1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "md-bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 /* 28 * Minimum journal space 4 MiB in sectors. 29 */ 30 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 31 32 static bool devices_handle_discard_safely = false; 33 34 /* 35 * The following flags are used by dm-raid.c to set up the array state. 36 * They must be cleared before md_run is called. 37 */ 38 #define FirstUse 10 /* rdev flag */ 39 40 struct raid_dev { 41 /* 42 * Two DM devices, one to hold metadata and one to hold the 43 * actual data/parity. The reason for this is to not confuse 44 * ti->len and give more flexibility in altering size and 45 * characteristics. 46 * 47 * While it is possible for this device to be associated 48 * with a different physical device than the data_dev, it 49 * is intended for it to be the same. 50 * |--------- Physical Device ---------| 51 * |- meta_dev -|------ data_dev ------| 52 */ 53 struct dm_dev *meta_dev; 54 struct dm_dev *data_dev; 55 struct md_rdev rdev; 56 }; 57 58 /* 59 * Bits for establishing rs->ctr_flags 60 * 61 * 1 = no flag value 62 * 2 = flag with value 63 */ 64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 76 /* New for v1.9.0 */ 77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 80 81 /* New for v1.10.0 */ 82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 83 84 /* New for v1.11.1 */ 85 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 86 87 /* 88 * Flags for rs->ctr_flags field. 89 */ 90 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 91 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 92 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 93 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 94 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 95 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 97 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 98 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 99 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 100 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 101 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 102 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 103 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 104 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 105 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 106 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 107 108 /* 109 * Definitions of various constructor flags to 110 * be used in checks of valid / invalid flags 111 * per raid level. 112 */ 113 /* Define all any sync flags */ 114 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 115 116 /* Define flags for options without argument (e.g. 'nosync') */ 117 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 118 CTR_FLAG_RAID10_USE_NEAR_SETS) 119 120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 122 CTR_FLAG_WRITE_MOSTLY | \ 123 CTR_FLAG_DAEMON_SLEEP | \ 124 CTR_FLAG_MIN_RECOVERY_RATE | \ 125 CTR_FLAG_MAX_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_WRITE_BEHIND | \ 127 CTR_FLAG_STRIPE_CACHE | \ 128 CTR_FLAG_REGION_SIZE | \ 129 CTR_FLAG_RAID10_COPIES | \ 130 CTR_FLAG_RAID10_FORMAT | \ 131 CTR_FLAG_DELTA_DISKS | \ 132 CTR_FLAG_DATA_OFFSET | \ 133 CTR_FLAG_JOURNAL_DEV | \ 134 CTR_FLAG_JOURNAL_MODE) 135 136 /* Valid options definitions per raid level... */ 137 138 /* "raid0" does only accept data offset */ 139 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 140 141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 142 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 143 CTR_FLAG_REBUILD | \ 144 CTR_FLAG_WRITE_MOSTLY | \ 145 CTR_FLAG_DAEMON_SLEEP | \ 146 CTR_FLAG_MIN_RECOVERY_RATE | \ 147 CTR_FLAG_MAX_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_WRITE_BEHIND | \ 149 CTR_FLAG_REGION_SIZE | \ 150 CTR_FLAG_DELTA_DISKS | \ 151 CTR_FLAG_DATA_OFFSET) 152 153 /* "raid10" does not accept any raid1 or stripe cache options */ 154 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 155 CTR_FLAG_REBUILD | \ 156 CTR_FLAG_DAEMON_SLEEP | \ 157 CTR_FLAG_MIN_RECOVERY_RATE | \ 158 CTR_FLAG_MAX_RECOVERY_RATE | \ 159 CTR_FLAG_REGION_SIZE | \ 160 CTR_FLAG_RAID10_COPIES | \ 161 CTR_FLAG_RAID10_FORMAT | \ 162 CTR_FLAG_DELTA_DISKS | \ 163 CTR_FLAG_DATA_OFFSET | \ 164 CTR_FLAG_RAID10_USE_NEAR_SETS) 165 166 /* 167 * "raid4/5/6" do not accept any raid1 or raid10 specific options 168 * 169 * "raid6" does not accept "nosync", because it is not guaranteed 170 * that both parity and q-syndrome are being written properly with 171 * any writes 172 */ 173 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 174 CTR_FLAG_REBUILD | \ 175 CTR_FLAG_DAEMON_SLEEP | \ 176 CTR_FLAG_MIN_RECOVERY_RATE | \ 177 CTR_FLAG_MAX_RECOVERY_RATE | \ 178 CTR_FLAG_STRIPE_CACHE | \ 179 CTR_FLAG_REGION_SIZE | \ 180 CTR_FLAG_DELTA_DISKS | \ 181 CTR_FLAG_DATA_OFFSET | \ 182 CTR_FLAG_JOURNAL_DEV | \ 183 CTR_FLAG_JOURNAL_MODE) 184 185 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 186 CTR_FLAG_REBUILD | \ 187 CTR_FLAG_DAEMON_SLEEP | \ 188 CTR_FLAG_MIN_RECOVERY_RATE | \ 189 CTR_FLAG_MAX_RECOVERY_RATE | \ 190 CTR_FLAG_STRIPE_CACHE | \ 191 CTR_FLAG_REGION_SIZE | \ 192 CTR_FLAG_DELTA_DISKS | \ 193 CTR_FLAG_DATA_OFFSET | \ 194 CTR_FLAG_JOURNAL_DEV | \ 195 CTR_FLAG_JOURNAL_MODE) 196 /* ...valid options definitions per raid level */ 197 198 /* 199 * Flags for rs->runtime_flags field 200 * (RT_FLAG prefix meaning "runtime flag") 201 * 202 * These are all internal and used to define runtime state, 203 * e.g. to prevent another resume from preresume processing 204 * the raid set all over again. 205 */ 206 #define RT_FLAG_RS_PRERESUMED 0 207 #define RT_FLAG_RS_RESUMED 1 208 #define RT_FLAG_RS_BITMAP_LOADED 2 209 #define RT_FLAG_UPDATE_SBS 3 210 #define RT_FLAG_RESHAPE_RS 4 211 #define RT_FLAG_RS_SUSPENDED 5 212 #define RT_FLAG_RS_IN_SYNC 6 213 #define RT_FLAG_RS_RESYNCING 7 214 #define RT_FLAG_RS_GROW 8 215 216 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 218 219 /* 220 * raid set level, layout and chunk sectors backup/restore 221 */ 222 struct rs_layout { 223 int new_level; 224 int new_layout; 225 int new_chunk_sectors; 226 }; 227 228 struct raid_set { 229 struct dm_target *ti; 230 231 uint32_t stripe_cache_entries; 232 unsigned long ctr_flags; 233 unsigned long runtime_flags; 234 235 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 236 237 int raid_disks; 238 int delta_disks; 239 int data_offset; 240 int raid10_copies; 241 int requested_bitmap_chunk_sectors; 242 243 struct mddev md; 244 struct raid_type *raid_type; 245 246 sector_t array_sectors; 247 sector_t dev_sectors; 248 249 /* Optional raid4/5/6 journal device */ 250 struct journal_dev { 251 struct dm_dev *dev; 252 struct md_rdev rdev; 253 int mode; 254 } journal_dev; 255 256 struct raid_dev dev[]; 257 }; 258 259 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 260 { 261 struct mddev *mddev = &rs->md; 262 263 l->new_level = mddev->new_level; 264 l->new_layout = mddev->new_layout; 265 l->new_chunk_sectors = mddev->new_chunk_sectors; 266 } 267 268 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 269 { 270 struct mddev *mddev = &rs->md; 271 272 mddev->new_level = l->new_level; 273 mddev->new_layout = l->new_layout; 274 mddev->new_chunk_sectors = l->new_chunk_sectors; 275 } 276 277 /* raid10 algorithms (i.e. formats) */ 278 #define ALGORITHM_RAID10_DEFAULT 0 279 #define ALGORITHM_RAID10_NEAR 1 280 #define ALGORITHM_RAID10_OFFSET 2 281 #define ALGORITHM_RAID10_FAR 3 282 283 /* Supported raid types and properties. */ 284 static struct raid_type { 285 const char *name; /* RAID algorithm. */ 286 const char *descr; /* Descriptor text for logging. */ 287 const unsigned int parity_devs; /* # of parity devices. */ 288 const unsigned int minimal_devs;/* minimal # of devices in set. */ 289 const unsigned int level; /* RAID level. */ 290 const unsigned int algorithm; /* RAID algorithm. */ 291 } raid_types[] = { 292 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 293 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 294 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 295 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 296 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 297 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 298 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 299 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 300 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 301 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 302 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 303 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 304 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 305 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 306 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 307 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 308 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 309 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 310 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 311 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 312 }; 313 314 /* True, if @v is in inclusive range [@min, @max] */ 315 static bool __within_range(long v, long min, long max) 316 { 317 return v >= min && v <= max; 318 } 319 320 /* All table line arguments are defined here */ 321 static struct arg_name_flag { 322 const unsigned long flag; 323 const char *name; 324 } __arg_name_flags[] = { 325 { CTR_FLAG_SYNC, "sync"}, 326 { CTR_FLAG_NOSYNC, "nosync"}, 327 { CTR_FLAG_REBUILD, "rebuild"}, 328 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 329 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 330 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 331 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 332 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 333 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 334 { CTR_FLAG_REGION_SIZE, "region_size"}, 335 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 336 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 337 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 338 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 339 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 340 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 341 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 342 }; 343 344 /* Return argument name string for given @flag */ 345 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 346 { 347 if (hweight32(flag) == 1) { 348 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 349 350 while (anf-- > __arg_name_flags) 351 if (flag & anf->flag) 352 return anf->name; 353 354 } else 355 DMERR("%s called with more than one flag!", __func__); 356 357 return NULL; 358 } 359 360 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 361 static struct { 362 const int mode; 363 const char *param; 364 } _raid456_journal_mode[] = { 365 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, 366 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } 367 }; 368 369 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 370 static int dm_raid_journal_mode_to_md(const char *mode) 371 { 372 int m = ARRAY_SIZE(_raid456_journal_mode); 373 374 while (m--) 375 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 376 return _raid456_journal_mode[m].mode; 377 378 return -EINVAL; 379 } 380 381 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 382 static const char *md_journal_mode_to_dm_raid(const int mode) 383 { 384 int m = ARRAY_SIZE(_raid456_journal_mode); 385 386 while (m--) 387 if (mode == _raid456_journal_mode[m].mode) 388 return _raid456_journal_mode[m].param; 389 390 return "unknown"; 391 } 392 393 /* 394 * Bool helpers to test for various raid levels of a raid set. 395 * It's level as reported by the superblock rather than 396 * the requested raid_type passed to the constructor. 397 */ 398 /* Return true, if raid set in @rs is raid0 */ 399 static bool rs_is_raid0(struct raid_set *rs) 400 { 401 return !rs->md.level; 402 } 403 404 /* Return true, if raid set in @rs is raid1 */ 405 static bool rs_is_raid1(struct raid_set *rs) 406 { 407 return rs->md.level == 1; 408 } 409 410 /* Return true, if raid set in @rs is raid10 */ 411 static bool rs_is_raid10(struct raid_set *rs) 412 { 413 return rs->md.level == 10; 414 } 415 416 /* Return true, if raid set in @rs is level 6 */ 417 static bool rs_is_raid6(struct raid_set *rs) 418 { 419 return rs->md.level == 6; 420 } 421 422 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 423 static bool rs_is_raid456(struct raid_set *rs) 424 { 425 return __within_range(rs->md.level, 4, 6); 426 } 427 428 /* Return true, if raid set in @rs is reshapable */ 429 static bool __is_raid10_far(int layout); 430 static bool rs_is_reshapable(struct raid_set *rs) 431 { 432 return rs_is_raid456(rs) || 433 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 434 } 435 436 /* Return true, if raid set in @rs is recovering */ 437 static bool rs_is_recovering(struct raid_set *rs) 438 { 439 return rs->md.recovery_cp < rs->md.dev_sectors; 440 } 441 442 /* Return true, if raid set in @rs is reshaping */ 443 static bool rs_is_reshaping(struct raid_set *rs) 444 { 445 return rs->md.reshape_position != MaxSector; 446 } 447 448 /* 449 * bool helpers to test for various raid levels of a raid type @rt 450 */ 451 452 /* Return true, if raid type in @rt is raid0 */ 453 static bool rt_is_raid0(struct raid_type *rt) 454 { 455 return !rt->level; 456 } 457 458 /* Return true, if raid type in @rt is raid1 */ 459 static bool rt_is_raid1(struct raid_type *rt) 460 { 461 return rt->level == 1; 462 } 463 464 /* Return true, if raid type in @rt is raid10 */ 465 static bool rt_is_raid10(struct raid_type *rt) 466 { 467 return rt->level == 10; 468 } 469 470 /* Return true, if raid type in @rt is raid4/5 */ 471 static bool rt_is_raid45(struct raid_type *rt) 472 { 473 return __within_range(rt->level, 4, 5); 474 } 475 476 /* Return true, if raid type in @rt is raid6 */ 477 static bool rt_is_raid6(struct raid_type *rt) 478 { 479 return rt->level == 6; 480 } 481 482 /* Return true, if raid type in @rt is raid4/5/6 */ 483 static bool rt_is_raid456(struct raid_type *rt) 484 { 485 return __within_range(rt->level, 4, 6); 486 } 487 /* END: raid level bools */ 488 489 /* Return valid ctr flags for the raid level of @rs */ 490 static unsigned long __valid_flags(struct raid_set *rs) 491 { 492 if (rt_is_raid0(rs->raid_type)) 493 return RAID0_VALID_FLAGS; 494 else if (rt_is_raid1(rs->raid_type)) 495 return RAID1_VALID_FLAGS; 496 else if (rt_is_raid10(rs->raid_type)) 497 return RAID10_VALID_FLAGS; 498 else if (rt_is_raid45(rs->raid_type)) 499 return RAID45_VALID_FLAGS; 500 else if (rt_is_raid6(rs->raid_type)) 501 return RAID6_VALID_FLAGS; 502 503 return 0; 504 } 505 506 /* 507 * Check for valid flags set on @rs 508 * 509 * Has to be called after parsing of the ctr flags! 510 */ 511 static int rs_check_for_valid_flags(struct raid_set *rs) 512 { 513 if (rs->ctr_flags & ~__valid_flags(rs)) { 514 rs->ti->error = "Invalid flags combination"; 515 return -EINVAL; 516 } 517 518 return 0; 519 } 520 521 /* MD raid10 bit definitions and helpers */ 522 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 523 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 524 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 525 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 526 527 /* Return md raid10 near copies for @layout */ 528 static unsigned int __raid10_near_copies(int layout) 529 { 530 return layout & 0xFF; 531 } 532 533 /* Return md raid10 far copies for @layout */ 534 static unsigned int __raid10_far_copies(int layout) 535 { 536 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 537 } 538 539 /* Return true if md raid10 offset for @layout */ 540 static bool __is_raid10_offset(int layout) 541 { 542 return !!