1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 static bool devices_handle_discard_safely = false; 28 29 /* 30 * The following flags are used by dm-raid.c to set up the array state. 31 * They must be cleared before md_run is called. 32 */ 33 #define FirstUse 10 /* rdev flag */ 34 35 struct raid_dev { 36 /* 37 * Two DM devices, one to hold metadata and one to hold the 38 * actual data/parity. The reason for this is to not confuse 39 * ti->len and give more flexibility in altering size and 40 * characteristics. 41 * 42 * While it is possible for this device to be associated 43 * with a different physical device than the data_dev, it 44 * is intended for it to be the same. 45 * |--------- Physical Device ---------| 46 * |- meta_dev -|------ data_dev ------| 47 */ 48 struct dm_dev *meta_dev; 49 struct dm_dev *data_dev; 50 struct md_rdev rdev; 51 }; 52 53 /* 54 * Bits for establishing rs->ctr_flags 55 * 56 * 1 = no flag value 57 * 2 = flag with value 58 */ 59 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 60 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 61 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 62 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 63 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 64 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 65 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 66 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 67 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 68 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 70 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 71 /* New for v1.9.0 */ 72 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 73 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 75 76 /* 77 * Flags for rs->ctr_flags field. 78 */ 79 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 80 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 81 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 82 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 83 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 84 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 85 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 86 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 87 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 88 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 89 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 90 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 91 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 92 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 93 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 94 95 /* 96 * Definitions of various constructor flags to 97 * be used in checks of valid / invalid flags 98 * per raid level. 99 */ 100 /* Define all any sync flags */ 101 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 102 103 /* Define flags for options without argument (e.g. 'nosync') */ 104 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 105 CTR_FLAG_RAID10_USE_NEAR_SETS) 106 107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 109 CTR_FLAG_WRITE_MOSTLY | \ 110 CTR_FLAG_DAEMON_SLEEP | \ 111 CTR_FLAG_MIN_RECOVERY_RATE | \ 112 CTR_FLAG_MAX_RECOVERY_RATE | \ 113 CTR_FLAG_MAX_WRITE_BEHIND | \ 114 CTR_FLAG_STRIPE_CACHE | \ 115 CTR_FLAG_REGION_SIZE | \ 116 CTR_FLAG_RAID10_COPIES | \ 117 CTR_FLAG_RAID10_FORMAT | \ 118 CTR_FLAG_DELTA_DISKS | \ 119 CTR_FLAG_DATA_OFFSET) 120 121 /* Valid options definitions per raid level... */ 122 123 /* "raid0" does only accept data offset */ 124 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 125 126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 127 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 128 CTR_FLAG_REBUILD | \ 129 CTR_FLAG_WRITE_MOSTLY | \ 130 CTR_FLAG_DAEMON_SLEEP | \ 131 CTR_FLAG_MIN_RECOVERY_RATE | \ 132 CTR_FLAG_MAX_RECOVERY_RATE | \ 133 CTR_FLAG_MAX_WRITE_BEHIND | \ 134 CTR_FLAG_REGION_SIZE | \ 135 CTR_FLAG_DELTA_DISKS | \ 136 CTR_FLAG_DATA_OFFSET) 137 138 /* "raid10" does not accept any raid1 or stripe cache options */ 139 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 140 CTR_FLAG_REBUILD | \ 141 CTR_FLAG_DAEMON_SLEEP | \ 142 CTR_FLAG_MIN_RECOVERY_RATE | \ 143 CTR_FLAG_MAX_RECOVERY_RATE | \ 144 CTR_FLAG_REGION_SIZE | \ 145 CTR_FLAG_RAID10_COPIES | \ 146 CTR_FLAG_RAID10_FORMAT | \ 147 CTR_FLAG_DELTA_DISKS | \ 148 CTR_FLAG_DATA_OFFSET | \ 149 CTR_FLAG_RAID10_USE_NEAR_SETS) 150 151 /* 152 * "raid4/5/6" do not accept any raid1 or raid10 specific options 153 * 154 * "raid6" does not accept "nosync", because it is not guaranteed 155 * that both parity and q-syndrome are being written properly with 156 * any writes 157 */ 158 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 159 CTR_FLAG_REBUILD | \ 160 CTR_FLAG_DAEMON_SLEEP | \ 161 CTR_FLAG_MIN_RECOVERY_RATE | \ 162 CTR_FLAG_MAX_RECOVERY_RATE | \ 163 CTR_FLAG_STRIPE_CACHE | \ 164 CTR_FLAG_REGION_SIZE | \ 165 CTR_FLAG_DELTA_DISKS | \ 166 CTR_FLAG_DATA_OFFSET) 167 168 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 169 CTR_FLAG_REBUILD | \ 170 CTR_FLAG_DAEMON_SLEEP | \ 171 CTR_FLAG_MIN_RECOVERY_RATE | \ 172 CTR_FLAG_MAX_RECOVERY_RATE | \ 173 CTR_FLAG_STRIPE_CACHE | \ 174 CTR_FLAG_REGION_SIZE | \ 175 CTR_FLAG_DELTA_DISKS | \ 176 CTR_FLAG_DATA_OFFSET) 177 /* ...valid options definitions per raid level */ 178 179 /* 180 * Flags for rs->runtime_flags field 181 * (RT_FLAG prefix meaning "runtime flag") 182 * 183 * These are all internal and used to define runtime state, 184 * e.g. to prevent another resume from preresume processing 185 * the raid set all over again. 186 */ 187 #define RT_FLAG_RS_PRERESUMED 0 188 #define RT_FLAG_RS_RESUMED 1 189 #define RT_FLAG_RS_BITMAP_LOADED 2 190 #define RT_FLAG_UPDATE_SBS 3 191 #define RT_FLAG_RESHAPE_RS 4 192 193 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 194 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 195 196 /* 197 * raid set level, layout and chunk sectors backup/restore 198 */ 199 struct rs_layout { 200 int new_level; 201 int new_layout; 202 int new_chunk_sectors; 203 }; 204 205 struct raid_set { 206 struct dm_target *ti; 207 208 uint32_t bitmap_loaded; 209 uint32_t stripe_cache_entries; 210 unsigned long ctr_flags; 211 unsigned long runtime_flags; 212 213 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 214 215 int raid_disks; 216 int delta_disks; 217 int data_offset; 218 int raid10_copies; 219 int requested_bitmap_chunk_sectors; 220 221 struct mddev md; 222 struct raid_type *raid_type; 223 struct dm_target_callbacks callbacks; 224 225 struct raid_dev dev[0]; 226 }; 227 228 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 229 { 230 struct mddev *mddev = &rs->md; 231 232 l->new_level = mddev->new_level; 233 l->new_layout = mddev->new_layout; 234 l->new_chunk_sectors = mddev->new_chunk_sectors; 235 } 236 237 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 238 { 239 struct mddev *mddev = &rs->md; 240 241 mddev->new_level = l->new_level; 242 mddev->new_layout = l->new_layout; 243 mddev->new_chunk_sectors = l->new_chunk_sectors; 244 } 245 246 /* raid10 algorithms (i.e. formats) */ 247 #define ALGORITHM_RAID10_DEFAULT 0 248 #define ALGORITHM_RAID10_NEAR 1 249 #define ALGORITHM_RAID10_OFFSET 2 250 #define ALGORITHM_RAID10_FAR 3 251 252 /* Supported raid types and properties. */ 253 static struct raid_type { 254 const char *name; /* RAID algorithm. */ 255 const char *descr; /* Descriptor text for logging. */ 256 const unsigned int parity_devs; /* # of parity devices. */ 257 const unsigned int minimal_devs;/* minimal # of devices in set. */ 258 const unsigned int level; /* RAID level. */ 259 const unsigned int algorithm; /* RAID algorithm. */ 260 } raid_types[] = { 261 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 262 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 263 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 264 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 265 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 266 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 267 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 268 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 269 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 270 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 271 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 272 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 273 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 274 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 275 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 276 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 277 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 278 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 279 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 280 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 281 }; 282 283 /* True, if @v is in inclusive range [@min, @max] */ 284 static bool __within_range(long v, long min, long max) 285 { 286 return v >= min && v <= max; 287 } 288 289 /* All table line arguments are defined here */ 290 static struct arg_name_flag { 291 const unsigned long flag; 292 const char *name; 293 } __arg_name_flags[] = { 294 { CTR_FLAG_SYNC, "sync"}, 295 { CTR_FLAG_NOSYNC, "nosync"}, 296 { CTR_FLAG_REBUILD, "rebuild"}, 297 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 298 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 299 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 300 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 301 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 302 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 303 { CTR_FLAG_REGION_SIZE, "region_size"}, 304 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 305 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 306 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 307 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 308 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 309 }; 310 311 /* Return argument name string for given @flag */ 312 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 313 { 314 if (hweight32(flag) == 1) { 315 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 316 317 while (anf-- > __arg_name_flags) 318 if (flag & anf->flag) 319 return anf->name; 320 321 } else 322 DMERR("%s called with more than one flag!", __func__); 323 324 return NULL; 325 } 326 327 /* 328 * Bool helpers to test for various raid levels of a raid set. 329 * It's level as reported by the superblock rather than 330 * the requested raid_type passed to the constructor. 331 */ 332 /* Return true, if raid set in @rs is raid0 */ 333 static bool rs_is_raid0(struct raid_set *rs) 334 { 335 return !rs->md.level; 336 } 337 338 /* Return true, if raid set in @rs is raid1 */ 339 static bool rs_is_raid1(struct raid_set *rs) 340 { 341 return rs->md.level == 1; 342 } 343 344 /* Return true, if raid set in @rs is raid10 */ 345 static bool rs_is_raid10(struct raid_set *rs) 346 { 347 return rs->md.level == 10; 348 } 349 350 /* Return true, if raid set in @rs is level 6 */ 351 static bool rs_is_raid6(struct raid_set *rs) 352 { 353 return rs->md.level == 6; 354 } 355 356 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 357 static bool rs_is_raid456(struct raid_set *rs) 358 { 359 return __within_range(rs->md.level, 4, 6); 360 } 361 362 /* Return true, if raid set in @rs is reshapable */ 363 static bool __is_raid10_far(int layout); 364 static bool rs_is_reshapable(struct raid_set *rs) 365 { 366 return rs_is_raid456(rs) || 367 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 368 } 369 370 /* Return true, if raid set in @rs is recovering */ 371 static bool rs_is_recovering(struct raid_set *rs) 372 { 373 return rs->md.recovery_cp < rs->dev[0].rdev.sectors; 374 } 375 376 /* Return true, if raid set in @rs is reshaping */ 377 static bool rs_is_reshaping(struct raid_set *rs) 378 { 379 return rs->md.reshape_position != MaxSector; 380 } 381 382 /* 383 * bool helpers to test for various raid levels of a raid type @rt 384 */ 385 386 /* Return true, if raid type in @rt is raid0 */ 387 static bool rt_is_raid0(struct raid_type *rt) 388 { 389 return !rt->level; 390 } 391 392 /* Return true, if raid type in @rt is raid1 */ 393 static bool rt_is_raid1(struct raid_type *rt) 394 { 395 return rt->level == 1; 396 } 397 398 /* Return true, if raid type in @rt is raid10 */ 399 static bool rt_is_raid10(struct raid_type *rt) 400 { 401 return rt->level == 10; 402 } 403 404 /* Return true, if raid type in @rt is raid4/5 */ 405 static bool rt_is_raid45(struct raid_type *rt) 406 { 407 return __within_range(rt->level, 4, 5); 408 } 409 410 /* Return true, if raid type in @rt is raid6 */ 411 static bool rt_is_raid6(struct raid_type *rt) 412 { 413 return rt->level == 6; 414 } 415 416 /* Return true, if raid type in @rt is raid4/5/6 */ 417 static bool rt_is_raid456(struct raid_type *rt) 418 { 419 return __within_range(rt->level, 4, 6); 420 } 421 /* END: raid level bools */ 422 423 /* Return valid ctr flags for the raid level of @rs */ 424 static unsigned long __valid_flags(struct raid_set *rs) 425 { 426 if (rt_is_raid0(rs->raid_type)) 427 return RAID0_VALID_FLAGS; 428 else if (rt_is_raid1(rs->raid_type)) 429 return RAID1_VALID_FLAGS; 430 else if (rt_is_raid10(rs->raid_type)) 431 return RAID10_VALID_FLAGS; 432 else if (rt_is_raid45(rs->raid_type)) 433 return RAID45_VALID_FLAGS; 434 else if (rt_is_raid6(rs->raid_type)) 435 return RAID6_VALID_FLAGS; 436 437 return 0; 438 } 439 440 /* 441 * Check for valid flags set on @rs 442 * 443 * Has to be called after parsing of the ctr flags! 