1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "md-bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 /* 28 * Minimum journal space 4 MiB in sectors. 29 */ 30 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 31 32 static bool devices_handle_discard_safely = false; 33 34 /* 35 * The following flags are used by dm-raid.c to set up the array state. 36 * They must be cleared before md_run is called. 37 */ 38 #define FirstUse 10 /* rdev flag */ 39 40 struct raid_dev { 41 /* 42 * Two DM devices, one to hold metadata and one to hold the 43 * actual data/parity. The reason for this is to not confuse 44 * ti->len and give more flexibility in altering size and 45 * characteristics. 46 * 47 * While it is possible for this device to be associated 48 * with a different physical device than the data_dev, it 49 * is intended for it to be the same. 50 * |--------- Physical Device ---------| 51 * |- meta_dev -|------ data_dev ------| 52 */ 53 struct dm_dev *meta_dev; 54 struct dm_dev *data_dev; 55 struct md_rdev rdev; 56 }; 57 58 /* 59 * Bits for establishing rs->ctr_flags 60 * 61 * 1 = no flag value 62 * 2 = flag with value 63 */ 64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 76 /* New for v1.9.0 */ 77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 80 81 /* New for v1.10.0 */ 82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 83 84 /* New for v1.11.1 */ 85 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 86 87 /* 88 * Flags for rs->ctr_flags field. 89 */ 90 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 91 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 92 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 93 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 94 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 95 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 97 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 98 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 99 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 100 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 101 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 102 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 103 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 104 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 105 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 106 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 107 108 /* 109 * Definitions of various constructor flags to 110 * be used in checks of valid / invalid flags 111 * per raid level. 112 */ 113 /* Define all any sync flags */ 114 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 115 116 /* Define flags for options without argument (e.g. 'nosync') */ 117 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 118 CTR_FLAG_RAID10_USE_NEAR_SETS) 119 120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 122 CTR_FLAG_WRITE_MOSTLY | \ 123 CTR_FLAG_DAEMON_SLEEP | \ 124 CTR_FLAG_MIN_RECOVERY_RATE | \ 125 CTR_FLAG_MAX_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_WRITE_BEHIND | \ 127 CTR_FLAG_STRIPE_CACHE | \ 128 CTR_FLAG_REGION_SIZE | \ 129 CTR_FLAG_RAID10_COPIES | \ 130 CTR_FLAG_RAID10_FORMAT | \ 131 CTR_FLAG_DELTA_DISKS | \ 132 CTR_FLAG_DATA_OFFSET) 133 134 /* Valid options definitions per raid level... */ 135 136 /* "raid0" does only accept data offset */ 137 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 138 139 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 140 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 141 CTR_FLAG_REBUILD | \ 142 CTR_FLAG_WRITE_MOSTLY | \ 143 CTR_FLAG_DAEMON_SLEEP | \ 144 CTR_FLAG_MIN_RECOVERY_RATE | \ 145 CTR_FLAG_MAX_RECOVERY_RATE | \ 146 CTR_FLAG_MAX_WRITE_BEHIND | \ 147 CTR_FLAG_REGION_SIZE | \ 148 CTR_FLAG_DELTA_DISKS | \ 149 CTR_FLAG_DATA_OFFSET) 150 151 /* "raid10" does not accept any raid1 or stripe cache options */ 152 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 153 CTR_FLAG_REBUILD | \ 154 CTR_FLAG_DAEMON_SLEEP | \ 155 CTR_FLAG_MIN_RECOVERY_RATE | \ 156 CTR_FLAG_MAX_RECOVERY_RATE | \ 157 CTR_FLAG_REGION_SIZE | \ 158 CTR_FLAG_RAID10_COPIES | \ 159 CTR_FLAG_RAID10_FORMAT | \ 160 CTR_FLAG_DELTA_DISKS | \ 161 CTR_FLAG_DATA_OFFSET | \ 162 CTR_FLAG_RAID10_USE_NEAR_SETS) 163 164 /* 165 * "raid4/5/6" do not accept any raid1 or raid10 specific options 166 * 167 * "raid6" does not accept "nosync", because it is not guaranteed 168 * that both parity and q-syndrome are being written properly with 169 * any writes 170 */ 171 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 172 CTR_FLAG_REBUILD | \ 173 CTR_FLAG_DAEMON_SLEEP | \ 174 CTR_FLAG_MIN_RECOVERY_RATE | \ 175 CTR_FLAG_MAX_RECOVERY_RATE | \ 176 CTR_FLAG_STRIPE_CACHE | \ 177 CTR_FLAG_REGION_SIZE | \ 178 CTR_FLAG_DELTA_DISKS | \ 179 CTR_FLAG_DATA_OFFSET | \ 180 CTR_FLAG_JOURNAL_DEV | \ 181 CTR_FLAG_JOURNAL_MODE) 182 183 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 184 CTR_FLAG_REBUILD | \ 185 CTR_FLAG_DAEMON_SLEEP | \ 186 CTR_FLAG_MIN_RECOVERY_RATE | \ 187 CTR_FLAG_MAX_RECOVERY_RATE | \ 188 CTR_FLAG_STRIPE_CACHE | \ 189 CTR_FLAG_REGION_SIZE | \ 190 CTR_FLAG_DELTA_DISKS | \ 191 CTR_FLAG_DATA_OFFSET | \ 192 CTR_FLAG_JOURNAL_DEV | \ 193 CTR_FLAG_JOURNAL_MODE) 194 /* ...valid options definitions per raid level */ 195 196 /* 197 * Flags for rs->runtime_flags field 198 * (RT_FLAG prefix meaning "runtime flag") 199 * 200 * These are all internal and used to define runtime state, 201 * e.g. to prevent another resume from preresume processing 202 * the raid set all over again. 203 */ 204 #define RT_FLAG_RS_PRERESUMED 0 205 #define RT_FLAG_RS_RESUMED 1 206 #define RT_FLAG_RS_BITMAP_LOADED 2 207 #define RT_FLAG_UPDATE_SBS 3 208 #define RT_FLAG_RESHAPE_RS 4 209 #define RT_FLAG_RS_SUSPENDED 5 210 #define RT_FLAG_RS_IN_SYNC 6 211 #define RT_FLAG_RS_RESYNCING 7 212 213 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 214 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 215 216 /* 217 * raid set level, layout and chunk sectors backup/restore 218 */ 219 struct rs_layout { 220 int new_level; 221 int new_layout; 222 int new_chunk_sectors; 223 }; 224 225 struct raid_set { 226 struct dm_target *ti; 227 228 uint32_t stripe_cache_entries; 229 unsigned long ctr_flags; 230 unsigned long runtime_flags; 231 232 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 233 234 int raid_disks; 235 int delta_disks; 236 int data_offset; 237 int raid10_copies; 238 int requested_bitmap_chunk_sectors; 239 240 struct mddev md; 241 struct raid_type *raid_type; 242 struct dm_target_callbacks callbacks; 243 244 /* Optional raid4/5/6 journal device */ 245 struct journal_dev { 246 struct dm_dev *dev; 247 struct md_rdev rdev; 248 int mode; 249 } journal_dev; 250 251 struct raid_dev dev[0]; 252 }; 253 254 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 255 { 256 struct mddev *mddev = &rs->md; 257 258 l->new_level = mddev->new_level; 259 l->new_layout = mddev->new_layout; 260 l->new_chunk_sectors = mddev->new_chunk_sectors; 261 } 262 263 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 264 { 265 struct mddev *mddev = &rs->md; 266 267 mddev->new_level = l->new_level; 268 mddev->new_layout = l->new_layout; 269 mddev->new_chunk_sectors = l->new_chunk_sectors; 270 } 271 272 /* raid10 algorithms (i.e. formats) */ 273 #define ALGORITHM_RAID10_DEFAULT 0 274 #define ALGORITHM_RAID10_NEAR 1 275 #define ALGORITHM_RAID10_OFFSET 2 276 #define ALGORITHM_RAID10_FAR 3 277 278 /* Supported raid types and properties. */ 279 static struct raid_type { 280 const char *name; /* RAID algorithm. */ 281 const char *descr; /* Descriptor text for logging. */ 282 const unsigned int parity_devs; /* # of parity devices. */ 283 const unsigned int minimal_devs;/* minimal # of devices in set. */ 284 const unsigned int level; /* RAID level. */ 285 const unsigned int algorithm; /* RAID algorithm. */ 286 } raid_types[] = { 287 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 288 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 289 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 290 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 291 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 292 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 293 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 294 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 295 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 296 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 297 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 298 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 299 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 300 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 301 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 302 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 303 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 304 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 305 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 306 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 307 }; 308 309 /* True, if @v is in inclusive range [@min, @max] */ 310 static bool __within_range(long v, long min, long max) 311 { 312 return v >= min && v <= max; 313 } 314 315 /* All table line arguments are defined here */ 316 static struct arg_name_flag { 317 const unsigned long flag; 318 const char *name; 319 } __arg_name_flags[] = { 320 { CTR_FLAG_SYNC, "sync"}, 321 { CTR_FLAG_NOSYNC, "nosync"}, 322 { CTR_FLAG_REBUILD, "rebuild"}, 323 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 324 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 325 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 326 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 327 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 328 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 329 { CTR_FLAG_REGION_SIZE, "region_size"}, 330 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 331 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 332 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 333 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 334 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 335 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 336 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 337 }; 338 339 /* Return argument name string for given @flag */ 340 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 341 { 342 if (hweight32(flag) == 1) { 343 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 344 345 while (anf-- > __arg_name_flags) 346 if (flag & anf->flag) 347 return anf->name; 348 349 } else 350 DMERR("%s called with more than one flag!", __func__); 351 352 return NULL; 353 } 354 355 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 356 static struct { 357 const int mode; 358 const char *param; 359 } _raid456_journal_mode[] = { 360 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, 361 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } 362 }; 363 364 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 365 static int dm_raid_journal_mode_to_md(const char *mode) 366 { 367 int m = ARRAY_SIZE(_raid456_journal_mode); 368 369 while (m--) 370 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 371 return _raid456_journal_mode[m].mode; 372 373 return -EINVAL; 374 } 375 376 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 377 static const char *md_journal_mode_to_dm_raid(const int mode) 378 { 379 int m = ARRAY_SIZE(_raid456_journal_mode); 380 381 while (m--) 382 if (mode == _raid456_journal_mode[m].mode) 383 return _raid456_journal_mode[m].param; 384 385 return "unknown"; 386 } 387 388 /* 389 * Bool helpers to test for various raid levels of a raid set. 390 * It's level as reported by the superblock rather than 391 * the requested raid_type passed to the constructor. 392 */ 393 /* Return true, if raid set in @rs is raid0 */ 394 static bool rs_is_raid0(struct raid_set *rs) 395 { 396 return !rs->md.level; 397 } 398 399 /* Return true, if raid set in @rs is raid1 */ 400 static bool rs_is_raid1(struct raid_set *rs) 401 { 402 return rs->md.level == 1; 403 } 404 405 /* Return true, if raid set in @rs is raid10 */ 406 static bool rs_is_raid10(struct raid_set *rs) 407 { 408 return rs->md.level == 10; 409 } 410 411 /* Return true, if raid set in @rs is level 6 */ 412 static bool rs_is_raid6(struct raid_set *rs) 413 { 414 return rs->md.level == 6; 415 } 416 417 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 418 static bool rs_is_raid456(struct raid_set *rs) 419 { 420 return __within_range(rs->md.level, 4, 6); 421 } 422 423 /* Return true, if raid set in @rs is reshapable */ 424 static bool __is_raid10_far(int layout); 425 static bool rs_is_reshapable(struct raid_set *rs) 426 { 427 return rs_is_raid456(rs) || 428 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 429 } 430 431 /* Return true, if raid set in @rs is recovering */ 432 static bool rs_is_recovering(struct raid_set *rs) 433 { 434 return rs->md.recovery_cp < rs->md.dev_sectors; 435 } 436 437 /* Return true, if raid set in @rs is reshaping */ 438 static bool rs_is_reshaping(struct raid_set *rs) 439 { 440 return rs->md.reshape_position != MaxSector; 441 } 442 443 /* 444 * bool helpers to test for various raid levels of a raid type @rt 445 */ 446 447 /* Return true, if raid type in @rt is raid0 */ 448 static bool rt_is_raid0(struct raid_type *rt) 449 { 450 return !rt->level; 451 } 452 453 /* Return true, if raid type in @rt is raid1 */ 454 static bool rt_is_raid1(struct raid_type *rt) 455 { 456 return rt->level == 1; 457 } 458 459 /* Return true, if raid type in @rt is raid10 */ 460 static bool rt_is_raid10(struct raid_type *rt) 461 { 462 return rt->level == 10; 463 } 464 465 /* Return true, if raid type in @rt is raid4/5 */ 466 static bool rt_is_raid45(struct raid_type *rt) 467 { 468 return __within_range(rt->level, 4, 5); 469 } 470 471 /* Return true, if raid type in @rt is raid6 */ 472 static bool rt_is_raid6(struct raid_type *rt) 473 { 474 return rt->level == 6; 475 } 476 477 /* Return true, if raid type in @rt is raid4/5/6 */ 478 static bool rt_is_raid456(struct raid_type *rt) 479 { 480 return __within_range(rt->level, 4, 6); 481 } 482 /* END: raid level bools */ 483 484 /* Return valid ctr flags for the raid level of @rs */ 485 static unsigned long __valid_flags(struct raid_set *rs) 486 { 487 if (rt_is_raid0(rs->raid_type)) 488 return RAID0_VALID_FLAGS; 489 else if (rt_is_raid1(rs->raid_type)) 490 return RAID1_VALID_FLAGS; 491 else if (rt_is_raid10(rs->raid_type)) 492 return RAID10_VALID_FLAGS; 493 else if (rt_is_raid45(rs->raid_type)) 494 return RAID45_VALID_FLAGS; 495 else if (rt_is_raid6(rs->raid_type)) 496 return RAID6_VALID_FLAGS; 497 498 return 0; 499 } 500 501 /* 502 * Check for valid flags set on @rs 503 * 504 * Has to be called after parsing of the ctr flags! 