(layout & RAID10_OFFSET); 543 } 544 545 /* Return true if md raid10 near for @layout */ 546 static bool __is_raid10_near(int layout) 547 { 548 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 549 } 550 551 /* Return true if md raid10 far for @layout */ 552 static bool __is_raid10_far(int layout) 553 { 554 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 555 } 556 557 /* Return md raid10 layout string for @layout */ 558 static const char *raid10_md_layout_to_format(int layout) 559 { 560 /* 561 * Bit 16 stands for "offset" 562 * (i.e. adjacent stripes hold copies) 563 * 564 * Refer to MD's raid10.c for details 565 */ 566 if (__is_raid10_offset(layout)) 567 return "offset"; 568 569 if (__raid10_near_copies(layout) > 1) 570 return "near"; 571 572 if (__raid10_far_copies(layout) > 1) 573 return "far"; 574 575 return "unknown"; 576 } 577 578 /* Return md raid10 algorithm for @name */ 579 static int raid10_name_to_format(const char *name) 580 { 581 if (!strcasecmp(name, "near")) 582 return ALGORITHM_RAID10_NEAR; 583 else if (!strcasecmp(name, "offset")) 584 return ALGORITHM_RAID10_OFFSET; 585 else if (!strcasecmp(name, "far")) 586 return ALGORITHM_RAID10_FAR; 587 588 return -EINVAL; 589 } 590 591 /* Return md raid10 copies for @layout */ 592 static unsigned int raid10_md_layout_to_copies(int layout) 593 { 594 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 595 } 596 597 /* Return md raid10 format id for @format string */ 598 static int raid10_format_to_md_layout(struct raid_set *rs, 599 unsigned int algorithm, 600 unsigned int copies) 601 { 602 unsigned int n = 1, f = 1, r = 0; 603 604 /* 605 * MD resilienece flaw: 606 * 607 * enabling use_far_sets for far/offset formats causes copies 608 * to be colocated on the same devs together with their origins! 609 * 610 * -> disable it for now in the definition above 611 */ 612 if (algorithm == ALGORITHM_RAID10_DEFAULT || 613 algorithm == ALGORITHM_RAID10_NEAR) 614 n = copies; 615 616 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 617 f = copies; 618 r = RAID10_OFFSET; 619 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 620 r |= RAID10_USE_FAR_SETS; 621 622 } else if (algorithm == ALGORITHM_RAID10_FAR) { 623 f = copies; 624 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 625 r |= RAID10_USE_FAR_SETS; 626 627 } else 628 return -EINVAL; 629 630 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 631 } 632 /* END: MD raid10 bit definitions and helpers */ 633 634 /* Check for any of the raid10 algorithms */ 635 static bool __got_raid10(struct raid_type *rtp, const int layout) 636 { 637 if (rtp->level == 10) { 638 switch (rtp->algorithm) { 639 case ALGORITHM_RAID10_DEFAULT: 640 case ALGORITHM_RAID10_NEAR: 641 return __is_raid10_near(layout); 642 case ALGORITHM_RAID10_OFFSET: 643 return __is_raid10_offset(layout); 644 case ALGORITHM_RAID10_FAR: 645 return __is_raid10_far(layout); 646 default: 647 break; 648 } 649 } 650 651 return false; 652 } 653 654 /* Return raid_type for @name */ 655 static struct raid_type *get_raid_type(const char *name) 656 { 657 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 658 659 while (rtp-- > raid_types) 660 if (!strcasecmp(rtp->name, name)) 661 return rtp; 662 663 return NULL; 664 } 665 666 /* Return raid_type for @name based derived from @level and @layout */ 667 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 668 { 669 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 670 671 while (rtp-- > raid_types) { 672 /* RAID10 special checks based on @layout flags/properties */ 673 if (rtp->level == level && 674 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 675 return rtp; 676 } 677 678 return NULL; 679 } 680 681 /* Adjust rdev sectors */ 682 static void rs_set_rdev_sectors(struct raid_set *rs) 683 { 684 struct mddev *mddev = &rs->md; 685 struct md_rdev *rdev; 686 687 /* 688 * raid10 sets rdev->sector to the device size, which 689 * is unintended in case of out-of-place reshaping 690 */ 691 rdev_for_each(rdev, mddev) 692 if (!test_bit(Journal, &rdev->flags)) 693 rdev->sectors = mddev->dev_sectors; 694 } 695 696 /* 697 * Change bdev capacity of @rs in case of a disk add/remove reshape 698 */ 699 static void rs_set_capacity(struct raid_set *rs) 700 { 701 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 702 703 set_capacity_and_notify(gendisk, rs->md.array_sectors); 704 } 705 706 /* 707 * Set the mddev properties in @rs to the current 708 * ones retrieved from the freshest superblock 709 */ 710 static void rs_set_cur(struct raid_set *rs) 711 { 712 struct mddev *mddev = &rs->md; 713 714 mddev->new_level = mddev->level; 715 mddev->new_layout = mddev->layout; 716 mddev->new_chunk_sectors = mddev->chunk_sectors; 717 } 718 719 /* 720 * Set the mddev properties in @rs to the new 721 * ones requested by the ctr 722 */ 723 static void rs_set_new(struct raid_set *rs) 724 { 725 struct mddev *mddev = &rs->md; 726 727 mddev->level = mddev->new_level; 728 mddev->layout = mddev->new_layout; 729 mddev->chunk_sectors = mddev->new_chunk_sectors; 730 mddev->raid_disks = rs->raid_disks; 731 mddev->delta_disks = 0; 732 } 733 734 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 735 unsigned int raid_devs) 736 { 737 unsigned int i; 738 struct raid_set *rs; 739 740 if (raid_devs <= raid_type->parity_devs) { 741 ti->error = "Insufficient number of devices"; 742 return ERR_PTR(-EINVAL); 743 } 744 745 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 746 if (!rs) { 747 ti->error = "Cannot allocate raid context"; 748 return ERR_PTR(-ENOMEM); 749 } 750 751 mddev_init(&rs->md); 752 753 rs->raid_disks = raid_devs; 754 rs->delta_disks = 0; 755 756 rs->ti = ti; 757 rs->raid_type = raid_type; 758 rs->stripe_cache_entries = 256; 759 rs->md.raid_disks = raid_devs; 760 rs->md.level = raid_type->level; 761 rs->md.new_level = rs->md.level; 762 rs->md.layout = raid_type->algorithm; 763 rs->md.new_layout = rs->md.layout; 764 rs->md.delta_disks = 0; 765 rs->md.recovery_cp = MaxSector; 766 767 for (i = 0; i < raid_devs; i++) 768 md_rdev_init(&rs->dev[i].rdev); 769 770 /* 771 * Remaining items to be initialized by further RAID params: 772 * rs->md.persistent 773 * rs->md.external 774 * rs->md.chunk_sectors 775 * rs->md.new_chunk_sectors 776 * rs->md.dev_sectors 777 */ 778 779 return rs; 780 } 781 782 /* Free all @rs allocations */ 783 static void raid_set_free(struct raid_set *rs) 784 { 785 int i; 786 787 if (rs->journal_dev.dev) { 788 md_rdev_clear(&rs->journal_dev.rdev); 789 dm_put_device(rs->ti, rs->journal_dev.dev); 790 } 791 792 for (i = 0; i < rs->raid_disks; i++) { 793 if (rs->dev[i].meta_dev) 794 dm_put_device(rs->ti, rs->dev[i].meta_dev); 795 md_rdev_clear(&rs->dev[i].rdev); 796 if (rs->dev[i].data_dev) 797 dm_put_device(rs->ti, rs->dev[i].data_dev); 798 } 799 800 kfree(rs); 801 } 802 803 /* 804 * For every device we have two words 805 * <meta_dev>: meta device name or '-' if missing 806 * <data_dev>: data device name or '-' if missing 807 * 808 * The following are permitted: 809 * - - 810 * - <data_dev> 811 * <meta_dev> <data_dev> 812 * 813 * The following is not allowed: 814 * <meta_dev> - 815 * 816 * This code parses those words. If there is a failure, 817 * the caller must use raid_set_free() to unwind the operations. 818 */ 819 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 820 { 821 int i; 822 int rebuild = 0; 823 int metadata_available = 0; 824 int r = 0; 825 const char *arg; 826 827 /* Put off the number of raid devices argument to get to dev pairs */ 828 arg = dm_shift_arg(as); 829 if (!arg) 830 return -EINVAL; 831 832 for (i = 0; i < rs->raid_disks; i++) { 833 rs->dev[i].rdev.raid_disk = i; 834 835 rs->dev[i].meta_dev = NULL; 836 rs->dev[i].data_dev = NULL; 837 838 /* 839 * There are no offsets initially. 840 * Out of place reshape will set them accordingly. 841 */ 842 rs->dev[i].rdev.data_offset = 0; 843 rs->dev[i].rdev.new_data_offset = 0; 844 rs->dev[i].rdev.mddev = &rs->md; 845 846 arg = dm_shift_arg(as); 847 if (!arg) 848 return -EINVAL; 849 850 if (strcmp(arg, "-")) { 851 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 852 &rs->dev[i].meta_dev); 853 if (r) { 854 rs->ti->error = "RAID metadata device lookup failure"; 855 return r; 856 } 857 858 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 859 if (!rs->dev[i].rdev.sb_page) { 860 rs->ti->error = "Failed to allocate superblock page"; 861 return -ENOMEM; 862 } 863 } 864 865 arg = dm_shift_arg(as); 866 if (!arg) 867 return -EINVAL; 868 869 if (!strcmp(arg, "-")) { 870 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 871 (!rs->dev[i].rdev.recovery_offset)) { 872 rs->ti->error = "Drive designated for rebuild not specified"; 873 return -EINVAL; 874 } 875 876 if (rs->dev[i].meta_dev) { 877 rs->ti->error = "No data device supplied with metadata device"; 878 return -EINVAL; 879 } 880 881 continue; 882 } 883 884 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 885 &rs->dev[i].data_dev); 886 if (r) { 887 rs->ti->error = "RAID device lookup failure"; 888 return r; 889 } 890 891 if (rs->dev[i].meta_dev) { 892 metadata_available = 1; 893 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 894 } 895 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 896 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 897 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 898 rebuild++; 899 } 900 901 if (rs->journal_dev.dev) 902 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 903 904 if (metadata_available) { 905 rs->md.external = 0; 906 rs->md.persistent = 1; 907 rs->md.major_version = 2; 908 } else if (rebuild && !rs->md.recovery_cp) { 909 /* 910 * Without metadata, we will not be able to tell if the array 911 * is in-sync or not - we must assume it is not. Therefore, 912 * it is impossible to rebuild a drive. 913 * 914 * Even if there is metadata, the on-disk information may 915 * indicate that the array is not in-sync and it will then 916 * fail at that time. 917 * 918 * User could specify 'nosync' option if desperate. 919 */ 920 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 921 return -EINVAL; 922 } 923 924 return 0; 925 } 926 927 /* 928 * validate_region_size 929 * @rs 930 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 931 * 932 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 933 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 934 * 935 * Returns: 0 on success, -EINVAL on failure. 936 */ 937 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 938 { 939 unsigned long min_region_size = rs->ti->len / (1 << 21); 940 941 if (rs_is_raid0(rs)) 942 return 0; 943 944 if (!region_size) { 945 /* 946 * Choose a reasonable default. All figures in sectors. 947 */ 948 if (min_region_size > (1 << 13)) { 949 /* If not a power of 2, make it the next power of 2 */ 950 region_size = roundup_pow_of_two(min_region_size); 951 DMINFO("Choosing default region size of %lu sectors", 952 region_size); 953 } else { 954 DMINFO("Choosing default region size of 4MiB"); 955 region_size = 1 << 13; /* sectors */ 956 } 957 } else { 958 /* 959 * Validate user-supplied value. 960 */ 961 if (region_size > rs->ti->len) { 962 rs->ti->error = "Supplied region size is too large"; 963 return -EINVAL; 964 } 965 966 if (region_size < min_region_size) { 967 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 968 region_size, min_region_size); 969 rs->ti->error = "Supplied region size is too small"; 970 return -EINVAL; 971 } 972 973 if (!is_power_of_2(region_size)) { 974 rs->ti->error = "Region size is not a power of 2"; 975 return -EINVAL; 976 } 977 978 if (region_size < rs->md.chunk_sectors) { 979 rs->ti->error = "Region size is smaller than the chunk size"; 980 return -EINVAL; 981 } 982 } 983 984 /* 985 * Convert sectors to bytes. 986 */ 987 rs->md.bitmap_info.chunksize = to_bytes(region_size); 988 989 return 0; 990 } 991 992 /* 993 * validate_raid_redundancy 994 * @rs 995 * 996 * Determine if there are enough devices in the array that haven't 997 * failed (or are being rebuilt) to form a usable array. 998 * 999 * Returns: 0 on success, -EINVAL on failure. 1000 */ 1001 static int validate_raid_redundancy(struct raid_set *rs) 1002 { 1003 unsigned int i, rebuild_cnt = 0; 1004 unsigned int rebuilds_per_group = 0, copies; 1005 unsigned int group_size, last_group_start; 1006 1007 for (i = 0; i < rs->md.raid_disks; i++) 1008 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1009 !rs->dev[i].rdev.sb_page) 1010 rebuild_cnt++; 1011 1012 switch (rs->md.level) { 1013 case 0: 1014 break; 1015 case 1: 1016 if (rebuild_cnt >= rs->md.raid_disks) 1017 goto too_many; 1018 break; 1019 case 4: 1020 case 5: 1021 case 6: 1022 if (rebuild_cnt > rs->raid_type->parity_devs) 1023 goto too_many; 1024 break; 1025 case 10: 1026 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1027 if (copies < 2) { 1028 DMERR("Bogus raid10 data copies < 2!"); 1029 return -EINVAL; 1030 } 1031 1032 if (rebuild_cnt < copies) 1033 break; 1034 1035 /* 1036 * It is possible to have a higher rebuild count for RAID10, 1037 * as long as the failed devices occur in different mirror 1038 * groups (i.e. different stripes). 1039 * 1040 * When checking "near" format, make sure no adjacent devices 1041 * have failed beyond what can be handled. In addition to the 1042 * simple case where the number of devices is a multiple of the 1043 * number of copies, we must also handle cases where the number 1044 * of devices is not a multiple of the number of copies. 1045 * E.g. dev1 dev2 dev3 dev4 dev5 1046 * A A B B C 1047 * C D D E E 1048 */ 1049 if (__is_raid10_near(rs->md.new_layout)) { 1050 for (i = 0; i < rs->md.raid_disks; i++) { 1051 if (!(i % copies)) 1052 rebuilds_per_group = 0; 1053 if ((!rs->dev[i].rdev.sb_page || 1054 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1055 (++rebuilds_per_group >= copies)) 1056 goto too_many; 1057 } 1058 break; 1059 } 1060 1061 /* 1062 * When checking "far" and "offset" formats, we need to ensure 1063 * that the device that holds its copy is not also dead or 1064 * being rebuilt. (Note that "far" and "offset" formats only 1065 * support two copies right now. These formats also only ever 1066 * use the 'use_far_sets' variant.) 1067 * 1068 * This check is somewhat complicated by the need to account 1069 * for arrays that are not a multiple of (far) copies. This 1070 * results in the need to treat the last (potentially larger) 1071 * set differently. 1072 */ 1073 group_size = (rs->md.raid_disks / copies); 1074 last_group_start = (rs->md.raid_disks / group_size) - 1; 1075 last_group_start *= group_size; 1076 for (i = 0; i < rs->md.raid_disks; i++) { 1077 if (!(i % copies) && !