1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "md-bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 /* 28 * Minimum journal space 4 MiB in sectors. 29 */ 30 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 31 32 static bool devices_handle_discard_safely = false; 33 34 /* 35 * The following flags are used by dm-raid.c to set up the array state. 36 * They must be cleared before md_run is called. 37 */ 38 #define FirstUse 10 /* rdev flag */ 39 40 struct raid_dev { 41 /* 42 * Two DM devices, one to hold metadata and one to hold the 43 * actual data/parity. The reason for this is to not confuse 44 * ti->len and give more flexibility in altering size and 45 * characteristics. 46 * 47 * While it is possible for this device to be associated 48 * with a different physical device than the data_dev, it 49 * is intended for it to be the same. 50 * |--------- Physical Device ---------| 51 * |- meta_dev -|------ data_dev ------| 52 */ 53 struct dm_dev *meta_dev; 54 struct dm_dev *data_dev; 55 struct md_rdev rdev; 56 }; 57 58 /* 59 * Bits for establishing rs->ctr_flags 60 * 61 * 1 = no flag value 62 * 2 = flag with value 63 */ 64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 76 /* New for v1.9.0 */ 77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 80 81 /* New for v1.10.0 */ 82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 83 84 /* New for v1.11.1 */ 85 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 86 87 /* 88 * Flags for rs->ctr_flags field. 89 */ 90 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 91 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 92 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 93 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 94 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 95 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 97 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 98 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 99 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 100 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 101 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 102 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 103 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 104 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 105 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 106 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 107 108 /* 109 * Definitions of various constructor flags to 110 * be used in checks of valid / invalid flags 111 * per raid level. 112 */ 113 /* Define all any sync flags */ 114 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 115 116 /* Define flags for options without argument (e.g. 'nosync') */ 117 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 118 CTR_FLAG_RAID10_USE_NEAR_SETS) 119 120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 122 CTR_FLAG_WRITE_MOSTLY | \ 123 CTR_FLAG_DAEMON_SLEEP | \ 124 CTR_FLAG_MIN_RECOVERY_RATE | \ 125 CTR_FLAG_MAX_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_WRITE_BEHIND | \ 127 CTR_FLAG_STRIPE_CACHE | \ 128 CTR_FLAG_REGION_SIZE | \ 129 CTR_FLAG_RAID10_COPIES | \ 130 CTR_FLAG_RAID10_FORMAT | \ 131 CTR_FLAG_DELTA_DISKS | \ 132 CTR_FLAG_DATA_OFFSET) 133 134 /* Valid options definitions per raid level... */ 135 136 /* "raid0" does only accept data offset */ 137 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 138 139 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 140 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 141 CTR_FLAG_REBUILD | \ 142 CTR_FLAG_WRITE_MOSTLY | \ 143 CTR_FLAG_DAEMON_SLEEP | \ 144 CTR_FLAG_MIN_RECOVERY_RATE | \ 145 CTR_FLAG_MAX_RECOVERY_RATE | \ 146 CTR_FLAG_MAX_WRITE_BEHIND | \ 147 CTR_FLAG_REGION_SIZE | \ 148 CTR_FLAG_DELTA_DISKS | \ 149 CTR_FLAG_DATA_OFFSET) 150 151 /* "raid10" does not accept any raid1 or stripe cache options */ 152 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 153 CTR_FLAG_REBUILD | \ 154 CTR_FLAG_DAEMON_SLEEP | \ 155 CTR_FLAG_MIN_RECOVERY_RATE | \ 156 CTR_FLAG_MAX_RECOVERY_RATE | \ 157 CTR_FLAG_REGION_SIZE | \ 158 CTR_FLAG_RAID10_COPIES | \ 159 CTR_FLAG_RAID10_FORMAT | \ 160 CTR_FLAG_DELTA_DISKS | \ 161 CTR_FLAG_DATA_OFFSET | \ 162 CTR_FLAG_RAID10_USE_NEAR_SETS) 163 164 /* 165 * "raid4/5/6" do not accept any raid1 or raid10 specific options 166 * 167 * "raid6" does not accept "nosync", because it is not guaranteed 168 * that both parity and q-syndrome are being written properly with 169 * any writes 170 */ 171 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 172 CTR_FLAG_REBUILD | \ 173 CTR_FLAG_DAEMON_SLEEP | \ 174 CTR_FLAG_MIN_RECOVERY_RATE | \ 175 CTR_FLAG_MAX_RECOVERY_RATE | \ 176 CTR_FLAG_STRIPE_CACHE | \ 177 CTR_FLAG_REGION_SIZE | \ 178 CTR_FLAG_DELTA_DISKS | \ 179 CTR_FLAG_DATA_OFFSET | \ 180 CTR_FLAG_JOURNAL_DEV | \ 181 CTR_FLAG_JOURNAL_MODE) 182 183 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 184 CTR_FLAG_REBUILD | \ 185 CTR_FLAG_DAEMON_SLEEP | \ 186 CTR_FLAG_MIN_RECOVERY_RATE | \ 187 CTR_FLAG_MAX_RECOVERY_RATE | \ 188 CTR_FLAG_STRIPE_CACHE | \ 189 CTR_FLAG_REGION_SIZE | \ 190 CTR_FLAG_DELTA_DISKS | \ 191 CTR_FLAG_DATA_OFFSET | \ 192 CTR_FLAG_JOURNAL_DEV | \ 193 CTR_FLAG_JOURNAL_MODE) 194 /* ...valid options definitions per raid level */ 195 196 /* 197 * Flags for rs->runtime_flags field 198 * (RT_FLAG prefix meaning "runtime flag") 199 * 200 * These are all internal and used to define runtime state, 201 * e.g. to prevent another resume from preresume processing 202 * the raid set all over again. 203 */ 204 #define RT_FLAG_RS_PRERESUMED 0 205 #define RT_FLAG_RS_RESUMED 1 206 #define RT_FLAG_RS_BITMAP_LOADED 2 207 #define RT_FLAG_UPDATE_SBS 3 208 #define RT_FLAG_RESHAPE_RS 4 209 #define RT_FLAG_RS_SUSPENDED 5 210 #define RT_FLAG_RS_IN_SYNC 6 211 #define RT_FLAG_RS_RESYNCING 7 212 #define RT_FLAG_RS_GROW 8 213 214 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 215 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 216 217 /* 218 * raid set level, layout and chunk sectors backup/restore 219 */ 220 struct rs_layout { 221 int new_level; 222 int new_layout; 223 int new_chunk_sectors; 224 }; 225 226 struct raid_set { 227 struct dm_target *ti; 228 229 uint32_t stripe_cache_entries; 230 unsigned long ctr_flags; 231 unsigned long runtime_flags; 232 233 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 234 235 int raid_disks; 236 int delta_disks; 237 int data_offset; 238 int raid10_copies; 239 int requested_bitmap_chunk_sectors; 240 241 struct mddev md; 242 struct raid_type *raid_type; 243 struct dm_target_callbacks callbacks; 244 245 sector_t array_sectors; 246 sector_t dev_sectors; 247 248 /* Optional raid4/5/6 journal device */ 249 struct journal_dev { 250 struct dm_dev *dev; 251 struct md_rdev rdev; 252 int mode; 253 } journal_dev; 254 255 struct raid_dev dev[0]; 256 }; 257 258 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 259 { 260 struct mddev *mddev = &rs->md; 261 262 l->new_level = mddev->new_level; 263 l->new_layout = mddev->new_layout; 264 l->new_chunk_sectors = mddev->new_chunk_sectors; 265 } 266 267 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 268 { 269 struct mddev *mddev = &rs->md; 270 271 mddev->new_level = l->new_level; 272 mddev->new_layout = l->new_layout; 273 mddev->new_chunk_sectors = l->new_chunk_sectors; 274 } 275 276 /* raid10 algorithms (i.e. formats) */ 277 #define ALGORITHM_RAID10_DEFAULT 0 278 #define ALGORITHM_RAID10_NEAR 1 279 #define ALGORITHM_RAID10_OFFSET 2 280 #define ALGORITHM_RAID10_FAR 3 281 282 /* Supported raid types and properties. */ 283 static struct raid_type { 284 const char *name; /* RAID algorithm. */ 285 const char *descr; /* Descriptor text for logging. */ 286 const unsigned int parity_devs; /* # of parity devices. */ 287 const unsigned int minimal_devs;/* minimal # of devices in set. */ 288 const unsigned int level; /* RAID level. */ 289 const unsigned int algorithm; /* RAID algorithm. */ 290 } raid_types[] = { 291 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 292 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 293 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 294 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 295 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 296 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 297 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 298 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 299 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 300 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 301 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 302 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 303 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 304 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 305 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 306 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 307 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 308 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 309 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 310 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 311 }; 312 313 /* True, if @v is in inclusive range [@min, @max] */ 314 static bool __within_range(long v, long min, long max) 315 { 316 return v >= min && v <= max; 317 } 318 319 /* All table line arguments are defined here */ 320 static struct arg_name_flag { 321 const unsigned long flag; 322 const char *name; 323 } __arg_name_flags[] = { 324 { CTR_FLAG_SYNC, "sync"}, 325 { CTR_FLAG_NOSYNC, "nosync"}, 326 { CTR_FLAG_REBUILD, "rebuild"}, 327 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 328 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 329 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 330 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 331 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 332 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 333 { CTR_FLAG_REGION_SIZE, "region_size"}, 334 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 335 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 336 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 337 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 338 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 339 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 340 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 341 }; 342 343 /* Return argument name string for given @flag */ 344 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 345 { 346 if (hweight32(flag) == 1) { 347 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 348 349 while (anf-- > __arg_name_flags) 350 if (flag & anf->flag) 351 return anf->name; 352 353 } else 354 DMERR("%s called with more than one flag!", __func__); 355 356 return NULL; 357 } 358 359 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 360 static struct { 361 const int mode; 362 const char *param; 363 } _raid456_journal_mode[] = { 364 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, 365 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } 366 }; 367 368 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 369 static int dm_raid_journal_mode_to_md(const char *mode) 370 { 371 int m = ARRAY_SIZE(_raid456_journal_mode); 372 373 while (m--) 374 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 375 return _raid456_journal_mode[m].mode; 376 377 return -EINVAL; 378 } 379 380 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 381 static const char *md_journal_mode_to_dm_raid(const int mode) 382 { 383 int m = ARRAY_SIZE(_raid456_journal_mode); 384 385 while (m--) 386 if (mode == _raid456_journal_mode[m].mode) 387 return _raid456_journal_mode[m].param; 388 389 return "unknown"; 390 } 391 392 /* 393 * Bool helpers to test for various raid levels of a raid set. 394 * It's level as reported by the superblock rather than 395 * the requested raid_type passed to the constructor. 396 */ 397 /* Return true, if raid set in @rs is raid0 */ 398 static bool rs_is_raid0(struct raid_set *rs) 399 { 400 return !rs->md.level; 401 } 402 403 /* Return true, if raid set in @rs is raid1 */ 404 static bool rs_is_raid1(struct raid_set *rs) 405 { 406 return rs->md.level == 1; 407 } 408 409 /* Return true, if raid set in @rs is raid10 */ 410 static bool rs_is_raid10(struct raid_set *rs) 411 { 412 return rs->md.level == 10; 413 } 414 415 /* Return true, if raid set in @rs is level 6 */ 416 static bool rs_is_raid6(struct raid_set *rs) 417 { 418 return rs->md.level == 6; 419 } 420 421 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 422 static bool rs_is_raid456(struct raid_set *rs) 423 { 424 return __within_range(rs->md.level, 4, 6); 425 } 426 427 /* Return true, if raid set in @rs is reshapable */ 428 static bool __is_raid10_far(int layout); 429 static bool rs_is_reshapable(struct raid_set *rs) 430 { 431 return rs_is_raid456(rs) || 432 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 433 } 434 435 /* Return true, if raid set in @rs is recovering */ 436 static bool rs_is_recovering(struct raid_set *rs) 437 { 438 return rs->md.recovery_cp < rs->md.dev_sectors; 439 } 440 441 /* Return true, if raid set in @rs is reshaping */ 442 static bool rs_is_reshaping(struct raid_set *rs) 443 { 444 return rs->md.reshape_position != MaxSector; 445 } 446 447 /* 448 * bool helpers to test for various raid levels of a raid type @rt 449 */ 450 451 /* Return true, if raid type in @rt is raid0 */ 452 static bool rt_is_raid0(struct raid_type *rt) 453 { 454 return !rt->level; 455 } 456 457 /* Return true, if raid type in @rt is raid1 */ 458 static bool rt_is_raid1(struct raid_type *rt) 459 { 460 return rt->level == 1; 461 } 462 463 /* Return true, if raid type in @rt is raid10 */ 464 static bool rt_is_raid10(struct raid_type *rt) 465 { 466 return rt->level == 10; 467 } 468 469 /* Return true, if raid type in @rt is raid4/5 */ 470 static bool rt_is_raid45(struct raid_type *rt) 471 { 472 return __within_range(rt->level, 4, 5); 473 } 474 475 /* Return true, if raid type in @rt is raid6 */ 476 static bool rt_is_raid6(struct raid_type *rt) 477 { 478 return rt->level == 6; 479 } 480 481 /* Return true, if raid type in @rt is raid4/5/6 */ 482 static bool rt_is_raid456(struct raid_type *rt) 483 { 484 return __within_range(rt->level, 4, 6); 485 } 486 /* END: raid level bools */ 487 488 /* Return valid ctr flags for the raid level of @rs */ 489 static unsigned long __valid_flags(struct raid_set *rs) 490 { 491 if (rt_is_raid0(rs->raid_type)) 492 return RAID0_VALID_FLAGS; 493 else if (rt_is_raid1(rs->raid_type)) 494 return RAID1_VALID_FLAGS; 495 else if (rt_is_raid10(rs->raid_type)) 496 return RAID10_VALID_FLAGS; 497 else if (rt_is_raid45(rs->raid_type)) 498 return RAID45_VALID_FLAGS; 499 else if (rt_is_raid6(rs->raid_type)) 500 return RAID6_VALID_FLAGS; 501 502 return 0; 503 } 504 505 /* 506 * Check for valid flags set on @rs 507 * 508 * Has to be called after parsing of the ctr flags! 509 */ 510 static int rs_check_for_valid_flags(struct raid_set *rs) 511 { 512 if (rs->ctr_flags & ~__valid_flags(rs)) { 513 rs->ti->error = "Invalid flags combination"; 514 return -EINVAL; 515 } 516 517 return 0; 518 } 519 520 /* MD raid10 bit definitions and helpers */ 521 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 522 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 523 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 524 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 525 526 /* Return md raid10 near copies for @layout */ 527 static unsigned int __raid10_near_copies(int layout) 528 { 529 return layout & 0xFF; 530 } 531 532 /* Return md raid10 far copies for @layout */ 533 static unsigned int __raid10_far_copies(int layout) 534 { 535 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 536 } 537 538 /* Return true if md raid10 offset for @layout */ 539 static bool __is_raid10_offset(int layout) 540 { 541 return !!