505 */ 506 static int rs_check_for_valid_flags(struct raid_set *rs) 507 { 508 if (rs->ctr_flags & ~__valid_flags(rs)) { 509 rs->ti->error = "Invalid flags combination"; 510 return -EINVAL; 511 } 512 513 return 0; 514 } 515 516 /* MD raid10 bit definitions and helpers */ 517 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 518 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 519 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 520 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 521 522 /* Return md raid10 near copies for @layout */ 523 static unsigned int __raid10_near_copies(int layout) 524 { 525 return layout & 0xFF; 526 } 527 528 /* Return md raid10 far copies for @layout */ 529 static unsigned int __raid10_far_copies(int layout) 530 { 531 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 532 } 533 534 /* Return true if md raid10 offset for @layout */ 535 static bool __is_raid10_offset(int layout) 536 { 537 return !!(layout & RAID10_OFFSET); 538 } 539 540 /* Return true if md raid10 near for @layout */ 541 static bool __is_raid10_near(int layout) 542 { 543 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 544 } 545 546 /* Return true if md raid10 far for @layout */ 547 static bool __is_raid10_far(int layout) 548 { 549 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 550 } 551 552 /* Return md raid10 layout string for @layout */ 553 static const char *raid10_md_layout_to_format(int layout) 554 { 555 /* 556 * Bit 16 stands for "offset" 557 * (i.e. adjacent stripes hold copies) 558 * 559 * Refer to MD's raid10.c for details 560 */ 561 if (__is_raid10_offset(layout)) 562 return "offset"; 563 564 if (__raid10_near_copies(layout) > 1) 565 return "near"; 566 567 if (__raid10_far_copies(layout) > 1) 568 return "far"; 569 570 return "unknown"; 571 } 572 573 /* Return md raid10 algorithm for @name */ 574 static int raid10_name_to_format(const char *name) 575 { 576 if (!strcasecmp(name, "near")) 577 return ALGORITHM_RAID10_NEAR; 578 else if (!strcasecmp(name, "offset")) 579 return ALGORITHM_RAID10_OFFSET; 580 else if (!strcasecmp(name, "far")) 581 return ALGORITHM_RAID10_FAR; 582 583 return -EINVAL; 584 } 585 586 /* Return md raid10 copies for @layout */ 587 static unsigned int raid10_md_layout_to_copies(int layout) 588 { 589 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 590 } 591 592 /* Return md raid10 format id for @format string */ 593 static int raid10_format_to_md_layout(struct raid_set *rs, 594 unsigned int algorithm, 595 unsigned int copies) 596 { 597 unsigned int n = 1, f = 1, r = 0; 598 599 /* 600 * MD resilienece flaw: 601 * 602 * enabling use_far_sets for far/offset formats causes copies 603 * to be colocated on the same devs together with their origins! 604 * 605 * -> disable it for now in the definition above 606 */ 607 if (algorithm == ALGORITHM_RAID10_DEFAULT || 608 algorithm == ALGORITHM_RAID10_NEAR) 609 n = copies; 610 611 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 612 f = copies; 613 r = RAID10_OFFSET; 614 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 615 r |= RAID10_USE_FAR_SETS; 616 617 } else if (algorithm == ALGORITHM_RAID10_FAR) { 618 f = copies; 619 r = !RAID10_OFFSET; 620 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 621 r |= RAID10_USE_FAR_SETS; 622 623 } else 624 return -EINVAL; 625 626 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 627 } 628 /* END: MD raid10 bit definitions and helpers */ 629 630 /* Check for any of the raid10 algorithms */ 631 static bool __got_raid10(struct raid_type *rtp, const int layout) 632 { 633 if (rtp->level == 10) { 634 switch (rtp->algorithm) { 635 case ALGORITHM_RAID10_DEFAULT: 636 case ALGORITHM_RAID10_NEAR: 637 return __is_raid10_near(layout); 638 case ALGORITHM_RAID10_OFFSET: 639 return __is_raid10_offset(layout); 640 case ALGORITHM_RAID10_FAR: 641 return __is_raid10_far(layout); 642 default: 643 break; 644 } 645 } 646 647 return false; 648 } 649 650 /* Return raid_type for @name */ 651 static struct raid_type *get_raid_type(const char *name) 652 { 653 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 654 655 while (rtp-- > raid_types) 656 if (!strcasecmp(rtp->name, name)) 657 return rtp; 658 659 return NULL; 660 } 661 662 /* Return raid_type for @name based derived from @level and @layout */ 663 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 664 { 665 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 666 667 while (rtp-- > raid_types) { 668 /* RAID10 special checks based on @layout flags/properties */ 669 if (rtp->level == level && 670 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 671 return rtp; 672 } 673 674 return NULL; 675 } 676 677 /* Adjust rdev sectors */ 678 static void rs_set_rdev_sectors(struct raid_set *rs) 679 { 680 struct mddev *mddev = &rs->md; 681 struct md_rdev *rdev; 682 683 /* 684 * raid10 sets rdev->sector to the device size, which 685 * is unintended in case of out-of-place reshaping 686 */ 687 rdev_for_each(rdev, mddev) 688 if (!test_bit(Journal, &rdev->flags)) 689 rdev->sectors = mddev->dev_sectors; 690 } 691 692 /* 693 * Change bdev capacity of @rs in case of a disk add/remove reshape 694 */ 695 static void rs_set_capacity(struct raid_set *rs) 696 { 697 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 698 699 set_capacity(gendisk, rs->md.array_sectors); 700 revalidate_disk(gendisk); 701 } 702 703 /* 704 * Set the mddev properties in @rs to the current 705 * ones retrieved from the freshest superblock 706 */ 707 static void rs_set_cur(struct raid_set *rs) 708 { 709 struct mddev *mddev = &rs->md; 710 711 mddev->new_level = mddev->level; 712 mddev->new_layout = mddev->layout; 713 mddev->new_chunk_sectors = mddev->chunk_sectors; 714 } 715 716 /* 717 * Set the mddev properties in @rs to the new 718 * ones requested by the ctr 719 */ 720 static void rs_set_new(struct raid_set *rs) 721 { 722 struct mddev *mddev = &rs->md; 723 724 mddev->level = mddev->new_level; 725 mddev->layout = mddev->new_layout; 726 mddev->chunk_sectors = mddev->new_chunk_sectors; 727 mddev->raid_disks = rs->raid_disks; 728 mddev->delta_disks = 0; 729 } 730 731 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 732 unsigned int raid_devs) 733 { 734 unsigned int i; 735 struct raid_set *rs; 736 737 if (raid_devs <= raid_type->parity_devs) { 738 ti->error = "Insufficient number of devices"; 739 return ERR_PTR(-EINVAL); 740 } 741 742 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 743 if (!rs) { 744 ti->error = "Cannot allocate raid context"; 745 return ERR_PTR(-ENOMEM); 746 } 747 748 mddev_init(&rs->md); 749 750 rs->raid_disks = raid_devs; 751 rs->delta_disks = 0; 752 753 rs->ti = ti; 754 rs->raid_type = raid_type; 755 rs->stripe_cache_entries = 256; 756 rs->md.raid_disks = raid_devs; 757 rs->md.level = raid_type->level; 758 rs->md.new_level = rs->md.level; 759 rs->md.layout = raid_type->algorithm; 760 rs->md.new_layout = rs->md.layout; 761 rs->md.delta_disks = 0; 762 rs->md.recovery_cp = MaxSector; 763 764 for (i = 0; i < raid_devs; i++) 765 md_rdev_init(&rs->dev[i].rdev); 766 767 /* 768 * Remaining items to be initialized by further RAID params: 769 * rs->md.persistent 770 * rs->md.external 771 * rs->md.chunk_sectors 772 * rs->md.new_chunk_sectors 773 * rs->md.dev_sectors 774 */ 775 776 return rs; 777 } 778 779 /* Free all @rs allocations */ 780 static void raid_set_free(struct raid_set *rs) 781 { 782 int i; 783 784 if (rs->journal_dev.dev) { 785 md_rdev_clear(&rs->journal_dev.rdev); 786 dm_put_device(rs->ti, rs->journal_dev.dev); 787 } 788 789 for (i = 0; i < rs->raid_disks; i++) { 790 if (rs->dev[i].meta_dev) 791 dm_put_device(rs->ti, rs->dev[i].meta_dev); 792 md_rdev_clear(&rs->dev[i].rdev); 793 if (rs->dev[i].data_dev) 794 dm_put_device(rs->ti, rs->dev[i].data_dev); 795 } 796 797 kfree(rs); 798 } 799 800 /* 801 * For every device we have two words 802 * <meta_dev>: meta device name or '-' if missing 803 * <data_dev>: data device name or '-' if missing 804 * 805 * The following are permitted: 806 * - - 807 * - <data_dev> 808 * <meta_dev> <data_dev> 809 * 810 * The following is not allowed: 811 * <meta_dev> - 812 * 813 * This code parses those words. If there is a failure, 814 * the caller must use raid_set_free() to unwind the operations. 815 */ 816 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 817 { 818 int i; 819 int rebuild = 0; 820 int metadata_available = 0; 821 int r = 0; 822 const char *arg; 823 824 /* Put off the number of raid devices argument to get to dev pairs */ 825 arg = dm_shift_arg(as); 826 if (!arg) 827 return -EINVAL; 828 829 for (i = 0; i < rs->raid_disks; i++) { 830 rs->dev[i].rdev.raid_disk = i; 831 832 rs->dev[i].meta_dev = NULL; 833 rs->dev[i].data_dev = NULL; 834 835 /* 836 * There are no offsets initially. 837 * Out of place reshape will set them accordingly. 838 */ 839 rs->dev[i].rdev.data_offset = 0; 840 rs->dev[i].rdev.new_data_offset = 0; 841 rs->dev[i].rdev.mddev = &rs->md; 842 843 arg = dm_shift_arg(as); 844 if (!arg) 845 return -EINVAL; 846 847 if (strcmp(arg, "-")) { 848 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 849 &rs->dev[i].meta_dev); 850 if (r) { 851 rs->ti->error = "RAID metadata device lookup failure"; 852 return r; 853 } 854 855 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 856 if (!rs->dev[i].rdev.sb_page) { 857 rs->ti->error = "Failed to allocate superblock page"; 858 return -ENOMEM; 859 } 860 } 861 862 arg = dm_shift_arg(as); 863 if (!arg) 864 return -EINVAL; 865 866 if (!strcmp(arg, "-")) { 867 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 868 (!rs->dev[i].rdev.recovery_offset)) { 869 rs->ti->error = "Drive designated for rebuild not specified"; 870 return -EINVAL; 871 } 872 873 if (rs->dev[i].meta_dev) { 874 rs->ti->error = "No data device supplied with metadata device"; 875 return -EINVAL; 876 } 877 878 continue; 879 } 880 881 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 882 &rs->dev[i].data_dev); 883 if (r) { 884 rs->ti->error = "RAID device lookup failure"; 885 return r; 886 } 887 888 if (rs->dev[i].meta_dev) { 889 metadata_available = 1; 890 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 891 } 892 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 893 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 894 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 895 rebuild++; 896 } 897 898 if (rs->journal_dev.dev) 899 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 900 901 if (metadata_available) { 902 rs->md.external = 0; 903 rs->md.persistent = 1; 904 rs->md.major_version = 2; 905 } else if (rebuild && !rs->md.recovery_cp) { 906 /* 907 * Without metadata, we will not be able to tell if the array 908 * is in-sync or not - we must assume it is not. Therefore, 909 * it is impossible to rebuild a drive. 910 * 911 * Even if there is metadata, the on-disk information may 912 * indicate that the array is not in-sync and it will then 913 * fail at that time. 914 * 915 * User could specify 'nosync' option if desperate. 916 */ 917 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 918 return -EINVAL; 919 } 920 921 return 0; 922 } 923 924 /* 925 * validate_region_size 926 * @rs 927 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 928 * 929 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 930 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 931 * 932 * Returns: 0 on success, -EINVAL on failure. 933 */ 934 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 935 { 936 unsigned long min_region_size = rs->ti->len / (1 << 21); 937 938 if (rs_is_raid0(rs)) 939 return 0; 940 941 if (!region_size) { 942 /* 943 * Choose a reasonable default. All figures in sectors. 944 */ 945 if (min_region_size > (1 << 13)) { 946 /* If not a power of 2, make it the next power of 2 */ 947 region_size = roundup_pow_of_two(min_region_size); 948 DMINFO("Choosing default region size of %lu sectors", 949 region_size); 950 } else { 951 DMINFO("Choosing default region size of 4MiB"); 952 region_size = 1 << 13; /* sectors */ 953 } 954 } else { 955 /* 956 * Validate user-supplied value. 957 */ 958 if (region_size > rs->ti->len) { 959 rs->ti->error = "Supplied region size is too large"; 960 return -EINVAL; 961 } 962 963 if (region_size < min_region_size) { 964 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 965 region_size, min_region_size); 966 rs->ti->error = "Supplied region size is too small"; 967 return -EINVAL; 968 } 969 970 if (!is_power_of_2(region_size)) { 971 rs->ti->error = "Region size is not a power of 2"; 972 return -EINVAL; 973 } 974 975 if (region_size < rs->md.chunk_sectors) { 976 rs->ti->error = "Region size is smaller than the chunk size"; 977 return -EINVAL; 978 } 979 } 980 981 /* 982 * Convert sectors to bytes. 983 */ 984 rs->md.bitmap_info.chunksize = to_bytes(region_size); 985 986 return 0; 987 } 988 989 /* 990 * validate_raid_redundancy 991 * @rs 992 * 993 * Determine if there are enough devices in the array that haven't 994 * failed (or are being rebuilt) to form a usable array. 995 * 996 * Returns: 0 on success, -EINVAL on failure. 997 */ 998 static int validate_raid_redundancy(struct raid_set *rs) 999 { 1000 unsigned int i, rebuild_cnt = 0; 1001 unsigned int rebuilds_per_group = 0, copies; 1002 unsigned int group_size, last_group_start; 1003 1004 for (i = 0; i < rs->md.raid_disks; i++) 1005 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1006 !rs->dev[i].rdev.sb_page) 1007 rebuild_cnt++; 1008 1009 switch (rs->md.level) { 1010 case 0: 1011 break; 1012 case 1: 1013 if (rebuild_cnt >= rs->md.raid_disks) 1014 goto too_many; 1015 break; 1016 case 4: 1017 case 5: 1018 case 6: 1019 if (rebuild_cnt > rs->raid_type->parity_devs) 1020 goto too_many; 1021 break; 1022 case 10: 1023 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1024 if (copies < 2) { 1025 DMERR("Bogus raid10 data copies < 2!"); 1026 return -EINVAL; 1027 } 1028 1029 if (rebuild_cnt < copies) 1030 break; 1031 1032 /* 1033 * It is possible to have a higher rebuild count for RAID10, 1034 * as long as the failed devices occur in different mirror 1035 * groups (i.e. different stripes). 1036 * 1037 * When checking "near" format, make sure no adjacent devices 1038 * have failed beyond what can be handled. In addition to the 1039 * simple case where the number of devices is a multiple of the 1040 * number of copies, we must also handle cases where the number 1041 * of devices is not a multiple of the number of copies. 1042 * E.g. dev1 dev2 dev3 dev4 dev5 1043 * A A B B C 1044 * C D D E E 1045 */ 1046 if (__is_raid10_near(rs->md.new_layout)) { 1047 for (i = 0; i < rs->md.raid_disks; i++) { 1048 if (!(i % copies)) 1049 rebuilds_per_group = 0; 1050 if ((!rs->dev[i].rdev.sb_page || 1051 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1052 (++rebuilds_per_group >= copies)) 1053 goto too_many; 1054 } 1055 break; 1056 } 1057 1058 /* 1059 * When checking "far" and "offset" formats, we need to ensure 1060 * that the device that holds its copy is not also dead or 1061 * being rebuilt. (Note that "far" and "offset" formats only 1062 * support two copies right now. These formats also only ever 1063 * use the 'use_far_sets' variant.) 1064 * 1065 * This check is somewhat complicated by the need to account 1066 * for arrays that are not a multiple of (far) copies. This 1067 * results in the need to treat the last (potentially larger) 1068 * set differently. 1069 */ 1070 group_size = (rs->md.raid_disks / copies); 1071 last_group_start = (rs->md.raid_disks / group_size) - 1; 1072 last_group_start *= group_size; 1073 for (i = 0; i < rs->md.raid_disks; i++) { 1074 if (!(i % copies) && !