444 */ 445 static int rs_check_for_valid_flags(struct raid_set *rs) 446 { 447 if (rs->ctr_flags & ~__valid_flags(rs)) { 448 rs->ti->error = "Invalid flags combination"; 449 return -EINVAL; 450 } 451 452 return 0; 453 } 454 455 /* MD raid10 bit definitions and helpers */ 456 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 457 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 458 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 459 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 460 461 /* Return md raid10 near copies for @layout */ 462 static unsigned int __raid10_near_copies(int layout) 463 { 464 return layout & 0xFF; 465 } 466 467 /* Return md raid10 far copies for @layout */ 468 static unsigned int __raid10_far_copies(int layout) 469 { 470 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 471 } 472 473 /* Return true if md raid10 offset for @layout */ 474 static bool __is_raid10_offset(int layout) 475 { 476 return !!(layout & RAID10_OFFSET); 477 } 478 479 /* Return true if md raid10 near for @layout */ 480 static bool __is_raid10_near(int layout) 481 { 482 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 483 } 484 485 /* Return true if md raid10 far for @layout */ 486 static bool __is_raid10_far(int layout) 487 { 488 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 489 } 490 491 /* Return md raid10 layout string for @layout */ 492 static const char *raid10_md_layout_to_format(int layout) 493 { 494 /* 495 * Bit 16 stands for "offset" 496 * (i.e. adjacent stripes hold copies) 497 * 498 * Refer to MD's raid10.c for details 499 */ 500 if (__is_raid10_offset(layout)) 501 return "offset"; 502 503 if (__raid10_near_copies(layout) > 1) 504 return "near"; 505 506 WARN_ON(__raid10_far_copies(layout) < 2); 507 508 return "far"; 509 } 510 511 /* Return md raid10 algorithm for @name */ 512 static int raid10_name_to_format(const char *name) 513 { 514 if (!strcasecmp(name, "near")) 515 return ALGORITHM_RAID10_NEAR; 516 else if (!strcasecmp(name, "offset")) 517 return ALGORITHM_RAID10_OFFSET; 518 else if (!strcasecmp(name, "far")) 519 return ALGORITHM_RAID10_FAR; 520 521 return -EINVAL; 522 } 523 524 /* Return md raid10 copies for @layout */ 525 static unsigned int raid10_md_layout_to_copies(int layout) 526 { 527 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 528 } 529 530 /* Return md raid10 format id for @format string */ 531 static int raid10_format_to_md_layout(struct raid_set *rs, 532 unsigned int algorithm, 533 unsigned int copies) 534 { 535 unsigned int n = 1, f = 1, r = 0; 536 537 /* 538 * MD resilienece flaw: 539 * 540 * enabling use_far_sets for far/offset formats causes copies 541 * to be colocated on the same devs together with their origins! 542 * 543 * -> disable it for now in the definition above 544 */ 545 if (algorithm == ALGORITHM_RAID10_DEFAULT || 546 algorithm == ALGORITHM_RAID10_NEAR) 547 n = copies; 548 549 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 550 f = copies; 551 r = RAID10_OFFSET; 552 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 553 r |= RAID10_USE_FAR_SETS; 554 555 } else if (algorithm == ALGORITHM_RAID10_FAR) { 556 f = copies; 557 r = !RAID10_OFFSET; 558 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 559 r |= RAID10_USE_FAR_SETS; 560 561 } else 562 return -EINVAL; 563 564 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 565 } 566 /* END: MD raid10 bit definitions and helpers */ 567 568 /* Check for any of the raid10 algorithms */ 569 static bool __got_raid10(struct raid_type *rtp, const int layout) 570 { 571 if (rtp->level == 10) { 572 switch (rtp->algorithm) { 573 case ALGORITHM_RAID10_DEFAULT: 574 case ALGORITHM_RAID10_NEAR: 575 return __is_raid10_near(layout); 576 case ALGORITHM_RAID10_OFFSET: 577 return __is_raid10_offset(layout); 578 case ALGORITHM_RAID10_FAR: 579 return __is_raid10_far(layout); 580 default: 581 break; 582 } 583 } 584 585 return false; 586 } 587 588 /* Return raid_type for @name */ 589 static struct raid_type *get_raid_type(const char *name) 590 { 591 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 592 593 while (rtp-- > raid_types) 594 if (!strcasecmp(rtp->name, name)) 595 return rtp; 596 597 return NULL; 598 } 599 600 /* Return raid_type for @name based derived from @level and @layout */ 601 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 602 { 603 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 604 605 while (rtp-- > raid_types) { 606 /* RAID10 special checks based on @layout flags/properties */ 607 if (rtp->level == level && 608 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 609 return rtp; 610 } 611 612 return NULL; 613 } 614 615 /* 616 * Conditionally change bdev capacity of @rs 617 * in case of a disk add/remove reshape 618 */ 619 static void rs_set_capacity(struct raid_set *rs) 620 { 621 struct mddev *mddev = &rs->md; 622 struct md_rdev *rdev; 623 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 624 625 /* 626 * raid10 sets rdev->sector to the device size, which 627 * is unintended in case of out-of-place reshaping 628 */ 629 rdev_for_each(rdev, mddev) 630 rdev->sectors = mddev->dev_sectors; 631 632 set_capacity(gendisk, mddev->array_sectors); 633 revalidate_disk(gendisk); 634 } 635 636 /* 637 * Set the mddev properties in @rs to the current 638 * ones retrieved from the freshest superblock 639 */ 640 static void rs_set_cur(struct raid_set *rs) 641 { 642 struct mddev *mddev = &rs->md; 643 644 mddev->new_level = mddev->level; 645 mddev->new_layout = mddev->layout; 646 mddev->new_chunk_sectors = mddev->chunk_sectors; 647 } 648 649 /* 650 * Set the mddev properties in @rs to the new 651 * ones requested by the ctr 652 */ 653 static void rs_set_new(struct raid_set *rs) 654 { 655 struct mddev *mddev = &rs->md; 656 657 mddev->level = mddev->new_level; 658 mddev->layout = mddev->new_layout; 659 mddev->chunk_sectors = mddev->new_chunk_sectors; 660 mddev->raid_disks = rs->raid_disks; 661 mddev->delta_disks = 0; 662 } 663 664 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 665 unsigned int raid_devs) 666 { 667 unsigned int i; 668 struct raid_set *rs; 669 670 if (raid_devs <= raid_type->parity_devs) { 671 ti->error = "Insufficient number of devices"; 672 return ERR_PTR(-EINVAL); 673 } 674 675 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); 676 if (!rs) { 677 ti->error = "Cannot allocate raid context"; 678 return ERR_PTR(-ENOMEM); 679 } 680 681 mddev_init(&rs->md); 682 683 rs->raid_disks = raid_devs; 684 rs->delta_disks = 0; 685 686 rs->ti = ti; 687 rs->raid_type = raid_type; 688 rs->stripe_cache_entries = 256; 689 rs->md.raid_disks = raid_devs; 690 rs->md.level = raid_type->level; 691 rs->md.new_level = rs->md.level; 692 rs->md.layout = raid_type->algorithm; 693 rs->md.new_layout = rs->md.layout; 694 rs->md.delta_disks = 0; 695 rs->md.recovery_cp = MaxSector; 696 697 for (i = 0; i < raid_devs; i++) 698 md_rdev_init(&rs->dev[i].rdev); 699 700 /* 701 * Remaining items to be initialized by further RAID params: 702 * rs->md.persistent 703 * rs->md.external 704 * rs->md.chunk_sectors 705 * rs->md.new_chunk_sectors 706 * rs->md.dev_sectors 707 */ 708 709 return rs; 710 } 711 712 static void raid_set_free(struct raid_set *rs) 713 { 714 int i; 715 716 for (i = 0; i < rs->raid_disks; i++) { 717 if (rs->dev[i].meta_dev) 718 dm_put_device(rs->ti, rs->dev[i].meta_dev); 719 md_rdev_clear(&rs->dev[i].rdev); 720 if (rs->dev[i].data_dev) 721 dm_put_device(rs->ti, rs->dev[i].data_dev); 722 } 723 724 kfree(rs); 725 } 726 727 /* 728 * For every device we have two words 729 * <meta_dev>: meta device name or '-' if missing 730 * <data_dev>: data device name or '-' if missing 731 * 732 * The following are permitted: 733 * - - 734 * - <data_dev> 735 * <meta_dev> <data_dev> 736 * 737 * The following is not allowed: 738 * <meta_dev> - 739 * 740 * This code parses those words. If there is a failure, 741 * the caller must use raid_set_free() to unwind the operations. 742 */ 743 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 744 { 745 int i; 746 int rebuild = 0; 747 int metadata_available = 0; 748 int r = 0; 749 const char *arg; 750 751 /* Put off the number of raid devices argument to get to dev pairs */ 752 arg = dm_shift_arg(as); 753 if (!arg) 754 return -EINVAL; 755 756 for (i = 0; i < rs->raid_disks; i++) { 757 rs->dev[i].rdev.raid_disk = i; 758 759 rs->dev[i].meta_dev = NULL; 760 rs->dev[i].data_dev = NULL; 761 762 /* 763 * There are no offsets, since there is a separate device 764 * for data and metadata. 765 */ 766 rs->dev[i].rdev.data_offset = 0; 767 rs->dev[i].rdev.mddev = &rs->md; 768 769 arg = dm_shift_arg(as); 770 if (!arg) 771 return -EINVAL; 772 773 if (strcmp(arg, "-")) { 774 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 775 &rs->dev[i].meta_dev); 776 if (r) { 777 rs->ti->error = "RAID metadata device lookup failure"; 778 return r; 779 } 780 781 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 782 if (!rs->dev[i].rdev.sb_page) { 783 rs->ti->error = "Failed to allocate superblock page"; 784 return -ENOMEM; 785 } 786 } 787 788 arg = dm_shift_arg(as); 789 if (!arg) 790 return -EINVAL; 791 792 if (!strcmp(arg, "-")) { 793 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 794 (!rs->dev[i].rdev.recovery_offset)) { 795 rs->ti->error = "Drive designated for rebuild not specified"; 796 return -EINVAL; 797 } 798 799 if (rs->dev[i].meta_dev) { 800 rs->ti->error = "No data device supplied with metadata device"; 801 return -EINVAL; 802 } 803 804 continue; 805 } 806 807 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 808 &rs->dev[i].data_dev); 809 if (r) { 810 rs->ti->error = "RAID device lookup failure"; 811 return r; 812 } 813 814 if (rs->dev[i].meta_dev) { 815 metadata_available = 1; 816 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 817 } 818 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 819 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 820 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 821 rebuild++; 822 } 823 824 if (metadata_available) { 825 rs->md.external = 0; 826 rs->md.persistent = 1; 827 rs->md.major_version = 2; 828 } else if (rebuild && !rs->md.recovery_cp) { 829 /* 830 * Without metadata, we will not be able to tell if the array 831 * is in-sync or not - we must assume it is not. Therefore, 832 * it is impossible to rebuild a drive. 833 * 834 * Even if there is metadata, the on-disk information may 835 * indicate that the array is not in-sync and it will then 836 * fail at that time. 837 * 838 * User could specify 'nosync' option if desperate. 839 */ 840 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 841 return -EINVAL; 842 } 843 844 return 0; 845 } 846 847 /* 848 * validate_region_size 849 * @rs 850 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 851 * 852 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 853 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 854 * 855 * Returns: 0 on success, -EINVAL on failure. 856 */ 857 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 858 { 859 unsigned long min_region_size = rs->ti->len / (1 << 21); 860 861 if (rs_is_raid0(rs)) 862 return 0; 863 864 if (!region_size) { 865 /* 866 * Choose a reasonable default. All figures in sectors. 867 */ 868 if (min_region_size > (1 << 13)) { 869 /* If not a power of 2, make it the next power of 2 */ 870 region_size = roundup_pow_of_two(min_region_size); 871 DMINFO("Choosing default region size of %lu sectors", 872 region_size); 873 } else { 874 DMINFO("Choosing default region size of 4MiB"); 875 region_size = 1 << 13; /* sectors */ 876 } 877 } else { 878 /* 879 * Validate user-supplied value. 880 */ 881 if (region_size > rs->ti->len) { 882 rs->ti->error = "Supplied region size is too large"; 883 return -EINVAL; 884 } 885 886 if (region_size < min_region_size) { 887 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 888 region_size, min_region_size); 889 rs->ti->error = "Supplied region size is too small"; 890 return -EINVAL; 891 } 892 893 if (!is_power_of_2(region_size)) { 894 rs->ti->error = "Region size is not a power of 2"; 895 return -EINVAL; 896 } 897 898 if (region_size < rs->md.chunk_sectors) { 899 rs->ti->error = "Region size is smaller than the chunk size"; 900 return -EINVAL; 901 } 902 } 903 904 /* 905 * Convert sectors to bytes. 906 */ 907 rs->md.bitmap_info.chunksize = to_bytes(region_size); 908 909 return 0; 910 } 911 912 /* 913 * validate_raid_redundancy 914 * @rs 915 * 916 * Determine if there are enough devices in the array that haven't 917 * failed (or are being rebuilt) to form a usable array. 918 * 919 * Returns: 0 on success, -EINVAL on failure. 920 */ 921 static int validate_raid_redundancy(struct raid_set *rs) 922 { 923 unsigned int i, rebuild_cnt = 0; 924 unsigned int rebuilds_per_group = 0, copies; 925 unsigned int group_size, last_group_start; 926 927 for (i = 0; i < rs->md.raid_disks; i++) 928 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 929 !rs->dev[i].rdev.sb_page) 930 rebuild_cnt++; 931 932 switch (rs->raid_type->level) { 933 case 0: 934 break; 935 case 1: 936 if (rebuild_cnt >= rs->md.raid_disks) 937 goto too_many; 938 break; 939 case 4: 940 case 5: 941 case 6: 942 if (rebuild_cnt > rs->raid_type->parity_devs) 943 goto too_many; 944 break; 945 case 10: 946 copies = raid10_md_layout_to_copies(rs->md.new_layout); 947 if (rebuild_cnt < copies) 948 break; 949 950 /* 951 * It is possible to have a higher rebuild count for RAID10, 952 * as long as the failed devices occur in different mirror 953 * groups (i.e. different stripes). 954 * 955 * When checking "near" format, make sure no adjacent devices 956 * have failed beyond what can be handled. In addition to the 957 * simple case where the number of devices is a multiple of the 958 * number of copies, we must also handle cases where the number 959 * of devices is not a multiple of the number of copies. 960 * E.g. dev1 dev2 dev3 dev4 dev5 961 * A A B B C 962 * C D D E E 963 */ 964 if (__is_raid10_near(rs->md.new_layout)) { 965 for (i = 0; i < rs->md.raid_disks; i++) { 966 if (!