(layout & RAID10_OFFSET); 542 } 543 544 /* Return true if md raid10 near for @layout */ 545 static bool __is_raid10_near(int layout) 546 { 547 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 548 } 549 550 /* Return true if md raid10 far for @layout */ 551 static bool __is_raid10_far(int layout) 552 { 553 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 554 } 555 556 /* Return md raid10 layout string for @layout */ 557 static const char *raid10_md_layout_to_format(int layout) 558 { 559 /* 560 * Bit 16 stands for "offset" 561 * (i.e. adjacent stripes hold copies) 562 * 563 * Refer to MD's raid10.c for details 564 */ 565 if (__is_raid10_offset(layout)) 566 return "offset"; 567 568 if (__raid10_near_copies(layout) > 1) 569 return "near"; 570 571 if (__raid10_far_copies(layout) > 1) 572 return "far"; 573 574 return "unknown"; 575 } 576 577 /* Return md raid10 algorithm for @name */ 578 static int raid10_name_to_format(const char *name) 579 { 580 if (!strcasecmp(name, "near")) 581 return ALGORITHM_RAID10_NEAR; 582 else if (!strcasecmp(name, "offset")) 583 return ALGORITHM_RAID10_OFFSET; 584 else if (!strcasecmp(name, "far")) 585 return ALGORITHM_RAID10_FAR; 586 587 return -EINVAL; 588 } 589 590 /* Return md raid10 copies for @layout */ 591 static unsigned int raid10_md_layout_to_copies(int layout) 592 { 593 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 594 } 595 596 /* Return md raid10 format id for @format string */ 597 static int raid10_format_to_md_layout(struct raid_set *rs, 598 unsigned int algorithm, 599 unsigned int copies) 600 { 601 unsigned int n = 1, f = 1, r = 0; 602 603 /* 604 * MD resilienece flaw: 605 * 606 * enabling use_far_sets for far/offset formats causes copies 607 * to be colocated on the same devs together with their origins! 608 * 609 * -> disable it for now in the definition above 610 */ 611 if (algorithm == ALGORITHM_RAID10_DEFAULT || 612 algorithm == ALGORITHM_RAID10_NEAR) 613 n = copies; 614 615 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 616 f = copies; 617 r = RAID10_OFFSET; 618 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 619 r |= RAID10_USE_FAR_SETS; 620 621 } else if (algorithm == ALGORITHM_RAID10_FAR) { 622 f = copies; 623 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 624 r |= RAID10_USE_FAR_SETS; 625 626 } else 627 return -EINVAL; 628 629 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 630 } 631 /* END: MD raid10 bit definitions and helpers */ 632 633 /* Check for any of the raid10 algorithms */ 634 static bool __got_raid10(struct raid_type *rtp, const int layout) 635 { 636 if (rtp->level == 10) { 637 switch (rtp->algorithm) { 638 case ALGORITHM_RAID10_DEFAULT: 639 case ALGORITHM_RAID10_NEAR: 640 return __is_raid10_near(layout); 641 case ALGORITHM_RAID10_OFFSET: 642 return __is_raid10_offset(layout); 643 case ALGORITHM_RAID10_FAR: 644 return __is_raid10_far(layout); 645 default: 646 break; 647 } 648 } 649 650 return false; 651 } 652 653 /* Return raid_type for @name */ 654 static struct raid_type *get_raid_type(const char *name) 655 { 656 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 657 658 while (rtp-- > raid_types) 659 if (!strcasecmp(rtp->name, name)) 660 return rtp; 661 662 return NULL; 663 } 664 665 /* Return raid_type for @name based derived from @level and @layout */ 666 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 667 { 668 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 669 670 while (rtp-- > raid_types) { 671 /* RAID10 special checks based on @layout flags/properties */ 672 if (rtp->level == level && 673 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 674 return rtp; 675 } 676 677 return NULL; 678 } 679 680 /* Adjust rdev sectors */ 681 static void rs_set_rdev_sectors(struct raid_set *rs) 682 { 683 struct mddev *mddev = &rs->md; 684 struct md_rdev *rdev; 685 686 /* 687 * raid10 sets rdev->sector to the device size, which 688 * is unintended in case of out-of-place reshaping 689 */ 690 rdev_for_each(rdev, mddev) 691 if (!test_bit(Journal, &rdev->flags)) 692 rdev->sectors = mddev->dev_sectors; 693 } 694 695 /* 696 * Change bdev capacity of @rs in case of a disk add/remove reshape 697 */ 698 static void rs_set_capacity(struct raid_set *rs) 699 { 700 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 701 702 set_capacity(gendisk, rs->md.array_sectors); 703 revalidate_disk(gendisk); 704 } 705 706 /* 707 * Set the mddev properties in @rs to the current 708 * ones retrieved from the freshest superblock 709 */ 710 static void rs_set_cur(struct raid_set *rs) 711 { 712 struct mddev *mddev = &rs->md; 713 714 mddev->new_level = mddev->level; 715 mddev->new_layout = mddev->layout; 716 mddev->new_chunk_sectors = mddev->chunk_sectors; 717 } 718 719 /* 720 * Set the mddev properties in @rs to the new 721 * ones requested by the ctr 722 */ 723 static void rs_set_new(struct raid_set *rs) 724 { 725 struct mddev *mddev = &rs->md; 726 727 mddev->level = mddev->new_level; 728 mddev->layout = mddev->new_layout; 729 mddev->chunk_sectors = mddev->new_chunk_sectors; 730 mddev->raid_disks = rs->raid_disks; 731 mddev->delta_disks = 0; 732 } 733 734 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 735 unsigned int raid_devs) 736 { 737 unsigned int i; 738 struct raid_set *rs; 739 740 if (raid_devs <= raid_type->parity_devs) { 741 ti->error = "Insufficient number of devices"; 742 return ERR_PTR(-EINVAL); 743 } 744 745 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 746 if (!rs) { 747 ti->error = "Cannot allocate raid context"; 748 return ERR_PTR(-ENOMEM); 749 } 750 751 mddev_init(&rs->md); 752 753 rs->raid_disks = raid_devs; 754 rs->delta_disks = 0; 755 756 rs->ti = ti; 757 rs->raid_type = raid_type; 758 rs->stripe_cache_entries = 256; 759 rs->md.raid_disks = raid_devs; 760 rs->md.level = raid_type->level; 761 rs->md.new_level = rs->md.level; 762 rs->md.layout = raid_type->algorithm; 763 rs->md.new_layout = rs->md.layout; 764 rs->md.delta_disks = 0; 765 rs->md.recovery_cp = MaxSector; 766 767 for (i = 0; i < raid_devs; i++) 768 md_rdev_init(&rs->dev[i].rdev); 769 770 /* 771 * Remaining items to be initialized by further RAID params: 772 * rs->md.persistent 773 * rs->md.external 774 * rs->md.chunk_sectors 775 * rs->md.new_chunk_sectors 776 * rs->md.dev_sectors 777 */ 778 779 return rs; 780 } 781 782 /* Free all @rs allocations */ 783 static void raid_set_free(struct raid_set *rs) 784 { 785 int i; 786 787 if (rs->journal_dev.dev) { 788 md_rdev_clear(&rs->journal_dev.rdev); 789 dm_put_device(rs->ti, rs->journal_dev.dev); 790 } 791 792 for (i = 0; i < rs->raid_disks; i++) { 793 if (rs->dev[i].meta_dev) 794 dm_put_device(rs->ti, rs->dev[i].meta_dev); 795 md_rdev_clear(&rs->dev[i].rdev); 796 if (rs->dev[i].data_dev) 797 dm_put_device(rs->ti, rs->dev[i].data_dev); 798 } 799 800 kfree(rs); 801 } 802 803 /* 804 * For every device we have two words 805 * <meta_dev>: meta device name or '-' if missing 806 * <data_dev>: data device name or '-' if missing 807 * 808 * The following are permitted: 809 * - - 810 * - <data_dev> 811 * <meta_dev> <data_dev> 812 * 813 * The following is not allowed: 814 * <meta_dev> - 815 * 816 * This code parses those words. If there is a failure, 817 * the caller must use raid_set_free() to unwind the operations. 818 */ 819 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 820 { 821 int i; 822 int rebuild = 0; 823 int metadata_available = 0; 824 int r = 0; 825 const char *arg; 826 827 /* Put off the number of raid devices argument to get to dev pairs */ 828 arg = dm_shift_arg(as); 829 if (!arg) 830 return -EINVAL; 831 832 for (i = 0; i < rs->raid_disks; i++) { 833 rs->dev[i].rdev.raid_disk = i; 834 835 rs->dev[i].meta_dev = NULL; 836 rs->dev[i].data_dev = NULL; 837 838 /* 839 * There are no offsets initially. 840 * Out of place reshape will set them accordingly. 841 */ 842 rs->dev[i].rdev.data_offset = 0; 843 rs->dev[i].rdev.new_data_offset = 0; 844 rs->dev[i].rdev.mddev = &rs->md; 845 846 arg = dm_shift_arg(as); 847 if (!arg) 848 return -EINVAL; 849 850 if (strcmp(arg, "-")) { 851 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 852 &rs->dev[i].meta_dev); 853 if (r) { 854 rs->ti->error = "RAID metadata device lookup failure"; 855 return r; 856 } 857 858 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 859 if (!rs->dev[i].rdev.sb_page) { 860 rs->ti->error = "Failed to allocate superblock page"; 861 return -ENOMEM; 862 } 863 } 864 865 arg = dm_shift_arg(as); 866 if (!arg) 867 return -EINVAL; 868 869 if (!strcmp(arg, "-")) { 870 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 871 (!rs->dev[i].rdev.recovery_offset)) { 872 rs->ti->error = "Drive designated for rebuild not specified"; 873 return -EINVAL; 874 } 875 876 if (rs->dev[i].meta_dev) { 877 rs->ti->error = "No data device supplied with metadata device"; 878 return -EINVAL; 879 } 880 881 continue; 882 } 883 884 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 885 &rs->dev[i].data_dev); 886 if (r) { 887 rs->ti->error = "RAID device lookup failure"; 888 return r; 889 } 890 891 if (rs->dev[i].meta_dev) { 892 metadata_available = 1; 893 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 894 } 895 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 896 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 897 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 898 rebuild++; 899 } 900 901 if (rs->journal_dev.dev) 902 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 903 904 if (metadata_available) { 905 rs->md.external = 0; 906 rs->md.persistent = 1; 907 rs->md.major_version = 2; 908 } else if (rebuild && !rs->md.recovery_cp) { 909 /* 910 * Without metadata, we will not be able to tell if the array 911 * is in-sync or not - we must assume it is not. Therefore, 912 * it is impossible to rebuild a drive. 913 * 914 * Even if there is metadata, the on-disk information may 915 * indicate that the array is not in-sync and it will then 916 * fail at that time. 917 * 918 * User could specify 'nosync' option if desperate. 919 */ 920 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 921 return -EINVAL; 922 } 923 924 return 0; 925 } 926 927 /* 928 * validate_region_size 929 * @rs 930 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 931 * 932 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 933 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 934 * 935 * Returns: 0 on success, -EINVAL on failure. 936 */ 937 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 938 { 939 unsigned long min_region_size = rs->ti->len / (1 << 21); 940 941 if (rs_is_raid0(rs)) 942 return 0; 943 944 if (!region_size) { 945 /* 946 * Choose a reasonable default. All figures in sectors. 947 */ 948 if (min_region_size > (1 << 13)) { 949 /* If not a power of 2, make it the next power of 2 */ 950 region_size = roundup_pow_of_two(min_region_size); 951 DMINFO("Choosing default region size of %lu sectors", 952 region_size); 953 } else { 954 DMINFO("Choosing default region size of 4MiB"); 955 region_size = 1 << 13; /* sectors */ 956 } 957 } else { 958 /* 959 * Validate user-supplied value. 960 */ 961 if (region_size > rs->ti->len) { 962 rs->ti->error = "Supplied region size is too large"; 963 return -EINVAL; 964 } 965 966 if (region_size < min_region_size) { 967 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 968 region_size, min_region_size); 969 rs->ti->error = "Supplied region size is too small"; 970 return -EINVAL; 971 } 972 973 if (!is_power_of_2(region_size)) { 974 rs->ti->error = "Region size is not a power of 2"; 975 return -EINVAL; 976 } 977 978 if (region_size < rs->md.chunk_sectors) { 979 rs->ti->error = "Region size is smaller than the chunk size"; 980 return -EINVAL; 981 } 982 } 983 984 /* 985 * Convert sectors to bytes. 986 */ 987 rs->md.bitmap_info.chunksize = to_bytes(region_size); 988 989 return 0; 990 } 991 992 /* 993 * validate_raid_redundancy 994 * @rs 995 * 996 * Determine if there are enough devices in the array that haven't 997 * failed (or are being rebuilt) to form a usable array. 998 * 999 * Returns: 0 on success, -EINVAL on failure. 1000 */ 1001 static int validate_raid_redundancy(struct raid_set *rs) 1002 { 1003 unsigned int i, rebuild_cnt = 0; 1004 unsigned int rebuilds_per_group = 0, copies; 1005 unsigned int group_size, last_group_start; 1006 1007 for (i = 0; i < rs->md.raid_disks; i++) 1008 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1009 !rs->dev[i].rdev.sb_page) 1010 rebuild_cnt++; 1011 1012 switch (rs->md.level) { 1013 case 0: 1014 break; 1015 case 1: 1016 if (rebuild_cnt >= rs->md.raid_disks) 1017 goto too_many; 1018 break; 1019 case 4: 1020 case 5: 1021 case 6: 1022 if (rebuild_cnt > rs->raid_type->parity_devs) 1023 goto too_many; 1024 break; 1025 case 10: 1026 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1027 if (copies < 2) { 1028 DMERR("Bogus raid10 data copies < 2!"); 1029 return -EINVAL; 1030 } 1031 1032 if (rebuild_cnt < copies) 1033 break; 1034 1035 /* 1036 * It is possible to have a higher rebuild count for RAID10, 1037 * as long as the failed devices occur in different mirror 1038 * groups (i.e. different stripes). 1039 * 1040 * When checking "near" format, make sure no adjacent devices 1041 * have failed beyond what can be handled. In addition to the 1042 * simple case where the number of devices is a multiple of the 1043 * number of copies, we must also handle cases where the number 1044 * of devices is not a multiple of the number of copies. 1045 * E.g. dev1 dev2 dev3 dev4 dev5 1046 * A A B B C 1047 * C D D E E 1048 */ 1049 if (__is_raid10_near(rs->md.new_layout)) { 1050 for (i = 0; i < rs->md.raid_disks; i++) { 1051 if (!(i % copies)) 1052 rebuilds_per_group = 0; 1053 if ((!rs->dev[i].rdev.sb_page || 1054 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1055 (++rebuilds_per_group >= copies)) 1056 goto too_many; 1057 } 1058 break; 1059 } 1060 1061 /* 1062 * When checking "far" and "offset" formats, we need to ensure 1063 * that the device that holds its copy is not also dead or 1064 * being rebuilt. (Note that "far" and "offset" formats only 1065 * support two copies right now. These formats also only ever 1066 * use the 'use_far_sets' variant.) 1067 * 1068 * This check is somewhat complicated by the need to account 1069 * for arrays that are not a multiple of (far) copies. This 1070 * results in the need to treat the last (potentially larger) 1071 * set differently. 1072 */ 1073 group_size = (rs->md.raid_disks / copies); 1074 last_group_start = (rs->md.raid_disks / group_size) - 1; 1075 last_group_start *= group_size; 1076 for (i = 0; i < rs->md.raid_disks; i++) { 1077 if (!(i % copies) && !