(i > last_group_start)) 1075 rebuilds_per_group = 0; 1076 if ((!rs->dev[i].rdev.sb_page || 1077 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1078 (++rebuilds_per_group >= copies)) 1079 goto too_many; 1080 } 1081 break; 1082 default: 1083 if (rebuild_cnt) 1084 return -EINVAL; 1085 } 1086 1087 return 0; 1088 1089 too_many: 1090 return -EINVAL; 1091 } 1092 1093 /* 1094 * Possible arguments are... 1095 * <chunk_size> [optional_args] 1096 * 1097 * Argument definitions 1098 * <chunk_size> The number of sectors per disk that 1099 * will form the "stripe" 1100 * [[no]sync] Force or prevent recovery of the 1101 * entire array 1102 * [rebuild <idx>] Rebuild the drive indicated by the index 1103 * [daemon_sleep <ms>] Time between bitmap daemon work to 1104 * clear bits 1105 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1106 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1107 * [write_mostly <idx>] Indicate a write mostly drive via index 1108 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1109 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1110 * [region_size <sectors>] Defines granularity of bitmap 1111 * [journal_dev <dev>] raid4/5/6 journaling deviice 1112 * (i.e. write hole closing log) 1113 * 1114 * RAID10-only options: 1115 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1116 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1117 */ 1118 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1119 unsigned int num_raid_params) 1120 { 1121 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1122 unsigned int raid10_copies = 2; 1123 unsigned int i, write_mostly = 0; 1124 unsigned int region_size = 0; 1125 sector_t max_io_len; 1126 const char *arg, *key; 1127 struct raid_dev *rd; 1128 struct raid_type *rt = rs->raid_type; 1129 1130 arg = dm_shift_arg(as); 1131 num_raid_params--; /* Account for chunk_size argument */ 1132 1133 if (kstrtoint(arg, 10, &value) < 0) { 1134 rs->ti->error = "Bad numerical argument given for chunk_size"; 1135 return -EINVAL; 1136 } 1137 1138 /* 1139 * First, parse the in-order required arguments 1140 * "chunk_size" is the only argument of this type. 1141 */ 1142 if (rt_is_raid1(rt)) { 1143 if (value) 1144 DMERR("Ignoring chunk size parameter for RAID 1"); 1145 value = 0; 1146 } else if (!is_power_of_2(value)) { 1147 rs->ti->error = "Chunk size must be a power of 2"; 1148 return -EINVAL; 1149 } else if (value < 8) { 1150 rs->ti->error = "Chunk size value is too small"; 1151 return -EINVAL; 1152 } 1153 1154 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1155 1156 /* 1157 * We set each individual device as In_sync with a completed 1158 * 'recovery_offset'. If there has been a device failure or 1159 * replacement then one of the following cases applies: 1160 * 1161 * 1) User specifies 'rebuild'. 1162 * - Device is reset when param is read. 1163 * 2) A new device is supplied. 1164 * - No matching superblock found, resets device. 1165 * 3) Device failure was transient and returns on reload. 1166 * - Failure noticed, resets device for bitmap replay. 1167 * 4) Device hadn't completed recovery after previous failure. 1168 * - Superblock is read and overrides recovery_offset. 1169 * 1170 * What is found in the superblocks of the devices is always 1171 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1172 */ 1173 for (i = 0; i < rs->raid_disks; i++) { 1174 set_bit(In_sync, &rs->dev[i].rdev.flags); 1175 rs->dev[i].rdev.recovery_offset = MaxSector; 1176 } 1177 1178 /* 1179 * Second, parse the unordered optional arguments 1180 */ 1181 for (i = 0; i < num_raid_params; i++) { 1182 key = dm_shift_arg(as); 1183 if (!key) { 1184 rs->ti->error = "Not enough raid parameters given"; 1185 return -EINVAL; 1186 } 1187 1188 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1189 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1190 rs->ti->error = "Only one 'nosync' argument allowed"; 1191 return -EINVAL; 1192 } 1193 continue; 1194 } 1195 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1196 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1197 rs->ti->error = "Only one 'sync' argument allowed"; 1198 return -EINVAL; 1199 } 1200 continue; 1201 } 1202 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1203 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1204 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1205 return -EINVAL; 1206 } 1207 continue; 1208 } 1209 1210 arg = dm_shift_arg(as); 1211 i++; /* Account for the argument pairs */ 1212 if (!arg) { 1213 rs->ti->error = "Wrong number of raid parameters given"; 1214 return -EINVAL; 1215 } 1216 1217 /* 1218 * Parameters that take a string value are checked here. 1219 */ 1220 /* "raid10_format {near|offset|far} */ 1221 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1222 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1223 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1224 return -EINVAL; 1225 } 1226 if (!rt_is_raid10(rt)) { 1227 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1228 return -EINVAL; 1229 } 1230 raid10_format = raid10_name_to_format(arg); 1231 if (raid10_format < 0) { 1232 rs->ti->error = "Invalid 'raid10_format' value given"; 1233 return raid10_format; 1234 } 1235 continue; 1236 } 1237 1238 /* "journal_dev <dev>" */ 1239 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1240 int r; 1241 struct md_rdev *jdev; 1242 1243 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1244 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1245 return -EINVAL; 1246 } 1247 if (!rt_is_raid456(rt)) { 1248 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1249 return -EINVAL; 1250 } 1251 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1252 &rs->journal_dev.dev); 1253 if (r) { 1254 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1255 return r; 1256 } 1257 jdev = &rs->journal_dev.rdev; 1258 md_rdev_init(jdev); 1259 jdev->mddev = &rs->md; 1260 jdev->bdev = rs->journal_dev.dev->bdev; 1261 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode)); 1262 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1263 rs->ti->error = "No space for raid4/5/6 journal"; 1264 return -ENOSPC; 1265 } 1266 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1267 set_bit(Journal, &jdev->flags); 1268 continue; 1269 } 1270 1271 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1272 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1273 int r; 1274 1275 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1276 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1277 return -EINVAL; 1278 } 1279 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1280 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1281 return -EINVAL; 1282 } 1283 r = dm_raid_journal_mode_to_md(arg); 1284 if (r < 0) { 1285 rs->ti->error = "Invalid 'journal_mode' argument"; 1286 return r; 1287 } 1288 rs->journal_dev.mode = r; 1289 continue; 1290 } 1291 1292 /* 1293 * Parameters with number values from here on. 1294 */ 1295 if (kstrtoint(arg, 10, &value) < 0) { 1296 rs->ti->error = "Bad numerical argument given in raid params"; 1297 return -EINVAL; 1298 } 1299 1300 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1301 /* 1302 * "rebuild" is being passed in by userspace to provide 1303 * indexes of replaced devices and to set up additional 1304 * devices on raid level takeover. 1305 */ 1306 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1307 rs->ti->error = "Invalid rebuild index given"; 1308 return -EINVAL; 1309 } 1310 1311 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1312 rs->ti->error = "rebuild for this index already given"; 1313 return -EINVAL; 1314 } 1315 1316 rd = rs->dev + value; 1317 clear_bit(In_sync, &rd->rdev.flags); 1318 clear_bit(Faulty, &rd->rdev.flags); 1319 rd->rdev.recovery_offset = 0; 1320 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1321 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1322 if (!rt_is_raid1(rt)) { 1323 rs->ti->error = "write_mostly option is only valid for RAID1"; 1324 return -EINVAL; 1325 } 1326 1327 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1328 rs->ti->error = "Invalid write_mostly index given"; 1329 return -EINVAL; 1330 } 1331 1332 write_mostly++; 1333 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1334 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1335 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1336 if (!rt_is_raid1(rt)) { 1337 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1338 return -EINVAL; 1339 } 1340 1341 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1342 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1343 return -EINVAL; 1344 } 1345 1346 /* 1347 * In device-mapper, we specify things in sectors, but 1348 * MD records this value in kB 1349 */ 1350 if (value < 0 || value / 2 > COUNTER_MAX) { 1351 rs->ti->error = "Max write-behind limit out of range"; 1352 return -EINVAL; 1353 } 1354 1355 rs->md.bitmap_info.max_write_behind = value / 2; 1356 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1357 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1358 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1359 return -EINVAL; 1360 } 1361 if (value < 0) { 1362 rs->ti->error = "daemon sleep period out of range"; 1363 return -EINVAL; 1364 } 1365 rs->md.bitmap_info.daemon_sleep = value; 1366 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1367 /* Userspace passes new data_offset after having extended the the data image LV */ 1368 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1369 rs->ti->error = "Only one data_offset argument pair allowed"; 1370 return -EINVAL; 1371 } 1372 /* Ensure sensible data offset */ 1373 if (value < 0 || 1374 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1375 rs->ti->error = "Bogus data_offset value"; 1376 return -EINVAL; 1377 } 1378 rs->data_offset = value; 1379 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1380 /* Define the +/-# of disks to add to/remove from the given raid set */ 1381 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1382 rs->ti->error = "Only one delta_disks argument pair allowed"; 1383 return -EINVAL; 1384 } 1385 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1386 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1387 rs->ti->error = "Too many delta_disk requested"; 1388 return -EINVAL; 1389 } 1390 1391 rs->delta_disks = value; 1392 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1393 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1394 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1395 return -EINVAL; 1396 } 1397 1398 if (!rt_is_raid456(rt)) { 1399 rs->ti->error = "Inappropriate argument: stripe_cache"; 1400 return -EINVAL; 1401 } 1402 1403 if (value < 0) { 1404 rs->ti->error = "Bogus stripe cache entries value"; 1405 return -EINVAL; 1406 } 1407 rs->stripe_cache_entries = value; 1408 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1409 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1410 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1411 return -EINVAL; 1412 } 1413 1414 if (value < 0) { 1415 rs->ti->error = "min_recovery_rate out of range"; 1416 return -EINVAL; 1417 } 1418 rs->md.sync_speed_min = value; 1419 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1420 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1421 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1422 return -EINVAL; 1423 } 1424 1425 if (value < 0) { 1426 rs->ti->error = "max_recovery_rate out of range"; 1427 return -EINVAL; 1428 } 1429 rs->md.sync_speed_max = value; 1430 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1431 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1432 rs->ti->error = "Only one region_size argument pair allowed"; 1433 return -EINVAL; 1434 } 1435 1436 region_size = value; 1437 rs->requested_bitmap_chunk_sectors = value; 1438 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1439 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1440 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1441 return -EINVAL; 1442 } 1443 1444 if (!__within_range(value, 2, rs->md.raid_disks)) { 1445 rs->ti->error = "Bad value for 'raid10_copies'"; 1446 return -EINVAL; 1447 } 1448 1449 raid10_copies = value; 1450 } else { 1451 DMERR("Unable to parse RAID parameter: %s", key); 1452 rs->ti->error = "Unable to parse RAID parameter"; 1453 return -EINVAL; 1454 } 1455 } 1456 1457 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1458 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1459 rs->ti->error = "sync and nosync are mutually exclusive"; 1460 return -EINVAL; 1461 } 1462 1463 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1464 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1465 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1466 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1467 return -EINVAL; 1468 } 1469 1470 if (write_mostly >= rs->md.raid_disks) { 1471 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1472 return -EINVAL; 1473 } 1474 1475 if (rs->md.sync_speed_max && 1476 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1477 rs->ti->error = "Bogus recovery rates"; 1478 return -EINVAL; 1479 } 1480 1481 if (validate_region_size(rs, region_size)) 1482 return -EINVAL; 1483 1484 if (rs->md.chunk_sectors) 1485 max_io_len = rs->md.chunk_sectors; 1486 else 1487 max_io_len = region_size; 1488 1489 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1490 return -EINVAL; 1491 1492 if (rt_is_raid10(rt)) { 1493 if (raid10_copies > rs->md.raid_disks) { 1494 rs->ti->error = "Not enough devices to satisfy specification"; 1495 return -EINVAL; 1496 } 1497 1498 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1499 if (rs->md.new_layout < 0) { 1500 rs->ti->error = "Error getting raid10 format"; 1501 return rs->md.new_layout; 1502 } 1503 1504 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1505 if (!rt) { 1506 rs->ti->error = "Failed to recognize new raid10 layout"; 1507 return -EINVAL; 1508 } 1509 1510 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1511 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1512 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1513 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1514 return -EINVAL; 1515 } 1516 } 1517 1518 rs->raid10_copies = raid10_copies; 1519 1520 /* Assume there are no metadata devices until the drives are parsed */ 1521 rs->md.persistent = 0; 1522 rs->md.external = 1; 1523 1524 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1525 return rs_check_for_valid_flags(rs); 1526 } 1527 1528 /* Set raid4/5/6 cache size */ 1529 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1530 { 1531 int r; 1532 struct r5conf *conf; 1533 struct mddev *mddev = &rs->md; 1534 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1535 uint32_t nr_stripes = rs->stripe_cache_entries; 1536 1537 if (!rt_is_raid456(rs->raid_type)) { 1538 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1539 return -EINVAL; 1540 } 1541 1542 if (nr_stripes < min_stripes) { 1543 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1544 nr_stripes, min_stripes); 1545 nr_stripes = min_stripes; 1546 } 1547 1548 conf = mddev->private; 1549 if (!conf) { 1550 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1551 return -EINVAL; 1552 } 1553 1554 /* Try setting number of stripes in raid456 stripe cache */ 1555 if (conf->min_nr_stripes != nr_stripes) { 1556 r = raid5_set_cache_size(mddev, nr_stripes); 1557 if (r) { 1558 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1559 return r; 1560 } 1561 1562 DMINFO("%u stripe cache entries", nr_stripes); 1563 } 1564 1565 return 0; 1566 } 1567 1568 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1569 static unsigned int mddev_data_stripes(struct raid_set *rs) 1570 { 1571 return rs->md.raid_disks - rs->raid_type->parity_devs; 1572 } 1573 1574 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1575 static unsigned int rs_data_stripes(struct raid_set *rs) 1576 { 1577 return rs->raid_disks - rs->raid_type->parity_devs; 1578 } 1579 1580 /* 1581 * Retrieve rdev->sectors from any valid raid device of @rs 1582 * to allow userpace to pass in arbitray "- -" device tupples. 