(i % copies)) 967 rebuilds_per_group = 0; 968 if ((!rs->dev[i].rdev.sb_page || 969 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 970 (++rebuilds_per_group >= copies)) 971 goto too_many; 972 } 973 break; 974 } 975 976 /* 977 * When checking "far" and "offset" formats, we need to ensure 978 * that the device that holds its copy is not also dead or 979 * being rebuilt. (Note that "far" and "offset" formats only 980 * support two copies right now. These formats also only ever 981 * use the 'use_far_sets' variant.) 982 * 983 * This check is somewhat complicated by the need to account 984 * for arrays that are not a multiple of (far) copies. This 985 * results in the need to treat the last (potentially larger) 986 * set differently. 987 */ 988 group_size = (rs->md.raid_disks / copies); 989 last_group_start = (rs->md.raid_disks / group_size) - 1; 990 last_group_start *= group_size; 991 for (i = 0; i < rs->md.raid_disks; i++) { 992 if (!(i % copies) && !(i > last_group_start)) 993 rebuilds_per_group = 0; 994 if ((!rs->dev[i].rdev.sb_page || 995 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 996 (++rebuilds_per_group >= copies)) 997 goto too_many; 998 } 999 break; 1000 default: 1001 if (rebuild_cnt) 1002 return -EINVAL; 1003 } 1004 1005 return 0; 1006 1007 too_many: 1008 return -EINVAL; 1009 } 1010 1011 /* 1012 * Possible arguments are... 1013 * <chunk_size> [optional_args] 1014 * 1015 * Argument definitions 1016 * <chunk_size> The number of sectors per disk that 1017 * will form the "stripe" 1018 * [[no]sync] Force or prevent recovery of the 1019 * entire array 1020 * [rebuild <idx>] Rebuild the drive indicated by the index 1021 * [daemon_sleep <ms>] Time between bitmap daemon work to 1022 * clear bits 1023 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1024 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1025 * [write_mostly <idx>] Indicate a write mostly drive via index 1026 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1027 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1028 * [region_size <sectors>] Defines granularity of bitmap 1029 * 1030 * RAID10-only options: 1031 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1032 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1033 */ 1034 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1035 unsigned int num_raid_params) 1036 { 1037 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1038 unsigned int raid10_copies = 2; 1039 unsigned int i, write_mostly = 0; 1040 unsigned int region_size = 0; 1041 sector_t max_io_len; 1042 const char *arg, *key; 1043 struct raid_dev *rd; 1044 struct raid_type *rt = rs->raid_type; 1045 1046 arg = dm_shift_arg(as); 1047 num_raid_params--; /* Account for chunk_size argument */ 1048 1049 if (kstrtoint(arg, 10, &value) < 0) { 1050 rs->ti->error = "Bad numerical argument given for chunk_size"; 1051 return -EINVAL; 1052 } 1053 1054 /* 1055 * First, parse the in-order required arguments 1056 * "chunk_size" is the only argument of this type. 1057 */ 1058 if (rt_is_raid1(rt)) { 1059 if (value) 1060 DMERR("Ignoring chunk size parameter for RAID 1"); 1061 value = 0; 1062 } else if (!is_power_of_2(value)) { 1063 rs->ti->error = "Chunk size must be a power of 2"; 1064 return -EINVAL; 1065 } else if (value < 8) { 1066 rs->ti->error = "Chunk size value is too small"; 1067 return -EINVAL; 1068 } 1069 1070 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1071 1072 /* 1073 * We set each individual device as In_sync with a completed 1074 * 'recovery_offset'. If there has been a device failure or 1075 * replacement then one of the following cases applies: 1076 * 1077 * 1) User specifies 'rebuild'. 1078 * - Device is reset when param is read. 1079 * 2) A new device is supplied. 1080 * - No matching superblock found, resets device. 1081 * 3) Device failure was transient and returns on reload. 1082 * - Failure noticed, resets device for bitmap replay. 1083 * 4) Device hadn't completed recovery after previous failure. 1084 * - Superblock is read and overrides recovery_offset. 1085 * 1086 * What is found in the superblocks of the devices is always 1087 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1088 */ 1089 for (i = 0; i < rs->raid_disks; i++) { 1090 set_bit(In_sync, &rs->dev[i].rdev.flags); 1091 rs->dev[i].rdev.recovery_offset = MaxSector; 1092 } 1093 1094 /* 1095 * Second, parse the unordered optional arguments 1096 */ 1097 for (i = 0; i < num_raid_params; i++) { 1098 key = dm_shift_arg(as); 1099 if (!key) { 1100 rs->ti->error = "Not enough raid parameters given"; 1101 return -EINVAL; 1102 } 1103 1104 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1105 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1106 rs->ti->error = "Only one 'nosync' argument allowed"; 1107 return -EINVAL; 1108 } 1109 continue; 1110 } 1111 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1112 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1113 rs->ti->error = "Only one 'sync' argument allowed"; 1114 return -EINVAL; 1115 } 1116 continue; 1117 } 1118 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1119 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1120 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1121 return -EINVAL; 1122 } 1123 continue; 1124 } 1125 1126 arg = dm_shift_arg(as); 1127 i++; /* Account for the argument pairs */ 1128 if (!arg) { 1129 rs->ti->error = "Wrong number of raid parameters given"; 1130 return -EINVAL; 1131 } 1132 1133 /* 1134 * Parameters that take a string value are checked here. 1135 */ 1136 1137 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1138 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1139 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1140 return -EINVAL; 1141 } 1142 if (!rt_is_raid10(rt)) { 1143 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1144 return -EINVAL; 1145 } 1146 raid10_format = raid10_name_to_format(arg); 1147 if (raid10_format < 0) { 1148 rs->ti->error = "Invalid 'raid10_format' value given"; 1149 return raid10_format; 1150 } 1151 continue; 1152 } 1153 1154 if (kstrtoint(arg, 10, &value) < 0) { 1155 rs->ti->error = "Bad numerical argument given in raid params"; 1156 return -EINVAL; 1157 } 1158 1159 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1160 /* 1161 * "rebuild" is being passed in by userspace to provide 1162 * indexes of replaced devices and to set up additional 1163 * devices on raid level takeover. 1164 */ 1165 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1166 rs->ti->error = "Invalid rebuild index given"; 1167 return -EINVAL; 1168 } 1169 1170 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1171 rs->ti->error = "rebuild for this index already given"; 1172 return -EINVAL; 1173 } 1174 1175 rd = rs->dev + value; 1176 clear_bit(In_sync, &rd->rdev.flags); 1177 clear_bit(Faulty, &rd->rdev.flags); 1178 rd->rdev.recovery_offset = 0; 1179 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1180 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1181 if (!rt_is_raid1(rt)) { 1182 rs->ti->error = "write_mostly option is only valid for RAID1"; 1183 return -EINVAL; 1184 } 1185 1186 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1187 rs->ti->error = "Invalid write_mostly index given"; 1188 return -EINVAL; 1189 } 1190 1191 write_mostly++; 1192 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1193 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1194 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1195 if (!rt_is_raid1(rt)) { 1196 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1197 return -EINVAL; 1198 } 1199 1200 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1201 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1202 return -EINVAL; 1203 } 1204 1205 /* 1206 * In device-mapper, we specify things in sectors, but 1207 * MD records this value in kB 1208 */ 1209 value /= 2; 1210 if (value > COUNTER_MAX) { 1211 rs->ti->error = "Max write-behind limit out of range"; 1212 return -EINVAL; 1213 } 1214 1215 rs->md.bitmap_info.max_write_behind = value; 1216 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1217 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1218 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1219 return -EINVAL; 1220 } 1221 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { 1222 rs->ti->error = "daemon sleep period out of range"; 1223 return -EINVAL; 1224 } 1225 rs->md.bitmap_info.daemon_sleep = value; 1226 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1227 /* Userspace passes new data_offset after having extended the the data image LV */ 1228 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1229 rs->ti->error = "Only one data_offset argument pair allowed"; 1230 return -EINVAL; 1231 } 1232 /* Ensure sensible data offset */ 1233 if (value < 0 || 1234 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1235 rs->ti->error = "Bogus data_offset value"; 1236 return -EINVAL; 1237 } 1238 rs->data_offset = value; 1239 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1240 /* Define the +/-# of disks to add to/remove from the given raid set */ 1241 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1242 rs->ti->error = "Only one delta_disks argument pair allowed"; 1243 return -EINVAL; 1244 } 1245 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1246 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1247 rs->ti->error = "Too many delta_disk requested"; 1248 return -EINVAL; 1249 } 1250 1251 rs->delta_disks = value; 1252 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1253 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1254 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1255 return -EINVAL; 1256 } 1257 1258 if (!rt_is_raid456(rt)) { 1259 rs->ti->error = "Inappropriate argument: stripe_cache"; 1260 return -EINVAL; 1261 } 1262 1263 rs->stripe_cache_entries = value; 1264 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1265 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1266 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1267 return -EINVAL; 1268 } 1269 if (value > INT_MAX) { 1270 rs->ti->error = "min_recovery_rate out of range"; 1271 return -EINVAL; 1272 } 1273 rs->md.sync_speed_min = (int)value; 1274 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1275 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1276 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1277 return -EINVAL; 1278 } 1279 if (value > INT_MAX) { 1280 rs->ti->error = "max_recovery_rate out of range"; 1281 return -EINVAL; 1282 } 1283 rs->md.sync_speed_max = (int)value; 1284 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1285 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1286 rs->ti->error = "Only one region_size argument pair allowed"; 1287 return -EINVAL; 1288 } 1289 1290 region_size = value; 1291 rs->requested_bitmap_chunk_sectors = value; 1292 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1293 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1294 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1295 return -EINVAL; 1296 } 1297 1298 if (!__within_range(value, 2, rs->md.raid_disks)) { 1299 rs->ti->error = "Bad value for 'raid10_copies'"; 1300 return -EINVAL; 1301 } 1302 1303 raid10_copies = value; 1304 } else { 1305 DMERR("Unable to parse RAID parameter: %s", key); 1306 rs->ti->error = "Unable to parse RAID parameter"; 1307 return -EINVAL; 1308 } 1309 } 1310 1311 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1312 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1313 rs->ti->error = "sync and nosync are mutually exclusive"; 1314 return -EINVAL; 1315 } 1316 1317 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1318 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1319 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1320 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1321 return -EINVAL; 1322 } 1323 1324 if (write_mostly >= rs->md.raid_disks) { 1325 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1326 return -EINVAL; 1327 } 1328 1329 if (validate_region_size(rs, region_size)) 1330 return -EINVAL; 1331 1332 if (rs->md.chunk_sectors) 1333 max_io_len = rs->md.chunk_sectors; 1334 else 1335 max_io_len = region_size; 1336 1337 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1338 return -EINVAL; 1339 1340 if (rt_is_raid10(rt)) { 1341 if (raid10_copies > rs->md.raid_disks) { 1342 rs->ti->error = "Not enough devices to satisfy specification"; 1343 return -EINVAL; 1344 } 1345 1346 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1347 if (rs->md.new_layout < 0) { 1348 rs->ti->error = "Error getting raid10 format"; 1349 return rs->md.new_layout; 1350 } 1351 1352 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1353 if (!rt) { 1354 rs->ti->error = "Failed to recognize new raid10 layout"; 1355 return -EINVAL; 1356 } 1357 1358 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1359 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1360 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1361 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1362 return -EINVAL; 1363 } 1364 } 1365 1366 rs->raid10_copies = raid10_copies; 1367 1368 /* Assume there are no metadata devices until the drives are parsed */ 1369 rs->md.persistent = 0; 1370 rs->md.external = 1; 1371 1372 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1373 return rs_check_for_valid_flags(rs); 1374 } 1375 1376 /* Set raid4/5/6 cache size */ 1377 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1378 { 1379 int r; 1380 struct r5conf *conf; 1381 struct mddev *mddev = &rs->md; 1382 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1383 uint32_t nr_stripes = rs->stripe_cache_entries; 1384 1385 if (!rt_is_raid456(rs->raid_type)) { 1386 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1387 return -EINVAL; 1388 } 1389 1390 if (nr_stripes < min_stripes) { 1391 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1392 nr_stripes, min_stripes); 1393 nr_stripes = min_stripes; 1394 } 1395 1396 conf = mddev->private; 1397 if (!conf) { 1398 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1399 return -EINVAL; 1400 } 1401 1402 /* Try setting number of stripes in raid456 stripe