(i > last_group_start)) 1078 rebuilds_per_group = 0; 1079 if ((!rs->dev[i].rdev.sb_page || 1080 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1081 (++rebuilds_per_group >= copies)) 1082 goto too_many; 1083 } 1084 break; 1085 default: 1086 if (rebuild_cnt) 1087 return -EINVAL; 1088 } 1089 1090 return 0; 1091 1092 too_many: 1093 return -EINVAL; 1094 } 1095 1096 /* 1097 * Possible arguments are... 1098 * <chunk_size> [optional_args] 1099 * 1100 * Argument definitions 1101 * <chunk_size> The number of sectors per disk that 1102 * will form the "stripe" 1103 * [[no]sync] Force or prevent recovery of the 1104 * entire array 1105 * [rebuild <idx>] Rebuild the drive indicated by the index 1106 * [daemon_sleep <ms>] Time between bitmap daemon work to 1107 * clear bits 1108 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1109 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1110 * [write_mostly <idx>] Indicate a write mostly drive via index 1111 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1112 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1113 * [region_size <sectors>] Defines granularity of bitmap 1114 * [journal_dev <dev>] raid4/5/6 journaling deviice 1115 * (i.e. write hole closing log) 1116 * 1117 * RAID10-only options: 1118 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1119 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1120 */ 1121 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1122 unsigned int num_raid_params) 1123 { 1124 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1125 unsigned int raid10_copies = 2; 1126 unsigned int i, write_mostly = 0; 1127 unsigned int region_size = 0; 1128 sector_t max_io_len; 1129 const char *arg, *key; 1130 struct raid_dev *rd; 1131 struct raid_type *rt = rs->raid_type; 1132 1133 arg = dm_shift_arg(as); 1134 num_raid_params--; /* Account for chunk_size argument */ 1135 1136 if (kstrtoint(arg, 10, &value) < 0) { 1137 rs->ti->error = "Bad numerical argument given for chunk_size"; 1138 return -EINVAL; 1139 } 1140 1141 /* 1142 * First, parse the in-order required arguments 1143 * "chunk_size" is the only argument of this type. 1144 */ 1145 if (rt_is_raid1(rt)) { 1146 if (value) 1147 DMERR("Ignoring chunk size parameter for RAID 1"); 1148 value = 0; 1149 } else if (!is_power_of_2(value)) { 1150 rs->ti->error = "Chunk size must be a power of 2"; 1151 return -EINVAL; 1152 } else if (value < 8) { 1153 rs->ti->error = "Chunk size value is too small"; 1154 return -EINVAL; 1155 } 1156 1157 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1158 1159 /* 1160 * We set each individual device as In_sync with a completed 1161 * 'recovery_offset'. If there has been a device failure or 1162 * replacement then one of the following cases applies: 1163 * 1164 * 1) User specifies 'rebuild'. 1165 * - Device is reset when param is read. 1166 * 2) A new device is supplied. 1167 * - No matching superblock found, resets device. 1168 * 3) Device failure was transient and returns on reload. 1169 * - Failure noticed, resets device for bitmap replay. 1170 * 4) Device hadn't completed recovery after previous failure. 1171 * - Superblock is read and overrides recovery_offset. 1172 * 1173 * What is found in the superblocks of the devices is always 1174 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1175 */ 1176 for (i = 0; i < rs->raid_disks; i++) { 1177 set_bit(In_sync, &rs->dev[i].rdev.flags); 1178 rs->dev[i].rdev.recovery_offset = MaxSector; 1179 } 1180 1181 /* 1182 * Second, parse the unordered optional arguments 1183 */ 1184 for (i = 0; i < num_raid_params; i++) { 1185 key = dm_shift_arg(as); 1186 if (!key) { 1187 rs->ti->error = "Not enough raid parameters given"; 1188 return -EINVAL; 1189 } 1190 1191 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1192 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1193 rs->ti->error = "Only one 'nosync' argument allowed"; 1194 return -EINVAL; 1195 } 1196 continue; 1197 } 1198 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1199 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1200 rs->ti->error = "Only one 'sync' argument allowed"; 1201 return -EINVAL; 1202 } 1203 continue; 1204 } 1205 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1206 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1207 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1208 return -EINVAL; 1209 } 1210 continue; 1211 } 1212 1213 arg = dm_shift_arg(as); 1214 i++; /* Account for the argument pairs */ 1215 if (!arg) { 1216 rs->ti->error = "Wrong number of raid parameters given"; 1217 return -EINVAL; 1218 } 1219 1220 /* 1221 * Parameters that take a string value are checked here. 1222 */ 1223 /* "raid10_format {near|offset|far} */ 1224 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1225 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1226 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1227 return -EINVAL; 1228 } 1229 if (!rt_is_raid10(rt)) { 1230 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1231 return -EINVAL; 1232 } 1233 raid10_format = raid10_name_to_format(arg); 1234 if (raid10_format < 0) { 1235 rs->ti->error = "Invalid 'raid10_format' value given"; 1236 return raid10_format; 1237 } 1238 continue; 1239 } 1240 1241 /* "journal_dev <dev>" */ 1242 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1243 int r; 1244 struct md_rdev *jdev; 1245 1246 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1247 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1248 return -EINVAL; 1249 } 1250 if (!rt_is_raid456(rt)) { 1251 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1252 return -EINVAL; 1253 } 1254 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1255 &rs->journal_dev.dev); 1256 if (r) { 1257 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1258 return r; 1259 } 1260 jdev = &rs->journal_dev.rdev; 1261 md_rdev_init(jdev); 1262 jdev->mddev = &rs->md; 1263 jdev->bdev = rs->journal_dev.dev->bdev; 1264 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode)); 1265 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1266 rs->ti->error = "No space for raid4/5/6 journal"; 1267 return -ENOSPC; 1268 } 1269 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1270 set_bit(Journal, &jdev->flags); 1271 continue; 1272 } 1273 1274 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1275 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1276 int r; 1277 1278 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1279 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1280 return -EINVAL; 1281 } 1282 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1283 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1284 return -EINVAL; 1285 } 1286 r = dm_raid_journal_mode_to_md(arg); 1287 if (r < 0) { 1288 rs->ti->error = "Invalid 'journal_mode' argument"; 1289 return r; 1290 } 1291 rs->journal_dev.mode = r; 1292 continue; 1293 } 1294 1295 /* 1296 * Parameters with number values from here on. 1297 */ 1298 if (kstrtoint(arg, 10, &value) < 0) { 1299 rs->ti->error = "Bad numerical argument given in raid params"; 1300 return -EINVAL; 1301 } 1302 1303 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1304 /* 1305 * "rebuild" is being passed in by userspace to provide 1306 * indexes of replaced devices and to set up additional 1307 * devices on raid level takeover. 1308 */ 1309 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1310 rs->ti->error = "Invalid rebuild index given"; 1311 return -EINVAL; 1312 } 1313 1314 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1315 rs->ti->error = "rebuild for this index already given"; 1316 return -EINVAL; 1317 } 1318 1319 rd = rs->dev + value; 1320 clear_bit(In_sync, &rd->rdev.flags); 1321 clear_bit(Faulty, &rd->rdev.flags); 1322 rd->rdev.recovery_offset = 0; 1323 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1324 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1325 if (!rt_is_raid1(rt)) { 1326 rs->ti->error = "write_mostly option is only valid for RAID1"; 1327 return -EINVAL; 1328 } 1329 1330 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1331 rs->ti->error = "Invalid write_mostly index given"; 1332 return -EINVAL; 1333 } 1334 1335 write_mostly++; 1336 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1337 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1338 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1339 if (!rt_is_raid1(rt)) { 1340 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1341 return -EINVAL; 1342 } 1343 1344 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1345 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1346 return -EINVAL; 1347 } 1348 1349 /* 1350 * In device-mapper, we specify things in sectors, but 1351 * MD records this value in kB 1352 */ 1353 if (value < 0 || value / 2 > COUNTER_MAX) { 1354 rs->ti->error = "Max write-behind limit out of range"; 1355 return -EINVAL; 1356 } 1357 1358 rs->md.bitmap_info.max_write_behind = value / 2; 1359 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1360 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1361 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1362 return -EINVAL; 1363 } 1364 if (value < 0) { 1365 rs->ti->error = "daemon sleep period out of range"; 1366 return -EINVAL; 1367 } 1368 rs->md.bitmap_info.daemon_sleep = value; 1369 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1370 /* Userspace passes new data_offset after having extended the the data image LV */ 1371 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1372 rs->ti->error = "Only one data_offset argument pair allowed"; 1373 return -EINVAL; 1374 } 1375 /* Ensure sensible data offset */ 1376 if (value < 0 || 1377 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1378 rs->ti->error = "Bogus data_offset value"; 1379 return -EINVAL; 1380 } 1381 rs->data_offset = value; 1382 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1383 /* Define the +/-# of disks to add to/remove from the given raid set */ 1384 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1385 rs->ti->error = "Only one delta_disks argument pair allowed"; 1386 return -EINVAL; 1387 } 1388 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1389 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1390 rs->ti->error = "Too many delta_disk requested"; 1391 return -EINVAL; 1392 } 1393 1394 rs->delta_disks = value; 1395 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1396 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1397 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1398 return -EINVAL; 1399 } 1400 1401 if (!rt_is_raid456(rt)) { 1402 rs->ti->error = "Inappropriate argument: stripe_cache"; 1403 return -EINVAL; 1404 } 1405 1406 if (value < 0) { 1407 rs->ti->error = "Bogus stripe cache entries value"; 1408 return -EINVAL; 1409 } 1410 rs->stripe_cache_entries = value; 1411 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1412 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1413 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1414 return -EINVAL; 1415 } 1416 1417 if (value < 0) { 1418 rs->ti->error = "min_recovery_rate out of range"; 1419 return -EINVAL; 1420 } 1421 rs->md.sync_speed_min = value; 1422 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1423 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1424 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1425 return -EINVAL; 1426 } 1427 1428 if (value < 0) { 1429 rs->ti->error = "max_recovery_rate out of range"; 1430 return -EINVAL; 1431 } 1432 rs->md.sync_speed_max = value; 1433 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1434 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1435 rs->ti->error = "Only one region_size argument pair allowed"; 1436 return -EINVAL; 1437 } 1438 1439 region_size = value; 1440 rs->requested_bitmap_chunk_sectors = value; 1441 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1442 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1443 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1444 return -EINVAL; 1445 } 1446 1447 if (!__within_range(value, 2, rs->md.raid_disks)) { 1448 rs->ti->error = "Bad value for 'raid10_copies'"; 1449 return -EINVAL; 1450 } 1451 1452 raid10_copies = value; 1453 } else { 1454 DMERR("Unable to parse RAID parameter: %s", key); 1455 rs->ti->error = "Unable to parse RAID parameter"; 1456 return -EINVAL; 1457 } 1458 } 1459 1460 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1461 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1462 rs->ti->error = "sync and nosync are mutually exclusive"; 1463 return -EINVAL; 1464 } 1465 1466 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1467 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1468 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1469 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1470 return -EINVAL; 1471 } 1472 1473 if (write_mostly >= rs->md.raid_disks) { 1474 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1475 return -EINVAL; 1476 } 1477 1478 if (rs->md.sync_speed_max && 1479 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1480 rs->ti->error = "Bogus recovery rates"; 1481 return -EINVAL; 1482 } 1483 1484 if (validate_region_size(rs, region_size)) 1485 return -EINVAL; 1486 1487 if (rs->md.chunk_sectors) 1488 max_io_len = rs->md.chunk_sectors; 1489 else 1490 max_io_len = region_size; 1491 1492 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1493 return -EINVAL; 1494 1495 if (rt_is_raid10(rt)) { 1496 if (raid10_copies > rs->md.raid_disks) { 1497 rs->ti->error = "Not enough devices to satisfy specification"; 1498 return -EINVAL; 1499 } 1500 1501 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1502 if (rs->md.new_layout < 0) { 1503 rs->ti->error = "Error getting raid10 format"; 1504 return rs->md.new_layout; 1505 } 1506 1507 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1508 if (!rt) { 1509 rs->ti->error = "Failed to recognize new raid10 layout"; 1510 return -EINVAL; 1511 } 1512 1513 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1514 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1515 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1516 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1517 return -EINVAL; 1518 } 1519 } 1520 1521 rs->raid10_copies = raid10_copies; 1522 1523 /* Assume there are no metadata devices until the drives are parsed */ 1524 rs->md.persistent = 0; 1525 rs->md.external = 1; 1526 1527 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1528 return rs_check_for_valid_flags(rs); 1529 } 1530 1531 /* Set raid4/5/6 cache size */ 1532 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1533 { 1534 int r; 1535 struct r5conf *conf; 1536 struct mddev *mddev = &rs->md; 1537 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1538 uint32_t nr_stripes = rs->stripe_cache_entries; 1539 1540 if (!rt_is_raid456(rs->raid_type)) { 1541 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1542 return -EINVAL; 1543 } 1544 1545 if (nr_stripes < min_stripes) { 1546 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1547 nr_stripes, min_stripes); 1548 nr_stripes = min_stripes; 1549 } 1550 1551 conf = mddev->private; 1552 if (!conf) { 1553 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1554 return -EINVAL; 1555 } 1556 1557 /* Try setting number of stripes in raid456 stripe cache */ 1558 if (conf->min_nr_stripes != nr_stripes) { 1559 r = raid5_set_cache_size(mddev, nr_stripes); 1560 if (r) { 1561 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1562 return r; 1563 } 1564 1565 DMINFO("%u stripe cache entries", nr_stripes); 1566 } 1567 1568 return 0; 1569 } 1570 1571 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1572 static unsigned int mddev_data_stripes(struct raid_set *rs) 1573 { 1574 return rs->md.raid_disks - rs->raid_type->parity_devs; 1575 } 1576 1577 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1578 static unsigned int rs_data_stripes(struct raid_set *rs) 1579 { 1580 return rs->raid_disks - rs->raid_type->parity_devs; 1581 } 1582 1583 /* 1584 * Retrieve rdev->sectors from any valid raid device of @rs 1585 * to allow userpace to pass in arbitray "- -" device tupples. 