active->md.reshape_position;
3956 		}
3957 	}
3958 
3959 	/*
3960 	 * The superblocks need to be updated on disk if the
3961 	 * array is new or new devices got added (thus zeroed
3962 	 * out by userspace) or __load_dirty_region_bitmap
3963 	 * will overwrite them in core with old data or fail.
3964 	 */
3965 	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3966 		rs_update_sbs(rs);
3967 
3968 	/* Load the bitmap from disk unless raid0 */
3969 	r = __load_dirty_region_bitmap(rs);
3970 	if (r)
3971 		return r;
3972 
3973 	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3974 	if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3975 	    mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3976 		r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3977 				  to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3978 		if (r)
3979 			DMERR("Failed to resize bitmap");
3980 	}
3981 
3982 	/* Check for any resize/reshape on @rs and adjust/initiate */
3983 	/* Be prepared for mddev_resume() in raid_resume() */
3984 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3985 	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3986 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3987 		mddev->resync_min = mddev->recovery_cp;
3988 	}
3989 
3990 	/* Check for any reshape request unless new raid set */
3991 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3992 		/* Initiate a reshape. */
3993 		rs_set_rdev_sectors(rs);
3994 		mddev_lock_nointr(mddev);
3995 		r = rs_start_reshape(rs);
3996 		mddev_unlock(mddev);
3997 		if (r)
3998 			DMWARN("Failed to check/start reshape, continuing without change");
3999 		r = 0;
4000 	}
4001 
4002 	return r;
4003 }
4004 
4005 static void raid_resume(struct dm_target *ti)
4006 {
4007 	struct raid_set *rs = ti->private;
4008 	struct mddev *mddev = &rs->md;
4009 
4010 	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4011 		/*
4012 		 * A secondary resume while the device is active.
4013 		 * Take this opportunity to check whether any failed
4014 		 * devices are reachable again.
4015 		 */
4016 		attempt_restore_of_faulty_devices(rs);
4017 	}
4018 
4019 	if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4020 		/* Only reduce raid set size before running a disk removing reshape. */
4021 		if (mddev->delta_disks < 0)
4022 			rs_set_capacity(rs);
4023 
4024 		mddev_lock_nointr(mddev);
4025 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4026 		mddev->ro = 0;
4027 		mddev->in_sync = 0;
4028 		mddev_resume(mddev);
4029 		mddev_unlock(mddev);
4030 	}
4031 }
4032 
4033 static struct target_type raid_target = {
4034 	.name = "raid",
4035 	.version = {1, 13, 2},
4036 	.module = THIS_MODULE,
4037 	.ctr = raid_ctr,
4038 	.dtr = raid_dtr,
4039 	.map = raid_map,
4040 	.status = raid_status,
4041 	.message = raid_message,
4042 	.iterate_devices = raid_iterate_devices,
4043 	.io_hints = raid_io_hints,
4044 	.postsuspend = raid_postsuspend,
4045 	.preresume = raid_preresume,
4046 	.resume = raid_resume,
4047 };
4048 
4049 static int __init dm_raid_init(void)
4050 {
4051 	DMINFO("Loading target version %u.%u.%u",
4052 	       raid_target.version[0],
4053 	       raid_target.version[1],
4054 	       raid_target.version[2]);
4055 	return dm_register_target(&raid_target);
4056 }
4057 
4058 static void __exit dm_raid_exit(void)
4059 {
4060 	dm_unregister_target(&raid_target);
4061 }
4062 
4063 module_init(dm_raid_init);
4064 module_exit(dm_raid_exit);
4065 
4066 module_param(devices_handle_discard_safely, bool, 0644);
4067 MODULE_PARM_DESC(devices_handle_discard_safely,
4068 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4069 
4070 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4071 MODULE_ALIAS("dm-raid0");
4072 MODULE_ALIAS("dm-raid1");
4073 MODULE_ALIAS("dm-raid10");
4074 MODULE_ALIAS("dm-raid4");
4075 MODULE_ALIAS("dm-raid5");
4076 MODULE_ALIAS("dm-raid6");
4077 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4078 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4079 MODULE_LICENSE("GPL");
4080