cache */ 1403 if (conf->min_nr_stripes != nr_stripes) { 1404 r = raid5_set_cache_size(mddev, nr_stripes); 1405 if (r) { 1406 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1407 return r; 1408 } 1409 1410 DMINFO("%u stripe cache entries", nr_stripes); 1411 } 1412 1413 return 0; 1414 } 1415 1416 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1417 static unsigned int mddev_data_stripes(struct raid_set *rs) 1418 { 1419 return rs->md.raid_disks - rs->raid_type->parity_devs; 1420 } 1421 1422 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1423 static unsigned int rs_data_stripes(struct raid_set *rs) 1424 { 1425 return rs->raid_disks - rs->raid_type->parity_devs; 1426 } 1427 1428 /* Calculate the sectors per device and per array used for @rs */ 1429 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev) 1430 { 1431 int delta_disks; 1432 unsigned int data_stripes; 1433 struct mddev *mddev = &rs->md; 1434 struct md_rdev *rdev; 1435 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len; 1436 1437 if (use_mddev) { 1438 delta_disks = mddev->delta_disks; 1439 data_stripes = mddev_data_stripes(rs); 1440 } else { 1441 delta_disks = rs->delta_disks; 1442 data_stripes = rs_data_stripes(rs); 1443 } 1444 1445 /* Special raid1 case w/o delta_disks support (yet) */ 1446 if (rt_is_raid1(rs->raid_type)) 1447 ; 1448 else if (rt_is_raid10(rs->raid_type)) { 1449 if (rs->raid10_copies < 2 || 1450 delta_disks < 0) { 1451 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1452 return -EINVAL; 1453 } 1454 1455 dev_sectors *= rs->raid10_copies; 1456 if (sector_div(dev_sectors, data_stripes)) 1457 goto bad; 1458 1459 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1460 if (sector_div(array_sectors, rs->raid10_copies)) 1461 goto bad; 1462 1463 } else if (sector_div(dev_sectors, data_stripes)) 1464 goto bad; 1465 1466 else 1467 /* Striped layouts */ 1468 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1469 1470 rdev_for_each(rdev, mddev) 1471 rdev->sectors = dev_sectors; 1472 1473 mddev->array_sectors = array_sectors; 1474 mddev->dev_sectors = dev_sectors; 1475 1476 return 0; 1477 bad: 1478 rs->ti->error = "Target length not divisible by number of data devices"; 1479 return -EINVAL; 1480 } 1481 1482 /* Setup recovery on @rs */ 1483 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1484 { 1485 /* raid0 does not recover */ 1486 if (rs_is_raid0(rs)) 1487 rs->md.recovery_cp = MaxSector; 1488 /* 1489 * A raid6 set has to be recovered either 1490 * completely or for the grown part to 1491 * ensure proper parity and Q-Syndrome 1492 */ 1493 else if (rs_is_raid6(rs)) 1494 rs->md.recovery_cp = dev_sectors; 1495 /* 1496 * Other raid set types may skip recovery 1497 * depending on the 'nosync' flag. 1498 */ 1499 else 1500 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1501 ? MaxSector : dev_sectors; 1502 } 1503 1504 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */ 1505 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1506 { 1507 if (!dev_sectors) 1508 /* New raid set or 'sync' flag provided */ 1509 __rs_setup_recovery(rs, 0); 1510 else if (dev_sectors == MaxSector) 1511 /* Prevent recovery */ 1512 __rs_setup_recovery(rs, MaxSector); 1513 else if (rs->dev[0].rdev.sectors < dev_sectors) 1514 /* Grown raid set */ 1515 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors); 1516 else 1517 __rs_setup_recovery(rs, MaxSector); 1518 } 1519 1520 static void do_table_event(struct work_struct *ws) 1521 { 1522 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1523 1524 smp_rmb(); /* Make sure we access most actual mddev properties */ 1525 if (!rs_is_reshaping(rs)) 1526 rs_set_capacity(rs); 1527 dm_table_event(rs->ti->table); 1528 } 1529 1530 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 1531 { 1532 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 1533 1534 return mddev_congested(&rs->md, bits); 1535 } 1536 1537 /* 1538 * Make sure a valid takover (level switch) is being requested on @rs 1539 * 1540 * Conversions of raid sets from one MD personality to another 1541 * have to conform to restrictions which are enforced here. 1542 */ 1543 static int rs_check_takeover(struct raid_set *rs) 1544 { 1545 struct mddev *mddev = &rs->md; 1546 unsigned int near_copies; 1547 1548 if (rs->md.degraded) { 1549 rs->ti->error = "Can't takeover degraded raid set"; 1550 return -EPERM; 1551 } 1552 1553 if (rs_is_reshaping(rs)) { 1554 rs->ti->error = "Can't takeover reshaping raid set"; 1555 return -EPERM; 1556 } 1557 1558 switch (mddev->level) { 1559 case 0: 1560 /* raid0 -> raid1/5 with one disk */ 1561 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1562 mddev->raid_disks == 1) 1563 return 0; 1564 1565 /* raid0 -> raid10 */ 1566 if (mddev->new_level == 10 && 1567 !(rs->raid_disks % mddev->raid_disks)) 1568 return 0; 1569 1570 /* raid0 with multiple disks -> raid4/5/6 */ 1571 if (__within_range(mddev->new_level, 4, 6) && 1572 mddev->new_layout == ALGORITHM_PARITY_N && 1573 mddev->raid_disks > 1) 1574 return 0; 1575 1576 break; 1577 1578 case 10: 1579 /* Can't takeover raid10_offset! */ 1580 if (__is_raid10_offset(mddev->layout)) 1581 break; 1582 1583 near_copies = __raid10_near_copies(mddev->layout); 1584 1585 /* raid10* -> raid0 */ 1586 if (mddev->new_level == 0) { 1587 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1588 if (near_copies > 1 && 1589 !(mddev->raid_disks % near_copies)) { 1590 mddev->raid_disks /= near_copies; 1591 mddev->delta_disks = mddev->raid_disks; 1592 return 0; 1593 } 1594 1595 /* Can takeover raid10_far */ 1596 if (near_copies == 1 && 1597 __raid10_far_copies(mddev->layout) > 1) 1598 return 0; 1599 1600 break; 1601 } 1602 1603 /* raid10_{near,far} -> raid1 */ 1604 if (mddev->new_level == 1 && 1605 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1606 return 0; 1607 1608 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1609 if (__within_range(mddev->new_level, 4, 5) && 1610 mddev->raid_disks == 2) 1611 return 0; 1612 break; 1613 1614 case 1: 1615 /* raid1 with 2 disks -> raid4/5 */ 1616 if (__within_range(mddev->new_level, 4, 5) && 1617 mddev->raid_disks == 2) { 1618 mddev->degraded = 1; 1619 return 0; 1620 } 1621 1622 /* raid1 -> raid0 */ 1623 if (mddev->new_level == 0 && 1624 mddev->raid_disks == 1) 1625 return 0; 1626 1627 /* raid1 -> raid10 */ 1628 if (mddev->new_level == 10) 1629 return 0; 1630 break; 1631 1632 case 4: 1633 /* raid4 -> raid0 */ 1634 if (mddev->new_level == 0) 1635 return 0; 1636 1637 /* raid4 -> raid1/5 with 2 disks */ 1638 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1639 mddev->raid_disks == 2) 1640 return 0; 1641 1642 /* raid4 -> raid5/6 with parity N */ 1643 if (__within_range(mddev->new_level, 5, 6) && 1644 mddev->layout == ALGORITHM_PARITY_N) 1645 return 0; 1646 break; 1647 1648 case 5: 1649 /* raid5 with parity N -> raid0 */ 1650 if (mddev->new_level == 0 && 1651 mddev->layout == ALGORITHM_PARITY_N) 1652 return 0; 1653 1654 /* raid5 with parity N -> raid4 */ 1655 if (mddev->new_level == 4 && 1656 mddev->layout == ALGORITHM_PARITY_N) 1657 return 0; 1658 1659 /* raid5 with 2 disks -> raid1/4/10 */ 1660 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1661 mddev->raid_disks == 2) 1662 return 0; 1663 1664 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1665 if (mddev->new_level == 6 && 1666 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1667 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1668 return 0; 1669 break; 1670 1671 case 6: 1672 /* raid6 with parity N -> raid0 */ 1673 if (mddev->new_level == 0 && 1674 mddev->layout == ALGORITHM_PARITY_N) 1675 return 0; 1676 1677 /* raid6 with parity N -> raid4 */ 1678 if (mddev->new_level == 4 && 1679 mddev->layout == ALGORITHM_PARITY_N) 1680 return 0; 1681 1682 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1683 if (mddev->new_level == 5 && 1684 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1685 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1686 return 0; 1687 1688 default: 1689 break; 1690 } 1691 1692 rs->ti->error = "takeover not possible"; 1693 return -EINVAL; 1694 } 1695 1696 /* True if @rs requested to be taken over */ 1697 static bool rs_takeover_requested(struct raid_set *rs) 1698 { 1699 return rs->md.new_level != rs->md.level; 1700 } 1701 1702 /* True if @rs is requested to reshape by ctr */ 1703 static bool rs_reshape_requested(struct raid_set *rs) 1704 { 1705 bool change; 1706 struct mddev *mddev = &rs->md; 1707 1708 if (rs_takeover_requested(rs)) 1709 return false; 1710 1711 if (!mddev->level) 1712 return false; 1713 1714 change = mddev->new_layout != mddev->layout || 1715 mddev->new_chunk_sectors != mddev->chunk_sectors || 1716 rs->delta_disks; 1717 1718 /* Historical case to support raid1 reshape without delta disks */ 1719 if (mddev->level == 1) { 1720 if (rs->delta_disks) 1721 return !!rs->delta_disks; 1722 1723 return !change && 1724 mddev->raid_disks != rs->raid_disks; 1725 } 1726 1727 if (mddev->level == 10) 1728 return change && 1729 !__is_raid10_far(mddev->new_layout) && 1730 rs->delta_disks >= 0; 1731 1732 return change; 1733 } 1734 1735 /* Features */ 1736 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1737 1738 /* State flags for sb->flags */ 1739 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1740 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1741 1742 /* 1743 * This structure is never routinely used by userspace, unlike md superblocks. 1744 * Devices with this superblock should only ever be accessed via device-mapper. 1745 */ 1746 #define DM_RAID_MAGIC 0x64526D44 1747 struct dm_raid_superblock { 1748 __le32 magic; /* "DmRd" */ 1749 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1750 1751 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1752 __le32 array_position; /* The position of this drive in the raid set */ 1753 1754 __le64 events; /* Incremented by md when superblock updated */ 1755 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1756 /* indicate failures (see extension below) */ 1757 1758 /* 1759 * This offset tracks the progress of the repair or replacement of 1760 * an individual drive. 1761 */ 1762 __le64 disk_recovery_offset; 1763 1764 /* 1765 * This offset tracks the progress of the initial raid set 1766 * synchronisation/parity calculation. 1767 */ 1768 __le64 array_resync_offset; 1769 1770 /* 1771 * raid characteristics 1772 */ 1773 __le32 level; 1774 __le32 layout; 1775 __le32 stripe_sectors; 1776 1777 /******************************************************************** 1778 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1779 * 1780 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist 1781 */ 1782 1783 __le32 flags; /* Flags defining array states for reshaping */ 1784 1785 /* 1786 * This offset tracks the progress of a raid 1787 * set reshape in order to be able to restart it 1788 */ 1789 __le64 reshape_position; 1790 1791 /* 1792 * These define the properties of the array in case of an interrupted reshape 1793 */ 1794 __le32 new_level; 1795 __le32 new_layout; 1796 __le32 new_stripe_sectors; 1797 __le32 delta_disks; 1798 1799 __le64 array_sectors; /* Array size in sectors */ 1800 1801 /* 1802 * Sector offsets to data on devices (reshaping). 1803 * Needed to support out of place reshaping, thus 1804 * not writing over any stripes whilst converting 1805 * them from old to new layout 1806 */ 1807 __le64 data_offset; 1808 __le64 new_data_offset; 1809 1810 __le64 sectors; /* Used device size in sectors */ 1811 1812 /* 1813 * Additonal Bit field of devices indicating failures to support 1814 * up to 256 devices with the 1.9.0 on-disk metadata format 1815 */ 1816 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 1817 1818 __le32 incompat_features; /* Used to indicate any incompatible features */ 1819 1820 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 1821 } __packed; 1822 1823 /* 1824 * Check for reshape constraints on raid set @rs: 1825 * 1826 * - reshape function non-existent 1827 * - degraded set 1828 * - ongoing recovery 1829 * - ongoing reshape 1830 * 1831 * Returns 0 if none or -EPERM if given constraint 1832 * and error message reference in @errmsg 1833 */ 1834 static int rs_check_reshape(struct raid_set *rs) 1835 { 1836 struct mddev *mddev = &rs->md; 1837 1838 if (!mddev->pers || !mddev->pers->check_reshape) 1839 rs->ti->error = "Reshape not supported"; 1840 else if (mddev->degraded) 1841 rs->ti->error = "Can't reshape degraded raid set"; 1842 else if (rs_is_recovering(rs)) 1843 rs->ti->error = "Convert request on recovering raid set prohibited"; 1844 else if (rs_is_reshaping(rs)) 1845 rs->ti->error = "raid set already reshaping!"; 1846 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 1847 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 1848 else 1849 return 0; 1850 1851 return -EPERM; 1852 } 1853 1854 static int read_disk_sb(struct md_rdev *rdev, int size) 1855 { 1856 BUG_ON(!rdev->sb_page); 1857 1858 if (rdev->sb_loaded) 1859 return 0; 1860 1861 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { 1862 DMERR("Failed to read superblock of device at position %d", 1863 rdev->raid_disk); 1864 md_error(rdev->mddev, rdev); 1865 return -EINVAL; 1866 } 1867 1868 rdev->sb_loaded = 1; 1869 1870 return 0; 1871 } 1872 1873 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 1874 { 1875 failed_devices[0] = le64_to_cpu(sb->failed_devices); 1876 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 1877 1878 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 1879 int i = ARRAY_SIZE(sb->extended_failed_devices); 1880 1881 while (i--) 1882 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 1883 } 1884 } 1885 1886 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 1887 { 1888 int i = ARRAY_SIZE(sb->extended_failed_devices); 1889 1890 sb->failed_devices = cpu_to_le64(failed_devices[0]); 1891 while (i--) 1892 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 1893 } 1894 1895 /* 1896 * Synchronize the superblock members with the raid set properties 1897 * 1898 * All superblock data is little endian. 