1586 */ 1587 static sector_t __rdev_sectors(struct raid_set *rs) 1588 { 1589 int i; 1590 1591 for (i = 0; i < rs->md.raid_disks; i++) { 1592 struct md_rdev *rdev = &rs->dev[i].rdev; 1593 1594 if (!test_bit(Journal, &rdev->flags) && 1595 rdev->bdev && rdev->sectors) 1596 return rdev->sectors; 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* Check that calculated dev_sectors fits all component devices. */ 1603 static int _check_data_dev_sectors(struct raid_set *rs) 1604 { 1605 sector_t ds = ~0; 1606 struct md_rdev *rdev; 1607 1608 rdev_for_each(rdev, &rs->md) 1609 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1610 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode))); 1611 if (ds < rs->md.dev_sectors) { 1612 rs->ti->error = "Component device(s) too small"; 1613 return -EINVAL; 1614 } 1615 } 1616 1617 return 0; 1618 } 1619 1620 /* Calculate the sectors per device and per array used for @rs */ 1621 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1622 { 1623 int delta_disks; 1624 unsigned int data_stripes; 1625 sector_t array_sectors = sectors, dev_sectors = sectors; 1626 struct mddev *mddev = &rs->md; 1627 1628 if (use_mddev) { 1629 delta_disks = mddev->delta_disks; 1630 data_stripes = mddev_data_stripes(rs); 1631 } else { 1632 delta_disks = rs->delta_disks; 1633 data_stripes = rs_data_stripes(rs); 1634 } 1635 1636 /* Special raid1 case w/o delta_disks support (yet) */ 1637 if (rt_is_raid1(rs->raid_type)) 1638 ; 1639 else if (rt_is_raid10(rs->raid_type)) { 1640 if (rs->raid10_copies < 2 || 1641 delta_disks < 0) { 1642 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1643 return -EINVAL; 1644 } 1645 1646 dev_sectors *= rs->raid10_copies; 1647 if (sector_div(dev_sectors, data_stripes)) 1648 goto bad; 1649 1650 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1651 if (sector_div(array_sectors, rs->raid10_copies)) 1652 goto bad; 1653 1654 } else if (sector_div(dev_sectors, data_stripes)) 1655 goto bad; 1656 1657 else 1658 /* Striped layouts */ 1659 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1660 1661 mddev->array_sectors = array_sectors; 1662 mddev->dev_sectors = dev_sectors; 1663 rs_set_rdev_sectors(rs); 1664 1665 return _check_data_dev_sectors(rs); 1666 bad: 1667 rs->ti->error = "Target length not divisible by number of data devices"; 1668 return -EINVAL; 1669 } 1670 1671 /* Setup recovery on @rs */ 1672 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1673 { 1674 /* raid0 does not recover */ 1675 if (rs_is_raid0(rs)) 1676 rs->md.recovery_cp = MaxSector; 1677 /* 1678 * A raid6 set has to be recovered either 1679 * completely or for the grown part to 1680 * ensure proper parity and Q-Syndrome 1681 */ 1682 else if (rs_is_raid6(rs)) 1683 rs->md.recovery_cp = dev_sectors; 1684 /* 1685 * Other raid set types may skip recovery 1686 * depending on the 'nosync' flag. 1687 */ 1688 else 1689 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1690 ? MaxSector : dev_sectors; 1691 } 1692 1693 static void do_table_event(struct work_struct *ws) 1694 { 1695 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1696 1697 smp_rmb(); /* Make sure we access most actual mddev properties */ 1698 if (!rs_is_reshaping(rs)) { 1699 if (rs_is_raid10(rs)) 1700 rs_set_rdev_sectors(rs); 1701 rs_set_capacity(rs); 1702 } 1703 dm_table_event(rs->ti->table); 1704 } 1705 1706 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 1707 { 1708 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 1709 1710 return mddev_congested(&rs->md, bits); 1711 } 1712 1713 /* 1714 * Make sure a valid takover (level switch) is being requested on @rs 1715 * 1716 * Conversions of raid sets from one MD personality to another 1717 * have to conform to restrictions which are enforced here. 1718 */ 1719 static int rs_check_takeover(struct raid_set *rs) 1720 { 1721 struct mddev *mddev = &rs->md; 1722 unsigned int near_copies; 1723 1724 if (rs->md.degraded) { 1725 rs->ti->error = "Can't takeover degraded raid set"; 1726 return -EPERM; 1727 } 1728 1729 if (rs_is_reshaping(rs)) { 1730 rs->ti->error = "Can't takeover reshaping raid set"; 1731 return -EPERM; 1732 } 1733 1734 switch (mddev->level) { 1735 case 0: 1736 /* raid0 -> raid1/5 with one disk */ 1737 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1738 mddev->raid_disks == 1) 1739 return 0; 1740 1741 /* raid0 -> raid10 */ 1742 if (mddev->new_level == 10 && 1743 !(rs->raid_disks % mddev->raid_disks)) 1744 return 0; 1745 1746 /* raid0 with multiple disks -> raid4/5/6 */ 1747 if (__within_range(mddev->new_level, 4, 6) && 1748 mddev->new_layout == ALGORITHM_PARITY_N && 1749 mddev->raid_disks > 1) 1750 return 0; 1751 1752 break; 1753 1754 case 10: 1755 /* Can't takeover raid10_offset! */ 1756 if (__is_raid10_offset(mddev->layout)) 1757 break; 1758 1759 near_copies = __raid10_near_copies(mddev->layout); 1760 1761 /* raid10* -> raid0 */ 1762 if (mddev->new_level == 0) { 1763 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1764 if (near_copies > 1 && 1765 !(mddev->raid_disks % near_copies)) { 1766 mddev->raid_disks /= near_copies; 1767 mddev->delta_disks = mddev->raid_disks; 1768 return 0; 1769 } 1770 1771 /* Can takeover raid10_far */ 1772 if (near_copies == 1 && 1773 __raid10_far_copies(mddev->layout) > 1) 1774 return 0; 1775 1776 break; 1777 } 1778 1779 /* raid10_{near,far} -> raid1 */ 1780 if (mddev->new_level == 1 && 1781 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1782 return 0; 1783 1784 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1785 if (__within_range(mddev->new_level, 4, 5) && 1786 mddev->raid_disks == 2) 1787 return 0; 1788 break; 1789 1790 case 1: 1791 /* raid1 with 2 disks -> raid4/5 */ 1792 if (__within_range(mddev->new_level, 4, 5) && 1793 mddev->raid_disks == 2) { 1794 mddev->degraded = 1; 1795 return 0; 1796 } 1797 1798 /* raid1 -> raid0 */ 1799 if (mddev->new_level == 0 && 1800 mddev->raid_disks == 1) 1801 return 0; 1802 1803 /* raid1 -> raid10 */ 1804 if (mddev->new_level == 10) 1805 return 0; 1806 break; 1807 1808 case 4: 1809 /* raid4 -> raid0 */ 1810 if (mddev->new_level == 0) 1811 return 0; 1812 1813 /* raid4 -> raid1/5 with 2 disks */ 1814 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1815 mddev->raid_disks == 2) 1816 return 0; 1817 1818 /* raid4 -> raid5/6 with parity N */ 1819 if (__within_range(mddev->new_level, 5, 6) && 1820 mddev->layout == ALGORITHM_PARITY_N) 1821 return 0; 1822 break; 1823 1824 case 5: 1825 /* raid5 with parity N -> raid0 */ 1826 if (mddev->new_level == 0 && 1827 mddev->layout == ALGORITHM_PARITY_N) 1828 return 0; 1829 1830 /* raid5 with parity N -> raid4 */ 1831 if (mddev->new_level == 4 && 1832 mddev->layout == ALGORITHM_PARITY_N) 1833 return 0; 1834 1835 /* raid5 with 2 disks -> raid1/4/10 */ 1836 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1837 mddev->raid_disks == 2) 1838 return 0; 1839 1840 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1841 if (mddev->new_level == 6 && 1842 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1843 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1844 return 0; 1845 break; 1846 1847 case 6: 1848 /* raid6 with parity N -> raid0 */ 1849 if (mddev->new_level == 0 && 1850 mddev->layout == ALGORITHM_PARITY_N) 1851 return 0; 1852 1853 /* raid6 with parity N -> raid4 */ 1854 if (mddev->new_level == 4 && 1855 mddev->layout == ALGORITHM_PARITY_N) 1856 return 0; 1857 1858 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1859 if (mddev->new_level == 5 && 1860 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1861 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1862 return 0; 1863 1864 default: 1865 break; 1866 } 1867 1868 rs->ti->error = "takeover not possible"; 1869 return -EINVAL; 1870 } 1871 1872 /* True if @rs requested to be taken over */ 1873 static bool rs_takeover_requested(struct raid_set *rs) 1874 { 1875 return rs->md.new_level != rs->md.level; 1876 } 1877 1878 /* True if @rs is requested to reshape by ctr */ 1879 static bool rs_reshape_requested(struct raid_set *rs) 1880 { 1881 bool change; 1882 struct mddev *mddev = &rs->md; 1883 1884 if (rs_takeover_requested(rs)) 1885 return false; 1886 1887 if (rs_is_raid0(rs)) 1888 return false; 1889 1890 change = mddev->new_layout != mddev->layout || 1891 mddev->new_chunk_sectors != mddev->chunk_sectors || 1892 rs->delta_disks; 1893 1894 /* Historical case to support raid1 reshape without delta disks */ 1895 if (rs_is_raid1(rs)) { 1896 if (rs->delta_disks) 1897 return !!rs->delta_disks; 1898 1899 return !change && 1900 mddev->raid_disks != rs->raid_disks; 1901 } 1902 1903 if (rs_is_raid10(rs)) 1904 return change && 1905 !__is_raid10_far(mddev->new_layout) && 1906 rs->delta_disks >= 0; 1907 1908 return change; 1909 } 1910 1911 /* Features */ 1912 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1913 1914 /* State flags for sb->flags */ 1915 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1916 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1917 1918 /* 1919 * This structure is never routinely used by userspace, unlike md superblocks. 1920 * Devices with this superblock should only ever be accessed via device-mapper. 1921 */ 1922 #define DM_RAID_MAGIC 0x64526D44 1923 struct dm_raid_superblock { 1924 __le32 magic; /* "DmRd" */ 1925 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1926 1927 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1928 __le32 array_position; /* The position of this drive in the raid set */ 1929 1930 __le64 events; /* Incremented by md when superblock updated */ 1931 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1932 /* indicate failures (see extension below) */ 1933 1934 /* 1935 * This offset tracks the progress of the repair or replacement of 1936 * an individual drive. 1937 */ 1938 __le64 disk_recovery_offset; 1939 1940 /* 1941 * This offset tracks the progress of the initial raid set 1942 * synchronisation/parity calculation. 1943 */ 1944 __le64 array_resync_offset; 1945 1946 /* 1947 * raid characteristics 1948 */ 1949 __le32 level; 1950 __le32 layout; 1951 __le32 stripe_sectors; 1952 1953 /******************************************************************** 1954 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1955 * 1956 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1957 */ 1958 1959 __le32 flags; /* Flags defining array states for reshaping */ 1960 1961 /* 1962 * This offset tracks the progress of a raid 1963 * set reshape in order to be able to restart it 1964 */ 1965 __le64 reshape_position; 1966 1967 /* 1968 * These define the properties of the array in case of an interrupted reshape 1969 */ 1970 __le32 new_level; 1971 __le32 new_layout; 1972 __le32 new_stripe_sectors; 1973 __le32 delta_disks; 1974 1975 __le64 array_sectors; /* Array size in sectors */ 1976 1977 /* 1978 * Sector offsets to data on devices (reshaping). 1979 * Needed to support out of place reshaping, thus 1980 * not writing over any stripes whilst converting 1981 * them from old to new layout 1982 */ 1983 __le64 data_offset; 1984 __le64 new_data_offset; 1985 1986 __le64 sectors; /* Used device size in sectors */ 1987 1988 /* 1989 * Additonal Bit field of devices indicating failures to support 1990 * up to 256 devices with the 1.9.0 on-disk metadata format 1991 */ 1992 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 1993 1994 __le32 incompat_features; /* Used to indicate any incompatible features */ 1995 1996 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 1997 } __packed; 1998 1999 /* 2000 * Check for reshape constraints on raid set @rs: 2001 * 2002 * - reshape function non-existent 2003 * - degraded set 2004 * - ongoing recovery 2005 * - ongoing reshape 2006 * 2007 * Returns 0 if none or -EPERM if given constraint 2008 * and error message reference in @errmsg 2009 */ 2010 static int rs_check_reshape(struct raid_set *rs) 2011 { 2012 struct mddev *mddev = &rs->md; 2013 2014 if (!mddev->pers || !mddev->pers->check_reshape) 2015 rs->ti->error = "Reshape not supported"; 2016 else if (mddev->degraded) 2017 rs->ti->error = "Can't reshape degraded raid set"; 2018 else if (rs_is_recovering(rs)) 2019 rs->ti->error = "Convert request on recovering raid set prohibited"; 2020 else if (rs_is_reshaping(rs)) 2021 rs->ti->error = "raid set already reshaping!"; 2022 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2023 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2024 else 2025 return 0; 2026 2027 return -EPERM; 2028 } 2029 2030 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2031 { 2032 BUG_ON(!rdev->sb_page); 2033 2034 if (rdev->sb_loaded && !force_reload) 2035 return 0; 2036 2037 rdev->sb_loaded = 0; 2038 2039 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { 2040 DMERR("Failed to read superblock of device at position %d", 2041 rdev->raid_disk); 2042 md_error(rdev->mddev, rdev); 2043 set_bit(Faulty, &rdev->flags); 2044 return -EIO; 2045 } 2046 2047 rdev->sb_loaded = 1; 2048 2049 return 0; 2050 } 2051 2052 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2053 { 2054 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2055 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2056 2057 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2058 int i = ARRAY_SIZE(sb->extended_failed_devices); 2059 2060 while (i--) 2061 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2062 } 2063 } 2064 2065 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2066 { 2067 int i = ARRAY_SIZE(sb->extended_failed_devices); 2068 2069 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2070 while (i--) 2071 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2072 } 2073 2074 /* 2075 * Synchronize the superblock members with the raid set properties 2076 * 2077 * All superblock data is little endian. 