(i > last_group_start)) 1078 rebuilds_per_group = 0; 1079 if ((!rs->dev[i].rdev.sb_page || 1080 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1081 (++rebuilds_per_group >= copies)) 1082 goto too_many; 1083 } 1084 break; 1085 default: 1086 if (rebuild_cnt) 1087 return -EINVAL; 1088 } 1089 1090 return 0; 1091 1092 too_many: 1093 return -EINVAL; 1094 } 1095 1096 /* 1097 * Possible arguments are... 1098 * <chunk_size> [optional_args] 1099 * 1100 * Argument definitions 1101 * <chunk_size> The number of sectors per disk that 1102 * will form the "stripe" 1103 * [[no]sync] Force or prevent recovery of the 1104 * entire array 1105 * [rebuild <idx>] Rebuild the drive indicated by the index 1106 * [daemon_sleep <ms>] Time between bitmap daemon work to 1107 * clear bits 1108 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1109 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1110 * [write_mostly <idx>] Indicate a write mostly drive via index 1111 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1112 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1113 * [region_size <sectors>] Defines granularity of bitmap 1114 * [journal_dev <dev>] raid4/5/6 journaling deviice 1115 * (i.e. write hole closing log) 1116 * 1117 * RAID10-only options: 1118 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1119 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1120 */ 1121 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1122 unsigned int num_raid_params) 1123 { 1124 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1125 unsigned int raid10_copies = 2; 1126 unsigned int i, write_mostly = 0; 1127 unsigned int region_size = 0; 1128 sector_t max_io_len; 1129 const char *arg, *key; 1130 struct raid_dev *rd; 1131 struct raid_type *rt = rs->raid_type; 1132 1133 arg = dm_shift_arg(as); 1134 num_raid_params--; /* Account for chunk_size argument */ 1135 1136 if (kstrtoint(arg, 10, &value) < 0) { 1137 rs->ti->error = "Bad numerical argument given for chunk_size"; 1138 return -EINVAL; 1139 } 1140 1141 /* 1142 * First, parse the in-order required arguments 1143 * "chunk_size" is the only argument of this type. 1144 */ 1145 if (rt_is_raid1(rt)) { 1146 if (value) 1147 DMERR("Ignoring chunk size parameter for RAID 1"); 1148 value = 0; 1149 } else if (!is_power_of_2(value)) { 1150 rs->ti->error = "Chunk size must be a power of 2"; 1151 return -EINVAL; 1152 } else if (value < 8) { 1153 rs->ti->error = "Chunk size value is too small"; 1154 return -EINVAL; 1155 } 1156 1157 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1158 1159 /* 1160 * We set each individual device as In_sync with a completed 1161 * 'recovery_offset'. If there has been a device failure or 1162 * replacement then one of the following cases applies: 1163 * 1164 * 1) User specifies 'rebuild'. 1165 * - Device is reset when param is read. 1166 * 2) A new device is supplied. 1167 * - No matching superblock found, resets device. 1168 * 3) Device failure was transient and returns on reload. 1169 * - Failure noticed, resets device for bitmap replay. 1170 * 4) Device hadn't completed recovery after previous failure. 1171 * - Superblock is read and overrides recovery_offset. 1172 * 1173 * What is found in the superblocks of the devices is always 1174 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1175 */ 1176 for (i = 0; i < rs->raid_disks; i++) { 1177 set_bit(In_sync, &rs->dev[i].rdev.flags); 1178 rs->dev[i].rdev.recovery_offset = MaxSector; 1179 } 1180 1181 /* 1182 * Second, parse the unordered optional arguments 1183 */ 1184 for (i = 0; i < num_raid_params; i++) { 1185 key = dm_shift_arg(as); 1186 if (!key) { 1187 rs->ti->error = "Not enough raid parameters given"; 1188 return -EINVAL; 1189 } 1190 1191 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1192 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1193 rs->ti->error = "Only one 'nosync' argument allowed"; 1194 return -EINVAL; 1195 } 1196 continue; 1197 } 1198 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1199 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1200 rs->ti->error = "Only one 'sync' argument allowed"; 1201 return -EINVAL; 1202 } 1203 continue; 1204 } 1205 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1206 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1207 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1208 return -EINVAL; 1209 } 1210 continue; 1211 } 1212 1213 arg = dm_shift_arg(as); 1214 i++; /* Account for the argument pairs */ 1215 if (!arg) { 1216 rs->ti->error = "Wrong number of raid parameters given"; 1217 return -EINVAL; 1218 } 1219 1220 /* 1221 * Parameters that take a string value are checked here. 1222 */ 1223 /* "raid10_format {near|offset|far} */ 1224 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1225 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1226 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1227 return -EINVAL; 1228 } 1229 if (!rt_is_raid10(rt)) { 1230 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1231 return -EINVAL; 1232 } 1233 raid10_format = raid10_name_to_format(arg); 1234 if (raid10_format < 0) { 1235 rs->ti->error = "Invalid 'raid10_format' value given"; 1236 return raid10_format; 1237 } 1238 continue; 1239 } 1240 1241 /* "journal_dev <dev>" */ 1242 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1243 int r; 1244 struct md_rdev *jdev; 1245 1246 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1247 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1248 return -EINVAL; 1249 } 1250 if (!rt_is_raid456(rt)) { 1251 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1252 return -EINVAL; 1253 } 1254 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1255 &rs->journal_dev.dev); 1256 if (r) { 1257 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1258 return r; 1259 } 1260 jdev = &rs->journal_dev.rdev; 1261 md_rdev_init(jdev); 1262 jdev->mddev = &rs->md; 1263 jdev->bdev = rs->journal_dev.dev->bdev; 1264 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode)); 1265 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1266 rs->ti->error = "No space for raid4/5/6 journal"; 1267 return -ENOSPC; 1268 } 1269 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1270 set_bit(Journal, &jdev->flags); 1271 continue; 1272 } 1273 1274 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1275 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1276 int r; 1277 1278 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1279 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1280 return -EINVAL; 1281 } 1282 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1283 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1284 return -EINVAL; 1285 } 1286 r = dm_raid_journal_mode_to_md(arg); 1287 if (r < 0) { 1288 rs->ti->error = "Invalid 'journal_mode' argument"; 1289 return r; 1290 } 1291 rs->journal_dev.mode = r; 1292 continue; 1293 } 1294 1295 /* 1296 * Parameters with number values from here on. 1297 */ 1298 if (kstrtoint(arg, 10, &value) < 0) { 1299 rs->ti->error = "Bad numerical argument given in raid params"; 1300 return -EINVAL; 1301 } 1302 1303 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1304 /* 1305 * "rebuild" is being passed in by userspace to provide 1306 * indexes of replaced devices and to set up additional 1307 * devices on raid level takeover. 1308 */ 1309 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1310 rs->ti->error = "Invalid rebuild index given"; 1311 return -EINVAL; 1312 } 1313 1314 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1315 rs->ti->error = "rebuild for this index already given"; 1316 return -EINVAL; 1317 } 1318 1319 rd = rs->dev + value; 1320 clear_bit(In_sync, &rd->rdev.flags); 1321 clear_bit(Faulty, &rd->rdev.flags); 1322 rd->rdev.recovery_offset = 0; 1323 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1324 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1325 if (!rt_is_raid1(rt)) { 1326 rs->ti->error = "write_mostly option is only valid for RAID1"; 1327 return -EINVAL; 1328 } 1329 1330 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1331 rs->ti->error = "Invalid write_mostly index given"; 1332 return -EINVAL; 1333 } 1334 1335 write_mostly++; 1336 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1337 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1338 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1339 if (!rt_is_raid1(rt)) { 1340 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1341 return -EINVAL; 1342 } 1343 1344 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1345 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1346 return -EINVAL; 1347 } 1348 1349 /* 1350 * In device-mapper, we specify things in sectors, but 1351 * MD records this value in kB 1352 */ 1353 if (value < 0 || value / 2 > COUNTER_MAX) { 1354 rs->ti->error = "Max write-behind limit out of range"; 1355 return -EINVAL; 1356 } 1357 1358 rs->md.bitmap_info.max_write_behind = value / 2; 1359 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1360 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1361 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1362 return -EINVAL; 1363 } 1364 if (value < 0) { 1365 rs->ti->error = "daemon sleep period out of range"; 1366 return -EINVAL; 1367 } 1368 rs->md.bitmap_info.daemon_sleep = value; 1369 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1370 /* Userspace passes new data_offset after having extended the the data image LV */ 1371 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1372 rs->ti->error = "Only one data_offset argument pair allowed"; 1373 return -EINVAL; 1374 } 1375 /* Ensure sensible data offset */ 1376 if (value < 0 || 1377 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1378 rs->ti->error = "Bogus data_offset value"; 1379 return -EINVAL; 1380 } 1381 rs->data_offset = value; 1382 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1383 /* Define the +/-# of disks to add to/remove from the given raid set */ 1384 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1385 rs->ti->error = "Only one delta_disks argument pair allowed"; 1386 return -EINVAL; 1387 } 1388 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1389 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1390 rs->ti->error = "Too many delta_disk requested"; 1391 return -EINVAL; 1392 } 1393 1394 rs->delta_disks = value; 1395 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1396 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1397 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1398 return -EINVAL; 1399 } 1400 1401 if (!rt_is_raid456(rt)) { 1402 rs->ti->error = "Inappropriate argument: stripe_cache"; 1403 return -EINVAL; 1404 } 1405 1406 if (value < 0) { 1407 rs->ti->error = "Bogus stripe cache entries value"; 1408 return -EINVAL; 1409 } 1410 rs->stripe_cache_entries = value; 1411 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1412 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1413 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1414 return -EINVAL; 1415 } 1416 1417 if (value < 0) { 1418 rs->ti->error = "min_recovery_rate out of range"; 1419 return -EINVAL; 1420 } 1421 rs->md.sync_speed_min = value; 1422 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1423 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1424 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1425 return -EINVAL; 1426 } 1427 1428 if (value < 0) { 1429 rs->ti->error = "max_recovery_rate out of range"; 1430 return -EINVAL; 1431 } 1432 rs->md.sync_speed_max = value; 1433 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1434 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1435 rs->ti->error = "Only one region_size argument pair allowed"; 1436 return -EINVAL; 1437 } 1438 1439 region_size = value; 1440 rs->requested_bitmap_chunk_sectors = value; 1441 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1442 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1443 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1444 return -EINVAL; 1445 } 1446 1447 if (!__within_range(value, 2, rs->md.raid_disks)) { 1448 rs->ti->error = "Bad value for 'raid10_copies'"; 1449 return -EINVAL; 1450 } 1451 1452 raid10_copies = value; 1453 } else { 1454 DMERR("Unable to parse RAID parameter: %s", key); 1455 rs->ti->error = "Unable to parse RAID parameter"; 1456 return -EINVAL; 1457 } 1458 } 1459 1460 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1461 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1462 rs->ti->error = "sync and nosync are mutually exclusive"; 1463 return -EINVAL; 1464 } 1465 1466 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1467 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1468 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1469 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1470 return -EINVAL; 1471 } 1472 1473 if (write_mostly >= rs->md.raid_disks) { 1474 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1475 return -EINVAL; 1476 } 1477 1478 if (rs->md.sync_speed_max && 1479 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1480 rs->ti->error = "Bogus recovery rates"; 1481 return -EINVAL; 1482 } 1483 1484 if (validate_region_size(rs, region_size)) 1485 return -EINVAL; 1486 1487 if (rs->md.chunk_sectors) 1488 max_io_len = rs->md.chunk_sectors; 1489 else 1490 max_io_len = region_size; 1491 1492 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1493 return -EINVAL; 1494 1495 if (rt_is_raid10(rt)) { 1496 if (raid10_copies > rs->md.raid_disks) { 1497 rs->ti->error = "Not enough devices to satisfy specification"; 1498 return -EINVAL; 1499 } 1500 1501 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1502 if (rs->md.new_layout < 0) { 1503 rs->ti->error = "Error getting raid10 format"; 1504 return rs->md.new_layout; 1505 } 1506 1507 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1508 if (!rt) { 1509 rs->ti->error = "Failed to recognize new raid10 layout"; 1510 return -EINVAL; 1511 } 1512 1513 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1514 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1515 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1516 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1517 return -EINVAL; 1518 } 1519 } 1520 1521 rs->raid10_copies = raid10_copies; 1522 1523 /* Assume there are no metadata devices until the drives are parsed */ 1524 rs->md.persistent = 0; 1525 rs->md.external = 1; 1526 1527 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1528 return rs_check_for_valid_flags(rs); 1529 } 1530 1531 /* Set raid4/5/6 cache size */ 1532 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1533 { 1534 int r; 1535 struct r5conf *conf; 1536 struct mddev *mddev = &rs->md; 1537 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1538 uint32_t nr_stripes = rs->stripe_cache_entries; 1539 1540 if (!rt_is_raid456(rs->raid_type)) { 1541 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1542 return -EINVAL; 1543 } 1544 1545 if (nr_stripes < min_stripes) { 1546 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1547 nr_stripes, min_stripes); 1548 nr_stripes = min_stripes; 1549 } 1550 1551 conf = mddev->private; 1552 if (!conf) { 1553 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1554 return -EINVAL; 1555 } 1556 1557 /* Try setting number of stripes in raid456 stripe cache */ 1558 if (conf->min_nr_stripes != nr_stripes) { 1559 r = raid5_set_cache_size(mddev, nr_stripes); 1560 if (r) { 1561 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1562 return r; 1563 } 1564 1565 DMINFO("%u stripe cache entries", nr_stripes); 1566 } 1567 1568 return 0; 1569 } 1570 1571 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1572 static unsigned int mddev_data_stripes(struct raid_set *rs) 1573 { 1574 return rs->md.raid_disks - rs->raid_type->parity_devs; 1575 } 1576 1577 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1578 static unsigned int rs_data_stripes(struct raid_set *rs) 1579 { 1580 return rs->raid_disks - rs->raid_type->parity_devs; 1581 } 1582 1583 /* 1584 * Retrieve rdev->sectors from any valid raid device of @rs 1585 * to allow userpace to pass in arbitray "- -" device tupples. 