1899 */ 1900 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 1901 { 1902 bool update_failed_devices = false; 1903 unsigned int i; 1904 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 1905 struct dm_raid_superblock *sb; 1906 struct raid_set *rs = container_of(mddev, struct raid_set, md); 1907 1908 /* No metadata device, no superblock */ 1909 if (!rdev->meta_bdev) 1910 return; 1911 1912 BUG_ON(!rdev->sb_page); 1913 1914 sb = page_address(rdev->sb_page); 1915 1916 sb_retrieve_failed_devices(sb, failed_devices); 1917 1918 for (i = 0; i < rs->raid_disks; i++) 1919 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 1920 update_failed_devices = true; 1921 set_bit(i, (void *) failed_devices); 1922 } 1923 1924 if (update_failed_devices) 1925 sb_update_failed_devices(sb, failed_devices); 1926 1927 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 1928 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 1929 1930 sb->num_devices = cpu_to_le32(mddev->raid_disks); 1931 sb->array_position = cpu_to_le32(rdev->raid_disk); 1932 1933 sb->events = cpu_to_le64(mddev->events); 1934 1935 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 1936 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 1937 1938 sb->level = cpu_to_le32(mddev->level); 1939 sb->layout = cpu_to_le32(mddev->layout); 1940 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 1941 1942 sb->new_level = cpu_to_le32(mddev->new_level); 1943 sb->new_layout = cpu_to_le32(mddev->new_layout); 1944 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 1945 1946 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1947 1948 smp_rmb(); /* Make sure we access most recent reshape position */ 1949 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1950 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 1951 /* Flag ongoing reshape */ 1952 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 1953 1954 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 1955 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 1956 } else { 1957 /* Clear reshape flags */ 1958 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 1959 } 1960 1961 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 1962 sb->data_offset = cpu_to_le64(rdev->data_offset); 1963 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 1964 sb->sectors = cpu_to_le64(rdev->sectors); 1965 sb->incompat_features = cpu_to_le32(0); 1966 1967 /* Zero out the rest of the payload after the size of the superblock */ 1968 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 1969 } 1970 1971 /* 1972 * super_load 1973 * 1974 * This function creates a superblock if one is not found on the device 1975 * and will decide which superblock to use if there's a choice. 1976 * 1977 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 1978 */ 1979 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 1980 { 1981 int r; 1982 struct dm_raid_superblock *sb; 1983 struct dm_raid_superblock *refsb; 1984 uint64_t events_sb, events_refsb; 1985 1986 rdev->sb_start = 0; 1987 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 1988 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) { 1989 DMERR("superblock size of a logical block is no longer valid"); 1990 return -EINVAL; 1991 } 1992 1993 r = read_disk_sb(rdev, rdev->sb_size); 1994 if (r) 1995 return r; 1996 1997 sb = page_address(rdev->sb_page); 1998 1999 /* 2000 * Two cases that we want to write new superblocks and rebuild: 2001 * 1) New device (no matching magic number) 2002 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2003 */ 2004 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2005 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2006 super_sync(rdev->mddev, rdev); 2007 2008 set_bit(FirstUse, &rdev->flags); 2009 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2010 2011 /* Force writing of superblocks to disk */ 2012 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2013 2014 /* Any superblock is better than none, choose that if given */ 2015 return refdev ? 0 : 1; 2016 } 2017 2018 if (!refdev) 2019 return 1; 2020 2021 events_sb = le64_to_cpu(sb->events); 2022 2023 refsb = page_address(refdev->sb_page); 2024 events_refsb = le64_to_cpu(refsb->events); 2025 2026 return (events_sb > events_refsb) ? 1 : 0; 2027 } 2028 2029 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2030 { 2031 int role; 2032 unsigned int d; 2033 struct mddev *mddev = &rs->md; 2034 uint64_t events_sb; 2035 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2036 struct dm_raid_superblock *sb; 2037 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2038 struct md_rdev *r; 2039 struct dm_raid_superblock *sb2; 2040 2041 sb = page_address(rdev->sb_page); 2042 events_sb = le64_to_cpu(sb->events); 2043 2044 /* 2045 * Initialise to 1 if this is a new superblock. 2046 */ 2047 mddev->events = events_sb ? : 1; 2048 2049 mddev->reshape_position = MaxSector; 2050 2051 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2052 mddev->level = le32_to_cpu(sb->level); 2053 mddev->layout = le32_to_cpu(sb->layout); 2054 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2055 2056 /* 2057 * Reshaping is supported, e.g. reshape_position is valid 2058 * in superblock and superblock content is authoritative. 2059 */ 2060 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2061 /* Superblock is authoritative wrt given raid set layout! */ 2062 mddev->new_level = le32_to_cpu(sb->new_level); 2063 mddev->new_layout = le32_to_cpu(sb->new_layout); 2064 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2065 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2066 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2067 2068 /* raid was reshaping and got interrupted */ 2069 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2070 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2071 DMERR("Reshape requested but raid set is still reshaping"); 2072 return -EINVAL; 2073 } 2074 2075 if (mddev->delta_disks < 0 || 2076 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2077 mddev->reshape_backwards = 1; 2078 else 2079 mddev->reshape_backwards = 0; 2080 2081 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2082 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2083 } 2084 2085 } else { 2086 /* 2087 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2088 */ 2089 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2090 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2091 2092 if (rs_takeover_requested(rs)) { 2093 if (rt_cur && rt_new) 2094 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2095 rt_cur->name, rt_new->name); 2096 else 2097 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2098 return -EINVAL; 2099 } else if (rs_reshape_requested(rs)) { 2100 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2101 if (mddev->layout != mddev->new_layout) { 2102 if (rt_cur && rt_new) 2103 DMERR(" current layout %s vs new layout %s", 2104 rt_cur->name, rt_new->name); 2105 else 2106 DMERR(" current layout 0x%X vs new layout 0x%X", 2107 le32_to_cpu(sb->layout), mddev->new_layout); 2108 } 2109 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2110 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2111 mddev->chunk_sectors, mddev->new_chunk_sectors); 2112 if (rs->delta_disks) 2113 DMERR(" current %u disks vs new %u disks", 2114 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2115 if (rs_is_raid10(rs)) { 2116 DMERR(" Old layout: %s w/ %u copies", 2117 raid10_md_layout_to_format(mddev->layout), 2118 raid10_md_layout_to_copies(mddev->layout)); 2119 DMERR(" New layout: %s w/ %u copies", 2120 raid10_md_layout_to_format(mddev->new_layout), 2121 raid10_md_layout_to_copies(mddev->new_layout)); 2122 } 2123 return -EINVAL; 2124 } 2125 2126 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2127 } 2128 2129 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2130 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2131 2132 /* 2133 * During load, we set FirstUse if a new superblock was written. 2134 * There are two reasons we might not have a superblock: 2135 * 1) The raid set is brand new - in which case, all of the 2136 * devices must have their In_sync bit set. Also, 2137 * recovery_cp must be 0, unless forced. 2138 * 2) This is a new device being added to an old raid set 2139 * and the new device needs to be rebuilt - in which 2140 * case the In_sync bit will /not/ be set and 2141 * recovery_cp must be MaxSector. 2142 * 3) This is/are a new device(s) being added to an old 2143 * raid set during takeover to a higher raid level 2144 * to provide capacity for redundancy or during reshape 2145 * to add capacity to grow the raid set. 2146 */ 2147 d = 0; 2148 rdev_for_each(r, mddev) { 2149 if (test_bit(FirstUse, &r->flags)) 2150 new_devs++; 2151 2152 if (!test_bit(In_sync, &r->flags)) { 2153 DMINFO("Device %d specified for rebuild; clearing superblock", 2154 r->raid_disk); 2155 rebuilds++; 2156 2157 if (test_bit(FirstUse, &r->flags)) 2158 rebuild_and_new++; 2159 } 2160 2161 d++; 2162 } 2163 2164 if (new_devs == rs->raid_disks || !rebuilds) { 2165 /* Replace a broken device */ 2166 if (new_devs == 1 && !rs->delta_disks) 2167 ; 2168 if (new_devs == rs->raid_disks) { 2169 DMINFO("Superblocks created for new raid set"); 2170 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2171 } else if (new_devs != rebuilds && 2172 new_devs != rs->delta_disks) { 2173 DMERR("New device injected into existing raid set without " 2174 "'delta_disks' or 'rebuild' parameter specified"); 2175 return -EINVAL; 2176 } 2177 } else if (new_devs && new_devs != rebuilds) { 2178 DMERR("%u 'rebuild' devices cannot be injected into" 2179 " a raid set with %u other first-time devices", 2180 rebuilds, new_devs); 2181 return -EINVAL; 2182 } else if (rebuilds) { 2183 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2184 DMERR("new device%s provided without 'rebuild'", 2185 new_devs > 1 ? "s" : ""); 2186 return -EINVAL; 2187 } else if (rs_is_recovering(rs)) { 2188 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2189 (unsigned long long) mddev->recovery_cp); 2190 return -EINVAL; 2191 } else if (rs_is_reshaping(rs)) { 2192 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2193 (unsigned long long) mddev->reshape_position); 2194 return -EINVAL; 2195 } 2196 } 2197 2198 /* 2199 * Now we set the Faulty bit for those devices that are 2200 * recorded in the superblock as failed. 2201 */ 2202 sb_retrieve_failed_devices(sb, failed_devices); 2203 rdev_for_each(r, mddev) { 2204 if (!r->sb_page) 2205 continue; 2206 sb2 = page_address(r->sb_page); 2207 sb2->failed_devices = 0; 2208 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2209 2210 /* 2211 * Check for any device re-ordering. 2212 */ 2213 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2214 role = le32_to_cpu(sb2->array_position); 2215 if (role < 0) 2216 continue; 2217 2218 if (role != r->raid_disk) { 2219 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2220 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2221 rs->raid_disks % rs->raid10_copies) { 2222 rs->ti->error = 2223 "Cannot change raid10 near set to odd # of devices!"; 2224 return -EINVAL; 2225 } 2226 2227 sb2->array_position = cpu_to_le32(r->raid_disk); 2228 2229 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2230 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2231 !rt_is_raid1(rs->raid_type)) { 2232 rs->ti->error = "Cannot change device positions in raid set"; 2233 return -EINVAL; 2234 } 2235 2236 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2237 } 2238 2239 /* 2240 * Partial recovery is performed on 2241 * returning failed devices. 2242 */ 2243 if (test_bit(role, (void *) failed_devices)) 2244 set_bit(Faulty, &r->flags); 2245 } 2246 } 2247 2248 return 0; 2249 } 2250 2251 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2252 { 2253 struct mddev *mddev = &rs->md; 2254 struct dm_raid_superblock *sb; 2255 2256 if (rs_is_raid0(rs) || !rdev->sb_page) 2257 return 0; 2258 2259 sb = page_address(rdev->sb_page); 2260 2261 /* 2262 * If mddev->events is not set, we know we have not yet initialized 2263 * the array. 2264 */ 2265 if (!mddev->events && super_init_validation(rs, rdev)) 2266 return -EINVAL; 2267 2268 if (le32_to_cpu(sb->compat_features) && 2269 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2270 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2271 return -EINVAL; 2272 } 2273 2274 if (sb->incompat_features) { 2275 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2276 return -EINVAL; 2277 } 2278 2279 /* Enable bitmap creation for RAID levels != 0 */ 2280 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096); 2281 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2282 2283 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2284 /* Retrieve device size stored in superblock to be prepared for shrink */ 2285 rdev->sectors = le64_to_cpu(sb->sectors); 2286 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2287 if (rdev->recovery_offset == MaxSector) 2288 set_bit(In_sync, &rdev->flags); 2289 /* 2290 * If no reshape in progress -> we're recovering single 2291 * disk(s) and have to set the device(s) to out-of-sync 2292 */ 2293 else if (!rs_is_reshaping(rs)) 2294 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2295 } 2296 2297 /* 2298 * If a device comes back, set it as not In_sync and no longer faulty. 2299 */ 2300 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2301 rdev->recovery_offset = 0; 2302 clear_bit(In_sync, &rdev->flags); 2303 rdev->saved_raid_disk = rdev->raid_disk; 2304 } 2305 2306 /* Reshape support -> restore repective data offsets */ 2307 rdev->data_offset = le64_to_cpu(sb->data_offset); 2308 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2309 2310 return 0; 2311 } 2312 2313 /* 2314 * Analyse superblocks and select the freshest. 