2078 */ 2079 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2080 { 2081 bool update_failed_devices = false; 2082 unsigned int i; 2083 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2084 struct dm_raid_superblock *sb; 2085 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2086 2087 /* No metadata device, no superblock */ 2088 if (!rdev->meta_bdev) 2089 return; 2090 2091 BUG_ON(!rdev->sb_page); 2092 2093 sb = page_address(rdev->sb_page); 2094 2095 sb_retrieve_failed_devices(sb, failed_devices); 2096 2097 for (i = 0; i < rs->raid_disks; i++) 2098 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2099 update_failed_devices = true; 2100 set_bit(i, (void *) failed_devices); 2101 } 2102 2103 if (update_failed_devices) 2104 sb_update_failed_devices(sb, failed_devices); 2105 2106 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2107 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2108 2109 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2110 sb->array_position = cpu_to_le32(rdev->raid_disk); 2111 2112 sb->events = cpu_to_le64(mddev->events); 2113 2114 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2115 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2116 2117 sb->level = cpu_to_le32(mddev->level); 2118 sb->layout = cpu_to_le32(mddev->layout); 2119 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2120 2121 /******************************************************************** 2122 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2123 * 2124 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2125 */ 2126 sb->new_level = cpu_to_le32(mddev->new_level); 2127 sb->new_layout = cpu_to_le32(mddev->new_layout); 2128 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2129 2130 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2131 2132 smp_rmb(); /* Make sure we access most recent reshape position */ 2133 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2134 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2135 /* Flag ongoing reshape */ 2136 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2137 2138 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2139 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2140 } else { 2141 /* Clear reshape flags */ 2142 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2143 } 2144 2145 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2146 sb->data_offset = cpu_to_le64(rdev->data_offset); 2147 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2148 sb->sectors = cpu_to_le64(rdev->sectors); 2149 sb->incompat_features = cpu_to_le32(0); 2150 2151 /* Zero out the rest of the payload after the size of the superblock */ 2152 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2153 } 2154 2155 /* 2156 * super_load 2157 * 2158 * This function creates a superblock if one is not found on the device 2159 * and will decide which superblock to use if there's a choice. 2160 * 2161 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2162 */ 2163 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2164 { 2165 int r; 2166 struct dm_raid_superblock *sb; 2167 struct dm_raid_superblock *refsb; 2168 uint64_t events_sb, events_refsb; 2169 2170 r = read_disk_sb(rdev, rdev->sb_size, false); 2171 if (r) 2172 return r; 2173 2174 sb = page_address(rdev->sb_page); 2175 2176 /* 2177 * Two cases that we want to write new superblocks and rebuild: 2178 * 1) New device (no matching magic number) 2179 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2180 */ 2181 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2182 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2183 super_sync(rdev->mddev, rdev); 2184 2185 set_bit(FirstUse, &rdev->flags); 2186 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2187 2188 /* Force writing of superblocks to disk */ 2189 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2190 2191 /* Any superblock is better than none, choose that if given */ 2192 return refdev ? 0 : 1; 2193 } 2194 2195 if (!refdev) 2196 return 1; 2197 2198 events_sb = le64_to_cpu(sb->events); 2199 2200 refsb = page_address(refdev->sb_page); 2201 events_refsb = le64_to_cpu(refsb->events); 2202 2203 return (events_sb > events_refsb) ? 1 : 0; 2204 } 2205 2206 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2207 { 2208 int role; 2209 unsigned int d; 2210 struct mddev *mddev = &rs->md; 2211 uint64_t events_sb; 2212 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2213 struct dm_raid_superblock *sb; 2214 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2215 struct md_rdev *r; 2216 struct dm_raid_superblock *sb2; 2217 2218 sb = page_address(rdev->sb_page); 2219 events_sb = le64_to_cpu(sb->events); 2220 2221 /* 2222 * Initialise to 1 if this is a new superblock. 2223 */ 2224 mddev->events = events_sb ? : 1; 2225 2226 mddev->reshape_position = MaxSector; 2227 2228 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2229 mddev->level = le32_to_cpu(sb->level); 2230 mddev->layout = le32_to_cpu(sb->layout); 2231 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2232 2233 /* 2234 * Reshaping is supported, e.g. reshape_position is valid 2235 * in superblock and superblock content is authoritative. 2236 */ 2237 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2238 /* Superblock is authoritative wrt given raid set layout! */ 2239 mddev->new_level = le32_to_cpu(sb->new_level); 2240 mddev->new_layout = le32_to_cpu(sb->new_layout); 2241 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2242 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2243 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2244 2245 /* raid was reshaping and got interrupted */ 2246 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2247 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2248 DMERR("Reshape requested but raid set is still reshaping"); 2249 return -EINVAL; 2250 } 2251 2252 if (mddev->delta_disks < 0 || 2253 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2254 mddev->reshape_backwards = 1; 2255 else 2256 mddev->reshape_backwards = 0; 2257 2258 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2259 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2260 } 2261 2262 } else { 2263 /* 2264 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2265 */ 2266 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2267 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2268 2269 if (rs_takeover_requested(rs)) { 2270 if (rt_cur && rt_new) 2271 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2272 rt_cur->name, rt_new->name); 2273 else 2274 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2275 return -EINVAL; 2276 } else if (rs_reshape_requested(rs)) { 2277 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2278 if (mddev->layout != mddev->new_layout) { 2279 if (rt_cur && rt_new) 2280 DMERR(" current layout %s vs new layout %s", 2281 rt_cur->name, rt_new->name); 2282 else 2283 DMERR(" current layout 0x%X vs new layout 0x%X", 2284 le32_to_cpu(sb->layout), mddev->new_layout); 2285 } 2286 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2287 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2288 mddev->chunk_sectors, mddev->new_chunk_sectors); 2289 if (rs->delta_disks) 2290 DMERR(" current %u disks vs new %u disks", 2291 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2292 if (rs_is_raid10(rs)) { 2293 DMERR(" Old layout: %s w/ %u copies", 2294 raid10_md_layout_to_format(mddev->layout), 2295 raid10_md_layout_to_copies(mddev->layout)); 2296 DMERR(" New layout: %s w/ %u copies", 2297 raid10_md_layout_to_format(mddev->new_layout), 2298 raid10_md_layout_to_copies(mddev->new_layout)); 2299 } 2300 return -EINVAL; 2301 } 2302 2303 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2304 } 2305 2306 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2307 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2308 2309 /* 2310 * During load, we set FirstUse if a new superblock was written. 2311 * There are two reasons we might not have a superblock: 2312 * 1) The raid set is brand new - in which case, all of the 2313 * devices must have their In_sync bit set. Also, 2314 * recovery_cp must be 0, unless forced. 2315 * 2) This is a new device being added to an old raid set 2316 * and the new device needs to be rebuilt - in which 2317 * case the In_sync bit will /not/ be set and 2318 * recovery_cp must be MaxSector. 2319 * 3) This is/are a new device(s) being added to an old 2320 * raid set during takeover to a higher raid level 2321 * to provide capacity for redundancy or during reshape 2322 * to add capacity to grow the raid set. 2323 */ 2324 d = 0; 2325 rdev_for_each(r, mddev) { 2326 if (test_bit(Journal, &rdev->flags)) 2327 continue; 2328 2329 if (test_bit(FirstUse, &r->flags)) 2330 new_devs++; 2331 2332 if (!test_bit(In_sync, &r->flags)) { 2333 DMINFO("Device %d specified for rebuild; clearing superblock", 2334 r->raid_disk); 2335 rebuilds++; 2336 2337 if (test_bit(FirstUse, &r->flags)) 2338 rebuild_and_new++; 2339 } 2340 2341 d++; 2342 } 2343 2344 if (new_devs == rs->raid_disks || !rebuilds) { 2345 /* Replace a broken device */ 2346 if (new_devs == 1 && !rs->delta_disks) 2347 ; 2348 if (new_devs == rs->raid_disks) { 2349 DMINFO("Superblocks created for new raid set"); 2350 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2351 } else if (new_devs != rebuilds && 2352 new_devs != rs->delta_disks) { 2353 DMERR("New device injected into existing raid set without " 2354 "'delta_disks' or 'rebuild' parameter specified"); 2355 return -EINVAL; 2356 } 2357 } else if (new_devs && new_devs != rebuilds) { 2358 DMERR("%u 'rebuild' devices cannot be injected into" 2359 " a raid set with %u other first-time devices", 2360 rebuilds, new_devs); 2361 return -EINVAL; 2362 } else if (rebuilds) { 2363 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2364 DMERR("new device%s provided without 'rebuild'", 2365 new_devs > 1 ? "s" : ""); 2366 return -EINVAL; 2367 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2368 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2369 (unsigned long long) mddev->recovery_cp); 2370 return -EINVAL; 2371 } else if (rs_is_reshaping(rs)) { 2372 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2373 (unsigned long long) mddev->reshape_position); 2374 return -EINVAL; 2375 } 2376 } 2377 2378 /* 2379 * Now we set the Faulty bit for those devices that are 2380 * recorded in the superblock as failed. 2381 */ 2382 sb_retrieve_failed_devices(sb, failed_devices); 2383 rdev_for_each(r, mddev) { 2384 if (test_bit(Journal, &rdev->flags) || 2385 !r->sb_page) 2386 continue; 2387 sb2 = page_address(r->sb_page); 2388 sb2->failed_devices = 0; 2389 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2390 2391 /* 2392 * Check for any device re-ordering. 2393 */ 2394 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2395 role = le32_to_cpu(sb2->array_position); 2396 if (role < 0) 2397 continue; 2398 2399 if (role != r->raid_disk) { 2400 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2401 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2402 rs->raid_disks % rs->raid10_copies) { 2403 rs->ti->error = 2404 "Cannot change raid10 near set to odd # of devices!"; 2405 return -EINVAL; 2406 } 2407 2408 sb2->array_position = cpu_to_le32(r->raid_disk); 2409 2410 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2411 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2412 !rt_is_raid1(rs->raid_type)) { 2413 rs->ti->error = "Cannot change device positions in raid set"; 2414 return -EINVAL; 2415 } 2416 2417 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2418 } 2419 2420 /* 2421 * Partial recovery is performed on 2422 * returning failed devices. 2423 */ 2424 if (test_bit(role, (void *) failed_devices)) 2425 set_bit(Faulty, &r->flags); 2426 } 2427 } 2428 2429 return 0; 2430 } 2431 2432 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2433 { 2434 struct mddev *mddev = &rs->md; 2435 struct dm_raid_superblock *sb; 2436 2437 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2438 return 0; 2439 2440 sb = page_address(rdev->sb_page); 2441 2442 /* 2443 * If mddev->events is not set, we know we have not yet initialized 2444 * the array. 2445 */ 2446 if (!mddev->events && super_init_validation(rs, rdev)) 2447 return -EINVAL; 2448 2449 if (le32_to_cpu(sb->compat_features) && 2450 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2451 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2452 return -EINVAL; 2453 } 2454 2455 if (sb->incompat_features) { 2456 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2457 return -EINVAL; 2458 } 2459 2460 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2461 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2462 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2463 2464 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2465 /* 2466 * Retrieve rdev size stored in superblock to be prepared for shrink. 2467 * Check extended superblock members are present otherwise the size 2468 * will not be set! 2469 */ 2470 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2471 rdev->sectors = le64_to_cpu(sb->sectors); 2472 2473 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2474 if (rdev->recovery_offset == MaxSector) 2475 set_bit(In_sync, &rdev->flags); 2476 /* 2477 * If no reshape in progress -> we're recovering single 2478 * disk(s) and have to set the device(s) to out-of-sync 2479 */ 2480 else if (!rs_is_reshaping(rs)) 2481 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2482 } 2483 2484 /* 2485 * If a device comes back, set it as not In_sync and no longer faulty. 2486 */ 2487 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2488 rdev->recovery_offset = 0; 2489 clear_bit(In_sync, &rdev->flags); 2490 rdev->saved_raid_disk = rdev->raid_disk; 2491 } 2492 2493 /* Reshape support -> restore repective data offsets */ 2494 rdev->data_offset = le64_to_cpu(sb->data_offset); 2495 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2496 2497 return 0; 2498 } 2499 2500 /* 2501 * Analyse superblocks and select the freshest. 2502 */ 2503 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2504 { 2505 int r; 2506 struct md_rdev *rdev, *freshest; 2507 struct mddev *mddev = &rs->md; 2508 2509 freshest = NULL; 2510 rdev_for_each(rdev, mddev) { 2511 if (test_bit(Journal, &rdev->flags)) 2512 continue; 2513 2514 if (!rdev->meta_bdev) 2515 continue; 2516 2517 /* Set superblock offset/size for metadata device. */ 2518 rdev->sb_start = 0; 2519 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2520 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2521 DMERR("superblock size of a logical block is no longer valid"); 2522 return -EINVAL; 2523 } 2524 2525 /* 2526 * Skipping super_load due to CTR_FLAG_SYNC will cause 2527 * the array to undergo initialization again as 2528 * though it were new. This is the intended effect 2529 * of the "sync" directive. 2530 * 2531 * With reshaping capability added, we must ensure that 2532 * that the "sync" directive is disallowed during the reshape. 2533 */ 2534 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2535 continue; 2536 2537 r = super_load(rdev, freshest); 2538 2539 switch (r) { 2540 case 1: 2541 freshest = rdev; 2542 break; 2543 case 0: 2544 break; 2545 default: 2546 /* This is a failure to read the superblock from the metadata device. */ 2547 /* 2548 * We have to keep any raid0 data/metadata device pairs or 2549 * the MD raid0 personality will fail to start the array. 2550 */ 2551 if (rs_is_raid0(rs)) 2552 continue; 2553 2554 /* 2555 * We keep the dm_devs to be able to emit the device tuple 2556 * properly on the table line in raid_status() (rather than 2557 * mistakenly acting as if '- -' got passed into the constructor). 2558 * 2559 * The rdev has to stay on the same_set list to allow for 2560 * the attempt to restore faulty devices on second resume. 2561 */ 2562 rdev->raid_disk = rdev->saved_raid_disk = -1; 2563 break; 2564 } 2565 } 2566 2567 if (!freshest) 2568 return 0; 2569 2570 /* 2571 * Validation of the freshest device provides the source of 2572 * validation for the remaining devices. 2573 */ 2574 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2575 if (super_validate(rs, freshest)) 2576 return -EINVAL; 2577 2578 if (validate_raid_redundancy(rs)) { 2579 rs->ti->error = "Insufficient redundancy to activate array"; 2580 return -EINVAL; 2581 } 2582 2583 rdev_for_each(rdev, mddev) 2584 if (!test_bit(Journal, &rdev->flags) && 2585 rdev != freshest && 2586 super_validate(rs, rdev)) 2587 return -EINVAL; 2588 return 0; 2589 } 2590 2591 /* 2592 * Adjust data_offset and new_data_offset on all disk members of @rs 2593 * for out of place reshaping if requested by contructor 2594 * 2595 * We need free space at the beginning of each raid disk for forward 2596 * and at the end for backward reshapes which userspace has to provide 2597 * via remapping/reordering of space. 