1586 */ 1587 static sector_t __rdev_sectors(struct raid_set *rs) 1588 { 1589 int i; 1590 1591 for (i = 0; i < rs->md.raid_disks; i++) { 1592 struct md_rdev *rdev = &rs->dev[i].rdev; 1593 1594 if (!test_bit(Journal, &rdev->flags) && 1595 rdev->bdev && rdev->sectors) 1596 return rdev->sectors; 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* Check that calculated dev_sectors fits all component devices. */ 1603 static int _check_data_dev_sectors(struct raid_set *rs) 1604 { 1605 sector_t ds = ~0; 1606 struct md_rdev *rdev; 1607 1608 rdev_for_each(rdev, &rs->md) 1609 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1610 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode))); 1611 if (ds < rs->md.dev_sectors) { 1612 rs->ti->error = "Component device(s) too small"; 1613 return -EINVAL; 1614 } 1615 } 1616 1617 return 0; 1618 } 1619 1620 /* Calculate the sectors per device and per array used for @rs */ 1621 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1622 { 1623 int delta_disks; 1624 unsigned int data_stripes; 1625 sector_t array_sectors = sectors, dev_sectors = sectors; 1626 struct mddev *mddev = &rs->md; 1627 1628 if (use_mddev) { 1629 delta_disks = mddev->delta_disks; 1630 data_stripes = mddev_data_stripes(rs); 1631 } else { 1632 delta_disks = rs->delta_disks; 1633 data_stripes = rs_data_stripes(rs); 1634 } 1635 1636 /* Special raid1 case w/o delta_disks support (yet) */ 1637 if (rt_is_raid1(rs->raid_type)) 1638 ; 1639 else if (rt_is_raid10(rs->raid_type)) { 1640 if (rs->raid10_copies < 2 || 1641 delta_disks < 0) { 1642 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1643 return -EINVAL; 1644 } 1645 1646 dev_sectors *= rs->raid10_copies; 1647 if (sector_div(dev_sectors, data_stripes)) 1648 goto bad; 1649 1650 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1651 if (sector_div(array_sectors, rs->raid10_copies)) 1652 goto bad; 1653 1654 } else if (sector_div(dev_sectors, data_stripes)) 1655 goto bad; 1656 1657 else 1658 /* Striped layouts */ 1659 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1660 1661 mddev->array_sectors = array_sectors; 1662 mddev->dev_sectors = dev_sectors; 1663 rs_set_rdev_sectors(rs); 1664 1665 return _check_data_dev_sectors(rs); 1666 bad: 1667 rs->ti->error = "Target length not divisible by number of data devices"; 1668 return -EINVAL; 1669 } 1670 1671 /* Setup recovery on @rs */ 1672 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1673 { 1674 /* raid0 does not recover */ 1675 if (rs_is_raid0(rs)) 1676 rs->md.recovery_cp = MaxSector; 1677 /* 1678 * A raid6 set has to be recovered either 1679 * completely or for the grown part to 1680 * ensure proper parity and Q-Syndrome 1681 */ 1682 else if (rs_is_raid6(rs)) 1683 rs->md.recovery_cp = dev_sectors; 1684 /* 1685 * Other raid set types may skip recovery 1686 * depending on the 'nosync' flag. 1687 */ 1688 else 1689 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1690 ? MaxSector : dev_sectors; 1691 } 1692 1693 static void do_table_event(struct work_struct *ws) 1694 { 1695 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1696 1697 smp_rmb(); /* Make sure we access most actual mddev properties */ 1698 if (!rs_is_reshaping(rs)) { 1699 if (rs_is_raid10(rs)) 1700 rs_set_rdev_sectors(rs); 1701 rs_set_capacity(rs); 1702 } 1703 dm_table_event(rs->ti->table); 1704 } 1705 1706 /* 1707 * Make sure a valid takover (level switch) is being requested on @rs 1708 * 1709 * Conversions of raid sets from one MD personality to another 1710 * have to conform to restrictions which are enforced here. 1711 */ 1712 static int rs_check_takeover(struct raid_set *rs) 1713 { 1714 struct mddev *mddev = &rs->md; 1715 unsigned int near_copies; 1716 1717 if (rs->md.degraded) { 1718 rs->ti->error = "Can't takeover degraded raid set"; 1719 return -EPERM; 1720 } 1721 1722 if (rs_is_reshaping(rs)) { 1723 rs->ti->error = "Can't takeover reshaping raid set"; 1724 return -EPERM; 1725 } 1726 1727 switch (mddev->level) { 1728 case 0: 1729 /* raid0 -> raid1/5 with one disk */ 1730 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1731 mddev->raid_disks == 1) 1732 return 0; 1733 1734 /* raid0 -> raid10 */ 1735 if (mddev->new_level == 10 && 1736 !(rs->raid_disks % mddev->raid_disks)) 1737 return 0; 1738 1739 /* raid0 with multiple disks -> raid4/5/6 */ 1740 if (__within_range(mddev->new_level, 4, 6) && 1741 mddev->new_layout == ALGORITHM_PARITY_N && 1742 mddev->raid_disks > 1) 1743 return 0; 1744 1745 break; 1746 1747 case 10: 1748 /* Can't takeover raid10_offset! */ 1749 if (__is_raid10_offset(mddev->layout)) 1750 break; 1751 1752 near_copies = __raid10_near_copies(mddev->layout); 1753 1754 /* raid10* -> raid0 */ 1755 if (mddev->new_level == 0) { 1756 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1757 if (near_copies > 1 && 1758 !(mddev->raid_disks % near_copies)) { 1759 mddev->raid_disks /= near_copies; 1760 mddev->delta_disks = mddev->raid_disks; 1761 return 0; 1762 } 1763 1764 /* Can takeover raid10_far */ 1765 if (near_copies == 1 && 1766 __raid10_far_copies(mddev->layout) > 1) 1767 return 0; 1768 1769 break; 1770 } 1771 1772 /* raid10_{near,far} -> raid1 */ 1773 if (mddev->new_level == 1 && 1774 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1775 return 0; 1776 1777 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1778 if (__within_range(mddev->new_level, 4, 5) && 1779 mddev->raid_disks == 2) 1780 return 0; 1781 break; 1782 1783 case 1: 1784 /* raid1 with 2 disks -> raid4/5 */ 1785 if (__within_range(mddev->new_level, 4, 5) && 1786 mddev->raid_disks == 2) { 1787 mddev->degraded = 1; 1788 return 0; 1789 } 1790 1791 /* raid1 -> raid0 */ 1792 if (mddev->new_level == 0 && 1793 mddev->raid_disks == 1) 1794 return 0; 1795 1796 /* raid1 -> raid10 */ 1797 if (mddev->new_level == 10) 1798 return 0; 1799 break; 1800 1801 case 4: 1802 /* raid4 -> raid0 */ 1803 if (mddev->new_level == 0) 1804 return 0; 1805 1806 /* raid4 -> raid1/5 with 2 disks */ 1807 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1808 mddev->raid_disks == 2) 1809 return 0; 1810 1811 /* raid4 -> raid5/6 with parity N */ 1812 if (__within_range(mddev->new_level, 5, 6) && 1813 mddev->layout == ALGORITHM_PARITY_N) 1814 return 0; 1815 break; 1816 1817 case 5: 1818 /* raid5 with parity N -> raid0 */ 1819 if (mddev->new_level == 0 && 1820 mddev->layout == ALGORITHM_PARITY_N) 1821 return 0; 1822 1823 /* raid5 with parity N -> raid4 */ 1824 if (mddev->new_level == 4 && 1825 mddev->layout == ALGORITHM_PARITY_N) 1826 return 0; 1827 1828 /* raid5 with 2 disks -> raid1/4/10 */ 1829 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1830 mddev->raid_disks == 2) 1831 return 0; 1832 1833 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1834 if (mddev->new_level == 6 && 1835 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1836 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1837 return 0; 1838 break; 1839 1840 case 6: 1841 /* raid6 with parity N -> raid0 */ 1842 if (mddev->new_level == 0 && 1843 mddev->layout == ALGORITHM_PARITY_N) 1844 return 0; 1845 1846 /* raid6 with parity N -> raid4 */ 1847 if (mddev->new_level == 4 && 1848 mddev->layout == ALGORITHM_PARITY_N) 1849 return 0; 1850 1851 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1852 if (mddev->new_level == 5 && 1853 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1854 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1855 return 0; 1856 1857 default: 1858 break; 1859 } 1860 1861 rs->ti->error = "takeover not possible"; 1862 return -EINVAL; 1863 } 1864 1865 /* True if @rs requested to be taken over */ 1866 static bool rs_takeover_requested(struct raid_set *rs) 1867 { 1868 return rs->md.new_level != rs->md.level; 1869 } 1870 1871 /* True if @rs is requested to reshape by ctr */ 1872 static bool rs_reshape_requested(struct raid_set *rs) 1873 { 1874 bool change; 1875 struct mddev *mddev = &rs->md; 1876 1877 if (rs_takeover_requested(rs)) 1878 return false; 1879 1880 if (rs_is_raid0(rs)) 1881 return false; 1882 1883 change = mddev->new_layout != mddev->layout || 1884 mddev->new_chunk_sectors != mddev->chunk_sectors || 1885 rs->delta_disks; 1886 1887 /* Historical case to support raid1 reshape without delta disks */ 1888 if (rs_is_raid1(rs)) { 1889 if (rs->delta_disks) 1890 return !!rs->delta_disks; 1891 1892 return !change && 1893 mddev->raid_disks != rs->raid_disks; 1894 } 1895 1896 if (rs_is_raid10(rs)) 1897 return change && 1898 !__is_raid10_far(mddev->new_layout) && 1899 rs->delta_disks >= 0; 1900 1901 return change; 1902 } 1903 1904 /* Features */ 1905 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1906 1907 /* State flags for sb->flags */ 1908 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1909 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1910 1911 /* 1912 * This structure is never routinely used by userspace, unlike md superblocks. 1913 * Devices with this superblock should only ever be accessed via device-mapper. 1914 */ 1915 #define DM_RAID_MAGIC 0x64526D44 1916 struct dm_raid_superblock { 1917 __le32 magic; /* "DmRd" */ 1918 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1919 1920 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1921 __le32 array_position; /* The position of this drive in the raid set */ 1922 1923 __le64 events; /* Incremented by md when superblock updated */ 1924 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1925 /* indicate failures (see extension below) */ 1926 1927 /* 1928 * This offset tracks the progress of the repair or replacement of 1929 * an individual drive. 1930 */ 1931 __le64 disk_recovery_offset; 1932 1933 /* 1934 * This offset tracks the progress of the initial raid set 1935 * synchronisation/parity calculation. 1936 */ 1937 __le64 array_resync_offset; 1938 1939 /* 1940 * raid characteristics 1941 */ 1942 __le32 level; 1943 __le32 layout; 1944 __le32 stripe_sectors; 1945 1946 /******************************************************************** 1947 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1948 * 1949 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1950 */ 1951 1952 __le32 flags; /* Flags defining array states for reshaping */ 1953 1954 /* 1955 * This offset tracks the progress of a raid 1956 * set reshape in order to be able to restart it 1957 */ 1958 __le64 reshape_position; 1959 1960 /* 1961 * These define the properties of the array in case of an interrupted reshape 1962 */ 1963 __le32 new_level; 1964 __le32 new_layout; 1965 __le32 new_stripe_sectors; 1966 __le32 delta_disks; 1967 1968 __le64 array_sectors; /* Array size in sectors */ 1969 1970 /* 1971 * Sector offsets to data on devices (reshaping). 1972 * Needed to support out of place reshaping, thus 1973 * not writing over any stripes whilst converting 1974 * them from old to new layout 1975 */ 1976 __le64 data_offset; 1977 __le64 new_data_offset; 1978 1979 __le64 sectors; /* Used device size in sectors */ 1980 1981 /* 1982 * Additonal Bit field of devices indicating failures to support 1983 * up to 256 devices with the 1.9.0 on-disk metadata format 1984 */ 1985 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 1986 1987 __le32 incompat_features; /* Used to indicate any incompatible features */ 1988 1989 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 1990 } __packed; 1991 1992 /* 1993 * Check for reshape constraints on raid set @rs: 1994 * 1995 * - reshape function non-existent 1996 * - degraded set 1997 * - ongoing recovery 1998 * - ongoing reshape 1999 * 2000 * Returns 0 if none or -EPERM if given constraint 2001 * and error message reference in @errmsg 2002 */ 2003 static int rs_check_reshape(struct raid_set *rs) 2004 { 2005 struct mddev *mddev = &rs->md; 2006 2007 if (!mddev->pers || !mddev->pers->check_reshape) 2008 rs->ti->error = "Reshape not supported"; 2009 else if (mddev->degraded) 2010 rs->ti->error = "Can't reshape degraded raid set"; 2011 else if (rs_is_recovering(rs)) 2012 rs->ti->error = "Convert request on recovering raid set prohibited"; 2013 else if (rs_is_reshaping(rs)) 2014 rs->ti->error = "raid set already reshaping!"; 2015 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2016 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2017 else 2018 return 0; 2019 2020 return -EPERM; 2021 } 2022 2023 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2024 { 2025 BUG_ON(!rdev->sb_page); 2026 2027 if (rdev->sb_loaded && !force_reload) 2028 return 0; 2029 2030 rdev->sb_loaded = 0; 2031 2032 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { 2033 DMERR("Failed to read superblock of device at position %d", 2034 rdev->raid_disk); 2035 md_error(rdev->mddev, rdev); 2036 set_bit(Faulty, &rdev->flags); 2037 return -EIO; 2038 } 2039 2040 rdev->sb_loaded = 1; 2041 2042 return 0; 2043 } 2044 2045 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2046 { 2047 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2048 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2049 2050 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2051 int i = ARRAY_SIZE(sb->extended_failed_devices); 2052 2053 while (i--) 2054 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2055 } 2056 } 2057 2058 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2059 { 2060 int i = ARRAY_SIZE(sb->extended_failed_devices); 2061 2062 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2063 while (i--) 2064 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2065 } 2066 2067 /* 2068 * Synchronize the superblock members with the raid set properties 2069 * 2070 * All superblock data is little endian. 