2315 */ 2316 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2317 { 2318 int r; 2319 struct raid_dev *dev; 2320 struct md_rdev *rdev, *tmp, *freshest; 2321 struct mddev *mddev = &rs->md; 2322 2323 freshest = NULL; 2324 rdev_for_each_safe(rdev, tmp, mddev) { 2325 /* 2326 * Skipping super_load due to CTR_FLAG_SYNC will cause 2327 * the array to undergo initialization again as 2328 * though it were new. This is the intended effect 2329 * of the "sync" directive. 2330 * 2331 * When reshaping capability is added, we must ensure 2332 * that the "sync" directive is disallowed during the 2333 * reshape. 2334 */ 2335 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2336 continue; 2337 2338 if (!rdev->meta_bdev) 2339 continue; 2340 2341 r = super_load(rdev, freshest); 2342 2343 switch (r) { 2344 case 1: 2345 freshest = rdev; 2346 break; 2347 case 0: 2348 break; 2349 default: 2350 /* 2351 * We have to keep any raid0 data/metadata device pairs or 2352 * the MD raid0 personality will fail to start the array. 2353 */ 2354 if (rs_is_raid0(rs)) 2355 continue; 2356 2357 dev = container_of(rdev, struct raid_dev, rdev); 2358 if (dev->meta_dev) 2359 dm_put_device(ti, dev->meta_dev); 2360 2361 dev->meta_dev = NULL; 2362 rdev->meta_bdev = NULL; 2363 2364 if (rdev->sb_page) 2365 put_page(rdev->sb_page); 2366 2367 rdev->sb_page = NULL; 2368 2369 rdev->sb_loaded = 0; 2370 2371 /* 2372 * We might be able to salvage the data device 2373 * even though the meta device has failed. For 2374 * now, we behave as though '- -' had been 2375 * set for this device in the table. 2376 */ 2377 if (dev->data_dev) 2378 dm_put_device(ti, dev->data_dev); 2379 2380 dev->data_dev = NULL; 2381 rdev->bdev = NULL; 2382 2383 list_del(&rdev->same_set); 2384 } 2385 } 2386 2387 if (!freshest) 2388 return 0; 2389 2390 if (validate_raid_redundancy(rs)) { 2391 rs->ti->error = "Insufficient redundancy to activate array"; 2392 return -EINVAL; 2393 } 2394 2395 /* 2396 * Validation of the freshest device provides the source of 2397 * validation for the remaining devices. 2398 */ 2399 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2400 if (super_validate(rs, freshest)) 2401 return -EINVAL; 2402 2403 rdev_for_each(rdev, mddev) 2404 if ((rdev != freshest) && super_validate(rs, rdev)) 2405 return -EINVAL; 2406 return 0; 2407 } 2408 2409 /* 2410 * Adjust data_offset and new_data_offset on all disk members of @rs 2411 * for out of place reshaping if requested by contructor 2412 * 2413 * We need free space at the beginning of each raid disk for forward 2414 * and at the end for backward reshapes which userspace has to provide 2415 * via remapping/reordering of space. 2416 */ 2417 static int rs_adjust_data_offsets(struct raid_set *rs) 2418 { 2419 sector_t data_offset = 0, new_data_offset = 0; 2420 struct md_rdev *rdev; 2421 2422 /* Constructor did not request data offset change */ 2423 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2424 if (!rs_is_reshapable(rs)) 2425 goto out; 2426 2427 return 0; 2428 } 2429 2430 /* HM FIXME: get InSync raid_dev? */ 2431 rdev = &rs->dev[0].rdev; 2432 2433 if (rs->delta_disks < 0) { 2434 /* 2435 * Removing disks (reshaping backwards): 2436 * 2437 * - before reshape: data is at offset 0 and free space 2438 * is at end of each component LV 2439 * 2440 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2441 */ 2442 data_offset = 0; 2443 new_data_offset = rs->data_offset; 2444 2445 } else if (rs->delta_disks > 0) { 2446 /* 2447 * Adding disks (reshaping forwards): 2448 * 2449 * - before reshape: data is at offset rs->data_offset != 0 and 2450 * free space is at begin of each component LV 2451 * 2452 * - after reshape: data is at offset 0 on each component LV 2453 */ 2454 data_offset = rs->data_offset; 2455 new_data_offset = 0; 2456 2457 } else { 2458 /* 2459 * User space passes in 0 for data offset after having removed reshape space 2460 * 2461 * - or - (data offset != 0) 2462 * 2463 * Changing RAID layout or chunk size -> toggle offsets 2464 * 2465 * - before reshape: data is at offset rs->data_offset 0 and 2466 * free space is at end of each component LV 2467 * -or- 2468 * data is at offset rs->data_offset != 0 and 2469 * free space is at begin of each component LV 2470 * 2471 * - after reshape: data is at offset 0 if it was at offset != 0 2472 * or at offset != 0 if it was at offset 0 2473 * on each component LV 2474 * 2475 */ 2476 data_offset = rs->data_offset ? rdev->data_offset : 0; 2477 new_data_offset = data_offset ? 0 : rs->data_offset; 2478 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2479 } 2480 2481 /* 2482 * Make sure we got a minimum amount of free sectors per device 2483 */ 2484 if (rs->data_offset && 2485 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) { 2486 rs->ti->error = data_offset ? "No space for forward reshape" : 2487 "No space for backward reshape"; 2488 return -ENOSPC; 2489 } 2490 out: 2491 /* Adjust data offsets on all rdevs */ 2492 rdev_for_each(rdev, &rs->md) { 2493 rdev->data_offset = data_offset; 2494 rdev->new_data_offset = new_data_offset; 2495 } 2496 2497 return 0; 2498 } 2499 2500 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2501 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2502 { 2503 int i = 0; 2504 struct md_rdev *rdev; 2505 2506 rdev_for_each(rdev, &rs->md) { 2507 rdev->raid_disk = i++; 2508 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2509 } 2510 } 2511 2512 /* 2513 * Setup @rs for takeover by a different raid level 2514 */ 2515 static int rs_setup_takeover(struct raid_set *rs) 2516 { 2517 struct mddev *mddev = &rs->md; 2518 struct md_rdev *rdev; 2519 unsigned int d = mddev->raid_disks = rs->raid_disks; 2520 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2521 2522 if (rt_is_raid10(rs->raid_type)) { 2523 if (mddev->level == 0) { 2524 /* Userpace reordered disks -> adjust raid_disk indexes */ 2525 __reorder_raid_disk_indexes(rs); 2526 2527 /* raid0 -> raid10_far layout */ 2528 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2529 rs->raid10_copies); 2530 } else if (mddev->level == 1) 2531 /* raid1 -> raid10_near layout */ 2532 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2533 rs->raid_disks); 2534 else 2535 return -EINVAL; 2536 2537 } 2538 2539 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2540 mddev->recovery_cp = MaxSector; 2541 2542 while (d--) { 2543 rdev = &rs->dev[d].rdev; 2544 2545 if (test_bit(d, (void *) rs->rebuild_disks)) { 2546 clear_bit(In_sync, &rdev->flags); 2547 clear_bit(Faulty, &rdev->flags); 2548 mddev->recovery_cp = rdev->recovery_offset = 0; 2549 /* Bitmap has to be created when we do an "up" takeover */ 2550 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2551 } 2552 2553 rdev->new_data_offset = new_data_offset; 2554 } 2555 2556 return 0; 2557 } 2558 2559 /* Prepare @rs for reshape */ 2560 static int rs_prepare_reshape(struct raid_set *rs) 2561 { 2562 bool reshape; 2563 struct mddev *mddev = &rs->md; 2564 2565 if (rs_is_raid10(rs)) { 2566 if (rs->raid_disks != mddev->raid_disks && 2567 __is_raid10_near(mddev->layout) && 2568 rs->raid10_copies && 2569 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2570 /* 2571 * raid disk have to be multiple of data copies to allow this conversion, 2572 * 2573 * This is actually not a reshape it is a 2574 * rebuild of any additional mirrors per group 2575 */ 2576 if (rs->raid_disks % rs->raid10_copies) { 2577 rs->ti->error = "Can't reshape raid10 mirror groups"; 2578 return -EINVAL; 2579 } 2580 2581 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2582 __reorder_raid_disk_indexes(rs); 2583 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2584 rs->raid10_copies); 2585 mddev->new_layout = mddev->layout; 2586 reshape = false; 2587 } else 2588 reshape = true; 2589 2590 } else if (rs_is_raid456(rs)) 2591 reshape = true; 2592 2593 else if (rs_is_raid1(rs)) { 2594 if (rs->delta_disks) { 2595 /* Process raid1 via delta_disks */ 2596 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2597 reshape = true; 2598 } else { 2599 /* Process raid1 without delta_disks */ 2600 mddev->raid_disks = rs->raid_disks; 2601 reshape = false; 2602 } 2603 } else { 2604 rs->ti->error = "Called with bogus raid type"; 2605 return -EINVAL; 2606 } 2607 2608 if (reshape) { 2609 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2610 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2611 } else if (mddev->raid_disks < rs->raid_disks) 2612 /* Create new superblocks and bitmaps, if any new disks */ 2613 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2614 2615 return 0; 2616 } 2617 2618 /* 2619 * 2620 * - change raid layout 2621 * - change chunk size 2622 * - add disks 2623 * - remove disks 2624 */ 2625 static int rs_setup_reshape(struct raid_set *rs) 2626 { 2627 int r = 0; 2628 unsigned int cur_raid_devs, d; 2629 struct mddev *mddev = &rs->md; 2630 struct md_rdev *rdev; 2631 2632 mddev->delta_disks = rs->delta_disks; 2633 cur_raid_devs = mddev->raid_disks; 2634 2635 /* Ignore impossible layout change whilst adding/removing disks */ 2636 if (mddev->delta_disks && 2637 mddev->layout != mddev->new_layout) { 2638 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2639 mddev->new_layout = mddev->layout; 2640 } 2641 2642 /* 2643 * Adjust array size: 2644 * 2645 * - in case of adding disks, array size has 2646 * to grow after the disk adding reshape, 2647 * which'll hapen in the event handler; 2648 * reshape will happen forward, so space has to 2649 * be available at the beginning of each disk 2650 * 2651 * - in case of removing disks, array size 2652 * has to shrink before starting the reshape, 2653 * which'll happen here; 2654 * reshape will happen backward, so space has to 2655 * be available at the end of each disk 2656 * 2657 * - data_offset and new_data_offset are 2658 * adjusted for aforementioned out of place 2659 * reshaping based on userspace passing in 2660 * the "data_offset <sectors>" key/value 2661 * pair via the constructor 2662 */ 2663 2664 /* Add disk(s) */ 2665 if (rs->delta_disks > 0) { 2666 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2667 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2668 rdev = &rs->dev[d].rdev; 2669 clear_bit(In_sync, &rdev->flags); 2670 2671 /* 2672 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2673 * by md, which'll store that erroneously in the superblock on reshape 2674 */ 2675 rdev->saved_raid_disk = -1; 2676 rdev->raid_disk = d; 2677 2678 rdev->sectors = mddev->dev_sectors; 2679 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2680 } 2681 2682 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */ 2683 2684 /* Remove disk(s) */ 2685 } else if (rs->delta_disks < 0) { 2686 r = rs_set_dev_and_array_sectors(rs, true); 2687 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2688 2689 /* Change layout and/or chunk size */ 2690 } else { 2691 /* 2692 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2693 * 2694 * keeping number of disks and do layout change -> 2695 * 2696 * toggle reshape_backward depending on data_offset: 2697 * 2698 * - free space upfront -> reshape forward 2699 * 2700 * - free space at the end -> reshape backward 2701 * 2702 * 2703 * This utilizes free reshape space avoiding the need 2704 * for userspace to move (parts of) LV segments in 2705 * case of layout/chunksize change (for disk 2706 * adding/removing reshape space has to be at 2707 * the proper address (see above with delta_disks): 2708 * 2709 * add disk(s) -> begin 2710 * remove disk(s)-> end 2711 */ 2712 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2713 } 2714 2715 return r; 2716 } 2717 2718 /* 2719 * Enable/disable discard support on RAID set depending on 2720 * RAID level and discard properties of underlying RAID members. 2721 */ 2722 static void configure_discard_support(struct raid_set *rs) 2723 { 2724 int i; 2725 bool raid456; 2726 struct dm_target *ti = rs->ti; 2727 2728 /* Assume discards not supported until after checks below. */ 2729 ti->discards_supported = false; 2730 2731 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */ 2732 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6); 2733 2734 for (i = 0; i < rs->raid_disks; i++) { 2735 struct request_queue *q; 2736 2737 if (!rs->dev[i].rdev.bdev) 2738 continue; 2739 2740 q = bdev_get_queue(rs->dev[i].rdev.bdev); 2741 if (!q || !blk_queue_discard(q)) 2742 return; 2743 2744 if (raid456) { 2745 if (!q->limits.discard_zeroes_data) 2746 return; 2747 if (!devices_handle_discard_safely) { 2748 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2749 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2750 return; 2751 } 2752 } 2753 } 2754 2755 /* All RAID members properly support discards */ 2756 ti->discards_supported = true; 2757 2758 /* 2759 * RAID1 and RAID10 personalities require bio splitting, 2760 * RAID0/4/5/6 don't and process large discard bios properly. 2761 */ 2762 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10); 2763 ti->num_discard_bios = 1; 2764 } 2765 2766 /* 2767 * Construct a RAID0/1/10/4/5/6 mapping: 2768 * Args: 2769 * <raid_type> <#raid_params> <raid_params>{0,} \ 2770 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2771 * 2772 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2773 * details on possible <raid_params>. 2774 * 2775 * Userspace is free to initialize the metadata devices, hence the superblocks to 2776 * enforce recreation based on the passed in table parameters. 