2598 */ 2599 static int rs_adjust_data_offsets(struct raid_set *rs) 2600 { 2601 sector_t data_offset = 0, new_data_offset = 0; 2602 struct md_rdev *rdev; 2603 2604 /* Constructor did not request data offset change */ 2605 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2606 if (!rs_is_reshapable(rs)) 2607 goto out; 2608 2609 return 0; 2610 } 2611 2612 /* HM FIXME: get In_Sync raid_dev? */ 2613 rdev = &rs->dev[0].rdev; 2614 2615 if (rs->delta_disks < 0) { 2616 /* 2617 * Removing disks (reshaping backwards): 2618 * 2619 * - before reshape: data is at offset 0 and free space 2620 * is at end of each component LV 2621 * 2622 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2623 */ 2624 data_offset = 0; 2625 new_data_offset = rs->data_offset; 2626 2627 } else if (rs->delta_disks > 0) { 2628 /* 2629 * Adding disks (reshaping forwards): 2630 * 2631 * - before reshape: data is at offset rs->data_offset != 0 and 2632 * free space is at begin of each component LV 2633 * 2634 * - after reshape: data is at offset 0 on each component LV 2635 */ 2636 data_offset = rs->data_offset; 2637 new_data_offset = 0; 2638 2639 } else { 2640 /* 2641 * User space passes in 0 for data offset after having removed reshape space 2642 * 2643 * - or - (data offset != 0) 2644 * 2645 * Changing RAID layout or chunk size -> toggle offsets 2646 * 2647 * - before reshape: data is at offset rs->data_offset 0 and 2648 * free space is at end of each component LV 2649 * -or- 2650 * data is at offset rs->data_offset != 0 and 2651 * free space is at begin of each component LV 2652 * 2653 * - after reshape: data is at offset 0 if it was at offset != 0 2654 * or at offset != 0 if it was at offset 0 2655 * on each component LV 2656 * 2657 */ 2658 data_offset = rs->data_offset ? rdev->data_offset : 0; 2659 new_data_offset = data_offset ? 0 : rs->data_offset; 2660 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2661 } 2662 2663 /* 2664 * Make sure we got a minimum amount of free sectors per device 2665 */ 2666 if (rs->data_offset && 2667 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2668 rs->ti->error = data_offset ? "No space for forward reshape" : 2669 "No space for backward reshape"; 2670 return -ENOSPC; 2671 } 2672 out: 2673 /* 2674 * Raise recovery_cp in case data_offset != 0 to 2675 * avoid false recovery positives in the constructor. 2676 */ 2677 if (rs->md.recovery_cp < rs->md.dev_sectors) 2678 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2679 2680 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2681 rdev_for_each(rdev, &rs->md) { 2682 if (!test_bit(Journal, &rdev->flags)) { 2683 rdev->data_offset = data_offset; 2684 rdev->new_data_offset = new_data_offset; 2685 } 2686 } 2687 2688 return 0; 2689 } 2690 2691 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2692 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2693 { 2694 int i = 0; 2695 struct md_rdev *rdev; 2696 2697 rdev_for_each(rdev, &rs->md) { 2698 if (!test_bit(Journal, &rdev->flags)) { 2699 rdev->raid_disk = i++; 2700 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2701 } 2702 } 2703 } 2704 2705 /* 2706 * Setup @rs for takeover by a different raid level 2707 */ 2708 static int rs_setup_takeover(struct raid_set *rs) 2709 { 2710 struct mddev *mddev = &rs->md; 2711 struct md_rdev *rdev; 2712 unsigned int d = mddev->raid_disks = rs->raid_disks; 2713 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2714 2715 if (rt_is_raid10(rs->raid_type)) { 2716 if (rs_is_raid0(rs)) { 2717 /* Userpace reordered disks -> adjust raid_disk indexes */ 2718 __reorder_raid_disk_indexes(rs); 2719 2720 /* raid0 -> raid10_far layout */ 2721 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2722 rs->raid10_copies); 2723 } else if (rs_is_raid1(rs)) 2724 /* raid1 -> raid10_near layout */ 2725 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2726 rs->raid_disks); 2727 else 2728 return -EINVAL; 2729 2730 } 2731 2732 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2733 mddev->recovery_cp = MaxSector; 2734 2735 while (d--) { 2736 rdev = &rs->dev[d].rdev; 2737 2738 if (test_bit(d, (void *) rs->rebuild_disks)) { 2739 clear_bit(In_sync, &rdev->flags); 2740 clear_bit(Faulty, &rdev->flags); 2741 mddev->recovery_cp = rdev->recovery_offset = 0; 2742 /* Bitmap has to be created when we do an "up" takeover */ 2743 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2744 } 2745 2746 rdev->new_data_offset = new_data_offset; 2747 } 2748 2749 return 0; 2750 } 2751 2752 /* Prepare @rs for reshape */ 2753 static int rs_prepare_reshape(struct raid_set *rs) 2754 { 2755 bool reshape; 2756 struct mddev *mddev = &rs->md; 2757 2758 if (rs_is_raid10(rs)) { 2759 if (rs->raid_disks != mddev->raid_disks && 2760 __is_raid10_near(mddev->layout) && 2761 rs->raid10_copies && 2762 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2763 /* 2764 * raid disk have to be multiple of data copies to allow this conversion, 2765 * 2766 * This is actually not a reshape it is a 2767 * rebuild of any additional mirrors per group 2768 */ 2769 if (rs->raid_disks % rs->raid10_copies) { 2770 rs->ti->error = "Can't reshape raid10 mirror groups"; 2771 return -EINVAL; 2772 } 2773 2774 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2775 __reorder_raid_disk_indexes(rs); 2776 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2777 rs->raid10_copies); 2778 mddev->new_layout = mddev->layout; 2779 reshape = false; 2780 } else 2781 reshape = true; 2782 2783 } else if (rs_is_raid456(rs)) 2784 reshape = true; 2785 2786 else if (rs_is_raid1(rs)) { 2787 if (rs->delta_disks) { 2788 /* Process raid1 via delta_disks */ 2789 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2790 reshape = true; 2791 } else { 2792 /* Process raid1 without delta_disks */ 2793 mddev->raid_disks = rs->raid_disks; 2794 reshape = false; 2795 } 2796 } else { 2797 rs->ti->error = "Called with bogus raid type"; 2798 return -EINVAL; 2799 } 2800 2801 if (reshape) { 2802 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2803 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2804 } else if (mddev->raid_disks < rs->raid_disks) 2805 /* Create new superblocks and bitmaps, if any new disks */ 2806 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2807 2808 return 0; 2809 } 2810 2811 /* Get reshape sectors from data_offsets or raid set */ 2812 static sector_t _get_reshape_sectors(struct raid_set *rs) 2813 { 2814 struct md_rdev *rdev; 2815 sector_t reshape_sectors = 0; 2816 2817 rdev_for_each(rdev, &rs->md) 2818 if (!test_bit(Journal, &rdev->flags)) { 2819 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2820 rdev->data_offset - rdev->new_data_offset : 2821 rdev->new_data_offset - rdev->data_offset; 2822 break; 2823 } 2824 2825 return max(reshape_sectors, (sector_t) rs->data_offset); 2826 } 2827 2828 /* 2829 * 2830 * - change raid layout 2831 * - change chunk size 2832 * - add disks 2833 * - remove disks 2834 */ 2835 static int rs_setup_reshape(struct raid_set *rs) 2836 { 2837 int r = 0; 2838 unsigned int cur_raid_devs, d; 2839 sector_t reshape_sectors = _get_reshape_sectors(rs); 2840 struct mddev *mddev = &rs->md; 2841 struct md_rdev *rdev; 2842 2843 mddev->delta_disks = rs->delta_disks; 2844 cur_raid_devs = mddev->raid_disks; 2845 2846 /* Ignore impossible layout change whilst adding/removing disks */ 2847 if (mddev->delta_disks && 2848 mddev->layout != mddev->new_layout) { 2849 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2850 mddev->new_layout = mddev->layout; 2851 } 2852 2853 /* 2854 * Adjust array size: 2855 * 2856 * - in case of adding disk(s), array size has 2857 * to grow after the disk adding reshape, 2858 * which'll hapen in the event handler; 2859 * reshape will happen forward, so space has to 2860 * be available at the beginning of each disk 2861 * 2862 * - in case of removing disk(s), array size 2863 * has to shrink before starting the reshape, 2864 * which'll happen here; 2865 * reshape will happen backward, so space has to 2866 * be available at the end of each disk 2867 * 2868 * - data_offset and new_data_offset are 2869 * adjusted for aforementioned out of place 2870 * reshaping based on userspace passing in 2871 * the "data_offset <sectors>" key/value 2872 * pair via the constructor 2873 */ 2874 2875 /* Add disk(s) */ 2876 if (rs->delta_disks > 0) { 2877 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2878 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2879 rdev = &rs->dev[d].rdev; 2880 clear_bit(In_sync, &rdev->flags); 2881 2882 /* 2883 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2884 * by md, which'll store that erroneously in the superblock on reshape 2885 */ 2886 rdev->saved_raid_disk = -1; 2887 rdev->raid_disk = d; 2888 2889 rdev->sectors = mddev->dev_sectors; 2890 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2891 } 2892 2893 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2894 2895 /* Remove disk(s) */ 2896 } else if (rs->delta_disks < 0) { 2897 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2898 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2899 2900 /* Change layout and/or chunk size */ 2901 } else { 2902 /* 2903 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2904 * 2905 * keeping number of disks and do layout change -> 2906 * 2907 * toggle reshape_backward depending on data_offset: 2908 * 2909 * - free space upfront -> reshape forward 2910 * 2911 * - free space at the end -> reshape backward 2912 * 2913 * 2914 * This utilizes free reshape space avoiding the need 2915 * for userspace to move (parts of) LV segments in 2916 * case of layout/chunksize change (for disk 2917 * adding/removing reshape space has to be at 2918 * the proper address (see above with delta_disks): 2919 * 2920 * add disk(s) -> begin 2921 * remove disk(s)-> end 2922 */ 2923 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2924 } 2925 2926 /* 2927 * Adjust device size for forward reshape 2928 * because md_finish_reshape() reduces it. 2929 */ 2930 if (!mddev->reshape_backwards) 2931 rdev_for_each(rdev, &rs->md) 2932 if (!test_bit(Journal, &rdev->flags)) 2933 rdev->sectors += reshape_sectors; 2934 2935 return r; 2936 } 2937 2938 /* 2939 * Enable/disable discard support on RAID set depending on 2940 * RAID level and discard properties of underlying RAID members. 2941 */ 2942 static void configure_discard_support(struct raid_set *rs) 2943 { 2944 int i; 2945 bool raid456; 2946 struct dm_target *ti = rs->ti; 2947 2948 /* 2949 * XXX: RAID level 4,5,6 require zeroing for safety. 2950 */ 2951 raid456 = rs_is_raid456(rs); 2952 2953 for (i = 0; i < rs->raid_disks; i++) { 2954 struct request_queue *q; 2955 2956 if (!rs->dev[i].rdev.bdev) 2957 continue; 2958 2959 q = bdev_get_queue(rs->dev[i].rdev.bdev); 2960 if (!q || !blk_queue_discard(q)) 2961 return; 2962 2963 if (raid456) { 2964 if (!devices_handle_discard_safely) { 2965 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2966 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2967 return; 2968 } 2969 } 2970 } 2971 2972 ti->num_discard_bios = 1; 2973 } 2974 2975 /* 2976 * Construct a RAID0/1/10/4/5/6 mapping: 2977 * Args: 2978 * <raid_type> <#raid_params> <raid_params>{0,} \ 2979 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2980 * 2981 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2982 * details on possible <raid_params>. 2983 * 2984 * Userspace is free to initialize the metadata devices, hence the superblocks to 2985 * enforce recreation based on the passed in table parameters. 2986 * 2987 */ 2988 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2989 { 2990 int r; 2991 bool resize = false; 2992 struct raid_type *rt; 2993 unsigned int num_raid_params, num_raid_devs; 2994 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 2995 struct raid_set *rs = NULL; 2996 const char *arg; 2997 struct rs_layout rs_layout; 2998 struct dm_arg_set as = { argc, argv }, as_nrd; 2999 struct dm_arg _args[] = { 3000 { 0, as.argc, "Cannot understand number of raid parameters" }, 3001 { 1, 254, "Cannot understand number of raid devices parameters" } 3002 }; 3003 3004 /* Must have <raid_type> */ 3005 arg = dm_shift_arg(&as); 3006 if (!arg) { 3007 ti->error = "No arguments"; 3008 return -EINVAL; 3009 } 3010 3011 rt = get_raid_type(arg); 3012 if (!rt) { 3013 ti->error = "Unrecognised raid_type"; 3014 return -EINVAL; 3015 } 3016 3017 /* Must have <#raid_params> */ 3018 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3019 return -EINVAL; 3020 3021 /* number of raid device tupples <meta_dev data_dev> */ 3022 as_nrd = as; 3023 dm_consume_args(&as_nrd, num_raid_params); 3024 _args[1].max = (as_nrd.argc - 1) / 2; 3025 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3026 return -EINVAL; 3027 3028 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3029 ti->error = "Invalid number of supplied raid devices"; 3030 return -EINVAL; 3031 } 3032 3033 rs = raid_set_alloc(ti, rt, num_raid_devs); 3034 if (IS_ERR(rs)) 3035 return PTR_ERR(rs); 3036 3037 r = parse_raid_params(rs, &as, num_raid_params); 3038 if (r) 3039 goto bad; 3040 3041 r = parse_dev_params(rs, &as); 3042 if (r) 3043 goto bad; 3044 3045 rs->md.sync_super = super_sync; 3046 3047 /* 3048 * Calculate ctr requested array and device sizes to allow 3049 * for superblock analysis needing device sizes defined. 3050 * 3051 * Any existing superblock will overwrite the array and device sizes 3052 */ 3053 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3054 if (r) 3055 goto bad; 3056 3057 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3058 rs->array_sectors = rs->md.array_sectors; 3059 rs->dev_sectors = rs->md.dev_sectors; 3060 3061 /* 3062 * Backup any new raid set level, layout, ... 3063 * requested to be able to compare to superblock 3064 * members for conversion decisions. 3065 */ 3066 rs_config_backup(rs, &rs_layout); 3067 3068 r = analyse_superblocks(ti, rs); 3069 if (r) 3070 goto bad; 3071 3072 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3073 sb_array_sectors = rs->md.array_sectors; 3074 rdev_sectors = __rdev_sectors(rs); 3075 if (!rdev_sectors) { 3076 ti->error = "Invalid rdev size"; 3077 r = -EINVAL; 3078 goto bad; 3079 } 3080 3081 3082 reshape_sectors = _get_reshape_sectors(rs); 3083 if (rs->dev_sectors != rdev_sectors) { 3084 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3085 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3086 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3087 } 3088 3089 INIT_WORK(&rs->md.event_work, do_table_event); 3090 ti->private = rs; 3091 ti->num_flush_bios = 1; 3092 3093 /* Restore any requested new layout for conversion decision */ 3094 rs_config_restore(rs, &rs_layout); 3095 3096 /* 3097 * Now that we have any superblock metadata available, 3098 * check for new, recovering, reshaping, to be taken over, 3099 * to be reshaped or an existing, unchanged raid set to 3100 * run in sequence. 