2071 */ 2072 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2073 { 2074 bool update_failed_devices = false; 2075 unsigned int i; 2076 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2077 struct dm_raid_superblock *sb; 2078 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2079 2080 /* No metadata device, no superblock */ 2081 if (!rdev->meta_bdev) 2082 return; 2083 2084 BUG_ON(!rdev->sb_page); 2085 2086 sb = page_address(rdev->sb_page); 2087 2088 sb_retrieve_failed_devices(sb, failed_devices); 2089 2090 for (i = 0; i < rs->raid_disks; i++) 2091 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2092 update_failed_devices = true; 2093 set_bit(i, (void *) failed_devices); 2094 } 2095 2096 if (update_failed_devices) 2097 sb_update_failed_devices(sb, failed_devices); 2098 2099 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2100 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2101 2102 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2103 sb->array_position = cpu_to_le32(rdev->raid_disk); 2104 2105 sb->events = cpu_to_le64(mddev->events); 2106 2107 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2108 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2109 2110 sb->level = cpu_to_le32(mddev->level); 2111 sb->layout = cpu_to_le32(mddev->layout); 2112 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2113 2114 /******************************************************************** 2115 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2116 * 2117 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2118 */ 2119 sb->new_level = cpu_to_le32(mddev->new_level); 2120 sb->new_layout = cpu_to_le32(mddev->new_layout); 2121 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2122 2123 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2124 2125 smp_rmb(); /* Make sure we access most recent reshape position */ 2126 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2127 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2128 /* Flag ongoing reshape */ 2129 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2130 2131 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2132 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2133 } else { 2134 /* Clear reshape flags */ 2135 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2136 } 2137 2138 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2139 sb->data_offset = cpu_to_le64(rdev->data_offset); 2140 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2141 sb->sectors = cpu_to_le64(rdev->sectors); 2142 sb->incompat_features = cpu_to_le32(0); 2143 2144 /* Zero out the rest of the payload after the size of the superblock */ 2145 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2146 } 2147 2148 /* 2149 * super_load 2150 * 2151 * This function creates a superblock if one is not found on the device 2152 * and will decide which superblock to use if there's a choice. 2153 * 2154 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2155 */ 2156 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2157 { 2158 int r; 2159 struct dm_raid_superblock *sb; 2160 struct dm_raid_superblock *refsb; 2161 uint64_t events_sb, events_refsb; 2162 2163 r = read_disk_sb(rdev, rdev->sb_size, false); 2164 if (r) 2165 return r; 2166 2167 sb = page_address(rdev->sb_page); 2168 2169 /* 2170 * Two cases that we want to write new superblocks and rebuild: 2171 * 1) New device (no matching magic number) 2172 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2173 */ 2174 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2175 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2176 super_sync(rdev->mddev, rdev); 2177 2178 set_bit(FirstUse, &rdev->flags); 2179 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2180 2181 /* Force writing of superblocks to disk */ 2182 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2183 2184 /* Any superblock is better than none, choose that if given */ 2185 return refdev ? 0 : 1; 2186 } 2187 2188 if (!refdev) 2189 return 1; 2190 2191 events_sb = le64_to_cpu(sb->events); 2192 2193 refsb = page_address(refdev->sb_page); 2194 events_refsb = le64_to_cpu(refsb->events); 2195 2196 return (events_sb > events_refsb) ? 1 : 0; 2197 } 2198 2199 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2200 { 2201 int role; 2202 unsigned int d; 2203 struct mddev *mddev = &rs->md; 2204 uint64_t events_sb; 2205 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2206 struct dm_raid_superblock *sb; 2207 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2208 struct md_rdev *r; 2209 struct dm_raid_superblock *sb2; 2210 2211 sb = page_address(rdev->sb_page); 2212 events_sb = le64_to_cpu(sb->events); 2213 2214 /* 2215 * Initialise to 1 if this is a new superblock. 2216 */ 2217 mddev->events = events_sb ? : 1; 2218 2219 mddev->reshape_position = MaxSector; 2220 2221 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2222 mddev->level = le32_to_cpu(sb->level); 2223 mddev->layout = le32_to_cpu(sb->layout); 2224 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2225 2226 /* 2227 * Reshaping is supported, e.g. reshape_position is valid 2228 * in superblock and superblock content is authoritative. 2229 */ 2230 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2231 /* Superblock is authoritative wrt given raid set layout! */ 2232 mddev->new_level = le32_to_cpu(sb->new_level); 2233 mddev->new_layout = le32_to_cpu(sb->new_layout); 2234 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2235 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2236 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2237 2238 /* raid was reshaping and got interrupted */ 2239 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2240 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2241 DMERR("Reshape requested but raid set is still reshaping"); 2242 return -EINVAL; 2243 } 2244 2245 if (mddev->delta_disks < 0 || 2246 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2247 mddev->reshape_backwards = 1; 2248 else 2249 mddev->reshape_backwards = 0; 2250 2251 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2252 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2253 } 2254 2255 } else { 2256 /* 2257 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2258 */ 2259 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2260 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2261 2262 if (rs_takeover_requested(rs)) { 2263 if (rt_cur && rt_new) 2264 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2265 rt_cur->name, rt_new->name); 2266 else 2267 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2268 return -EINVAL; 2269 } else if (rs_reshape_requested(rs)) { 2270 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2271 if (mddev->layout != mddev->new_layout) { 2272 if (rt_cur && rt_new) 2273 DMERR(" current layout %s vs new layout %s", 2274 rt_cur->name, rt_new->name); 2275 else 2276 DMERR(" current layout 0x%X vs new layout 0x%X", 2277 le32_to_cpu(sb->layout), mddev->new_layout); 2278 } 2279 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2280 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2281 mddev->chunk_sectors, mddev->new_chunk_sectors); 2282 if (rs->delta_disks) 2283 DMERR(" current %u disks vs new %u disks", 2284 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2285 if (rs_is_raid10(rs)) { 2286 DMERR(" Old layout: %s w/ %u copies", 2287 raid10_md_layout_to_format(mddev->layout), 2288 raid10_md_layout_to_copies(mddev->layout)); 2289 DMERR(" New layout: %s w/ %u copies", 2290 raid10_md_layout_to_format(mddev->new_layout), 2291 raid10_md_layout_to_copies(mddev->new_layout)); 2292 } 2293 return -EINVAL; 2294 } 2295 2296 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2297 } 2298 2299 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2300 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2301 2302 /* 2303 * During load, we set FirstUse if a new superblock was written. 2304 * There are two reasons we might not have a superblock: 2305 * 1) The raid set is brand new - in which case, all of the 2306 * devices must have their In_sync bit set. Also, 2307 * recovery_cp must be 0, unless forced. 2308 * 2) This is a new device being added to an old raid set 2309 * and the new device needs to be rebuilt - in which 2310 * case the In_sync bit will /not/ be set and 2311 * recovery_cp must be MaxSector. 2312 * 3) This is/are a new device(s) being added to an old 2313 * raid set during takeover to a higher raid level 2314 * to provide capacity for redundancy or during reshape 2315 * to add capacity to grow the raid set. 2316 */ 2317 d = 0; 2318 rdev_for_each(r, mddev) { 2319 if (test_bit(Journal, &rdev->flags)) 2320 continue; 2321 2322 if (test_bit(FirstUse, &r->flags)) 2323 new_devs++; 2324 2325 if (!test_bit(In_sync, &r->flags)) { 2326 DMINFO("Device %d specified for rebuild; clearing superblock", 2327 r->raid_disk); 2328 rebuilds++; 2329 2330 if (test_bit(FirstUse, &r->flags)) 2331 rebuild_and_new++; 2332 } 2333 2334 d++; 2335 } 2336 2337 if (new_devs == rs->raid_disks || !rebuilds) { 2338 /* Replace a broken device */ 2339 if (new_devs == rs->raid_disks) { 2340 DMINFO("Superblocks created for new raid set"); 2341 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2342 } else if (new_devs != rebuilds && 2343 new_devs != rs->delta_disks) { 2344 DMERR("New device injected into existing raid set without " 2345 "'delta_disks' or 'rebuild' parameter specified"); 2346 return -EINVAL; 2347 } 2348 } else if (new_devs && new_devs != rebuilds) { 2349 DMERR("%u 'rebuild' devices cannot be injected into" 2350 " a raid set with %u other first-time devices", 2351 rebuilds, new_devs); 2352 return -EINVAL; 2353 } else if (rebuilds) { 2354 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2355 DMERR("new device%s provided without 'rebuild'", 2356 new_devs > 1 ? "s" : ""); 2357 return -EINVAL; 2358 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2359 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2360 (unsigned long long) mddev->recovery_cp); 2361 return -EINVAL; 2362 } else if (rs_is_reshaping(rs)) { 2363 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2364 (unsigned long long) mddev->reshape_position); 2365 return -EINVAL; 2366 } 2367 } 2368 2369 /* 2370 * Now we set the Faulty bit for those devices that are 2371 * recorded in the superblock as failed. 2372 */ 2373 sb_retrieve_failed_devices(sb, failed_devices); 2374 rdev_for_each(r, mddev) { 2375 if (test_bit(Journal, &rdev->flags) || 2376 !r->sb_page) 2377 continue; 2378 sb2 = page_address(r->sb_page); 2379 sb2->failed_devices = 0; 2380 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2381 2382 /* 2383 * Check for any device re-ordering. 2384 */ 2385 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2386 role = le32_to_cpu(sb2->array_position); 2387 if (role < 0) 2388 continue; 2389 2390 if (role != r->raid_disk) { 2391 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2392 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2393 rs->raid_disks % rs->raid10_copies) { 2394 rs->ti->error = 2395 "Cannot change raid10 near set to odd # of devices!"; 2396 return -EINVAL; 2397 } 2398 2399 sb2->array_position = cpu_to_le32(r->raid_disk); 2400 2401 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2402 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2403 !rt_is_raid1(rs->raid_type)) { 2404 rs->ti->error = "Cannot change device positions in raid set"; 2405 return -EINVAL; 2406 } 2407 2408 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2409 } 2410 2411 /* 2412 * Partial recovery is performed on 2413 * returning failed devices. 2414 */ 2415 if (test_bit(role, (void *) failed_devices)) 2416 set_bit(Faulty, &r->flags); 2417 } 2418 } 2419 2420 return 0; 2421 } 2422 2423 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2424 { 2425 struct mddev *mddev = &rs->md; 2426 struct dm_raid_superblock *sb; 2427 2428 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2429 return 0; 2430 2431 sb = page_address(rdev->sb_page); 2432 2433 /* 2434 * If mddev->events is not set, we know we have not yet initialized 2435 * the array. 2436 */ 2437 if (!mddev->events && super_init_validation(rs, rdev)) 2438 return -EINVAL; 2439 2440 if (le32_to_cpu(sb->compat_features) && 2441 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2442 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2443 return -EINVAL; 2444 } 2445 2446 if (sb->incompat_features) { 2447 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2448 return -EINVAL; 2449 } 2450 2451 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2452 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2453 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2454 2455 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2456 /* 2457 * Retrieve rdev size stored in superblock to be prepared for shrink. 2458 * Check extended superblock members are present otherwise the size 2459 * will not be set! 2460 */ 2461 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2462 rdev->sectors = le64_to_cpu(sb->sectors); 2463 2464 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2465 if (rdev->recovery_offset == MaxSector) 2466 set_bit(In_sync, &rdev->flags); 2467 /* 2468 * If no reshape in progress -> we're recovering single 2469 * disk(s) and have to set the device(s) to out-of-sync 2470 */ 2471 else if (!rs_is_reshaping(rs)) 2472 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2473 } 2474 2475 /* 2476 * If a device comes back, set it as not In_sync and no longer faulty. 2477 */ 2478 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2479 rdev->recovery_offset = 0; 2480 clear_bit(In_sync, &rdev->flags); 2481 rdev->saved_raid_disk = rdev->raid_disk; 2482 } 2483 2484 /* Reshape support -> restore repective data offsets */ 2485 rdev->data_offset = le64_to_cpu(sb->data_offset); 2486 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2487 2488 return 0; 2489 } 2490 2491 /* 2492 * Analyse superblocks and select the freshest. 2493 */ 2494 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2495 { 2496 int r; 2497 struct md_rdev *rdev, *freshest; 2498 struct mddev *mddev = &rs->md; 2499 2500 freshest = NULL; 2501 rdev_for_each(rdev, mddev) { 2502 if (test_bit(Journal, &rdev->flags)) 2503 continue; 2504 2505 if (!rdev->meta_bdev) 2506 continue; 2507 2508 /* Set superblock offset/size for metadata device. */ 2509 rdev->sb_start = 0; 2510 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2511 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2512 DMERR("superblock size of a logical block is no longer valid"); 2513 return -EINVAL; 2514 } 2515 2516 /* 2517 * Skipping super_load due to CTR_FLAG_SYNC will cause 2518 * the array to undergo initialization again as 2519 * though it were new. This is the intended effect 2520 * of the "sync" directive. 2521 * 2522 * With reshaping capability added, we must ensure that 2523 * that the "sync" directive is disallowed during the reshape. 2524 */ 2525 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2526 continue; 2527 2528 r = super_load(rdev, freshest); 2529 2530 switch (r) { 2531 case 1: 2532 freshest = rdev; 2533 break; 2534 case 0: 2535 break; 2536 default: 2537 /* This is a failure to read the superblock from the metadata device. */ 2538 /* 2539 * We have to keep any raid0 data/metadata device pairs or 2540 * the MD raid0 personality will fail to start the array. 2541 */ 2542 if (rs_is_raid0(rs)) 2543 continue; 2544 2545 /* 2546 * We keep the dm_devs to be able to emit the device tuple 2547 * properly on the table line in raid_status() (rather than 2548 * mistakenly acting as if '- -' got passed into the constructor). 2549 * 2550 * The rdev has to stay on the same_set list to allow for 2551 * the attempt to restore faulty devices on second resume. 2552 */ 2553 rdev->raid_disk = rdev->saved_raid_disk = -1; 2554 break; 2555 } 2556 } 2557 2558 if (!freshest) 2559 return 0; 2560 2561 /* 2562 * Validation of the freshest device provides the source of 2563 * validation for the remaining devices. 2564 */ 2565 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2566 if (super_validate(rs, freshest)) 2567 return -EINVAL; 2568 2569 if (validate_raid_redundancy(rs)) { 2570 rs->ti->error = "Insufficient redundancy to activate array"; 2571 return -EINVAL; 2572 } 2573 2574 rdev_for_each(rdev, mddev) 2575 if (!test_bit(Journal, &rdev->flags) && 2576 rdev != freshest && 2577 super_validate(rs, rdev)) 2578 return -EINVAL; 2579 return 0; 2580 } 2581 2582 /* 2583 * Adjust data_offset and new_data_offset on all disk members of @rs 2584 * for out of place reshaping if requested by contructor 2585 * 2586 * We need free space at the beginning of each raid disk for forward 2587 * and at the end for backward reshapes which userspace has to provide 2588 * via remapping/reordering of space. 