2777 * 2778 */ 2779 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2780 { 2781 int r; 2782 bool resize; 2783 struct raid_type *rt; 2784 unsigned int num_raid_params, num_raid_devs; 2785 sector_t calculated_dev_sectors; 2786 struct raid_set *rs = NULL; 2787 const char *arg; 2788 struct rs_layout rs_layout; 2789 struct dm_arg_set as = { argc, argv }, as_nrd; 2790 struct dm_arg _args[] = { 2791 { 0, as.argc, "Cannot understand number of raid parameters" }, 2792 { 1, 254, "Cannot understand number of raid devices parameters" } 2793 }; 2794 2795 /* Must have <raid_type> */ 2796 arg = dm_shift_arg(&as); 2797 if (!arg) { 2798 ti->error = "No arguments"; 2799 return -EINVAL; 2800 } 2801 2802 rt = get_raid_type(arg); 2803 if (!rt) { 2804 ti->error = "Unrecognised raid_type"; 2805 return -EINVAL; 2806 } 2807 2808 /* Must have <#raid_params> */ 2809 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 2810 return -EINVAL; 2811 2812 /* number of raid device tupples <meta_dev data_dev> */ 2813 as_nrd = as; 2814 dm_consume_args(&as_nrd, num_raid_params); 2815 _args[1].max = (as_nrd.argc - 1) / 2; 2816 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 2817 return -EINVAL; 2818 2819 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 2820 ti->error = "Invalid number of supplied raid devices"; 2821 return -EINVAL; 2822 } 2823 2824 rs = raid_set_alloc(ti, rt, num_raid_devs); 2825 if (IS_ERR(rs)) 2826 return PTR_ERR(rs); 2827 2828 r = parse_raid_params(rs, &as, num_raid_params); 2829 if (r) 2830 goto bad; 2831 2832 r = parse_dev_params(rs, &as); 2833 if (r) 2834 goto bad; 2835 2836 rs->md.sync_super = super_sync; 2837 2838 /* 2839 * Calculate ctr requested array and device sizes to allow 2840 * for superblock analysis needing device sizes defined. 2841 * 2842 * Any existing superblock will overwrite the array and device sizes 2843 */ 2844 r = rs_set_dev_and_array_sectors(rs, false); 2845 if (r) 2846 goto bad; 2847 2848 calculated_dev_sectors = rs->dev[0].rdev.sectors; 2849 2850 /* 2851 * Backup any new raid set level, layout, ... 2852 * requested to be able to compare to superblock 2853 * members for conversion decisions. 2854 */ 2855 rs_config_backup(rs, &rs_layout); 2856 2857 r = analyse_superblocks(ti, rs); 2858 if (r) 2859 goto bad; 2860 2861 resize = calculated_dev_sectors != rs->dev[0].rdev.sectors; 2862 2863 INIT_WORK(&rs->md.event_work, do_table_event); 2864 ti->private = rs; 2865 ti->num_flush_bios = 1; 2866 2867 /* Restore any requested new layout for conversion decision */ 2868 rs_config_restore(rs, &rs_layout); 2869 2870 /* 2871 * Now that we have any superblock metadata available, 2872 * check for new, recovering, reshaping, to be taken over, 2873 * to be reshaped or an existing, unchanged raid set to 2874 * run in sequence. 2875 */ 2876 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 2877 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 2878 if (rs_is_raid6(rs) && 2879 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 2880 ti->error = "'nosync' not allowed for new raid6 set"; 2881 r = -EINVAL; 2882 goto bad; 2883 } 2884 rs_setup_recovery(rs, 0); 2885 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2886 rs_set_new(rs); 2887 } else if (rs_is_recovering(rs)) { 2888 /* A recovering raid set may be resized */ 2889 ; /* skip setup rs */ 2890 } else if (rs_is_reshaping(rs)) { 2891 /* Have to reject size change request during reshape */ 2892 if (resize) { 2893 ti->error = "Can't resize a reshaping raid set"; 2894 r = -EPERM; 2895 goto bad; 2896 } 2897 /* skip setup rs */ 2898 } else if (rs_takeover_requested(rs)) { 2899 if (rs_is_reshaping(rs)) { 2900 ti->error = "Can't takeover a reshaping raid set"; 2901 r = -EPERM; 2902 goto bad; 2903 } 2904 2905 /* 2906 * If a takeover is needed, userspace sets any additional 2907 * devices to rebuild and we can check for a valid request here. 2908 * 2909 * If acceptible, set the level to the new requested 2910 * one, prohibit requesting recovery, allow the raid 2911 * set to run and store superblocks during resume. 2912 */ 2913 r = rs_check_takeover(rs); 2914 if (r) 2915 goto bad; 2916 2917 r = rs_setup_takeover(rs); 2918 if (r) 2919 goto bad; 2920 2921 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2922 /* Takeover ain't recovery, so disable recovery */ 2923 rs_setup_recovery(rs, MaxSector); 2924 rs_set_new(rs); 2925 } else if (rs_reshape_requested(rs)) { 2926 /* 2927 * We can only prepare for a reshape here, because the 2928 * raid set needs to run to provide the repective reshape 2929 * check functions via its MD personality instance. 2930 * 2931 * So do the reshape check after md_run() succeeded. 2932 */ 2933 r = rs_prepare_reshape(rs); 2934 if (r) 2935 return r; 2936 2937 /* Reshaping ain't recovery, so disable recovery */ 2938 rs_setup_recovery(rs, MaxSector); 2939 rs_set_cur(rs); 2940 } else { 2941 /* May not set recovery when a device rebuild is requested */ 2942 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 2943 rs_setup_recovery(rs, MaxSector); 2944 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2945 } else 2946 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ? 2947 0 : (resize ? calculated_dev_sectors : MaxSector)); 2948 rs_set_cur(rs); 2949 } 2950 2951 /* If constructor requested it, change data and new_data offsets */ 2952 r = rs_adjust_data_offsets(rs); 2953 if (r) 2954 goto bad; 2955 2956 /* Start raid set read-only and assumed clean to change in raid_resume() */ 2957 rs->md.ro = 1; 2958 rs->md.in_sync = 1; 2959 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 2960 2961 /* Has to be held on running the array */ 2962 mddev_lock_nointr(&rs->md); 2963 r = md_run(&rs->md); 2964 rs->md.in_sync = 0; /* Assume already marked dirty */ 2965 2966 if (r) { 2967 ti->error = "Failed to run raid array"; 2968 mddev_unlock(&rs->md); 2969 goto bad; 2970 } 2971 2972 rs->callbacks.congested_fn = raid_is_congested; 2973 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 2974 2975 mddev_suspend(&rs->md); 2976 2977 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 2978 if (rs_is_raid456(rs)) { 2979 r = rs_set_raid456_stripe_cache(rs); 2980 if (r) 2981 goto bad_stripe_cache; 2982 } 2983 2984 /* Now do an early reshape check */ 2985 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 2986 r = rs_check_reshape(rs); 2987 if (r) 2988 goto bad_check_reshape; 2989 2990 /* Restore new, ctr requested layout to perform check */ 2991 rs_config_restore(rs, &rs_layout); 2992 2993 if (rs->md.pers->start_reshape) { 2994 r = rs->md.pers->check_reshape(&rs->md); 2995 if (r) { 2996 ti->error = "Reshape check failed"; 2997 goto bad_check_reshape; 2998 } 2999 } 3000 } 3001 3002 /* Disable/enable discard support on raid set. */ 3003 configure_discard_support(rs); 3004 3005 mddev_unlock(&rs->md); 3006 return 0; 3007 3008 bad_stripe_cache: 3009 bad_check_reshape: 3010 md_stop(&rs->md); 3011 bad: 3012 raid_set_free(rs); 3013 3014 return r; 3015 } 3016 3017 static void raid_dtr(struct dm_target *ti) 3018 { 3019 struct raid_set *rs = ti->private; 3020 3021 list_del_init(&rs->callbacks.list); 3022 md_stop(&rs->md); 3023 raid_set_free(rs); 3024 } 3025 3026 static int raid_map(struct dm_target *ti, struct bio *bio) 3027 { 3028 struct raid_set *rs = ti->private; 3029 struct mddev *mddev = &rs->md; 3030 3031 /* 3032 * If we're reshaping to add disk(s)), ti->len and 3033 * mddev->array_sectors will differ during the process 3034 * (ti->len > mddev->array_sectors), so we have to requeue 3035 * bios with addresses > mddev->array_sectors here or 3036 * there will occur accesses past EOD of the component 3037 * data images thus erroring the raid set. 3038 */ 3039 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3040 return DM_MAPIO_REQUEUE; 3041 3042 mddev->pers->make_request(mddev, bio); 3043 3044 return DM_MAPIO_SUBMITTED; 3045 } 3046 3047 /* Return string describing the current sync action of @mddev */ 3048 static const char *decipher_sync_action(struct mddev *mddev) 3049 { 3050 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3051 return "frozen"; 3052 3053 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3054 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3055 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3056 return "reshape"; 3057 3058 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3059 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3060 return "resync"; 3061 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3062 return "check"; 3063 return "repair"; 3064 } 3065 3066 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3067 return "recover"; 3068 } 3069 3070 return "idle"; 3071 } 3072 3073 /* 3074 * Return status string @rdev 3075 * 3076 * Status characters: 3077 * 3078 * 'D' = Dead/Failed device 3079 * 'a' = Alive but not in-sync 3080 * 'A' = Alive and in-sync 3081 */ 3082 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync) 3083 { 3084 if (test_bit(Faulty, &rdev->flags)) 3085 return "D"; 3086 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags)) 3087 return "a"; 3088 else 3089 return "A"; 3090 } 3091 3092 /* Helper to return resync/reshape progress for @rs and @array_in_sync */ 3093 static sector_t rs_get_progress(struct raid_set *rs, 3094 sector_t resync_max_sectors, bool *array_in_sync) 3095 { 3096 sector_t r, recovery_cp, curr_resync_completed; 3097 struct mddev *mddev = &rs->md; 3098 3099 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp; 3100 recovery_cp = mddev->recovery_cp; 3101 *array_in_sync = false; 3102 3103 if (rs_is_raid0(rs)) { 3104 r = resync_max_sectors; 3105 *array_in_sync = true; 3106 3107 } else { 3108 r = mddev->reshape_position; 3109 3110 /* Reshape is relative to the array size */ 3111 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 3112 r != MaxSector) { 3113 if (r == MaxSector) { 3114 *array_in_sync = true; 3115 r = resync_max_sectors; 3116 } else { 3117 /* Got to reverse on backward reshape */ 3118 if (mddev->reshape_backwards) 3119 r = mddev->array_sectors - r; 3120 3121 /* Devide by # of data stripes */ 3122 sector_div(r, mddev_data_stripes(rs)); 3123 } 3124 3125 /* Sync is relative to the component device size */ 3126 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3127 r = curr_resync_completed; 3128 else 3129 r = recovery_cp; 3130 3131 if (r == MaxSector) { 3132 /* 3133 * Sync complete. 3134 */ 3135 *array_in_sync = true; 3136 r = resync_max_sectors; 3137 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3138 /* 3139 * If "check" or "repair" is occurring, the raid set has 3140 * undergone an initial sync and the health characters 3141 * should not be 'a' anymore. 3142 */ 3143 *array_in_sync = true; 3144 } else { 3145 struct md_rdev *rdev; 3146 3147 /* 3148 * The raid set may be doing an initial sync, or it may 3149 * be rebuilding individual components. If all the 3150 * devices are In_sync, then it is the raid set that is 3151 * being initialized. 3152 */ 3153 rdev_for_each(rdev, mddev) 3154 if (!test_bit(In_sync, &rdev->flags)) 3155 *array_in_sync = true; 3156 #if 0 3157 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */ 3158 #endif 3159 } 3160 } 3161 3162 return r; 3163 } 3164 3165 /* Helper to return @dev name or "-" if !@dev */ 3166 static const char *__get_dev_name(struct dm_dev *dev) 3167 { 3168 return dev ? dev->name : "-"; 3169 } 3170 3171 static void raid_status(struct dm_target *ti, status_type_t type, 3172 unsigned int status_flags, char *result, unsigned int maxlen) 3173 { 3174 struct raid_set *rs = ti->private; 3175 struct mddev *mddev = &rs->md; 3176 struct r5conf *conf = mddev->private; 3177 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3178 bool array_in_sync; 3179 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3180 unsigned int sz = 0; 3181 unsigned int rebuild_disks; 3182 unsigned int write_mostly_params = 0; 3183 sector_t progress, resync_max_sectors, resync_mismatches; 3184 const char *sync_action; 3185 struct raid_type *rt; 3186 struct md_rdev *rdev; 3187 3188 switch (type) { 3189 case STATUSTYPE_INFO: 3190 /* *Should* always succeed */ 3191 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3192 if (!rt) 3193 return; 3194 3195 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3196 3197 /* Access most recent mddev properties for status output */ 3198 smp_rmb(); 3199 /* Get sensible max sectors even if raid set not yet started */ 3200 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3201 mddev->resync_max_sectors : mddev->dev_sectors; 3202 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync); 3203 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3204 atomic64_read(&mddev->resync_mismatches) : 0; 3205 sync_action = decipher_sync_action(&rs->md); 3206 3207 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */ 3208 rdev_for_each(rdev, mddev) 3209 DMEMIT(__raid_dev_status(rdev, array_in_sync)); 3210 3211 /* 3212 * In-sync/Reshape ratio: 3213 * The in-sync ratio shows the progress of: 3214 * - Initializing the raid set 3215 * - Rebuilding a subset of devices of the raid set 3216 * The user can distinguish between the two by referring 3217 * to the status characters. 3218 * 3219 * The reshape ratio shows the progress of 3220 * changing the raid layout or the number of 3221 * disks of a raid set 3222 */ 3223 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3224 (unsigned long long) resync_max_sectors); 3225 3226 /* 3227 * v1.5.0+: 3228 * 3229 * Sync action: 3230 * See Documentation/device-mapper/dm-raid.txt for 3231 * information on each of these states. 3232 */ 3233 DMEMIT(" %s", sync_action); 3234 3235 /* 3236 * v1.5.0+: 3237 * 3238 * resync_mismatches/mismatch_cnt 3239 * This field shows the number of discrepancies found when 3240 * performing a "check" of the raid set. 3241 */ 3242 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3243 3244 /* 3245 * v1.9.0+: 3246 * 3247 * data_offset (needed for out of space reshaping) 3248 * This field shows the data offset into the data 3249 * image LV where the first stripes data starts. 3250 * 3251 * We keep data_offset equal on all raid disks of the set, 3252 * so retrieving it from the first raid disk is sufficient. 