3101 */ 3102 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3103 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3104 if (rs_is_raid6(rs) && 3105 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3106 ti->error = "'nosync' not allowed for new raid6 set"; 3107 r = -EINVAL; 3108 goto bad; 3109 } 3110 rs_setup_recovery(rs, 0); 3111 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3112 rs_set_new(rs); 3113 } else if (rs_is_recovering(rs)) { 3114 /* A recovering raid set may be resized */ 3115 goto size_check; 3116 } else if (rs_is_reshaping(rs)) { 3117 /* Have to reject size change request during reshape */ 3118 if (resize) { 3119 ti->error = "Can't resize a reshaping raid set"; 3120 r = -EPERM; 3121 goto bad; 3122 } 3123 /* skip setup rs */ 3124 } else if (rs_takeover_requested(rs)) { 3125 if (rs_is_reshaping(rs)) { 3126 ti->error = "Can't takeover a reshaping raid set"; 3127 r = -EPERM; 3128 goto bad; 3129 } 3130 3131 /* We can't takeover a journaled raid4/5/6 */ 3132 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3133 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3134 r = -EPERM; 3135 goto bad; 3136 } 3137 3138 /* 3139 * If a takeover is needed, userspace sets any additional 3140 * devices to rebuild and we can check for a valid request here. 3141 * 3142 * If acceptible, set the level to the new requested 3143 * one, prohibit requesting recovery, allow the raid 3144 * set to run and store superblocks during resume. 3145 */ 3146 r = rs_check_takeover(rs); 3147 if (r) 3148 goto bad; 3149 3150 r = rs_setup_takeover(rs); 3151 if (r) 3152 goto bad; 3153 3154 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3155 /* Takeover ain't recovery, so disable recovery */ 3156 rs_setup_recovery(rs, MaxSector); 3157 rs_set_new(rs); 3158 } else if (rs_reshape_requested(rs)) { 3159 /* Only request grow on raid set size extensions, not on reshapes. */ 3160 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3161 3162 /* 3163 * No need to check for 'ongoing' takeover here, because takeover 3164 * is an instant operation as oposed to an ongoing reshape. 3165 */ 3166 3167 /* We can't reshape a journaled raid4/5/6 */ 3168 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3169 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3170 r = -EPERM; 3171 goto bad; 3172 } 3173 3174 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3175 if (reshape_sectors || rs_is_raid1(rs)) { 3176 /* 3177 * We can only prepare for a reshape here, because the 3178 * raid set needs to run to provide the repective reshape 3179 * check functions via its MD personality instance. 3180 * 3181 * So do the reshape check after md_run() succeeded. 3182 */ 3183 r = rs_prepare_reshape(rs); 3184 if (r) 3185 goto bad; 3186 3187 /* Reshaping ain't recovery, so disable recovery */ 3188 rs_setup_recovery(rs, MaxSector); 3189 } 3190 rs_set_cur(rs); 3191 } else { 3192 size_check: 3193 /* May not set recovery when a device rebuild is requested */ 3194 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3195 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3196 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3197 rs_setup_recovery(rs, MaxSector); 3198 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3199 /* 3200 * Set raid set to current size, i.e. size as of 3201 * superblocks to grow to larger size in preresume. 3202 */ 3203 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3204 if (r) 3205 goto bad; 3206 3207 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3208 } else { 3209 /* This is no size change or it is shrinking, update size and record in superblocks */ 3210 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3211 if (r) 3212 goto bad; 3213 3214 if (sb_array_sectors > rs->array_sectors) 3215 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3216 } 3217 rs_set_cur(rs); 3218 } 3219 3220 /* If constructor requested it, change data and new_data offsets */ 3221 r = rs_adjust_data_offsets(rs); 3222 if (r) 3223 goto bad; 3224 3225 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3226 rs->md.ro = 1; 3227 rs->md.in_sync = 1; 3228 3229 /* Keep array frozen */ 3230 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3231 3232 /* Has to be held on running the array */ 3233 mddev_lock_nointr(&rs->md); 3234 r = md_run(&rs->md); 3235 rs->md.in_sync = 0; /* Assume already marked dirty */ 3236 if (r) { 3237 ti->error = "Failed to run raid array"; 3238 mddev_unlock(&rs->md); 3239 goto bad; 3240 } 3241 3242 r = md_start(&rs->md); 3243 3244 if (r) { 3245 ti->error = "Failed to start raid array"; 3246 mddev_unlock(&rs->md); 3247 goto bad_md_start; 3248 } 3249 3250 rs->callbacks.congested_fn = raid_is_congested; 3251 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 3252 3253 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3254 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3255 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3256 if (r) { 3257 ti->error = "Failed to set raid4/5/6 journal mode"; 3258 mddev_unlock(&rs->md); 3259 goto bad_journal_mode_set; 3260 } 3261 } 3262 3263 mddev_suspend(&rs->md); 3264 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3265 3266 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3267 if (rs_is_raid456(rs)) { 3268 r = rs_set_raid456_stripe_cache(rs); 3269 if (r) 3270 goto bad_stripe_cache; 3271 } 3272 3273 /* Now do an early reshape check */ 3274 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3275 r = rs_check_reshape(rs); 3276 if (r) 3277 goto bad_check_reshape; 3278 3279 /* Restore new, ctr requested layout to perform check */ 3280 rs_config_restore(rs, &rs_layout); 3281 3282 if (rs->md.pers->start_reshape) { 3283 r = rs->md.pers->check_reshape(&rs->md); 3284 if (r) { 3285 ti->error = "Reshape check failed"; 3286 goto bad_check_reshape; 3287 } 3288 } 3289 } 3290 3291 /* Disable/enable discard support on raid set. */ 3292 configure_discard_support(rs); 3293 3294 mddev_unlock(&rs->md); 3295 return 0; 3296 3297 bad_md_start: 3298 bad_journal_mode_set: 3299 bad_stripe_cache: 3300 bad_check_reshape: 3301 md_stop(&rs->md); 3302 bad: 3303 raid_set_free(rs); 3304 3305 return r; 3306 } 3307 3308 static void raid_dtr(struct dm_target *ti) 3309 { 3310 struct raid_set *rs = ti->private; 3311 3312 list_del_init(&rs->callbacks.list); 3313 md_stop(&rs->md); 3314 raid_set_free(rs); 3315 } 3316 3317 static int raid_map(struct dm_target *ti, struct bio *bio) 3318 { 3319 struct raid_set *rs = ti->private; 3320 struct mddev *mddev = &rs->md; 3321 3322 /* 3323 * If we're reshaping to add disk(s)), ti->len and 3324 * mddev->array_sectors will differ during the process 3325 * (ti->len > mddev->array_sectors), so we have to requeue 3326 * bios with addresses > mddev->array_sectors here or 3327 * there will occur accesses past EOD of the component 3328 * data images thus erroring the raid set. 3329 */ 3330 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3331 return DM_MAPIO_REQUEUE; 3332 3333 md_handle_request(mddev, bio); 3334 3335 return DM_MAPIO_SUBMITTED; 3336 } 3337 3338 /* Return sync state string for @state */ 3339 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3340 static const char *sync_str(enum sync_state state) 3341 { 3342 /* Has to be in above sync_state order! */ 3343 static const char *sync_strs[] = { 3344 "frozen", 3345 "reshape", 3346 "resync", 3347 "check", 3348 "repair", 3349 "recover", 3350 "idle" 3351 }; 3352 3353 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3354 }; 3355 3356 /* Return enum sync_state for @mddev derived from @recovery flags */ 3357 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3358 { 3359 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3360 return st_frozen; 3361 3362 /* The MD sync thread can be done with io or be interrupted but still be running */ 3363 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3364 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3365 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3366 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3367 return st_reshape; 3368 3369 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3370 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3371 return st_resync; 3372 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3373 return st_check; 3374 return st_repair; 3375 } 3376 3377 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3378 return st_recover; 3379 3380 if (mddev->reshape_position != MaxSector) 3381 return st_reshape; 3382 } 3383 3384 return st_idle; 3385 } 3386 3387 /* 3388 * Return status string for @rdev 3389 * 3390 * Status characters: 3391 * 3392 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3393 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3394 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3395 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3396 */ 3397 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3398 { 3399 if (!rdev->bdev) 3400 return "-"; 3401 else if (test_bit(Faulty, &rdev->flags)) 3402 return "D"; 3403 else if (test_bit(Journal, &rdev->flags)) 3404 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3405 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3406 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3407 !test_bit(In_sync, &rdev->flags))) 3408 return "a"; 3409 else 3410 return "A"; 3411 } 3412 3413 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3414 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3415 enum sync_state state, sector_t resync_max_sectors) 3416 { 3417 sector_t r; 3418 struct mddev *mddev = &rs->md; 3419 3420 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3421 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3422 3423 if (rs_is_raid0(rs)) { 3424 r = resync_max_sectors; 3425 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3426 3427 } else { 3428 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3429 r = mddev->recovery_cp; 3430 else 3431 r = mddev->curr_resync_completed; 3432 3433 if (state == st_idle && r >= resync_max_sectors) { 3434 /* 3435 * Sync complete. 3436 */ 3437 /* In case we have finished recovering, the array is in sync. */ 3438 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3439 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3440 3441 } else if (state == st_recover) 3442 /* 3443 * In case we are recovering, the array is not in sync 3444 * and health chars should show the recovering legs. 3445 * 3446 * Already retrieved recovery offset from curr_resync_completed above. 3447 */ 3448 ; 3449 3450 else if (state == st_resync || state == st_reshape) 3451 /* 3452 * If "resync/reshape" is occurring, the raid set 3453 * is or may be out of sync hence the health 3454 * characters shall be 'a'. 3455 */ 3456 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3457 3458 else if (state == st_check || state == st_repair) 3459 /* 3460 * If "check" or "repair" is occurring, the raid set has 3461 * undergone an initial sync and the health characters 3462 * should not be 'a' anymore. 3463 */ 3464 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3465 3466 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3467 /* 3468 * We are idle and recovery is needed, prevent 'A' chars race 3469 * caused by components still set to in-sync by constructor. 3470 */ 3471 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3472 3473 else { 3474 /* 3475 * We are idle and the raid set may be doing an initial 3476 * sync, or it may be rebuilding individual components. 3477 * If all the devices are In_sync, then it is the raid set 3478 * that is being initialized. 3479 */ 3480 struct md_rdev *rdev; 3481 3482 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3483 rdev_for_each(rdev, mddev) 3484 if (!test_bit(Journal, &rdev->flags) && 3485 !test_bit(In_sync, &rdev->flags)) { 3486 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3487 break; 3488 } 3489 } 3490 } 3491 3492 return min(r, resync_max_sectors); 3493 } 3494 3495 /* Helper to return @dev name or "-" if !@dev */ 3496 static const char *__get_dev_name(struct dm_dev *dev) 3497 { 3498 return dev ? dev->name : "-"; 3499 } 3500 3501 static void raid_status(struct dm_target *ti, status_type_t type, 3502 unsigned int status_flags, char *result, unsigned int maxlen) 3503 { 3504 struct raid_set *rs = ti->private; 3505 struct mddev *mddev = &rs->md; 3506 struct r5conf *conf = mddev->private; 3507 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3508 unsigned long recovery; 3509 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3510 unsigned int sz = 0; 3511 unsigned int rebuild_disks; 3512 unsigned int write_mostly_params = 0; 3513 sector_t progress, resync_max_sectors, resync_mismatches; 3514 enum sync_state state; 3515 struct raid_type *rt; 3516 3517 switch (type) { 3518 case STATUSTYPE_INFO: 3519 /* *Should* always succeed */ 3520 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3521 if (!rt) 3522 return; 3523 3524 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3525 3526 /* Access most recent mddev properties for status output */ 3527 smp_rmb(); 3528 /* Get sensible max sectors even if raid set not yet started */ 3529 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3530 mddev->resync_max_sectors : mddev->dev_sectors; 3531 recovery = rs->md.recovery; 3532 state = decipher_sync_action(mddev, recovery); 3533 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3534 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3535 atomic64_read(&mddev->resync_mismatches) : 0; 3536 3537 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3538 for (i = 0; i < rs->raid_disks; i++) 3539 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3540 3541 /* 3542 * In-sync/Reshape ratio: 3543 * The in-sync ratio shows the progress of: 3544 * - Initializing the raid set 3545 * - Rebuilding a subset of devices of the raid set 3546 * The user can distinguish between the two by referring 3547 * to the status characters. 3548 * 3549 * The reshape ratio shows the progress of 3550 * changing the raid layout or the number of 3551 * disks of a raid set 3552 */ 3553 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3554 (unsigned long long) resync_max_sectors); 3555 3556 /* 3557 * v1.5.0+: 3558 * 3559 * Sync action: 3560 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3561 * information on each of these states. 3562 */ 3563 DMEMIT(" %s", sync_str(state)); 3564 3565 /* 3566 * v1.5.0+: 3567 * 3568 * resync_mismatches/mismatch_cnt 3569 * This field shows the number of discrepancies found when 3570 * performing a "check" of the raid set. 3571 */ 3572 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3573 3574 /* 3575 * v1.9.0+: 3576 * 3577 * data_offset (needed for out of space reshaping) 3578 * This field shows the data offset into the data 3579 * image LV where the first stripes data starts. 3580 * 3581 * We keep data_offset equal on all raid disks of the set, 3582 * so retrieving it from the first raid disk is sufficient. 