2589 */ 2590 static int rs_adjust_data_offsets(struct raid_set *rs) 2591 { 2592 sector_t data_offset = 0, new_data_offset = 0; 2593 struct md_rdev *rdev; 2594 2595 /* Constructor did not request data offset change */ 2596 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2597 if (!rs_is_reshapable(rs)) 2598 goto out; 2599 2600 return 0; 2601 } 2602 2603 /* HM FIXME: get In_Sync raid_dev? */ 2604 rdev = &rs->dev[0].rdev; 2605 2606 if (rs->delta_disks < 0) { 2607 /* 2608 * Removing disks (reshaping backwards): 2609 * 2610 * - before reshape: data is at offset 0 and free space 2611 * is at end of each component LV 2612 * 2613 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2614 */ 2615 data_offset = 0; 2616 new_data_offset = rs->data_offset; 2617 2618 } else if (rs->delta_disks > 0) { 2619 /* 2620 * Adding disks (reshaping forwards): 2621 * 2622 * - before reshape: data is at offset rs->data_offset != 0 and 2623 * free space is at begin of each component LV 2624 * 2625 * - after reshape: data is at offset 0 on each component LV 2626 */ 2627 data_offset = rs->data_offset; 2628 new_data_offset = 0; 2629 2630 } else { 2631 /* 2632 * User space passes in 0 for data offset after having removed reshape space 2633 * 2634 * - or - (data offset != 0) 2635 * 2636 * Changing RAID layout or chunk size -> toggle offsets 2637 * 2638 * - before reshape: data is at offset rs->data_offset 0 and 2639 * free space is at end of each component LV 2640 * -or- 2641 * data is at offset rs->data_offset != 0 and 2642 * free space is at begin of each component LV 2643 * 2644 * - after reshape: data is at offset 0 if it was at offset != 0 2645 * or at offset != 0 if it was at offset 0 2646 * on each component LV 2647 * 2648 */ 2649 data_offset = rs->data_offset ? rdev->data_offset : 0; 2650 new_data_offset = data_offset ? 0 : rs->data_offset; 2651 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2652 } 2653 2654 /* 2655 * Make sure we got a minimum amount of free sectors per device 2656 */ 2657 if (rs->data_offset && 2658 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2659 rs->ti->error = data_offset ? "No space for forward reshape" : 2660 "No space for backward reshape"; 2661 return -ENOSPC; 2662 } 2663 out: 2664 /* 2665 * Raise recovery_cp in case data_offset != 0 to 2666 * avoid false recovery positives in the constructor. 2667 */ 2668 if (rs->md.recovery_cp < rs->md.dev_sectors) 2669 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2670 2671 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2672 rdev_for_each(rdev, &rs->md) { 2673 if (!test_bit(Journal, &rdev->flags)) { 2674 rdev->data_offset = data_offset; 2675 rdev->new_data_offset = new_data_offset; 2676 } 2677 } 2678 2679 return 0; 2680 } 2681 2682 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2683 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2684 { 2685 int i = 0; 2686 struct md_rdev *rdev; 2687 2688 rdev_for_each(rdev, &rs->md) { 2689 if (!test_bit(Journal, &rdev->flags)) { 2690 rdev->raid_disk = i++; 2691 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2692 } 2693 } 2694 } 2695 2696 /* 2697 * Setup @rs for takeover by a different raid level 2698 */ 2699 static int rs_setup_takeover(struct raid_set *rs) 2700 { 2701 struct mddev *mddev = &rs->md; 2702 struct md_rdev *rdev; 2703 unsigned int d = mddev->raid_disks = rs->raid_disks; 2704 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2705 2706 if (rt_is_raid10(rs->raid_type)) { 2707 if (rs_is_raid0(rs)) { 2708 /* Userpace reordered disks -> adjust raid_disk indexes */ 2709 __reorder_raid_disk_indexes(rs); 2710 2711 /* raid0 -> raid10_far layout */ 2712 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2713 rs->raid10_copies); 2714 } else if (rs_is_raid1(rs)) 2715 /* raid1 -> raid10_near layout */ 2716 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2717 rs->raid_disks); 2718 else 2719 return -EINVAL; 2720 2721 } 2722 2723 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2724 mddev->recovery_cp = MaxSector; 2725 2726 while (d--) { 2727 rdev = &rs->dev[d].rdev; 2728 2729 if (test_bit(d, (void *) rs->rebuild_disks)) { 2730 clear_bit(In_sync, &rdev->flags); 2731 clear_bit(Faulty, &rdev->flags); 2732 mddev->recovery_cp = rdev->recovery_offset = 0; 2733 /* Bitmap has to be created when we do an "up" takeover */ 2734 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2735 } 2736 2737 rdev->new_data_offset = new_data_offset; 2738 } 2739 2740 return 0; 2741 } 2742 2743 /* Prepare @rs for reshape */ 2744 static int rs_prepare_reshape(struct raid_set *rs) 2745 { 2746 bool reshape; 2747 struct mddev *mddev = &rs->md; 2748 2749 if (rs_is_raid10(rs)) { 2750 if (rs->raid_disks != mddev->raid_disks && 2751 __is_raid10_near(mddev->layout) && 2752 rs->raid10_copies && 2753 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2754 /* 2755 * raid disk have to be multiple of data copies to allow this conversion, 2756 * 2757 * This is actually not a reshape it is a 2758 * rebuild of any additional mirrors per group 2759 */ 2760 if (rs->raid_disks % rs->raid10_copies) { 2761 rs->ti->error = "Can't reshape raid10 mirror groups"; 2762 return -EINVAL; 2763 } 2764 2765 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2766 __reorder_raid_disk_indexes(rs); 2767 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2768 rs->raid10_copies); 2769 mddev->new_layout = mddev->layout; 2770 reshape = false; 2771 } else 2772 reshape = true; 2773 2774 } else if (rs_is_raid456(rs)) 2775 reshape = true; 2776 2777 else if (rs_is_raid1(rs)) { 2778 if (rs->delta_disks) { 2779 /* Process raid1 via delta_disks */ 2780 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2781 reshape = true; 2782 } else { 2783 /* Process raid1 without delta_disks */ 2784 mddev->raid_disks = rs->raid_disks; 2785 reshape = false; 2786 } 2787 } else { 2788 rs->ti->error = "Called with bogus raid type"; 2789 return -EINVAL; 2790 } 2791 2792 if (reshape) { 2793 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2794 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2795 } else if (mddev->raid_disks < rs->raid_disks) 2796 /* Create new superblocks and bitmaps, if any new disks */ 2797 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2798 2799 return 0; 2800 } 2801 2802 /* Get reshape sectors from data_offsets or raid set */ 2803 static sector_t _get_reshape_sectors(struct raid_set *rs) 2804 { 2805 struct md_rdev *rdev; 2806 sector_t reshape_sectors = 0; 2807 2808 rdev_for_each(rdev, &rs->md) 2809 if (!test_bit(Journal, &rdev->flags)) { 2810 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2811 rdev->data_offset - rdev->new_data_offset : 2812 rdev->new_data_offset - rdev->data_offset; 2813 break; 2814 } 2815 2816 return max(reshape_sectors, (sector_t) rs->data_offset); 2817 } 2818 2819 /* 2820 * 2821 * - change raid layout 2822 * - change chunk size 2823 * - add disks 2824 * - remove disks 2825 */ 2826 static int rs_setup_reshape(struct raid_set *rs) 2827 { 2828 int r = 0; 2829 unsigned int cur_raid_devs, d; 2830 sector_t reshape_sectors = _get_reshape_sectors(rs); 2831 struct mddev *mddev = &rs->md; 2832 struct md_rdev *rdev; 2833 2834 mddev->delta_disks = rs->delta_disks; 2835 cur_raid_devs = mddev->raid_disks; 2836 2837 /* Ignore impossible layout change whilst adding/removing disks */ 2838 if (mddev->delta_disks && 2839 mddev->layout != mddev->new_layout) { 2840 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2841 mddev->new_layout = mddev->layout; 2842 } 2843 2844 /* 2845 * Adjust array size: 2846 * 2847 * - in case of adding disk(s), array size has 2848 * to grow after the disk adding reshape, 2849 * which'll hapen in the event handler; 2850 * reshape will happen forward, so space has to 2851 * be available at the beginning of each disk 2852 * 2853 * - in case of removing disk(s), array size 2854 * has to shrink before starting the reshape, 2855 * which'll happen here; 2856 * reshape will happen backward, so space has to 2857 * be available at the end of each disk 2858 * 2859 * - data_offset and new_data_offset are 2860 * adjusted for aforementioned out of place 2861 * reshaping based on userspace passing in 2862 * the "data_offset <sectors>" key/value 2863 * pair via the constructor 2864 */ 2865 2866 /* Add disk(s) */ 2867 if (rs->delta_disks > 0) { 2868 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2869 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2870 rdev = &rs->dev[d].rdev; 2871 clear_bit(In_sync, &rdev->flags); 2872 2873 /* 2874 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2875 * by md, which'll store that erroneously in the superblock on reshape 2876 */ 2877 rdev->saved_raid_disk = -1; 2878 rdev->raid_disk = d; 2879 2880 rdev->sectors = mddev->dev_sectors; 2881 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2882 } 2883 2884 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2885 2886 /* Remove disk(s) */ 2887 } else if (rs->delta_disks < 0) { 2888 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2889 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2890 2891 /* Change layout and/or chunk size */ 2892 } else { 2893 /* 2894 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2895 * 2896 * keeping number of disks and do layout change -> 2897 * 2898 * toggle reshape_backward depending on data_offset: 2899 * 2900 * - free space upfront -> reshape forward 2901 * 2902 * - free space at the end -> reshape backward 2903 * 2904 * 2905 * This utilizes free reshape space avoiding the need 2906 * for userspace to move (parts of) LV segments in 2907 * case of layout/chunksize change (for disk 2908 * adding/removing reshape space has to be at 2909 * the proper address (see above with delta_disks): 2910 * 2911 * add disk(s) -> begin 2912 * remove disk(s)-> end 2913 */ 2914 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2915 } 2916 2917 /* 2918 * Adjust device size for forward reshape 2919 * because md_finish_reshape() reduces it. 2920 */ 2921 if (!mddev->reshape_backwards) 2922 rdev_for_each(rdev, &rs->md) 2923 if (!test_bit(Journal, &rdev->flags)) 2924 rdev->sectors += reshape_sectors; 2925 2926 return r; 2927 } 2928 2929 /* 2930 * Enable/disable discard support on RAID set depending on 2931 * RAID level and discard properties of underlying RAID members. 2932 */ 2933 static void configure_discard_support(struct raid_set *rs) 2934 { 2935 int i; 2936 bool raid456; 2937 struct dm_target *ti = rs->ti; 2938 2939 /* 2940 * XXX: RAID level 4,5,6 require zeroing for safety. 2941 */ 2942 raid456 = rs_is_raid456(rs); 2943 2944 for (i = 0; i < rs->raid_disks; i++) { 2945 struct request_queue *q; 2946 2947 if (!rs->dev[i].rdev.bdev) 2948 continue; 2949 2950 q = bdev_get_queue(rs->dev[i].rdev.bdev); 2951 if (!q || !blk_queue_discard(q)) 2952 return; 2953 2954 if (raid456) { 2955 if (!devices_handle_discard_safely) { 2956 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2957 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2958 return; 2959 } 2960 } 2961 } 2962 2963 ti->num_discard_bios = 1; 2964 } 2965 2966 /* 2967 * Construct a RAID0/1/10/4/5/6 mapping: 2968 * Args: 2969 * <raid_type> <#raid_params> <raid_params>{0,} \ 2970 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2971 * 2972 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2973 * details on possible <raid_params>. 2974 * 2975 * Userspace is free to initialize the metadata devices, hence the superblocks to 2976 * enforce recreation based on the passed in table parameters. 2977 * 2978 */ 2979 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2980 { 2981 int r; 2982 bool resize = false; 2983 struct raid_type *rt; 2984 unsigned int num_raid_params, num_raid_devs; 2985 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 2986 struct raid_set *rs = NULL; 2987 const char *arg; 2988 struct rs_layout rs_layout; 2989 struct dm_arg_set as = { argc, argv }, as_nrd; 2990 struct dm_arg _args[] = { 2991 { 0, as.argc, "Cannot understand number of raid parameters" }, 2992 { 1, 254, "Cannot understand number of raid devices parameters" } 2993 }; 2994 2995 arg = dm_shift_arg(&as); 2996 if (!arg) { 2997 ti->error = "No arguments"; 2998 return -EINVAL; 2999 } 3000 3001 rt = get_raid_type(arg); 3002 if (!rt) { 3003 ti->error = "Unrecognised raid_type"; 3004 return -EINVAL; 3005 } 3006 3007 /* Must have <#raid_params> */ 3008 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3009 return -EINVAL; 3010 3011 /* number of raid device tupples <meta_dev data_dev> */ 3012 as_nrd = as; 3013 dm_consume_args(&as_nrd, num_raid_params); 3014 _args[1].max = (as_nrd.argc - 1) / 2; 3015 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3016 return -EINVAL; 3017 3018 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3019 ti->error = "Invalid number of supplied raid devices"; 3020 return -EINVAL; 3021 } 3022 3023 rs = raid_set_alloc(ti, rt, num_raid_devs); 3024 if (IS_ERR(rs)) 3025 return PTR_ERR(rs); 3026 3027 r = parse_raid_params(rs, &as, num_raid_params); 3028 if (r) 3029 goto bad; 3030 3031 r = parse_dev_params(rs, &as); 3032 if (r) 3033 goto bad; 3034 3035 rs->md.sync_super = super_sync; 3036 3037 /* 3038 * Calculate ctr requested array and device sizes to allow 3039 * for superblock analysis needing device sizes defined. 3040 * 3041 * Any existing superblock will overwrite the array and device sizes 3042 */ 3043 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3044 if (r) 3045 goto bad; 3046 3047 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3048 rs->array_sectors = rs->md.array_sectors; 3049 rs->dev_sectors = rs->md.dev_sectors; 3050 3051 /* 3052 * Backup any new raid set level, layout, ... 3053 * requested to be able to compare to superblock 3054 * members for conversion decisions. 3055 */ 3056 rs_config_backup(rs, &rs_layout); 3057 3058 r = analyse_superblocks(ti, rs); 3059 if (r) 3060 goto bad; 3061 3062 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3063 sb_array_sectors = rs->md.array_sectors; 3064 rdev_sectors = __rdev_sectors(rs); 3065 if (!rdev_sectors) { 3066 ti->error = "Invalid rdev size"; 3067 r = -EINVAL; 3068 goto bad; 3069 } 3070 3071 3072 reshape_sectors = _get_reshape_sectors(rs); 3073 if (rs->dev_sectors != rdev_sectors) { 3074 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3075 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3076 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3077 } 3078 3079 INIT_WORK(&rs->md.event_work, do_table_event); 3080 ti->private = rs; 3081 ti->num_flush_bios = 1; 3082 3083 /* Restore any requested new layout for conversion decision */ 3084 rs_config_restore(rs, &rs_layout); 3085 3086 /* 3087 * Now that we have any superblock metadata available, 3088 * check for new, recovering, reshaping, to be taken over, 3089 * to be reshaped or an existing, unchanged raid set to 3090 * run in sequence. 