3253 */ 3254 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3255 break; 3256 3257 case STATUSTYPE_TABLE: 3258 /* Report the table line string you would use to construct this raid set */ 3259 3260 /* Calculate raid parameter count */ 3261 for (i = 0; i < rs->raid_disks; i++) 3262 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3263 write_mostly_params += 2; 3264 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)); 3265 raid_param_cnt += rebuild_disks * 2 + 3266 write_mostly_params + 3267 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3268 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3269 /* Emit table line */ 3270 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3271 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3272 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3273 raid10_md_layout_to_format(mddev->layout)); 3274 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3275 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3276 raid10_md_layout_to_copies(mddev->layout)); 3277 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3278 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3279 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3280 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3281 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3282 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3283 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3284 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3285 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3286 (unsigned long long) rs->data_offset); 3287 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3288 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3289 mddev->bitmap_info.daemon_sleep); 3290 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3291 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3292 max(rs->delta_disks, mddev->delta_disks)); 3293 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3294 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3295 max_nr_stripes); 3296 if (rebuild_disks) 3297 for (i = 0; i < rs->raid_disks; i++) 3298 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks)) 3299 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), 3300 rs->dev[i].rdev.raid_disk); 3301 if (write_mostly_params) 3302 for (i = 0; i < rs->raid_disks; i++) 3303 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3304 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3305 rs->dev[i].rdev.raid_disk); 3306 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3307 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3308 mddev->bitmap_info.max_write_behind); 3309 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3310 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3311 mddev->sync_speed_max); 3312 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3313 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3314 mddev->sync_speed_min); 3315 DMEMIT(" %d", rs->raid_disks); 3316 for (i = 0; i < rs->raid_disks; i++) 3317 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3318 __get_dev_name(rs->dev[i].data_dev)); 3319 } 3320 } 3321 3322 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv) 3323 { 3324 struct raid_set *rs = ti->private; 3325 struct mddev *mddev = &rs->md; 3326 3327 if (!mddev->pers || !mddev->pers->sync_request) 3328 return -EINVAL; 3329 3330 if (!strcasecmp(argv[0], "frozen")) 3331 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3332 else 3333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3334 3335 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3336 if (mddev->sync_thread) { 3337 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3338 md_reap_sync_thread(mddev); 3339 } 3340 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3341 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3342 return -EBUSY; 3343 else if (!strcasecmp(argv[0], "resync")) 3344 ; /* MD_RECOVERY_NEEDED set below */ 3345 else if (!strcasecmp(argv[0], "recover")) 3346 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3347 else { 3348 if (!strcasecmp(argv[0], "check")) 3349 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3350 else if (!!strcasecmp(argv[0], "repair")) 3351 return -EINVAL; 3352 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3353 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3354 } 3355 if (mddev->ro == 2) { 3356 /* A write to sync_action is enough to justify 3357 * canceling read-auto mode 3358 */ 3359 mddev->ro = 0; 3360 if (!mddev->suspended && mddev->sync_thread) 3361 md_wakeup_thread(mddev->sync_thread); 3362 } 3363 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3364 if (!mddev->suspended && mddev->thread) 3365 md_wakeup_thread(mddev->thread); 3366 3367 return 0; 3368 } 3369 3370 static int raid_iterate_devices(struct dm_target *ti, 3371 iterate_devices_callout_fn fn, void *data) 3372 { 3373 struct raid_set *rs = ti->private; 3374 unsigned int i; 3375 int r = 0; 3376 3377 for (i = 0; !r && i < rs->md.raid_disks; i++) 3378 if (rs->dev[i].data_dev) 3379 r = fn(ti, 3380 rs->dev[i].data_dev, 3381 0, /* No offset on data devs */ 3382 rs->md.dev_sectors, 3383 data); 3384 3385 return r; 3386 } 3387 3388 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3389 { 3390 struct raid_set *rs = ti->private; 3391 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors); 3392 3393 blk_limits_io_min(limits, chunk_size); 3394 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs)); 3395 } 3396 3397 static void raid_presuspend(struct dm_target *ti) 3398 { 3399 struct raid_set *rs = ti->private; 3400 3401 md_stop_writes(&rs->md); 3402 } 3403 3404 static void raid_postsuspend(struct dm_target *ti) 3405 { 3406 struct raid_set *rs = ti->private; 3407 3408 if (!rs->md.suspended) 3409 mddev_suspend(&rs->md); 3410 3411 rs->md.ro = 1; 3412 } 3413 3414 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3415 { 3416 int i; 3417 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3418 unsigned long flags; 3419 bool cleared = false; 3420 struct dm_raid_superblock *sb; 3421 struct mddev *mddev = &rs->md; 3422 struct md_rdev *r; 3423 3424 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3425 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3426 return; 3427 3428 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3429 3430 for (i = 0; i < rs->md.raid_disks; i++) { 3431 r = &rs->dev[i].rdev; 3432 if (test_bit(Faulty, &r->flags) && r->sb_page && 3433 sync_page_io(r, 0, r->sb_size, r->sb_page, 3434 REQ_OP_READ, 0, true)) { 3435 DMINFO("Faulty %s device #%d has readable super block." 3436 " Attempting to revive it.", 3437 rs->raid_type->name, i); 3438 3439 /* 3440 * Faulty bit may be set, but sometimes the array can 3441 * be suspended before the personalities can respond 3442 * by removing the device from the array (i.e. calling 3443 * 'hot_remove_disk'). If they haven't yet removed 3444 * the failed device, its 'raid_disk' number will be 3445 * '>= 0' - meaning we must call this function 3446 * ourselves. 3447 */ 3448 if ((r->raid_disk >= 0) && 3449 (mddev->pers->hot_remove_disk(mddev, r) != 0)) 3450 /* Failed to revive this device, try next */ 3451 continue; 3452 3453 r->raid_disk = i; 3454 r->saved_raid_disk = i; 3455 flags = r->flags; 3456 clear_bit(Faulty, &r->flags); 3457 clear_bit(WriteErrorSeen, &r->flags); 3458 clear_bit(In_sync, &r->flags); 3459 if (mddev->pers->hot_add_disk(mddev, r)) { 3460 r->raid_disk = -1; 3461 r->saved_raid_disk = -1; 3462 r->flags = flags; 3463 } else { 3464 r->recovery_offset = 0; 3465 set_bit(i, (void *) cleared_failed_devices); 3466 cleared = true; 3467 } 3468 } 3469 } 3470 3471 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3472 if (cleared) { 3473 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3474 3475 rdev_for_each(r, &rs->md) { 3476 sb = page_address(r->sb_page); 3477 sb_retrieve_failed_devices(sb, failed_devices); 3478 3479 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3480 failed_devices[i] &= ~cleared_failed_devices[i]; 3481 3482 sb_update_failed_devices(sb, failed_devices); 3483 } 3484 } 3485 } 3486 3487 static int __load_dirty_region_bitmap(struct raid_set *rs) 3488 { 3489 int r = 0; 3490 3491 /* Try loading the bitmap unless "raid0", which does not have one */ 3492 if (!rs_is_raid0(rs) && 3493 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3494 r = bitmap_load(&rs->md); 3495 if (r) 3496 DMERR("Failed to load bitmap"); 3497 } 3498 3499 return r; 3500 } 3501 3502 /* Enforce updating all superblocks */ 3503 static void rs_update_sbs(struct raid_set *rs) 3504 { 3505 struct mddev *mddev = &rs->md; 3506 int ro = mddev->ro; 3507 3508 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3509 mddev->ro = 0; 3510 md_update_sb(mddev, 1); 3511 mddev->ro = ro; 3512 } 3513 3514 /* 3515 * Reshape changes raid algorithm of @rs to new one within personality 3516 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3517 * disks from a raid set thus growing/shrinking it or resizes the set 3518 * 3519 * Call mddev_lock_nointr() before! 3520 */ 3521 static int rs_start_reshape(struct raid_set *rs) 3522 { 3523 int r; 3524 struct mddev *mddev = &rs->md; 3525 struct md_personality *pers = mddev->pers; 3526 3527 r = rs_setup_reshape(rs); 3528 if (r) 3529 return r; 3530 3531 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */ 3532 if (mddev->suspended) 3533 mddev_resume(mddev); 3534 3535 /* 3536 * Check any reshape constraints enforced by the personalility 3537 * 3538 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3539 */ 3540 r = pers->check_reshape(mddev); 3541 if (r) { 3542 rs->ti->error = "pers->check_reshape() failed"; 3543 return r; 3544 } 3545 3546 /* 3547 * Personality may not provide start reshape method in which 3548 * case check_reshape above has already covered everything 3549 */ 3550 if (pers->start_reshape) { 3551 r = pers->start_reshape(mddev); 3552 if (r) { 3553 rs->ti->error = "pers->start_reshape() failed"; 3554 return r; 3555 } 3556 } 3557 3558 /* Suspend because a resume will happen in raid_resume() */ 3559 if (!mddev->suspended) 3560 mddev_suspend(mddev); 3561 3562 /* 3563 * Now reshape got set up, update superblocks to 3564 * reflect the fact so that a table reload will 3565 * access proper superblock content in the ctr. 3566 */ 3567 rs_update_sbs(rs); 3568 3569 return 0; 3570 } 3571 3572 static int raid_preresume(struct dm_target *ti) 3573 { 3574 int r; 3575 struct raid_set *rs = ti->private; 3576 struct mddev *mddev = &rs->md; 3577 3578 /* This is a resume after a suspend of the set -> it's already started */ 3579 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3580 return 0; 3581 3582 /* 3583 * The superblocks need to be updated on disk if the 3584 * array is new or new devices got added (thus zeroed 3585 * out by userspace) or __load_dirty_region_bitmap 3586 * will overwrite them in core with old data or fail. 3587 */ 3588 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3589 rs_update_sbs(rs); 3590 3591 /* Load the bitmap from disk unless raid0 */ 3592 r = __load_dirty_region_bitmap(rs); 3593 if (r) 3594 return r; 3595 3596 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */ 3597 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && 3598 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) { 3599 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors, 3600 to_bytes(rs->requested_bitmap_chunk_sectors), 0); 3601 if (r) 3602 DMERR("Failed to resize bitmap"); 3603 } 3604 3605 /* Check for any resize/reshape on @rs and adjust/initiate */ 3606 /* Be prepared for mddev_resume() in raid_resume() */ 3607 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3608 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 3609 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3610 mddev->resync_min = mddev->recovery_cp; 3611 } 3612 3613 rs_set_capacity(rs); 3614 3615 /* Check for any reshape request unless new raid set */ 3616 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3617 /* Initiate a reshape. */ 3618 mddev_lock_nointr(mddev); 3619 r = rs_start_reshape(rs); 3620 mddev_unlock(mddev); 3621 if (r) 3622 DMWARN("Failed to check/start reshape, continuing without change"); 3623 r = 0; 3624 } 3625 3626 return r; 3627 } 3628 3629 static void raid_resume(struct dm_target *ti) 3630 { 3631 struct raid_set *rs = ti->private; 3632 struct mddev *mddev = &rs->md; 3633 3634 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 3635 /* 3636 * A secondary resume while the device is active. 3637 * Take this opportunity to check whether any failed 3638 * devices are reachable again. 3639 */ 3640 attempt_restore_of_faulty_devices(rs); 3641 } 3642 3643 mddev->ro = 0; 3644 mddev->in_sync = 0; 3645 3646 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3647 3648 if (mddev->suspended) 3649 mddev_resume(mddev); 3650 } 3651 3652 static struct target_type raid_target = { 3653 .name = "raid", 3654 .version = {1, 9, 1}, 3655 .module = THIS_MODULE, 3656 .ctr = raid_ctr, 3657 .dtr = raid_dtr, 3658 .map = raid_map, 3659 .status = raid_status, 3660 .message = raid_message, 3661 .iterate_devices = raid_iterate_devices, 3662 .io_hints = raid_io_hints, 3663 .presuspend = raid_presuspend, 3664 .postsuspend = raid_postsuspend, 3665 .preresume = raid_preresume, 3666 .resume = raid_resume, 3667 }; 3668 3669 static int __init dm_raid_init(void) 3670 { 3671 DMINFO("Loading target version %u.%u.%u", 3672 raid_target.version[0], 3673 raid_target.version[1], 3674 raid_target.version[2]); 3675 return dm_register_target(&raid_target); 3676 } 3677 3678 static void __exit dm_raid_exit(void) 3679 { 3680 dm_unregister_target(&raid_target); 3681 } 3682 3683 module_init(dm_raid_init); 3684 module_exit(dm_raid_exit); 3685 3686 module_param(devices_handle_discard_safely, bool, 0644); 3687 MODULE_PARM_DESC(devices_handle_discard_safely, 3688 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 3689 3690 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 3691 MODULE_ALIAS("dm-raid0"); 3692 MODULE_ALIAS("dm-raid1"); 3693 MODULE_ALIAS("dm-raid10"); 3694 MODULE_ALIAS("dm-raid4"); 3695 MODULE_ALIAS("dm-raid5"); 3696 MODULE_ALIAS("dm-raid6"); 3697 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 3698 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 3699 MODULE_LICENSE("GPL"); 3700