1583 */ 1584 static sector_t __rdev_sectors(struct raid_set *rs) 1585 { 1586 int i; 1587 1588 for (i = 0; i < rs->md.raid_disks; i++) { 1589 struct md_rdev *rdev = &rs->dev[i].rdev; 1590 1591 if (!test_bit(Journal, &rdev->flags) && 1592 rdev->bdev && rdev->sectors) 1593 return rdev->sectors; 1594 } 1595 1596 return 0; 1597 } 1598 1599 /* Check that calculated dev_sectors fits all component devices. */ 1600 static int _check_data_dev_sectors(struct raid_set *rs) 1601 { 1602 sector_t ds = ~0; 1603 struct md_rdev *rdev; 1604 1605 rdev_for_each(rdev, &rs->md) 1606 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1607 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode))); 1608 if (ds < rs->md.dev_sectors) { 1609 rs->ti->error = "Component device(s) too small"; 1610 return -EINVAL; 1611 } 1612 } 1613 1614 return 0; 1615 } 1616 1617 /* Calculate the sectors per device and per array used for @rs */ 1618 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev) 1619 { 1620 int delta_disks; 1621 unsigned int data_stripes; 1622 struct mddev *mddev = &rs->md; 1623 struct md_rdev *rdev; 1624 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len; 1625 1626 if (use_mddev) { 1627 delta_disks = mddev->delta_disks; 1628 data_stripes = mddev_data_stripes(rs); 1629 } else { 1630 delta_disks = rs->delta_disks; 1631 data_stripes = rs_data_stripes(rs); 1632 } 1633 1634 /* Special raid1 case w/o delta_disks support (yet) */ 1635 if (rt_is_raid1(rs->raid_type)) 1636 ; 1637 else if (rt_is_raid10(rs->raid_type)) { 1638 if (rs->raid10_copies < 2 || 1639 delta_disks < 0) { 1640 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1641 return -EINVAL; 1642 } 1643 1644 dev_sectors *= rs->raid10_copies; 1645 if (sector_div(dev_sectors, data_stripes)) 1646 goto bad; 1647 1648 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1649 if (sector_div(array_sectors, rs->raid10_copies)) 1650 goto bad; 1651 1652 } else if (sector_div(dev_sectors, data_stripes)) 1653 goto bad; 1654 1655 else 1656 /* Striped layouts */ 1657 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1658 1659 rdev_for_each(rdev, mddev) 1660 if (!test_bit(Journal, &rdev->flags)) 1661 rdev->sectors = dev_sectors; 1662 1663 mddev->array_sectors = array_sectors; 1664 mddev->dev_sectors = dev_sectors; 1665 1666 return _check_data_dev_sectors(rs); 1667 bad: 1668 rs->ti->error = "Target length not divisible by number of data devices"; 1669 return -EINVAL; 1670 } 1671 1672 /* Setup recovery on @rs */ 1673 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1674 { 1675 /* raid0 does not recover */ 1676 if (rs_is_raid0(rs)) 1677 rs->md.recovery_cp = MaxSector; 1678 /* 1679 * A raid6 set has to be recovered either 1680 * completely or for the grown part to 1681 * ensure proper parity and Q-Syndrome 1682 */ 1683 else if (rs_is_raid6(rs)) 1684 rs->md.recovery_cp = dev_sectors; 1685 /* 1686 * Other raid set types may skip recovery 1687 * depending on the 'nosync' flag. 1688 */ 1689 else 1690 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1691 ? MaxSector : dev_sectors; 1692 } 1693 1694 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */ 1695 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1696 { 1697 if (!dev_sectors) 1698 /* New raid set or 'sync' flag provided */ 1699 __rs_setup_recovery(rs, 0); 1700 else if (dev_sectors == MaxSector) 1701 /* Prevent recovery */ 1702 __rs_setup_recovery(rs, MaxSector); 1703 else if (__rdev_sectors(rs) < dev_sectors) 1704 /* Grown raid set */ 1705 __rs_setup_recovery(rs, __rdev_sectors(rs)); 1706 else 1707 __rs_setup_recovery(rs, MaxSector); 1708 } 1709 1710 static void do_table_event(struct work_struct *ws) 1711 { 1712 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1713 1714 smp_rmb(); /* Make sure we access most actual mddev properties */ 1715 if (!rs_is_reshaping(rs)) { 1716 if (rs_is_raid10(rs)) 1717 rs_set_rdev_sectors(rs); 1718 rs_set_capacity(rs); 1719 } 1720 dm_table_event(rs->ti->table); 1721 } 1722 1723 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 1724 { 1725 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 1726 1727 return mddev_congested(&rs->md, bits); 1728 } 1729 1730 /* 1731 * Make sure a valid takover (level switch) is being requested on @rs 1732 * 1733 * Conversions of raid sets from one MD personality to another 1734 * have to conform to restrictions which are enforced here. 1735 */ 1736 static int rs_check_takeover(struct raid_set *rs) 1737 { 1738 struct mddev *mddev = &rs->md; 1739 unsigned int near_copies; 1740 1741 if (rs->md.degraded) { 1742 rs->ti->error = "Can't takeover degraded raid set"; 1743 return -EPERM; 1744 } 1745 1746 if (rs_is_reshaping(rs)) { 1747 rs->ti->error = "Can't takeover reshaping raid set"; 1748 return -EPERM; 1749 } 1750 1751 switch (mddev->level) { 1752 case 0: 1753 /* raid0 -> raid1/5 with one disk */ 1754 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1755 mddev->raid_disks == 1) 1756 return 0; 1757 1758 /* raid0 -> raid10 */ 1759 if (mddev->new_level == 10 && 1760 !(rs->raid_disks % mddev->raid_disks)) 1761 return 0; 1762 1763 /* raid0 with multiple disks -> raid4/5/6 */ 1764 if (__within_range(mddev->new_level, 4, 6) && 1765 mddev->new_layout == ALGORITHM_PARITY_N && 1766 mddev->raid_disks > 1) 1767 return 0; 1768 1769 break; 1770 1771 case 10: 1772 /* Can't takeover raid10_offset! */ 1773 if (__is_raid10_offset(mddev->layout)) 1774 break; 1775 1776 near_copies = __raid10_near_copies(mddev->layout); 1777 1778 /* raid10* -> raid0 */ 1779 if (mddev->new_level == 0) { 1780 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1781 if (near_copies > 1 && 1782 !(mddev->raid_disks % near_copies)) { 1783 mddev->raid_disks /= near_copies; 1784 mddev->delta_disks = mddev->raid_disks; 1785 return 0; 1786 } 1787 1788 /* Can takeover raid10_far */ 1789 if (near_copies == 1 && 1790 __raid10_far_copies(mddev->layout) > 1) 1791 return 0; 1792 1793 break; 1794 } 1795 1796 /* raid10_{near,far} -> raid1 */ 1797 if (mddev->new_level == 1 && 1798 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1799 return 0; 1800 1801 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1802 if (__within_range(mddev->new_level, 4, 5) && 1803 mddev->raid_disks == 2) 1804 return 0; 1805 break; 1806 1807 case 1: 1808 /* raid1 with 2 disks -> raid4/5 */ 1809 if (__within_range(mddev->new_level, 4, 5) && 1810 mddev->raid_disks == 2) { 1811 mddev->degraded = 1; 1812 return 0; 1813 } 1814 1815 /* raid1 -> raid0 */ 1816 if (mddev->new_level == 0 && 1817 mddev->raid_disks == 1) 1818 return 0; 1819 1820 /* raid1 -> raid10 */ 1821 if (mddev->new_level == 10) 1822 return 0; 1823 break; 1824 1825 case 4: 1826 /* raid4 -> raid0 */ 1827 if (mddev->new_level == 0) 1828 return 0; 1829 1830 /* raid4 -> raid1/5 with 2 disks */ 1831 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1832 mddev->raid_disks == 2) 1833 return 0; 1834 1835 /* raid4 -> raid5/6 with parity N */ 1836 if (__within_range(mddev->new_level, 5, 6) && 1837 mddev->layout == ALGORITHM_PARITY_N) 1838 return 0; 1839 break; 1840 1841 case 5: 1842 /* raid5 with parity N -> raid0 */ 1843 if (mddev->new_level == 0 && 1844 mddev->layout == ALGORITHM_PARITY_N) 1845 return 0; 1846 1847 /* raid5 with parity N -> raid4 */ 1848 if (mddev->new_level == 4 && 1849 mddev->layout == ALGORITHM_PARITY_N) 1850 return 0; 1851 1852 /* raid5 with 2 disks -> raid1/4/10 */ 1853 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1854 mddev->raid_disks == 2) 1855 return 0; 1856 1857 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1858 if (mddev->new_level == 6 && 1859 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1860 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1861 return 0; 1862 break; 1863 1864 case 6: 1865 /* raid6 with parity N -> raid0 */ 1866 if (mddev->new_level == 0 && 1867 mddev->layout == ALGORITHM_PARITY_N) 1868 return 0; 1869 1870 /* raid6 with parity N -> raid4 */ 1871 if (mddev->new_level == 4 && 1872 mddev->layout == ALGORITHM_PARITY_N) 1873 return 0; 1874 1875 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1876 if (mddev->new_level == 5 && 1877 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1878 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1879 return 0; 1880 1881 default: 1882 break; 1883 } 1884 1885 rs->ti->error = "takeover not possible"; 1886 return -EINVAL; 1887 } 1888 1889 /* True if @rs requested to be taken over */ 1890 static bool rs_takeover_requested(struct raid_set *rs) 1891 { 1892 return rs->md.new_level != rs->md.level; 1893 } 1894 1895 /* True if @rs is requested to reshape by ctr */ 1896 static bool rs_reshape_requested(struct raid_set *rs) 1897 { 1898 bool change; 1899 struct mddev *mddev = &rs->md; 1900 1901 if (rs_takeover_requested(rs)) 1902 return false; 1903 1904 if (rs_is_raid0(rs)) 1905 return false; 1906 1907 change = mddev->new_layout != mddev->layout || 1908 mddev->new_chunk_sectors != mddev->chunk_sectors || 1909 rs->delta_disks; 1910 1911 /* Historical case to support raid1 reshape without delta disks */ 1912 if (rs_is_raid1(rs)) { 1913 if (rs->delta_disks) 1914 return !!rs->delta_disks; 1915 1916 return !change && 1917 mddev->raid_disks != rs->raid_disks; 1918 } 1919 1920 if (rs_is_raid10(rs)) 1921 return change && 1922 !__is_raid10_far(mddev->new_layout) && 1923 rs->delta_disks >= 0; 1924 1925 return change; 1926 } 1927 1928 /* Features */ 1929 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1930 1931 /* State flags for sb->flags */ 1932 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1933 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1934 1935 /* 1936 * This structure is never routinely used by userspace, unlike md superblocks. 1937 * Devices with this superblock should only ever be accessed via device-mapper. 1938 */ 1939 #define DM_RAID_MAGIC 0x64526D44 1940 struct dm_raid_superblock { 1941 __le32 magic; /* "DmRd" */ 1942 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1943 1944 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1945 __le32 array_position; /* The position of this drive in the raid set */ 1946 1947 __le64 events; /* Incremented by md when superblock updated */ 1948 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1949 /* indicate failures (see extension below) */ 1950 1951 /* 1952 * This offset tracks the progress of the repair or replacement of 1953 * an individual drive. 1954 */ 1955 __le64 disk_recovery_offset; 1956 1957 /* 1958 * This offset tracks the progress of the initial raid set 1959 * synchronisation/parity calculation. 1960 */ 1961 __le64 array_resync_offset; 1962 1963 /* 1964 * raid characteristics 1965 */ 1966 __le32 level; 1967 __le32 layout; 1968 __le32 stripe_sectors; 1969 1970 /******************************************************************** 1971 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1972 * 1973 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1974 */ 1975 1976 __le32 flags; /* Flags defining array states for reshaping */ 1977 1978 /* 1979 * This offset tracks the progress of a raid 1980 * set reshape in order to be able to restart it 1981 */ 1982 __le64 reshape_position; 1983 1984 /* 1985 * These define the properties of the array in case of an interrupted reshape 1986 */ 1987 __le32 new_level; 1988 __le32 new_layout; 1989 __le32 new_stripe_sectors; 1990 __le32 delta_disks; 1991 1992 __le64 array_sectors; /* Array size in sectors */ 1993 1994 /* 1995 * Sector offsets to data on devices (reshaping). 1996 * Needed to support out of place reshaping, thus 1997 * not writing over any stripes whilst converting 1998 * them from old to new layout 1999 */ 2000 __le64 data_offset; 2001 __le64 new_data_offset; 2002 2003 __le64 sectors; /* Used device size in sectors */ 2004 2005 /* 2006 * Additonal Bit field of devices indicating failures to support 2007 * up to 256 devices with the 1.9.0 on-disk metadata format 2008 */ 2009 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 2010 2011 __le32 incompat_features; /* Used to indicate any incompatible features */ 2012 2013 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 2014 } __packed; 2015 2016 /* 2017 * Check for reshape constraints on raid set @rs: 2018 * 2019 * - reshape function non-existent 2020 * - degraded set 2021 * - ongoing recovery 2022 * - ongoing reshape 2023 * 2024 * Returns 0 if none or -EPERM if given constraint 2025 * and error message reference in @errmsg 2026 */ 2027 static int rs_check_reshape(struct raid_set *rs) 2028 { 2029 struct mddev *mddev = &rs->md; 2030 2031 if (!mddev->pers || !mddev->pers->check_reshape) 2032 rs->ti->error = "Reshape not supported"; 2033 else if (mddev->degraded) 2034 rs->ti->error = "Can't reshape degraded raid set"; 2035 else if (rs_is_recovering(rs)) 2036 rs->ti->error = "Convert request on recovering raid set prohibited"; 2037 else if (rs_is_reshaping(rs)) 2038 rs->ti->error = "raid set already reshaping!"; 2039 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2040 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2041 else 2042 return 0; 2043 2044 return -EPERM; 2045 } 2046 2047 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2048 { 2049 BUG_ON(!rdev->sb_page); 2050 2051 if (rdev->sb_loaded && !force_reload) 2052 return 0; 2053 2054 rdev->sb_loaded = 0; 2055 2056 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { 2057 DMERR("Failed to read superblock of device at position %d", 2058 rdev->raid_disk); 2059 md_error(rdev->mddev, rdev); 2060 set_bit(Faulty, &rdev->flags); 2061 return -EIO; 2062 } 2063 2064 rdev->sb_loaded = 1; 2065 2066 return 0; 2067 } 2068 2069 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2070 { 2071 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2072 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2073 2074 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2075 int i = ARRAY_SIZE(sb->extended_failed_devices); 2076 2077 while (i--) 2078 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2079 } 2080 } 2081 2082 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2083 { 2084 int i = ARRAY_SIZE(sb->extended_failed_devices); 2085 2086 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2087 while (i--) 2088 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2089 } 2090 2091 /* 2092 * Synchronize the superblock members with the raid set properties 2093 * 2094 * All superblock data is little endian. 