3091 */ 3092 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3093 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3094 if (rs_is_raid6(rs) && 3095 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3096 ti->error = "'nosync' not allowed for new raid6 set"; 3097 r = -EINVAL; 3098 goto bad; 3099 } 3100 rs_setup_recovery(rs, 0); 3101 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3102 rs_set_new(rs); 3103 } else if (rs_is_recovering(rs)) { 3104 /* A recovering raid set may be resized */ 3105 goto size_check; 3106 } else if (rs_is_reshaping(rs)) { 3107 /* Have to reject size change request during reshape */ 3108 if (resize) { 3109 ti->error = "Can't resize a reshaping raid set"; 3110 r = -EPERM; 3111 goto bad; 3112 } 3113 /* skip setup rs */ 3114 } else if (rs_takeover_requested(rs)) { 3115 if (rs_is_reshaping(rs)) { 3116 ti->error = "Can't takeover a reshaping raid set"; 3117 r = -EPERM; 3118 goto bad; 3119 } 3120 3121 /* We can't takeover a journaled raid4/5/6 */ 3122 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3123 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3124 r = -EPERM; 3125 goto bad; 3126 } 3127 3128 /* 3129 * If a takeover is needed, userspace sets any additional 3130 * devices to rebuild and we can check for a valid request here. 3131 * 3132 * If acceptible, set the level to the new requested 3133 * one, prohibit requesting recovery, allow the raid 3134 * set to run and store superblocks during resume. 3135 */ 3136 r = rs_check_takeover(rs); 3137 if (r) 3138 goto bad; 3139 3140 r = rs_setup_takeover(rs); 3141 if (r) 3142 goto bad; 3143 3144 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3145 /* Takeover ain't recovery, so disable recovery */ 3146 rs_setup_recovery(rs, MaxSector); 3147 rs_set_new(rs); 3148 } else if (rs_reshape_requested(rs)) { 3149 /* Only request grow on raid set size extensions, not on reshapes. */ 3150 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3151 3152 /* 3153 * No need to check for 'ongoing' takeover here, because takeover 3154 * is an instant operation as oposed to an ongoing reshape. 3155 */ 3156 3157 /* We can't reshape a journaled raid4/5/6 */ 3158 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3159 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3160 r = -EPERM; 3161 goto bad; 3162 } 3163 3164 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3165 if (reshape_sectors || rs_is_raid1(rs)) { 3166 /* 3167 * We can only prepare for a reshape here, because the 3168 * raid set needs to run to provide the repective reshape 3169 * check functions via its MD personality instance. 3170 * 3171 * So do the reshape check after md_run() succeeded. 3172 */ 3173 r = rs_prepare_reshape(rs); 3174 if (r) 3175 goto bad; 3176 3177 /* Reshaping ain't recovery, so disable recovery */ 3178 rs_setup_recovery(rs, MaxSector); 3179 } 3180 rs_set_cur(rs); 3181 } else { 3182 size_check: 3183 /* May not set recovery when a device rebuild is requested */ 3184 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3185 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3186 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3187 rs_setup_recovery(rs, MaxSector); 3188 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3189 /* 3190 * Set raid set to current size, i.e. size as of 3191 * superblocks to grow to larger size in preresume. 3192 */ 3193 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3194 if (r) 3195 goto bad; 3196 3197 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3198 } else { 3199 /* This is no size change or it is shrinking, update size and record in superblocks */ 3200 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3201 if (r) 3202 goto bad; 3203 3204 if (sb_array_sectors > rs->array_sectors) 3205 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3206 } 3207 rs_set_cur(rs); 3208 } 3209 3210 /* If constructor requested it, change data and new_data offsets */ 3211 r = rs_adjust_data_offsets(rs); 3212 if (r) 3213 goto bad; 3214 3215 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3216 rs->md.ro = 1; 3217 rs->md.in_sync = 1; 3218 3219 /* Keep array frozen */ 3220 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3221 3222 /* Has to be held on running the array */ 3223 mddev_lock_nointr(&rs->md); 3224 r = md_run(&rs->md); 3225 rs->md.in_sync = 0; /* Assume already marked dirty */ 3226 if (r) { 3227 ti->error = "Failed to run raid array"; 3228 mddev_unlock(&rs->md); 3229 goto bad; 3230 } 3231 3232 r = md_start(&rs->md); 3233 3234 if (r) { 3235 ti->error = "Failed to start raid array"; 3236 mddev_unlock(&rs->md); 3237 goto bad_md_start; 3238 } 3239 3240 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3241 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3242 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3243 if (r) { 3244 ti->error = "Failed to set raid4/5/6 journal mode"; 3245 mddev_unlock(&rs->md); 3246 goto bad_journal_mode_set; 3247 } 3248 } 3249 3250 mddev_suspend(&rs->md); 3251 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3252 3253 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3254 if (rs_is_raid456(rs)) { 3255 r = rs_set_raid456_stripe_cache(rs); 3256 if (r) 3257 goto bad_stripe_cache; 3258 } 3259 3260 /* Now do an early reshape check */ 3261 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3262 r = rs_check_reshape(rs); 3263 if (r) 3264 goto bad_check_reshape; 3265 3266 /* Restore new, ctr requested layout to perform check */ 3267 rs_config_restore(rs, &rs_layout); 3268 3269 if (rs->md.pers->start_reshape) { 3270 r = rs->md.pers->check_reshape(&rs->md); 3271 if (r) { 3272 ti->error = "Reshape check failed"; 3273 goto bad_check_reshape; 3274 } 3275 } 3276 } 3277 3278 /* Disable/enable discard support on raid set. */ 3279 configure_discard_support(rs); 3280 3281 mddev_unlock(&rs->md); 3282 return 0; 3283 3284 bad_md_start: 3285 bad_journal_mode_set: 3286 bad_stripe_cache: 3287 bad_check_reshape: 3288 md_stop(&rs->md); 3289 bad: 3290 raid_set_free(rs); 3291 3292 return r; 3293 } 3294 3295 static void raid_dtr(struct dm_target *ti) 3296 { 3297 struct raid_set *rs = ti->private; 3298 3299 md_stop(&rs->md); 3300 raid_set_free(rs); 3301 } 3302 3303 static int raid_map(struct dm_target *ti, struct bio *bio) 3304 { 3305 struct raid_set *rs = ti->private; 3306 struct mddev *mddev = &rs->md; 3307 3308 /* 3309 * If we're reshaping to add disk(s)), ti->len and 3310 * mddev->array_sectors will differ during the process 3311 * (ti->len > mddev->array_sectors), so we have to requeue 3312 * bios with addresses > mddev->array_sectors here or 3313 * there will occur accesses past EOD of the component 3314 * data images thus erroring the raid set. 3315 */ 3316 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3317 return DM_MAPIO_REQUEUE; 3318 3319 md_handle_request(mddev, bio); 3320 3321 return DM_MAPIO_SUBMITTED; 3322 } 3323 3324 /* Return sync state string for @state */ 3325 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3326 static const char *sync_str(enum sync_state state) 3327 { 3328 /* Has to be in above sync_state order! */ 3329 static const char *sync_strs[] = { 3330 "frozen", 3331 "reshape", 3332 "resync", 3333 "check", 3334 "repair", 3335 "recover", 3336 "idle" 3337 }; 3338 3339 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3340 }; 3341 3342 /* Return enum sync_state for @mddev derived from @recovery flags */ 3343 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3344 { 3345 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3346 return st_frozen; 3347 3348 /* The MD sync thread can be done with io or be interrupted but still be running */ 3349 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3350 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3351 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3352 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3353 return st_reshape; 3354 3355 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3356 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3357 return st_resync; 3358 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3359 return st_check; 3360 return st_repair; 3361 } 3362 3363 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3364 return st_recover; 3365 3366 if (mddev->reshape_position != MaxSector) 3367 return st_reshape; 3368 } 3369 3370 return st_idle; 3371 } 3372 3373 /* 3374 * Return status string for @rdev 3375 * 3376 * Status characters: 3377 * 3378 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3379 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3380 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3381 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3382 */ 3383 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3384 { 3385 if (!rdev->bdev) 3386 return "-"; 3387 else if (test_bit(Faulty, &rdev->flags)) 3388 return "D"; 3389 else if (test_bit(Journal, &rdev->flags)) 3390 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3391 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3392 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3393 !test_bit(In_sync, &rdev->flags))) 3394 return "a"; 3395 else 3396 return "A"; 3397 } 3398 3399 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3400 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3401 enum sync_state state, sector_t resync_max_sectors) 3402 { 3403 sector_t r; 3404 struct mddev *mddev = &rs->md; 3405 3406 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3407 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3408 3409 if (rs_is_raid0(rs)) { 3410 r = resync_max_sectors; 3411 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3412 3413 } else { 3414 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3415 r = mddev->recovery_cp; 3416 else 3417 r = mddev->curr_resync_completed; 3418 3419 if (state == st_idle && r >= resync_max_sectors) { 3420 /* 3421 * Sync complete. 3422 */ 3423 /* In case we have finished recovering, the array is in sync. */ 3424 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3425 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3426 3427 } else if (state == st_recover) 3428 /* 3429 * In case we are recovering, the array is not in sync 3430 * and health chars should show the recovering legs. 3431 * 3432 * Already retrieved recovery offset from curr_resync_completed above. 3433 */ 3434 ; 3435 3436 else if (state == st_resync || state == st_reshape) 3437 /* 3438 * If "resync/reshape" is occurring, the raid set 3439 * is or may be out of sync hence the health 3440 * characters shall be 'a'. 3441 */ 3442 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3443 3444 else if (state == st_check || state == st_repair) 3445 /* 3446 * If "check" or "repair" is occurring, the raid set has 3447 * undergone an initial sync and the health characters 3448 * should not be 'a' anymore. 3449 */ 3450 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3451 3452 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3453 /* 3454 * We are idle and recovery is needed, prevent 'A' chars race 3455 * caused by components still set to in-sync by constructor. 3456 */ 3457 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3458 3459 else { 3460 /* 3461 * We are idle and the raid set may be doing an initial 3462 * sync, or it may be rebuilding individual components. 3463 * If all the devices are In_sync, then it is the raid set 3464 * that is being initialized. 3465 */ 3466 struct md_rdev *rdev; 3467 3468 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3469 rdev_for_each(rdev, mddev) 3470 if (!test_bit(Journal, &rdev->flags) && 3471 !test_bit(In_sync, &rdev->flags)) { 3472 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3473 break; 3474 } 3475 } 3476 } 3477 3478 return min(r, resync_max_sectors); 3479 } 3480 3481 /* Helper to return @dev name or "-" if !@dev */ 3482 static const char *__get_dev_name(struct dm_dev *dev) 3483 { 3484 return dev ? dev->name : "-"; 3485 } 3486 3487 static void raid_status(struct dm_target *ti, status_type_t type, 3488 unsigned int status_flags, char *result, unsigned int maxlen) 3489 { 3490 struct raid_set *rs = ti->private; 3491 struct mddev *mddev = &rs->md; 3492 struct r5conf *conf = mddev->private; 3493 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3494 unsigned long recovery; 3495 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3496 unsigned int sz = 0; 3497 unsigned int rebuild_writemostly_count = 0; 3498 sector_t progress, resync_max_sectors, resync_mismatches; 3499 enum sync_state state; 3500 struct raid_type *rt; 3501 3502 switch (type) { 3503 case STATUSTYPE_INFO: 3504 /* *Should* always succeed */ 3505 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3506 if (!rt) 3507 return; 3508 3509 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3510 3511 /* Access most recent mddev properties for status output */ 3512 smp_rmb(); 3513 /* Get sensible max sectors even if raid set not yet started */ 3514 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3515 mddev->resync_max_sectors : mddev->dev_sectors; 3516 recovery = rs->md.recovery; 3517 state = decipher_sync_action(mddev, recovery); 3518 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3519 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3520 atomic64_read(&mddev->resync_mismatches) : 0; 3521 3522 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3523 for (i = 0; i < rs->raid_disks; i++) 3524 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3525 3526 /* 3527 * In-sync/Reshape ratio: 3528 * The in-sync ratio shows the progress of: 3529 * - Initializing the raid set 3530 * - Rebuilding a subset of devices of the raid set 3531 * The user can distinguish between the two by referring 3532 * to the status characters. 3533 * 3534 * The reshape ratio shows the progress of 3535 * changing the raid layout or the number of 3536 * disks of a raid set 3537 */ 3538 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3539 (unsigned long long) resync_max_sectors); 3540 3541 /* 3542 * v1.5.0+: 3543 * 3544 * Sync action: 3545 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3546 * information on each of these states. 3547 */ 3548 DMEMIT(" %s", sync_str(state)); 3549 3550 /* 3551 * v1.5.0+: 3552 * 3553 * resync_mismatches/mismatch_cnt 3554 * This field shows the number of discrepancies found when 3555 * performing a "check" of the raid set. 3556 */ 3557 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3558 3559 /* 3560 * v1.9.0+: 3561 * 3562 * data_offset (needed for out of space reshaping) 3563 * This field shows the data offset into the data 3564 * image LV where the first stripes data starts. 3565 * 3566 * We keep data_offset equal on all raid disks of the set, 3567 * so retrieving it from the first raid disk is sufficient. 3568 */ 3569 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3570 3571 /* 3572 * v1.10.0+: 3573 */ 3574 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3575 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3576 break; 3577 3578 case STATUSTYPE_TABLE: 3579 /* Report the table line string you would use to construct this raid set */ 3580 3581 /* 3582 * Count any rebuild or writemostly argument pairs and subtract the 3583 * hweight count being added below of any rebuild and writemostly ctr flags. 