3583 */ 3584 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3585 3586 /* 3587 * v1.10.0+: 3588 */ 3589 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3590 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3591 break; 3592 3593 case STATUSTYPE_TABLE: 3594 /* Report the table line string you would use to construct this raid set */ 3595 3596 /* Calculate raid parameter count */ 3597 for (i = 0; i < rs->raid_disks; i++) 3598 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3599 write_mostly_params += 2; 3600 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)); 3601 raid_param_cnt += rebuild_disks * 2 + 3602 write_mostly_params + 3603 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3604 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 + 3605 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) + 3606 (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0); 3607 3608 /* Emit table line */ 3609 /* This has to be in the documented order for userspace! */ 3610 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3611 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3612 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3613 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3614 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3615 if (rebuild_disks) 3616 for (i = 0; i < rs->raid_disks; i++) 3617 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks)) 3618 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), 3619 rs->dev[i].rdev.raid_disk); 3620 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3621 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3622 mddev->bitmap_info.daemon_sleep); 3623 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3624 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3625 mddev->sync_speed_min); 3626 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3627 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3628 mddev->sync_speed_max); 3629 if (write_mostly_params) 3630 for (i = 0; i < rs->raid_disks; i++) 3631 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3632 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3633 rs->dev[i].rdev.raid_disk); 3634 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3635 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3636 mddev->bitmap_info.max_write_behind); 3637 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3638 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3639 max_nr_stripes); 3640 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3641 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3642 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3643 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3644 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3645 raid10_md_layout_to_copies(mddev->layout)); 3646 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3647 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3648 raid10_md_layout_to_format(mddev->layout)); 3649 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3650 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3651 max(rs->delta_disks, mddev->delta_disks)); 3652 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3653 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3654 (unsigned long long) rs->data_offset); 3655 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3656 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3657 __get_dev_name(rs->journal_dev.dev)); 3658 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3659 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3660 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3661 DMEMIT(" %d", rs->raid_disks); 3662 for (i = 0; i < rs->raid_disks; i++) 3663 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3664 __get_dev_name(rs->dev[i].data_dev)); 3665 } 3666 } 3667 3668 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3669 char *result, unsigned maxlen) 3670 { 3671 struct raid_set *rs = ti->private; 3672 struct mddev *mddev = &rs->md; 3673 3674 if (!mddev->pers || !mddev->pers->sync_request) 3675 return -EINVAL; 3676 3677 if (!strcasecmp(argv[0], "frozen")) 3678 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3679 else 3680 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3681 3682 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3683 if (mddev->sync_thread) { 3684 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3685 md_reap_sync_thread(mddev); 3686 } 3687 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3688 return -EBUSY; 3689 else if (!strcasecmp(argv[0], "resync")) 3690 ; /* MD_RECOVERY_NEEDED set below */ 3691 else if (!strcasecmp(argv[0], "recover")) 3692 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3693 else { 3694 if (!strcasecmp(argv[0], "check")) { 3695 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3696 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3697 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3698 } else if (!strcasecmp(argv[0], "repair")) { 3699 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3700 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3701 } else 3702 return -EINVAL; 3703 } 3704 if (mddev->ro == 2) { 3705 /* A write to sync_action is enough to justify 3706 * canceling read-auto mode 3707 */ 3708 mddev->ro = 0; 3709 if (!mddev->suspended && mddev->sync_thread) 3710 md_wakeup_thread(mddev->sync_thread); 3711 } 3712 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3713 if (!mddev->suspended && mddev->thread) 3714 md_wakeup_thread(mddev->thread); 3715 3716 return 0; 3717 } 3718 3719 static int raid_iterate_devices(struct dm_target *ti, 3720 iterate_devices_callout_fn fn, void *data) 3721 { 3722 struct raid_set *rs = ti->private; 3723 unsigned int i; 3724 int r = 0; 3725 3726 for (i = 0; !r && i < rs->md.raid_disks; i++) 3727 if (rs->dev[i].data_dev) 3728 r = fn(ti, 3729 rs->dev[i].data_dev, 3730 0, /* No offset on data devs */ 3731 rs->md.dev_sectors, 3732 data); 3733 3734 return r; 3735 } 3736 3737 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3738 { 3739 struct raid_set *rs = ti->private; 3740 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3741 3742 blk_limits_io_min(limits, chunk_size_bytes); 3743 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); 3744 3745 /* 3746 * RAID1 and RAID10 personalities require bio splitting, 3747 * RAID0/4/5/6 don't and process large discard bios properly. 3748 */ 3749 if (rs_is_raid1(rs) || rs_is_raid10(rs)) { 3750 limits->discard_granularity = chunk_size_bytes; 3751 limits->max_discard_sectors = rs->md.chunk_sectors; 3752 } 3753 } 3754 3755 static void raid_postsuspend(struct dm_target *ti) 3756 { 3757 struct raid_set *rs = ti->private; 3758 3759 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3760 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3761 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3762 md_stop_writes(&rs->md); 3763 3764 mddev_lock_nointr(&rs->md); 3765 mddev_suspend(&rs->md); 3766 mddev_unlock(&rs->md); 3767 } 3768 } 3769 3770 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3771 { 3772 int i; 3773 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3774 unsigned long flags; 3775 bool cleared = false; 3776 struct dm_raid_superblock *sb; 3777 struct mddev *mddev = &rs->md; 3778 struct md_rdev *r; 3779 3780 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3781 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3782 return; 3783 3784 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3785 3786 for (i = 0; i < mddev->raid_disks; i++) { 3787 r = &rs->dev[i].rdev; 3788 /* HM FIXME: enhance journal device recovery processing */ 3789 if (test_bit(Journal, &r->flags)) 3790 continue; 3791 3792 if (test_bit(Faulty, &r->flags) && 3793 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3794 DMINFO("Faulty %s device #%d has readable super block." 3795 " Attempting to revive it.", 3796 rs->raid_type->name, i); 3797 3798 /* 3799 * Faulty bit may be set, but sometimes the array can 3800 * be suspended before the personalities can respond 3801 * by removing the device from the array (i.e. calling 3802 * 'hot_remove_disk'). If they haven't yet removed 3803 * the failed device, its 'raid_disk' number will be 3804 * '>= 0' - meaning we must call this function 3805 * ourselves. 3806 */ 3807 flags = r->flags; 3808 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3809 if (r->raid_disk >= 0) { 3810 if (mddev->pers->hot_remove_disk(mddev, r)) { 3811 /* Failed to revive this device, try next */ 3812 r->flags = flags; 3813 continue; 3814 } 3815 } else 3816 r->raid_disk = r->saved_raid_disk = i; 3817 3818 clear_bit(Faulty, &r->flags); 3819 clear_bit(WriteErrorSeen, &r->flags); 3820 3821 if (mddev->pers->hot_add_disk(mddev, r)) { 3822 /* Failed to revive this device, try next */ 3823 r->raid_disk = r->saved_raid_disk = -1; 3824 r->flags = flags; 3825 } else { 3826 clear_bit(In_sync, &r->flags); 3827 r->recovery_offset = 0; 3828 set_bit(i, (void *) cleared_failed_devices); 3829 cleared = true; 3830 } 3831 } 3832 } 3833 3834 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3835 if (cleared) { 3836 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3837 3838 rdev_for_each(r, &rs->md) { 3839 if (test_bit(Journal, &r->flags)) 3840 continue; 3841 3842 sb = page_address(r->sb_page); 3843 sb_retrieve_failed_devices(sb, failed_devices); 3844 3845 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3846 failed_devices[i] &= ~cleared_failed_devices[i]; 3847 3848 sb_update_failed_devices(sb, failed_devices); 3849 } 3850 } 3851 } 3852 3853 static int __load_dirty_region_bitmap(struct raid_set *rs) 3854 { 3855 int r = 0; 3856 3857 /* Try loading the bitmap unless "raid0", which does not have one */ 3858 if (!rs_is_raid0(rs) && 3859 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3860 r = md_bitmap_load(&rs->md); 3861 if (r) 3862 DMERR("Failed to load bitmap"); 3863 } 3864 3865 return r; 3866 } 3867 3868 /* Enforce updating all superblocks */ 3869 static void rs_update_sbs(struct raid_set *rs) 3870 { 3871 struct mddev *mddev = &rs->md; 3872 int ro = mddev->ro; 3873 3874 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3875 mddev->ro = 0; 3876 md_update_sb(mddev, 1); 3877 mddev->ro = ro; 3878 } 3879 3880 /* 3881 * Reshape changes raid algorithm of @rs to new one within personality 3882 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3883 * disks from a raid set thus growing/shrinking it or resizes the set 3884 * 3885 * Call mddev_lock_nointr() before! 3886 */ 3887 static int rs_start_reshape(struct raid_set *rs) 3888 { 3889 int r; 3890 struct mddev *mddev = &rs->md; 3891 struct md_personality *pers = mddev->pers; 3892 3893 /* Don't allow the sync thread to work until the table gets reloaded. */ 3894 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3895 3896 r = rs_setup_reshape(rs); 3897 if (r) 3898 return r; 3899 3900 /* 3901 * Check any reshape constraints enforced by the personalility 3902 * 3903 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3904 */ 3905 r = pers->check_reshape(mddev); 3906 if (r) { 3907 rs->ti->error = "pers->check_reshape() failed"; 3908 return r; 3909 } 3910 3911 /* 3912 * Personality may not provide start reshape method in which 3913 * case check_reshape above has already covered everything 3914 */ 3915 if (pers->start_reshape) { 3916 r = pers->start_reshape(mddev); 3917 if (r) { 3918 rs->ti->error = "pers->start_reshape() failed"; 3919 return r; 3920 } 3921 } 3922 3923 /* 3924 * Now reshape got set up, update superblocks to 3925 * reflect the fact so that a table reload will 3926 * access proper superblock content in the ctr. 3927 */ 3928 rs_update_sbs(rs); 3929 3930 return 0; 3931 } 3932 3933 static int raid_preresume(struct dm_target *ti) 3934 { 3935 int r; 3936 struct raid_set *rs = ti->private; 3937 struct mddev *mddev = &rs->md; 3938 3939 /* This is a resume after a suspend of the set -> it's already started. */ 3940 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3941 return 0; 3942 3943 /* 3944 * The superblocks need to be updated on disk if the 3945 * array is new or new devices got added (thus zeroed 3946 * out by userspace) or __load_dirty_region_bitmap 3947 * will overwrite them in core with old data or fail. 3948 */ 3949 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3950 rs_update_sbs(rs); 3951 3952 /* Load the bitmap from disk unless raid0 */ 3953 r = __load_dirty_region_bitmap(rs); 3954 if (r) 3955 return r; 3956 3957 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 3958 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3959 mddev->array_sectors = rs->array_sectors; 3960 mddev->dev_sectors = rs->dev_sectors; 3961 rs_set_rdev_sectors(rs); 3962 rs_set_capacity(rs); 3963 } 3964 3965 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 3966 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 3967 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 3968 (rs->requested_bitmap_chunk_sectors && 3969 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 3970 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 3971 3972 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); 3973 if (r) 3974 DMERR("Failed to resize bitmap"); 3975 } 3976 3977 /* Check for any resize/reshape on @rs and adjust/initiate */ 3978 /* Be prepared for mddev_resume() in raid_resume() */ 3979 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3980 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 3981 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3982 mddev->resync_min = mddev->recovery_cp; 3983 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 3984 mddev->resync_max_sectors = mddev->dev_sectors; 3985 } 3986 3987 /* Check for any reshape request unless new raid set */ 3988 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3989 /* Initiate a reshape. */ 3990 rs_set_rdev_sectors(rs); 3991 mddev_lock_nointr(mddev); 3992 r = rs_start_reshape(rs); 3993 mddev_unlock(mddev); 3994 if (r) 3995 DMWARN("Failed to check/start reshape, continuing without change"); 3996 r = 0; 3997 } 3998 3999 return r; 4000 } 4001 4002 static void raid_resume(struct dm_target *ti) 4003 { 4004 struct raid_set *rs = ti->private; 4005 struct mddev *mddev = &rs->md; 4006 4007 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4008 /* 4009 * A secondary resume while the device is active. 4010 * Take this opportunity to check whether any failed 4011 * devices are reachable again. 4012 */ 4013 attempt_restore_of_faulty_devices(rs); 4014 } 4015 4016 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4017 /* Only reduce raid set size before running a disk removing reshape. */ 4018 if (mddev->delta_disks < 0) 4019 rs_set_capacity(rs); 4020 4021 mddev_lock_nointr(mddev); 4022 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4023 mddev->ro = 0; 4024 mddev->in_sync = 0; 4025 mddev_resume(mddev); 4026 mddev_unlock(mddev); 4027 } 4028 } 4029 4030 static struct target_type raid_target = { 4031 .name = "raid", 4032 .version = {1, 15, 0}, 4033 .module = THIS_MODULE, 4034 .ctr = raid_ctr, 4035 .dtr = raid_dtr, 4036 .map = raid_map, 4037 .status = raid_status, 4038 .message = raid_message, 4039 .iterate_devices = raid_iterate_devices, 4040 .io_hints = raid_io_hints, 4041 .postsuspend = raid_postsuspend, 4042 .preresume = raid_preresume, 4043 .resume = raid_resume, 4044 }; 4045 4046 static int __init dm_raid_init(void) 4047 { 4048 DMINFO("Loading target version %u.%u.%u", 4049 raid_target.version[0], 4050 raid_target.version[1], 4051 raid_target.version[2]); 4052 return dm_register_target(&raid_target); 4053 } 4054 4055 static void __exit dm_raid_exit(void) 4056 { 4057 dm_unregister_target(&raid_target); 4058 } 4059 4060 module_init(dm_raid_init); 4061 module_exit(dm_raid_exit); 4062 4063 module_param(devices_handle_discard_safely, bool, 0644); 4064 MODULE_PARM_DESC(devices_handle_discard_safely, 4065 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4066 4067 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4068 MODULE_ALIAS("dm-raid0"); 4069 MODULE_ALIAS("dm-raid1"); 4070 MODULE_ALIAS("dm-raid10"); 4071 MODULE_ALIAS("dm-raid4"); 4072 MODULE_ALIAS("dm-raid5"); 4073 MODULE_ALIAS("dm-raid6"); 4074 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4075 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4076 MODULE_LICENSE("GPL"); 4077