2095 */ 2096 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2097 { 2098 bool update_failed_devices = false; 2099 unsigned int i; 2100 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2101 struct dm_raid_superblock *sb; 2102 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2103 2104 /* No metadata device, no superblock */ 2105 if (!rdev->meta_bdev) 2106 return; 2107 2108 BUG_ON(!rdev->sb_page); 2109 2110 sb = page_address(rdev->sb_page); 2111 2112 sb_retrieve_failed_devices(sb, failed_devices); 2113 2114 for (i = 0; i < rs->raid_disks; i++) 2115 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2116 update_failed_devices = true; 2117 set_bit(i, (void *) failed_devices); 2118 } 2119 2120 if (update_failed_devices) 2121 sb_update_failed_devices(sb, failed_devices); 2122 2123 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2124 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2125 2126 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2127 sb->array_position = cpu_to_le32(rdev->raid_disk); 2128 2129 sb->events = cpu_to_le64(mddev->events); 2130 2131 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2132 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2133 2134 sb->level = cpu_to_le32(mddev->level); 2135 sb->layout = cpu_to_le32(mddev->layout); 2136 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2137 2138 /******************************************************************** 2139 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2140 * 2141 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2142 */ 2143 sb->new_level = cpu_to_le32(mddev->new_level); 2144 sb->new_layout = cpu_to_le32(mddev->new_layout); 2145 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2146 2147 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2148 2149 smp_rmb(); /* Make sure we access most recent reshape position */ 2150 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2151 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2152 /* Flag ongoing reshape */ 2153 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2154 2155 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2156 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2157 } else { 2158 /* Clear reshape flags */ 2159 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2160 } 2161 2162 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2163 sb->data_offset = cpu_to_le64(rdev->data_offset); 2164 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2165 sb->sectors = cpu_to_le64(rdev->sectors); 2166 sb->incompat_features = cpu_to_le32(0); 2167 2168 /* Zero out the rest of the payload after the size of the superblock */ 2169 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2170 } 2171 2172 /* 2173 * super_load 2174 * 2175 * This function creates a superblock if one is not found on the device 2176 * and will decide which superblock to use if there's a choice. 2177 * 2178 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2179 */ 2180 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2181 { 2182 int r; 2183 struct dm_raid_superblock *sb; 2184 struct dm_raid_superblock *refsb; 2185 uint64_t events_sb, events_refsb; 2186 2187 r = read_disk_sb(rdev, rdev->sb_size, false); 2188 if (r) 2189 return r; 2190 2191 sb = page_address(rdev->sb_page); 2192 2193 /* 2194 * Two cases that we want to write new superblocks and rebuild: 2195 * 1) New device (no matching magic number) 2196 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2197 */ 2198 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2199 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2200 super_sync(rdev->mddev, rdev); 2201 2202 set_bit(FirstUse, &rdev->flags); 2203 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2204 2205 /* Force writing of superblocks to disk */ 2206 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2207 2208 /* Any superblock is better than none, choose that if given */ 2209 return refdev ? 0 : 1; 2210 } 2211 2212 if (!refdev) 2213 return 1; 2214 2215 events_sb = le64_to_cpu(sb->events); 2216 2217 refsb = page_address(refdev->sb_page); 2218 events_refsb = le64_to_cpu(refsb->events); 2219 2220 return (events_sb > events_refsb) ? 1 : 0; 2221 } 2222 2223 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2224 { 2225 int role; 2226 unsigned int d; 2227 struct mddev *mddev = &rs->md; 2228 uint64_t events_sb; 2229 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2230 struct dm_raid_superblock *sb; 2231 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2232 struct md_rdev *r; 2233 struct dm_raid_superblock *sb2; 2234 2235 sb = page_address(rdev->sb_page); 2236 events_sb = le64_to_cpu(sb->events); 2237 2238 /* 2239 * Initialise to 1 if this is a new superblock. 2240 */ 2241 mddev->events = events_sb ? : 1; 2242 2243 mddev->reshape_position = MaxSector; 2244 2245 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2246 mddev->level = le32_to_cpu(sb->level); 2247 mddev->layout = le32_to_cpu(sb->layout); 2248 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2249 2250 /* 2251 * Reshaping is supported, e.g. reshape_position is valid 2252 * in superblock and superblock content is authoritative. 2253 */ 2254 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2255 /* Superblock is authoritative wrt given raid set layout! */ 2256 mddev->new_level = le32_to_cpu(sb->new_level); 2257 mddev->new_layout = le32_to_cpu(sb->new_layout); 2258 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2259 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2260 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2261 2262 /* raid was reshaping and got interrupted */ 2263 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2264 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2265 DMERR("Reshape requested but raid set is still reshaping"); 2266 return -EINVAL; 2267 } 2268 2269 if (mddev->delta_disks < 0 || 2270 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2271 mddev->reshape_backwards = 1; 2272 else 2273 mddev->reshape_backwards = 0; 2274 2275 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2276 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2277 } 2278 2279 } else { 2280 /* 2281 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2282 */ 2283 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2284 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2285 2286 if (rs_takeover_requested(rs)) { 2287 if (rt_cur && rt_new) 2288 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2289 rt_cur->name, rt_new->name); 2290 else 2291 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2292 return -EINVAL; 2293 } else if (rs_reshape_requested(rs)) { 2294 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2295 if (mddev->layout != mddev->new_layout) { 2296 if (rt_cur && rt_new) 2297 DMERR(" current layout %s vs new layout %s", 2298 rt_cur->name, rt_new->name); 2299 else 2300 DMERR(" current layout 0x%X vs new layout 0x%X", 2301 le32_to_cpu(sb->layout), mddev->new_layout); 2302 } 2303 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2304 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2305 mddev->chunk_sectors, mddev->new_chunk_sectors); 2306 if (rs->delta_disks) 2307 DMERR(" current %u disks vs new %u disks", 2308 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2309 if (rs_is_raid10(rs)) { 2310 DMERR(" Old layout: %s w/ %u copies", 2311 raid10_md_layout_to_format(mddev->layout), 2312 raid10_md_layout_to_copies(mddev->layout)); 2313 DMERR(" New layout: %s w/ %u copies", 2314 raid10_md_layout_to_format(mddev->new_layout), 2315 raid10_md_layout_to_copies(mddev->new_layout)); 2316 } 2317 return -EINVAL; 2318 } 2319 2320 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2321 } 2322 2323 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2324 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2325 2326 /* 2327 * During load, we set FirstUse if a new superblock was written. 2328 * There are two reasons we might not have a superblock: 2329 * 1) The raid set is brand new - in which case, all of the 2330 * devices must have their In_sync bit set. Also, 2331 * recovery_cp must be 0, unless forced. 2332 * 2) This is a new device being added to an old raid set 2333 * and the new device needs to be rebuilt - in which 2334 * case the In_sync bit will /not/ be set and 2335 * recovery_cp must be MaxSector. 2336 * 3) This is/are a new device(s) being added to an old 2337 * raid set during takeover to a higher raid level 2338 * to provide capacity for redundancy or during reshape 2339 * to add capacity to grow the raid set. 2340 */ 2341 d = 0; 2342 rdev_for_each(r, mddev) { 2343 if (test_bit(Journal, &rdev->flags)) 2344 continue; 2345 2346 if (test_bit(FirstUse, &r->flags)) 2347 new_devs++; 2348 2349 if (!test_bit(In_sync, &r->flags)) { 2350 DMINFO("Device %d specified for rebuild; clearing superblock", 2351 r->raid_disk); 2352 rebuilds++; 2353 2354 if (test_bit(FirstUse, &r->flags)) 2355 rebuild_and_new++; 2356 } 2357 2358 d++; 2359 } 2360 2361 if (new_devs == rs->raid_disks || !rebuilds) { 2362 /* Replace a broken device */ 2363 if (new_devs == 1 && !rs->delta_disks) 2364 ; 2365 if (new_devs == rs->raid_disks) { 2366 DMINFO("Superblocks created for new raid set"); 2367 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2368 } else if (new_devs != rebuilds && 2369 new_devs != rs->delta_disks) { 2370 DMERR("New device injected into existing raid set without " 2371 "'delta_disks' or 'rebuild' parameter specified"); 2372 return -EINVAL; 2373 } 2374 } else if (new_devs && new_devs != rebuilds) { 2375 DMERR("%u 'rebuild' devices cannot be injected into" 2376 " a raid set with %u other first-time devices", 2377 rebuilds, new_devs); 2378 return -EINVAL; 2379 } else if (rebuilds) { 2380 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2381 DMERR("new device%s provided without 'rebuild'", 2382 new_devs > 1 ? "s" : ""); 2383 return -EINVAL; 2384 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2385 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2386 (unsigned long long) mddev->recovery_cp); 2387 return -EINVAL; 2388 } else if (rs_is_reshaping(rs)) { 2389 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2390 (unsigned long long) mddev->reshape_position); 2391 return -EINVAL; 2392 } 2393 } 2394 2395 /* 2396 * Now we set the Faulty bit for those devices that are 2397 * recorded in the superblock as failed. 2398 */ 2399 sb_retrieve_failed_devices(sb, failed_devices); 2400 rdev_for_each(r, mddev) { 2401 if (test_bit(Journal, &rdev->flags) || 2402 !r->sb_page) 2403 continue; 2404 sb2 = page_address(r->sb_page); 2405 sb2->failed_devices = 0; 2406 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2407 2408 /* 2409 * Check for any device re-ordering. 2410 */ 2411 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2412 role = le32_to_cpu(sb2->array_position); 2413 if (role < 0) 2414 continue; 2415 2416 if (role != r->raid_disk) { 2417 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2418 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2419 rs->raid_disks % rs->raid10_copies) { 2420 rs->ti->error = 2421 "Cannot change raid10 near set to odd # of devices!"; 2422 return -EINVAL; 2423 } 2424 2425 sb2->array_position = cpu_to_le32(r->raid_disk); 2426 2427 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2428 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2429 !rt_is_raid1(rs->raid_type)) { 2430 rs->ti->error = "Cannot change device positions in raid set"; 2431 return -EINVAL; 2432 } 2433 2434 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2435 } 2436 2437 /* 2438 * Partial recovery is performed on 2439 * returning failed devices. 2440 */ 2441 if (test_bit(role, (void *) failed_devices)) 2442 set_bit(Faulty, &r->flags); 2443 } 2444 } 2445 2446 return 0; 2447 } 2448 2449 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2450 { 2451 struct mddev *mddev = &rs->md; 2452 struct dm_raid_superblock *sb; 2453 2454 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2455 return 0; 2456 2457 sb = page_address(rdev->sb_page); 2458 2459 /* 2460 * If mddev->events is not set, we know we have not yet initialized 2461 * the array. 2462 */ 2463 if (!mddev->events && super_init_validation(rs, rdev)) 2464 return -EINVAL; 2465 2466 if (le32_to_cpu(sb->compat_features) && 2467 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2468 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2469 return -EINVAL; 2470 } 2471 2472 if (sb->incompat_features) { 2473 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2474 return -EINVAL; 2475 } 2476 2477 /* Enable bitmap creation for RAID levels != 0 */ 2478 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2479 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2480 2481 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2482 /* 2483 * Retrieve rdev size stored in superblock to be prepared for shrink. 2484 * Check extended superblock members are present otherwise the size 2485 * will not be set! 2486 */ 2487 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2488 rdev->sectors = le64_to_cpu(sb->sectors); 2489 2490 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2491 if (rdev->recovery_offset == MaxSector) 2492 set_bit(In_sync, &rdev->flags); 2493 /* 2494 * If no reshape in progress -> we're recovering single 2495 * disk(s) and have to set the device(s) to out-of-sync 2496 */ 2497 else if (!rs_is_reshaping(rs)) 2498 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2499 } 2500 2501 /* 2502 * If a device comes back, set it as not In_sync and no longer faulty. 2503 */ 2504 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2505 rdev->recovery_offset = 0; 2506 clear_bit(In_sync, &rdev->flags); 2507 rdev->saved_raid_disk = rdev->raid_disk; 2508 } 2509 2510 /* Reshape support -> restore repective data offsets */ 2511 rdev->data_offset = le64_to_cpu(sb->data_offset); 2512 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2513 2514 return 0; 2515 } 2516 2517 /* 2518 * Analyse superblocks and select the freshest. 2519 */ 2520 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2521 { 2522 int r; 2523 struct md_rdev *rdev, *freshest; 2524 struct mddev *mddev = &rs->md; 2525 2526 freshest = NULL; 2527 rdev_for_each(rdev, mddev) { 2528 if (test_bit(Journal, &rdev->flags)) 2529 continue; 2530 2531 if (!rdev->meta_bdev) 2532 continue; 2533 2534 /* Set superblock offset/size for metadata device. */ 2535 rdev->sb_start = 0; 2536 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2537 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2538 DMERR("superblock size of a logical block is no longer valid"); 2539 return -EINVAL; 2540 } 2541 2542 /* 2543 * Skipping super_load due to CTR_FLAG_SYNC will cause 2544 * the array to undergo initialization again as 2545 * though it were new. This is the intended effect 2546 * of the "sync" directive. 2547 * 2548 * With reshaping capability added, we must ensure that 2549 * that the "sync" directive is disallowed during the reshape. 