3584 */ 3585 for (i = 0; i < rs->raid_disks; i++) { 3586 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3587 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3588 } 3589 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3590 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3591 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3592 raid_param_cnt += rebuild_writemostly_count + 3593 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3594 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3595 /* Emit table line */ 3596 /* This has to be in the documented order for userspace! */ 3597 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3598 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3599 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3600 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3601 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3602 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3603 for (i = 0; i < rs->raid_disks; i++) 3604 if (test_bit(i, (void *) rs->rebuild_disks)) 3605 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3606 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3607 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3608 mddev->bitmap_info.daemon_sleep); 3609 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3610 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3611 mddev->sync_speed_min); 3612 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3613 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3614 mddev->sync_speed_max); 3615 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3616 for (i = 0; i < rs->raid_disks; i++) 3617 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3618 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3619 rs->dev[i].rdev.raid_disk); 3620 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3621 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3622 mddev->bitmap_info.max_write_behind); 3623 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3624 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3625 max_nr_stripes); 3626 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3627 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3628 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3629 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3630 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3631 raid10_md_layout_to_copies(mddev->layout)); 3632 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3633 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3634 raid10_md_layout_to_format(mddev->layout)); 3635 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3636 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3637 max(rs->delta_disks, mddev->delta_disks)); 3638 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3639 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3640 (unsigned long long) rs->data_offset); 3641 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3642 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3643 __get_dev_name(rs->journal_dev.dev)); 3644 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3645 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3646 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3647 DMEMIT(" %d", rs->raid_disks); 3648 for (i = 0; i < rs->raid_disks; i++) 3649 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3650 __get_dev_name(rs->dev[i].data_dev)); 3651 } 3652 } 3653 3654 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3655 char *result, unsigned maxlen) 3656 { 3657 struct raid_set *rs = ti->private; 3658 struct mddev *mddev = &rs->md; 3659 3660 if (!mddev->pers || !mddev->pers->sync_request) 3661 return -EINVAL; 3662 3663 if (!strcasecmp(argv[0], "frozen")) 3664 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3665 else 3666 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3667 3668 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3669 if (mddev->sync_thread) { 3670 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3671 md_reap_sync_thread(mddev); 3672 } 3673 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3674 return -EBUSY; 3675 else if (!strcasecmp(argv[0], "resync")) 3676 ; /* MD_RECOVERY_NEEDED set below */ 3677 else if (!strcasecmp(argv[0], "recover")) 3678 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3679 else { 3680 if (!strcasecmp(argv[0], "check")) { 3681 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3682 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3683 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3684 } else if (!strcasecmp(argv[0], "repair")) { 3685 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3686 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3687 } else 3688 return -EINVAL; 3689 } 3690 if (mddev->ro == 2) { 3691 /* A write to sync_action is enough to justify 3692 * canceling read-auto mode 3693 */ 3694 mddev->ro = 0; 3695 if (!mddev->suspended && mddev->sync_thread) 3696 md_wakeup_thread(mddev->sync_thread); 3697 } 3698 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3699 if (!mddev->suspended && mddev->thread) 3700 md_wakeup_thread(mddev->thread); 3701 3702 return 0; 3703 } 3704 3705 static int raid_iterate_devices(struct dm_target *ti, 3706 iterate_devices_callout_fn fn, void *data) 3707 { 3708 struct raid_set *rs = ti->private; 3709 unsigned int i; 3710 int r = 0; 3711 3712 for (i = 0; !r && i < rs->md.raid_disks; i++) 3713 if (rs->dev[i].data_dev) 3714 r = fn(ti, 3715 rs->dev[i].data_dev, 3716 0, /* No offset on data devs */ 3717 rs->md.dev_sectors, 3718 data); 3719 3720 return r; 3721 } 3722 3723 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3724 { 3725 struct raid_set *rs = ti->private; 3726 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3727 3728 blk_limits_io_min(limits, chunk_size_bytes); 3729 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); 3730 3731 /* 3732 * RAID1 and RAID10 personalities require bio splitting, 3733 * RAID0/4/5/6 don't and process large discard bios properly. 3734 */ 3735 if (rs_is_raid1(rs) || rs_is_raid10(rs)) { 3736 limits->discard_granularity = chunk_size_bytes; 3737 limits->max_discard_sectors = rs->md.chunk_sectors; 3738 } 3739 } 3740 3741 static void raid_postsuspend(struct dm_target *ti) 3742 { 3743 struct raid_set *rs = ti->private; 3744 3745 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3746 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3747 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3748 md_stop_writes(&rs->md); 3749 3750 mddev_lock_nointr(&rs->md); 3751 mddev_suspend(&rs->md); 3752 mddev_unlock(&rs->md); 3753 } 3754 } 3755 3756 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3757 { 3758 int i; 3759 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3760 unsigned long flags; 3761 bool cleared = false; 3762 struct dm_raid_superblock *sb; 3763 struct mddev *mddev = &rs->md; 3764 struct md_rdev *r; 3765 3766 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3767 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3768 return; 3769 3770 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3771 3772 for (i = 0; i < mddev->raid_disks; i++) { 3773 r = &rs->dev[i].rdev; 3774 /* HM FIXME: enhance journal device recovery processing */ 3775 if (test_bit(Journal, &r->flags)) 3776 continue; 3777 3778 if (test_bit(Faulty, &r->flags) && 3779 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3780 DMINFO("Faulty %s device #%d has readable super block." 3781 " Attempting to revive it.", 3782 rs->raid_type->name, i); 3783 3784 /* 3785 * Faulty bit may be set, but sometimes the array can 3786 * be suspended before the personalities can respond 3787 * by removing the device from the array (i.e. calling 3788 * 'hot_remove_disk'). If they haven't yet removed 3789 * the failed device, its 'raid_disk' number will be 3790 * '>= 0' - meaning we must call this function 3791 * ourselves. 3792 */ 3793 flags = r->flags; 3794 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3795 if (r->raid_disk >= 0) { 3796 if (mddev->pers->hot_remove_disk(mddev, r)) { 3797 /* Failed to revive this device, try next */ 3798 r->flags = flags; 3799 continue; 3800 } 3801 } else 3802 r->raid_disk = r->saved_raid_disk = i; 3803 3804 clear_bit(Faulty, &r->flags); 3805 clear_bit(WriteErrorSeen, &r->flags); 3806 3807 if (mddev->pers->hot_add_disk(mddev, r)) { 3808 /* Failed to revive this device, try next */ 3809 r->raid_disk = r->saved_raid_disk = -1; 3810 r->flags = flags; 3811 } else { 3812 clear_bit(In_sync, &r->flags); 3813 r->recovery_offset = 0; 3814 set_bit(i, (void *) cleared_failed_devices); 3815 cleared = true; 3816 } 3817 } 3818 } 3819 3820 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3821 if (cleared) { 3822 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3823 3824 rdev_for_each(r, &rs->md) { 3825 if (test_bit(Journal, &r->flags)) 3826 continue; 3827 3828 sb = page_address(r->sb_page); 3829 sb_retrieve_failed_devices(sb, failed_devices); 3830 3831 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3832 failed_devices[i] &= ~cleared_failed_devices[i]; 3833 3834 sb_update_failed_devices(sb, failed_devices); 3835 } 3836 } 3837 } 3838 3839 static int __load_dirty_region_bitmap(struct raid_set *rs) 3840 { 3841 int r = 0; 3842 3843 /* Try loading the bitmap unless "raid0", which does not have one */ 3844 if (!rs_is_raid0(rs) && 3845 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3846 r = md_bitmap_load(&rs->md); 3847 if (r) 3848 DMERR("Failed to load bitmap"); 3849 } 3850 3851 return r; 3852 } 3853 3854 /* Enforce updating all superblocks */ 3855 static void rs_update_sbs(struct raid_set *rs) 3856 { 3857 struct mddev *mddev = &rs->md; 3858 int ro = mddev->ro; 3859 3860 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3861 mddev->ro = 0; 3862 md_update_sb(mddev, 1); 3863 mddev->ro = ro; 3864 } 3865 3866 /* 3867 * Reshape changes raid algorithm of @rs to new one within personality 3868 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3869 * disks from a raid set thus growing/shrinking it or resizes the set 3870 * 3871 * Call mddev_lock_nointr() before! 3872 */ 3873 static int rs_start_reshape(struct raid_set *rs) 3874 { 3875 int r; 3876 struct mddev *mddev = &rs->md; 3877 struct md_personality *pers = mddev->pers; 3878 3879 /* Don't allow the sync thread to work until the table gets reloaded. */ 3880 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3881 3882 r = rs_setup_reshape(rs); 3883 if (r) 3884 return r; 3885 3886 /* 3887 * Check any reshape constraints enforced by the personalility 3888 * 3889 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3890 */ 3891 r = pers->check_reshape(mddev); 3892 if (r) { 3893 rs->ti->error = "pers->check_reshape() failed"; 3894 return r; 3895 } 3896 3897 /* 3898 * Personality may not provide start reshape method in which 3899 * case check_reshape above has already covered everything 3900 */ 3901 if (pers->start_reshape) { 3902 r = pers->start_reshape(mddev); 3903 if (r) { 3904 rs->ti->error = "pers->start_reshape() failed"; 3905 return r; 3906 } 3907 } 3908 3909 /* 3910 * Now reshape got set up, update superblocks to 3911 * reflect the fact so that a table reload will 3912 * access proper superblock content in the ctr. 3913 */ 3914 rs_update_sbs(rs); 3915 3916 return 0; 3917 } 3918 3919 static int raid_preresume(struct dm_target *ti) 3920 { 3921 int r; 3922 struct raid_set *rs = ti->private; 3923 struct mddev *mddev = &rs->md; 3924 3925 /* This is a resume after a suspend of the set -> it's already started. */ 3926 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3927 return 0; 3928 3929 /* 3930 * The superblocks need to be updated on disk if the 3931 * array is new or new devices got added (thus zeroed 3932 * out by userspace) or __load_dirty_region_bitmap 3933 * will overwrite them in core with old data or fail. 3934 */ 3935 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3936 rs_update_sbs(rs); 3937 3938 /* Load the bitmap from disk unless raid0 */ 3939 r = __load_dirty_region_bitmap(rs); 3940 if (r) 3941 return r; 3942 3943 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 3944 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3945 mddev->array_sectors = rs->array_sectors; 3946 mddev->dev_sectors = rs->dev_sectors; 3947 rs_set_rdev_sectors(rs); 3948 rs_set_capacity(rs); 3949 } 3950 3951 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 3952 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 3953 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 3954 (rs->requested_bitmap_chunk_sectors && 3955 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 3956 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 3957 3958 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); 3959 if (r) 3960 DMERR("Failed to resize bitmap"); 3961 } 3962 3963 /* Check for any resize/reshape on @rs and adjust/initiate */ 3964 /* Be prepared for mddev_resume() in raid_resume() */ 3965 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3966 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 3967 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3968 mddev->resync_min = mddev->recovery_cp; 3969 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 3970 mddev->resync_max_sectors = mddev->dev_sectors; 3971 } 3972 3973 /* Check for any reshape request unless new raid set */ 3974 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3975 /* Initiate a reshape. */ 3976 rs_set_rdev_sectors(rs); 3977 mddev_lock_nointr(mddev); 3978 r = rs_start_reshape(rs); 3979 mddev_unlock(mddev); 3980 if (r) 3981 DMWARN("Failed to check/start reshape, continuing without change"); 3982 r = 0; 3983 } 3984 3985 return r; 3986 } 3987 3988 static void raid_resume(struct dm_target *ti) 3989 { 3990 struct raid_set *rs = ti->private; 3991 struct mddev *mddev = &rs->md; 3992 3993 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 3994 /* 3995 * A secondary resume while the device is active. 3996 * Take this opportunity to check whether any failed 3997 * devices are reachable again. 3998 */ 3999 attempt_restore_of_faulty_devices(rs); 4000 } 4001 4002 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4003 /* Only reduce raid set size before running a disk removing reshape. */ 4004 if (mddev->delta_disks < 0) 4005 rs_set_capacity(rs); 4006 4007 mddev_lock_nointr(mddev); 4008 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4009 mddev->ro = 0; 4010 mddev->in_sync = 0; 4011 mddev_resume(mddev); 4012 mddev_unlock(mddev); 4013 } 4014 } 4015 4016 static struct target_type raid_target = { 4017 .name = "raid", 4018 .version = {1, 15, 1}, 4019 .module = THIS_MODULE, 4020 .ctr = raid_ctr, 4021 .dtr = raid_dtr, 4022 .map = raid_map, 4023 .status = raid_status, 4024 .message = raid_message, 4025 .iterate_devices = raid_iterate_devices, 4026 .io_hints = raid_io_hints, 4027 .postsuspend = raid_postsuspend, 4028 .preresume = raid_preresume, 4029 .resume = raid_resume, 4030 }; 4031 4032 static int __init dm_raid_init(void) 4033 { 4034 DMINFO("Loading target version %u.%u.%u", 4035 raid_target.version[0], 4036 raid_target.version[1], 4037 raid_target.version[2]); 4038 return dm_register_target(&raid_target); 4039 } 4040 4041 static void __exit dm_raid_exit(void) 4042 { 4043 dm_unregister_target(&raid_target); 4044 } 4045 4046 module_init(dm_raid_init); 4047 module_exit(dm_raid_exit); 4048 4049 module_param(devices_handle_discard_safely, bool, 0644); 4050 MODULE_PARM_DESC(devices_handle_discard_safely, 4051 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4052 4053 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4054 MODULE_ALIAS("dm-raid0"); 4055 MODULE_ALIAS("dm-raid1"); 4056 MODULE_ALIAS("dm-raid10"); 4057 MODULE_ALIAS("dm-raid4"); 4058 MODULE_ALIAS("dm-raid5"); 4059 MODULE_ALIAS("dm-raid6"); 4060 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4061 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4062 MODULE_LICENSE("GPL"); 4063