2550 */ 2551 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2552 continue; 2553 2554 r = super_load(rdev, freshest); 2555 2556 switch (r) { 2557 case 1: 2558 freshest = rdev; 2559 break; 2560 case 0: 2561 break; 2562 default: 2563 /* This is a failure to read the superblock from the metadata device. */ 2564 /* 2565 * We have to keep any raid0 data/metadata device pairs or 2566 * the MD raid0 personality will fail to start the array. 2567 */ 2568 if (rs_is_raid0(rs)) 2569 continue; 2570 2571 /* 2572 * We keep the dm_devs to be able to emit the device tuple 2573 * properly on the table line in raid_status() (rather than 2574 * mistakenly acting as if '- -' got passed into the constructor). 2575 * 2576 * The rdev has to stay on the same_set list to allow for 2577 * the attempt to restore faulty devices on second resume. 2578 */ 2579 rdev->raid_disk = rdev->saved_raid_disk = -1; 2580 break; 2581 } 2582 } 2583 2584 if (!freshest) 2585 return 0; 2586 2587 /* 2588 * Validation of the freshest device provides the source of 2589 * validation for the remaining devices. 2590 */ 2591 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2592 if (super_validate(rs, freshest)) 2593 return -EINVAL; 2594 2595 if (validate_raid_redundancy(rs)) { 2596 rs->ti->error = "Insufficient redundancy to activate array"; 2597 return -EINVAL; 2598 } 2599 2600 rdev_for_each(rdev, mddev) 2601 if (!test_bit(Journal, &rdev->flags) && 2602 rdev != freshest && 2603 super_validate(rs, rdev)) 2604 return -EINVAL; 2605 return 0; 2606 } 2607 2608 /* 2609 * Adjust data_offset and new_data_offset on all disk members of @rs 2610 * for out of place reshaping if requested by contructor 2611 * 2612 * We need free space at the beginning of each raid disk for forward 2613 * and at the end for backward reshapes which userspace has to provide 2614 * via remapping/reordering of space. 2615 */ 2616 static int rs_adjust_data_offsets(struct raid_set *rs) 2617 { 2618 sector_t data_offset = 0, new_data_offset = 0; 2619 struct md_rdev *rdev; 2620 2621 /* Constructor did not request data offset change */ 2622 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2623 if (!rs_is_reshapable(rs)) 2624 goto out; 2625 2626 return 0; 2627 } 2628 2629 /* HM FIXME: get In_Sync raid_dev? */ 2630 rdev = &rs->dev[0].rdev; 2631 2632 if (rs->delta_disks < 0) { 2633 /* 2634 * Removing disks (reshaping backwards): 2635 * 2636 * - before reshape: data is at offset 0 and free space 2637 * is at end of each component LV 2638 * 2639 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2640 */ 2641 data_offset = 0; 2642 new_data_offset = rs->data_offset; 2643 2644 } else if (rs->delta_disks > 0) { 2645 /* 2646 * Adding disks (reshaping forwards): 2647 * 2648 * - before reshape: data is at offset rs->data_offset != 0 and 2649 * free space is at begin of each component LV 2650 * 2651 * - after reshape: data is at offset 0 on each component LV 2652 */ 2653 data_offset = rs->data_offset; 2654 new_data_offset = 0; 2655 2656 } else { 2657 /* 2658 * User space passes in 0 for data offset after having removed reshape space 2659 * 2660 * - or - (data offset != 0) 2661 * 2662 * Changing RAID layout or chunk size -> toggle offsets 2663 * 2664 * - before reshape: data is at offset rs->data_offset 0 and 2665 * free space is at end of each component LV 2666 * -or- 2667 * data is at offset rs->data_offset != 0 and 2668 * free space is at begin of each component LV 2669 * 2670 * - after reshape: data is at offset 0 if it was at offset != 0 2671 * or at offset != 0 if it was at offset 0 2672 * on each component LV 2673 * 2674 */ 2675 data_offset = rs->data_offset ? rdev->data_offset : 0; 2676 new_data_offset = data_offset ? 0 : rs->data_offset; 2677 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2678 } 2679 2680 /* 2681 * Make sure we got a minimum amount of free sectors per device 2682 */ 2683 if (rs->data_offset && 2684 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2685 rs->ti->error = data_offset ? "No space for forward reshape" : 2686 "No space for backward reshape"; 2687 return -ENOSPC; 2688 } 2689 out: 2690 /* 2691 * Raise recovery_cp in case data_offset != 0 to 2692 * avoid false recovery positives in the constructor. 2693 */ 2694 if (rs->md.recovery_cp < rs->md.dev_sectors) 2695 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2696 2697 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2698 rdev_for_each(rdev, &rs->md) { 2699 if (!test_bit(Journal, &rdev->flags)) { 2700 rdev->data_offset = data_offset; 2701 rdev->new_data_offset = new_data_offset; 2702 } 2703 } 2704 2705 return 0; 2706 } 2707 2708 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2709 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2710 { 2711 int i = 0; 2712 struct md_rdev *rdev; 2713 2714 rdev_for_each(rdev, &rs->md) { 2715 if (!test_bit(Journal, &rdev->flags)) { 2716 rdev->raid_disk = i++; 2717 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2718 } 2719 } 2720 } 2721 2722 /* 2723 * Setup @rs for takeover by a different raid level 2724 */ 2725 static int rs_setup_takeover(struct raid_set *rs) 2726 { 2727 struct mddev *mddev = &rs->md; 2728 struct md_rdev *rdev; 2729 unsigned int d = mddev->raid_disks = rs->raid_disks; 2730 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2731 2732 if (rt_is_raid10(rs->raid_type)) { 2733 if (rs_is_raid0(rs)) { 2734 /* Userpace reordered disks -> adjust raid_disk indexes */ 2735 __reorder_raid_disk_indexes(rs); 2736 2737 /* raid0 -> raid10_far layout */ 2738 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2739 rs->raid10_copies); 2740 } else if (rs_is_raid1(rs)) 2741 /* raid1 -> raid10_near layout */ 2742 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2743 rs->raid_disks); 2744 else 2745 return -EINVAL; 2746 2747 } 2748 2749 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2750 mddev->recovery_cp = MaxSector; 2751 2752 while (d--) { 2753 rdev = &rs->dev[d].rdev; 2754 2755 if (test_bit(d, (void *) rs->rebuild_disks)) { 2756 clear_bit(In_sync, &rdev->flags); 2757 clear_bit(Faulty, &rdev->flags); 2758 mddev->recovery_cp = rdev->recovery_offset = 0; 2759 /* Bitmap has to be created when we do an "up" takeover */ 2760 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2761 } 2762 2763 rdev->new_data_offset = new_data_offset; 2764 } 2765 2766 return 0; 2767 } 2768 2769 /* Prepare @rs for reshape */ 2770 static int rs_prepare_reshape(struct raid_set *rs) 2771 { 2772 bool reshape; 2773 struct mddev *mddev = &rs->md; 2774 2775 if (rs_is_raid10(rs)) { 2776 if (rs->raid_disks != mddev->raid_disks && 2777 __is_raid10_near(mddev->layout) && 2778 rs->raid10_copies && 2779 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2780 /* 2781 * raid disk have to be multiple of data copies to allow this conversion, 2782 * 2783 * This is actually not a reshape it is a 2784 * rebuild of any additional mirrors per group 2785 */ 2786 if (rs->raid_disks % rs->raid10_copies) { 2787 rs->ti->error = "Can't reshape raid10 mirror groups"; 2788 return -EINVAL; 2789 } 2790 2791 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2792 __reorder_raid_disk_indexes(rs); 2793 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2794 rs->raid10_copies); 2795 mddev->new_layout = mddev->layout; 2796 reshape = false; 2797 } else 2798 reshape = true; 2799 2800 } else if (rs_is_raid456(rs)) 2801 reshape = true; 2802 2803 else if (rs_is_raid1(rs)) { 2804 if (rs->delta_disks) { 2805 /* Process raid1 via delta_disks */ 2806 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2807 reshape = true; 2808 } else { 2809 /* Process raid1 without delta_disks */ 2810 mddev->raid_disks = rs->raid_disks; 2811 reshape = false; 2812 } 2813 } else { 2814 rs->ti->error = "Called with bogus raid type"; 2815 return -EINVAL; 2816 } 2817 2818 if (reshape) { 2819 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2820 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2821 } else if (mddev->raid_disks < rs->raid_disks) 2822 /* Create new superblocks and bitmaps, if any new disks */ 2823 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2824 2825 return 0; 2826 } 2827 2828 /* Get reshape sectors from data_offsets or raid set */ 2829 static sector_t _get_reshape_sectors(struct raid_set *rs) 2830 { 2831 struct md_rdev *rdev; 2832 sector_t reshape_sectors = 0; 2833 2834 rdev_for_each(rdev, &rs->md) 2835 if (!test_bit(Journal, &rdev->flags)) { 2836 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2837 rdev->data_offset - rdev->new_data_offset : 2838 rdev->new_data_offset - rdev->data_offset; 2839 break; 2840 } 2841 2842 return max(reshape_sectors, (sector_t) rs->data_offset); 2843 } 2844 2845 /* 2846 * 2847 * - change raid layout 2848 * - change chunk size 2849 * - add disks 2850 * - remove disks 2851 */ 2852 static int rs_setup_reshape(struct raid_set *rs) 2853 { 2854 int r = 0; 2855 unsigned int cur_raid_devs, d; 2856 sector_t reshape_sectors = _get_reshape_sectors(rs); 2857 struct mddev *mddev = &rs->md; 2858 struct md_rdev *rdev; 2859 2860 mddev->delta_disks = rs->delta_disks; 2861 cur_raid_devs = mddev->raid_disks; 2862 2863 /* Ignore impossible layout change whilst adding/removing disks */ 2864 if (mddev->delta_disks && 2865 mddev->layout != mddev->new_layout) { 2866 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2867 mddev->new_layout = mddev->layout; 2868 } 2869 2870 /* 2871 * Adjust array size: 2872 * 2873 * - in case of adding disk(s), array size has 2874 * to grow after the disk adding reshape, 2875 * which'll hapen in the event handler; 2876 * reshape will happen forward, so space has to 2877 * be available at the beginning of each disk 2878 * 2879 * - in case of removing disk(s), array size 2880 * has to shrink before starting the reshape, 2881 * which'll happen here; 2882 * reshape will happen backward, so space has to 2883 * be available at the end of each disk 2884 * 2885 * - data_offset and new_data_offset are 2886 * adjusted for aforementioned out of place 2887 * reshaping based on userspace passing in 2888 * the "data_offset <sectors>" key/value 2889 * pair via the constructor 2890 */ 2891 2892 /* Add disk(s) */ 2893 if (rs->delta_disks > 0) { 2894 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2895 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2896 rdev = &rs->dev[d].rdev; 2897 clear_bit(In_sync, &rdev->flags); 2898 2899 /* 2900 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2901 * by md, which'll store that erroneously in the superblock on reshape 2902 */ 2903 rdev->saved_raid_disk = -1; 2904 rdev->raid_disk = d; 2905 2906 rdev->sectors = mddev->dev_sectors; 2907 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2908 } 2909 2910 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2911 2912 /* Remove disk(s) */ 2913 } else if (rs->delta_disks < 0) { 2914 r = rs_set_dev_and_array_sectors(rs, true); 2915 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2916 2917 /* Change layout and/or chunk size */ 2918 } else { 2919 /* 2920 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2921 * 2922 * keeping number of disks and do layout change -> 2923 * 2924 * toggle reshape_backward depending on data_offset: 2925 * 2926 * - free space upfront -> reshape forward 2927 * 2928 * - free space at the end -> reshape backward 2929 * 2930 * 2931 * This utilizes free reshape space avoiding the need 2932 * for userspace to move (parts of) LV segments in 2933 * case of layout/chunksize change (for disk 2934 * adding/removing reshape space has to be at 2935 * the proper address (see above with delta_disks): 2936 * 2937 * add disk(s) -> begin 2938 * remove disk(s)-> end 2939 */ 2940 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2941 } 2942 2943 /* 2944 * Adjust device size for forward reshape 2945 * because md_finish_reshape() reduces it. 2946 */ 2947 if (!mddev->reshape_backwards) 2948 rdev_for_each(rdev, &rs->md) 2949 if (!test_bit(Journal, &rdev->flags)) 2950 rdev->sectors += reshape_sectors; 2951 2952 return r; 2953 } 2954 2955 /* 2956 * Enable/disable discard support on RAID set depending on 2957 * RAID level and discard properties of underlying RAID members. 2958 */ 2959 static void configure_discard_support(struct raid_set *rs) 2960 { 2961 int i; 2962 bool raid456; 2963 struct dm_target *ti = rs->ti; 2964 2965 /* 2966 * XXX: RAID level 4,5,6 require zeroing for safety. 2967 */ 2968 raid456 = rs_is_raid456(rs); 2969 2970 for (i = 0; i < rs->raid_disks; i++) { 2971 struct request_queue *q; 2972 2973 if (!rs->dev[i].rdev.bdev) 2974 continue; 2975 2976 q = bdev_get_queue(rs->dev[i].rdev.bdev); 2977 if (!q || !blk_queue_discard(q)) 2978 return; 2979 2980 if (raid456) { 2981 if (!devices_handle_discard_safely) { 2982 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2983 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2984 return; 2985 } 2986 } 2987 } 2988 2989 ti->num_discard_bios = 1; 2990 } 2991 2992 /* 2993 * Construct a RAID0/1/10/4/5/6 mapping: 2994 * Args: 2995 * <raid_type> <#raid_params> <raid_params>{0,} \ 2996 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2997 * 2998 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2999 * details on possible <raid_params>. 3000 * 3001 * Userspace is free to initialize the metadata devices, hence the superblocks to 3002 * enforce recreation based on the passed in table parameters. 3003 * 3004 */ 3005 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3006 { 3007 int r; 3008 bool resize = false; 3009 struct raid_type *rt; 3010 unsigned int num_raid_params, num_raid_devs; 3011 sector_t calculated_dev_sectors, rdev_sectors, reshape_sectors; 3012 struct raid_set *rs = NULL; 3013 const char *arg; 3014 struct rs_layout rs_layout; 3015 struct dm_arg_set as = { argc, argv }, as_nrd; 3016 struct dm_arg _args[] = { 3017 { 0, as.argc, "Cannot understand number of raid parameters" }, 3018 { 1, 254, "Cannot understand number of raid devices parameters" } 3019 }; 3020 3021 /* Must have <raid_type> */ 3022 arg = dm_shift_arg(&as); 3023 if (!arg) { 3024 ti->error = "No arguments"; 3025 return -EINVAL; 3026 } 3027 3028 rt = get_raid_type(arg); 3029 if (!rt) { 3030 ti->error = "Unrecognised raid_type"; 3031 return -EINVAL; 3032 } 3033 3034 /* Must have <#raid_params> */ 3035 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3036 return -EINVAL; 3037 3038 /* number of raid device tupples <meta_dev data_dev> */ 3039 as_nrd = as; 3040 dm_consume_args(&as_nrd, num_raid_params); 3041 _args[1].max = (as_nrd.argc - 1) / 2; 3042 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3043 return -EINVAL; 3044 3045 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3046 ti->error = "Invalid number of supplied raid devices"; 3047 return -EINVAL; 3048 } 3049 3050 rs = raid_set_alloc(ti, rt, num_raid_devs); 3051 if (IS_ERR(rs)) 3052 return PTR_ERR(rs); 3053 3054 r = parse_raid_params(rs, &as, num_raid_params); 3055 if (r) 3056 goto bad; 3057 3058 r = parse_dev_params(rs, &as); 3059 if (r) 3060 goto bad; 3061 3062 rs->md.sync_super = super_sync; 3063 3064 /* 3065 * Calculate ctr requested array and device sizes to allow 3066 * for superblock analysis needing device sizes defined. 3067 * 3068 * Any existing superblock will overwrite the array and device sizes 3069 */ 3070 r = rs_set_dev_and_array_sectors(rs, false); 3071 if (r) 3072 goto bad; 3073 3074 calculated_dev_sectors = rs->md.dev_sectors; 3075 3076 /* 3077 * Backup any new raid set level, layout, ... 3078 * requested to be able to compare to superblock 3079 * members for conversion decisions. 3080 */ 3081 rs_config_backup(rs, &rs_layout); 3082 3083 r = analyse_superblocks(ti, rs); 3084 if (r) 3085 goto bad; 3086 3087 rdev_sectors = __rdev_sectors(rs); 3088 if (!rdev_sectors) { 3089 ti->error = "Invalid rdev size"; 3090 r = -EINVAL; 3091 goto bad; 3092 } 3093 3094 3095 reshape_sectors = _get_reshape_sectors(rs); 3096 if (calculated_dev_sectors != rdev_sectors) 3097 resize = calculated_dev_sectors != (reshape_sectors ? rdev_sectors - reshape_sectors : rdev_sectors); 3098 3099 INIT_WORK(&rs->md.event_work, do_table_event); 3100 ti->private = rs; 3101 ti->num_flush_bios = 1; 3102 3103 /* Restore any requested new layout for conversion decision */ 3104 rs_config_restore(rs, &rs_layout); 3105 3106 /* 3107 * Now that we have any superblock metadata available, 3108 * check for new, recovering, reshaping, to be taken over, 3109 * to be reshaped or an existing, unchanged raid set to 3110 * run in sequence. 3111 */ 3112 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3113 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3114 if (rs_is_raid6(rs) && 3115 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3116 ti->error = "'nosync' not allowed for new raid6 set"; 3117 r = -EINVAL; 3118 goto bad; 3119 } 3120 rs_setup_recovery(rs, 0); 3121 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3122 rs_set_new(rs); 3123 } else if (rs_is_recovering(rs)) { 3124 /* Rebuild particular devices */ 3125 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3126 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3127 rs_setup_recovery(rs, MaxSector); 3128 } 3129 /* A recovering raid set may be resized */ 3130 ; /* skip setup rs */ 3131 } else if (rs_is_reshaping(rs)) { 3132 /* Have to reject size change request during reshape */ 3133 if (resize) { 3134 ti->error = "Can't resize a reshaping raid set"; 3135 r = -EPERM; 3136 goto bad; 3137 } 3138 /* skip setup rs */ 3139 } else if (rs_takeover_requested(rs)) { 3140 if (rs_is_reshaping(rs)) { 3141 ti->error = "Can't takeover a reshaping raid set"; 3142 r = -EPERM; 3143 goto bad; 3144 } 3145 3146 /* We can't takeover a journaled raid4/5/6 */ 3147 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3148 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3149 r = -EPERM; 3150 goto bad; 3151 } 3152 3153 /* 3154 * If a takeover is needed, userspace sets any additional 3155 * devices to rebuild and we can check for a valid request here. 3156 * 3157 * If acceptible, set the level to the new requested 3158 * one, prohibit requesting recovery, allow the raid 3159 * set to run and store superblocks during resume. 3160 */ 3161 r = rs_check_takeover(rs); 3162 if (r) 3163 goto bad; 3164 3165 r = rs_setup_takeover(rs); 3166 if (r) 3167 goto bad; 3168 3169 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3170 /* Takeover ain't recovery, so disable recovery */ 3171 rs_setup_recovery(rs, MaxSector); 3172 rs_set_new(rs); 3173 } else if (rs_reshape_requested(rs)) { 3174 /* 3175 * No need to check for 'ongoing' takeover here, because takeover 3176 * is an instant operation as oposed to an ongoing reshape. 3177 */ 3178 3179 /* We can't reshape a journaled raid4/5/6 */ 3180 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3181 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3182 r = -EPERM; 3183 goto bad; 3184 } 3185 3186 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3187 if (reshape_sectors || rs_is_raid1(rs)) { 3188 /* 3189 * We can only prepare for a reshape here, because the 3190 * raid set needs to run to provide the repective reshape 3191 * check functions via its MD personality instance. 3192 * 3193 * So do the reshape check after md_run() succeeded. 3194 */ 3195 r = rs_prepare_reshape(rs); 3196 if (r) 3197 goto bad; 3198 3199 /* Reshaping ain't recovery, so disable recovery */ 3200 rs_setup_recovery(rs, MaxSector); 3201 } 3202 rs_set_cur(rs); 3203 } else { 3204 /* May not set recovery when a device rebuild is requested */ 3205 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3206 rs_setup_recovery(rs, MaxSector); 3207 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3208 } else 3209 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ? 3210 0 : (resize ? calculated_dev_sectors : MaxSector)); 3211 rs_set_cur(rs); 3212 } 3213 3214 /* If constructor requested it, change data and new_data offsets */ 3215 r = rs_adjust_data_offsets(rs); 3216 if (r) 3217 goto bad; 3218 3219 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3220 rs->md.ro = 1; 3221 rs->md.in_sync = 1; 3222 3223 /* Keep array frozen */ 3224 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3225 3226 /* Has to be held on running the array */ 3227 mddev_lock_nointr(&rs->md); 3228 r = md_run(&rs->md); 3229 rs->md.in_sync = 0; /* Assume already marked dirty */ 3230 if (r) { 3231 ti->error = "Failed to run raid array"; 3232 mddev_unlock(&rs->md); 3233 goto bad; 3234 } 3235 3236 r = md_start(&rs->md); 3237 3238 if (r) { 3239 ti->error = "Failed to start raid array"; 3240 mddev_unlock(&rs->md); 3241 goto bad_md_start; 3242 } 3243 3244 rs->callbacks.congested_fn = raid_is_congested; 3245 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 3246 3247 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3248 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3249 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3250 if (r) { 3251 ti->error = "Failed to set raid4/5/6 journal mode"; 3252 mddev_unlock(&rs->md); 3253 goto bad_journal_mode_set; 3254 } 3255 } 3256 3257 mddev_suspend(&rs->md); 3258 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3259 3260 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3261 if (rs_is_raid456(rs)) { 3262 r = rs_set_raid456_stripe_cache(rs); 3263 if (r) 3264 goto bad_stripe_cache; 3265 } 3266 3267 /* Now do an early reshape check */ 3268 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3269 r = rs_check_reshape(rs); 3270 if (r) 3271 goto bad_check_reshape; 3272 3273 /* Restore new, ctr requested layout to perform check */ 3274 rs_config_restore(rs, &rs_layout); 3275 3276 if (rs->md.pers->start_reshape) { 3277 r = rs->md.pers->check_reshape(&rs->md); 3278 if (r) { 3279 ti->error = "Reshape check failed"; 3280 goto bad_check_reshape; 3281 } 3282 } 3283 } 3284 3285 /* Disable/enable discard support on raid set. */ 3286 configure_discard_support(rs); 3287 3288 mddev_unlock(&rs->md); 3289 return 0; 3290 3291 bad_md_start: 3292 bad_journal_mode_set: 3293 bad_stripe_cache: 3294 bad_check_reshape: 3295 md_stop(&rs->md); 3296 bad: 3297 raid_set_free(rs); 3298 3299 return r; 3300 } 3301 3302 static void raid_dtr(struct dm_target *ti) 3303 { 3304 struct raid_set *rs = ti->private; 3305 3306 list_del_init(&rs->callbacks.list); 3307 md_stop(&rs->md); 3308 raid_set_free(rs); 3309 } 3310 3311 static int raid_map(struct dm_target *ti, struct bio *bio) 3312 { 3313 struct raid_set *rs = ti->private; 3314 struct mddev *mddev = &rs->md; 3315 3316 /* 3317 * If we're reshaping to add disk(s)), ti->len and 3318 * mddev->array_sectors will differ during the process 3319 * (ti->len > mddev->array_sectors), so we have to requeue 3320 * bios with addresses > mddev->array_sectors here or 3321 * there will occur accesses past EOD of the component 3322 * data images thus erroring the raid set. 3323 */ 3324 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3325 return DM_MAPIO_REQUEUE; 3326 3327 md_handle_request(mddev, bio); 3328 3329 return DM_MAPIO_SUBMITTED; 3330 } 3331 3332 /* Return sync state string for @state */ 3333 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3334 static const char *sync_str(enum sync_state state) 3335 { 3336 /* Has to be in above sync_state order! */ 3337 static const char *sync_strs[] = { 3338 "frozen", 3339 "reshape", 3340 "resync", 3341 "check", 3342 "repair", 3343 "recover", 3344 "idle" 3345 }; 3346 3347 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3348 }; 3349 3350 /* Return enum sync_state for @mddev derived from @recovery flags */ 3351 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3352 { 3353 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3354 return st_frozen; 3355 3356 /* The MD sync thread can be done with io or be interrupted but still be running */ 3357 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3358 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3359 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3360 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3361 return st_reshape; 3362 3363 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3364 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3365 return st_resync; 3366 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3367 return st_check; 3368 return st_repair; 3369 } 3370 3371 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3372 return st_recover; 3373 3374 if (mddev->reshape_position != MaxSector) 3375 return st_reshape; 3376 } 3377 3378 return st_idle; 3379 } 3380 3381 /* 3382 * Return status string for @rdev 3383 * 3384 * Status characters: 3385 * 3386 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3387 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3388 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3389 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3390 */ 3391 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3392 { 3393 if (!rdev->bdev) 3394 return "-"; 3395 else if (test_bit(Faulty, &rdev->flags)) 3396 return "D"; 3397 else if (test_bit(Journal, &rdev->flags)) 3398 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3399 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3400 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3401 !test_bit(In_sync, &rdev->flags))) 3402 return "a"; 3403 else 3404 return "A"; 3405 } 3406 3407 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3408 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3409 sector_t resync_max_sectors) 3410 { 3411 sector_t r; 3412 enum sync_state state; 3413 struct mddev *mddev = &rs->md; 3414 3415 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3416 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3417 3418 if (rs_is_raid0(rs)) { 3419 r = resync_max_sectors; 3420 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3421 3422 } else { 3423 state = decipher_sync_action(mddev, recovery); 3424 3425 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3426 r = mddev->recovery_cp; 3427 else 3428 r = mddev->curr_resync_completed; 3429 3430 if (state == st_idle && r >= resync_max_sectors) { 3431 /* 3432 * Sync complete. 3433 */ 3434 /* In case we have finished recovering, the array is in sync. */ 3435 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3436 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3437 3438 } else if (state == st_recover) 3439 /* 3440 * In case we are recovering, the array is not in sync 3441 * and health chars should show the recovering legs. 3442 */ 3443 ; 3444 else if (state == st_resync) 3445 /* 3446 * If "resync" is occurring, the raid set 3447 * is or may be out of sync hence the health 3448 * characters shall be 'a'. 3449 */ 3450 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3451 else if (state == st_reshape) 3452 /* 3453 * If "reshape" is occurring, the raid set 3454 * is or may be out of sync hence the health 3455 * characters shall be 'a'. 3456 */ 3457 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3458 3459 else if (state == st_check || state == st_repair) 3460 /* 3461 * If "check" or "repair" is occurring, the raid set has 3462 * undergone an initial sync and the health characters 3463 * should not be 'a' anymore. 3464 */ 3465 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3466 3467 else { 3468 struct md_rdev *rdev; 3469 3470 /* 3471 * We are idle and recovery is needed, prevent 'A' chars race 3472 * caused by components still set to in-sync by constructor. 3473 */ 3474 if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3475 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3476 3477 /* 3478 * The raid set may be doing an initial sync, or it may 3479 * be rebuilding individual components. If all the 3480 * devices are In_sync, then it is the raid set that is 3481 * being initialized. 3482 */ 3483 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3484 rdev_for_each(rdev, mddev) 3485 if (!test_bit(Journal, &rdev->flags) && 3486 !test_bit(In_sync, &rdev->flags)) { 3487 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3488 break; 3489 } 3490 } 3491 } 3492 3493 return min(r, resync_max_sectors); 3494 } 3495 3496 /* Helper to return @dev name or "-" if !@dev */ 3497 static const char *__get_dev_name(struct dm_dev *dev) 3498 { 3499 return dev ? dev->name : "-"; 3500 } 3501 3502 static void raid_status(struct dm_target *ti, status_type_t type, 3503 unsigned int status_flags, char *result, unsigned int maxlen) 3504 { 3505 struct raid_set *rs = ti->private; 3506 struct mddev *mddev = &rs->md; 3507 struct r5conf *conf = mddev->private; 3508 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3509 unsigned long recovery; 3510 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3511 unsigned int sz = 0; 3512 unsigned int rebuild_disks; 3513 unsigned int write_mostly_params = 0; 3514 sector_t progress, resync_max_sectors, resync_mismatches; 3515 const char *sync_action; 3516 struct raid_type *rt; 3517 3518 switch (type) { 3519 case STATUSTYPE_INFO: 3520 /* *Should* always succeed */ 3521 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3522 if (!rt) 3523 return; 3524 3525 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3526 3527 /* Access most recent mddev properties for status output */ 3528 smp_rmb(); 3529 recovery = rs->md.recovery; 3530 /* Get sensible max sectors even if raid set not yet started */ 3531 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3532 mddev->resync_max_sectors : mddev->dev_sectors; 3533 progress = rs_get_progress(rs, recovery, resync_max_sectors); 3534 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3535 atomic64_read(&mddev->resync_mismatches) : 0; 3536 sync_action = sync_str(decipher_sync_action(&rs->md, recovery)); 3537 3538 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3539 for (i = 0; i < rs->raid_disks; i++) 3540 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3541 3542 /* 3543 * In-sync/Reshape ratio: 3544 * The in-sync ratio shows the progress of: 3545 * - Initializing the raid set 3546 * - Rebuilding a subset of devices of the raid set 3547 * The user can distinguish between the two by referring 3548 * to the status characters. 3549 * 3550 * The reshape ratio shows the progress of 3551 * changing the raid layout or the number of 3552 * disks of a raid set 3553 */ 3554 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3555 (unsigned long long) resync_max_sectors); 3556 3557 /* 3558 * v1.5.0+: 3559 * 3560 * Sync action: 3561 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3562 * information on each of these states. 3563 */ 3564 DMEMIT(" %s", sync_action); 3565 3566 /* 3567 * v1.5.0+: 3568 * 3569 * resync_mismatches/mismatch_cnt 3570 * This field shows the number of discrepancies found when 3571 * performing a "check" of the raid set. 3572 */ 3573 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3574 3575 /* 3576 * v1.9.0+: 3577 * 3578 * data_offset (needed for out of space reshaping) 3579 * This field shows the data offset into the data 3580 * image LV where the first stripes data starts. 3581 * 3582 * We keep data_offset equal on all raid disks of the set, 3583 * so retrieving it from the first raid disk is sufficient. 3584 */ 3585 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3586 3587 /* 3588 * v1.10.0+: 3589 */ 3590 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3591 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3592 break; 3593 3594 case STATUSTYPE_TABLE: 3595 /* Report the table line string you would use to construct this raid set */ 3596 3597 /* Calculate raid parameter count */ 3598 for (i = 0; i < rs->raid_disks; i++) 3599 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3600 write_mostly_params += 2; 3601 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)); 3602 raid_param_cnt += rebuild_disks * 2 + 3603 write_mostly_params + 3604 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3605 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 + 3606 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) + 3607 (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0); 3608 3609 /* Emit table line */ 3610 /* This has to be in the documented order for userspace! */ 3611 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3612 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3613 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3614 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3615 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3616 if (rebuild_disks) 3617 for (i = 0; i < rs->raid_disks; i++) 3618 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks)) 3619 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), 3620 rs->dev[i].rdev.raid_disk); 3621 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3622 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3623 mddev->bitmap_info.daemon_sleep); 3624 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3625 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3626 mddev->sync_speed_min); 3627 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3628 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3629 mddev->sync_speed_max); 3630 if (write_mostly_params) 3631 for (i = 0; i < rs->raid_disks; i++) 3632 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3633 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3634 rs->dev[i].rdev.raid_disk); 3635 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3636 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3637 mddev->bitmap_info.max_write_behind); 3638 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3639 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3640 max_nr_stripes); 3641 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3642 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3643 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3644 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3645 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3646 raid10_md_layout_to_copies(mddev->layout)); 3647 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3648 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3649 raid10_md_layout_to_format(mddev->layout)); 3650 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3651 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3652 max(rs->delta_disks, mddev->delta_disks)); 3653 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3654 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3655 (unsigned long long) rs->data_offset); 3656 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3657 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3658 __get_dev_name(rs->journal_dev.dev)); 3659 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3660 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3661 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3662 DMEMIT(" %d", rs->raid_disks); 3663 for (i = 0; i < rs->raid_disks; i++) 3664 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3665 __get_dev_name(rs->dev[i].data_dev)); 3666 } 3667 } 3668 3669 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3670 char *result, unsigned maxlen) 3671 { 3672 struct raid_set *rs = ti->private; 3673 struct mddev *mddev = &rs->md; 3674 3675 if (!mddev->pers || !mddev->pers->sync_request) 3676 return -EINVAL; 3677 3678 if (!strcasecmp(argv[0], "frozen")) 3679 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3680 else 3681 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3682 3683 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3684 if (mddev->sync_thread) { 3685 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3686 md_reap_sync_thread(mddev); 3687 } 3688 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3689 return -EBUSY; 3690 else if (!strcasecmp(argv[0], "resync")) 3691 ; /* MD_RECOVERY_NEEDED set below */ 3692 else if (!strcasecmp(argv[0], "recover")) 3693 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3694 else { 3695 if (!strcasecmp(argv[0], "check")) { 3696 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3697 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3698 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3699 } else if (!strcasecmp(argv[0], "repair")) { 3700 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3701 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3702 } else 3703 return -EINVAL; 3704 } 3705 if (mddev->ro == 2) { 3706 /* A write to sync_action is enough to justify 3707 * canceling read-auto mode 3708 */ 3709 mddev->ro = 0; 3710 if (!mddev->suspended && mddev->sync_thread) 3711 md_wakeup_thread(mddev->sync_thread); 3712 } 3713 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3714 if (!mddev->suspended && mddev->thread) 3715 md_wakeup_thread(mddev->thread); 3716 3717 return 0; 3718 } 3719 3720 static int raid_iterate_devices(struct dm_target *ti, 3721 iterate_devices_callout_fn fn, void *data) 3722 { 3723 struct raid_set *rs = ti->private; 3724 unsigned int i; 3725 int r = 0; 3726 3727 for (i = 0; !r && i < rs->md.raid_disks; i++) 3728 if (rs->dev[i].data_dev) 3729 r = fn(ti, 3730 rs->dev[i].data_dev, 3731 0, /* No offset on data devs */ 3732 rs->md.dev_sectors, 3733 data); 3734 3735 return r; 3736 } 3737 3738 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3739 { 3740 struct raid_set *rs = ti->private; 3741 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors); 3742 3743 blk_limits_io_min(limits, chunk_size); 3744 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs)); 3745 3746 /* 3747 * RAID1 and RAID10 personalities require bio splitting, 3748 * RAID0/4/5/6 don't and process large discard bios properly. 3749 */ 3750 if (rs_is_raid1(rs) || rs_is_raid10(rs)) { 3751 limits->discard_granularity = chunk_size; 3752 limits->max_discard_sectors = chunk_size; 3753 } 3754 } 3755 3756 static void raid_postsuspend(struct dm_target *ti) 3757 { 3758 struct raid_set *rs = ti->private; 3759 3760 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3761 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3762 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3763 md_stop_writes(&rs->md); 3764 3765 mddev_lock_nointr(&rs->md); 3766 mddev_suspend(&rs->md); 3767 mddev_unlock(&rs->md); 3768 } 3769 } 3770 3771 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3772 { 3773 int i; 3774 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3775 unsigned long flags; 3776 bool cleared = false; 3777 struct dm_raid_superblock *sb; 3778 struct mddev *mddev = &rs->md; 3779 struct md_rdev *r; 3780 3781 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3782 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3783 return; 3784 3785 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3786 3787 for (i = 0; i < mddev->raid_disks; i++) { 3788 r = &rs->dev[i].rdev; 3789 /* HM FIXME: enhance journal device recovery processing */ 3790 if (test_bit(Journal, &r->flags)) 3791 continue; 3792 3793 if (test_bit(Faulty, &r->flags) && 3794 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3795 DMINFO("Faulty %s device #%d has readable super block." 3796 " Attempting to revive it.", 3797 rs->raid_type->name, i); 3798 3799 /* 3800 * Faulty bit may be set, but sometimes the array can 3801 * be suspended before the personalities can respond 3802 * by removing the device from the array (i.e. calling 3803 * 'hot_remove_disk'). If they haven't yet removed 3804 * the failed device, its 'raid_disk' number will be 3805 * '>= 0' - meaning we must call this function 3806 * ourselves. 3807 */ 3808 flags = r->flags; 3809 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3810 if (r->raid_disk >= 0) { 3811 if (mddev->pers->hot_remove_disk(mddev, r)) { 3812 /* Failed to revive this device, try next */ 3813 r->flags = flags; 3814 continue; 3815 } 3816 } else 3817 r->raid_disk = r->saved_raid_disk = i; 3818 3819 clear_bit(Faulty, &r->flags); 3820 clear_bit(WriteErrorSeen, &r->flags); 3821 3822 if (mddev->pers->hot_add_disk(mddev, r)) { 3823 /* Failed to revive this device, try next */ 3824 r->raid_disk = r->saved_raid_disk = -1; 3825 r->flags = flags; 3826 } else { 3827 clear_bit(In_sync, &r->flags); 3828 r->recovery_offset = 0; 3829 set_bit(i, (void *) cleared_failed_devices); 3830 cleared = true; 3831 } 3832 } 3833 } 3834 3835 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3836 if (cleared) { 3837 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3838 3839 rdev_for_each(r, &rs->md) { 3840 if (test_bit(Journal, &r->flags)) 3841 continue; 3842 3843 sb = page_address(r->sb_page); 3844 sb_retrieve_failed_devices(sb, failed_devices); 3845 3846 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3847 failed_devices[i] &= ~cleared_failed_devices[i]; 3848 3849 sb_update_failed_devices(sb, failed_devices); 3850 } 3851 } 3852 } 3853 3854 static int __load_dirty_region_bitmap(struct raid_set *rs) 3855 { 3856 int r = 0; 3857 3858 /* Try loading the bitmap unless "raid0", which does not have one */ 3859 if (!rs_is_raid0(rs) && 3860 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3861 r = md_bitmap_load(&rs->md); 3862 if (r) 3863 DMERR("Failed to load bitmap"); 3864 } 3865 3866 return r; 3867 } 3868 3869 /* Enforce updating all superblocks */ 3870 static void rs_update_sbs(struct raid_set *rs) 3871 { 3872 struct mddev *mddev = &rs->md; 3873 int ro = mddev->ro; 3874 3875 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3876 mddev->ro = 0; 3877 md_update_sb(mddev, 1); 3878 mddev->ro = ro; 3879 } 3880 3881 /* 3882 * Reshape changes raid algorithm of @rs to new one within personality 3883 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3884 * disks from a raid set thus growing/shrinking it or resizes the set 3885 * 3886 * Call mddev_lock_nointr() before! 3887 */ 3888 static int rs_start_reshape(struct raid_set *rs) 3889 { 3890 int r; 3891 struct mddev *mddev = &rs->md; 3892 struct md_personality *pers = mddev->pers; 3893 3894 /* Don't allow the sync thread to work until the table gets reloaded. */ 3895 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3896 3897 r = rs_setup_reshape(rs); 3898 if (r) 3899 return r; 3900 3901 /* 3902 * Check any reshape constraints enforced by the personalility 3903 * 3904 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3905 */ 3906 r = pers->check_reshape(mddev); 3907 if (r) { 3908 rs->ti->error = "pers->check_reshape() failed"; 3909 return r; 3910 } 3911 3912 /* 3913 * Personality may not provide start reshape method in which 3914 * case check_reshape above has already covered everything 3915 */ 3916 if (pers->start_reshape) { 3917 r = pers->start_reshape(mddev); 3918 if (r) { 3919 rs->ti->error = "pers->start_reshape() failed"; 3920 return r; 3921 } 3922 } 3923 3924 /* 3925 * Now reshape got set up, update superblocks to 3926 * reflect the fact so that a table reload will 3927 * access proper superblock content in the ctr. 3928 */ 3929 rs_update_sbs(rs); 3930 3931 return 0; 3932 } 3933 3934 static int raid_preresume(struct dm_target *ti) 3935 { 3936 int r; 3937 struct raid_set *rs = ti->private; 3938 struct mddev *mddev = &rs->md; 3939 3940 /* This is a resume after a suspend of the set -> it's already started. */ 3941 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3942 return 0; 3943 3944 /* 3945 * The superblocks need to be updated on disk if the 3946 * array is new or new devices got added (thus zeroed 3947 * out by userspace) or __load_dirty_region_bitmap 3948 * will overwrite them in core with old data or fail. 3949 */ 3950 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3951 rs_update_sbs(rs); 3952 3953 /* Load the bitmap from disk unless raid0 */ 3954 r = __load_dirty_region_bitmap(rs); 3955 if (r) 3956 return r; 3957 3958 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */ 3959 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 3960 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) { 3961 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, 3962 to_bytes(rs->requested_bitmap_chunk_sectors), 0); 3963 if (r) 3964 DMERR("Failed to resize bitmap"); 3965 } 3966 3967 /* Check for any resize/reshape on @rs and adjust/initiate */ 3968 /* Be prepared for mddev_resume() in raid_resume() */ 3969 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3970 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 3971 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3972 mddev->resync_min = mddev->recovery_cp; 3973 } 3974 3975 /* Check for any reshape request unless new raid set */ 3976 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3977 /* Initiate a reshape. */ 3978 rs_set_rdev_sectors(rs); 3979 mddev_lock_nointr(mddev); 3980 r = rs_start_reshape(rs); 3981 mddev_unlock(mddev); 3982 if (r) 3983 DMWARN("Failed to check/start reshape, continuing without change"); 3984 r = 0; 3985 } 3986 3987 return r; 3988 } 3989 3990 static void raid_resume(struct dm_target *ti) 3991 { 3992 struct raid_set *rs = ti->private; 3993 struct mddev *mddev = &rs->md; 3994 3995 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 3996 /* 3997 * A secondary resume while the device is active. 3998 * Take this opportunity to check whether any failed 3999 * devices are reachable again. 4000 */ 4001 attempt_restore_of_faulty_devices(rs); 4002 } 4003 4004 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4005 /* Only reduce raid set size before running a disk removing reshape. */ 4006 if (mddev->delta_disks < 0) 4007 rs_set_capacity(rs); 4008 4009 mddev_lock_nointr(mddev); 4010 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4011 mddev->ro = 0; 4012 mddev->in_sync = 0; 4013 mddev_resume(mddev); 4014 mddev_unlock(mddev); 4015 } 4016 } 4017 4018 static struct target_type raid_target = { 4019 .name = "raid", 4020 .version = {1, 14, 0}, 4021 .module = THIS_MODULE, 4022 .ctr = raid_ctr, 4023 .dtr = raid_dtr, 4024 .map = raid_map, 4025 .status = raid_status, 4026 .message = raid_message, 4027 .iterate_devices = raid_iterate_devices, 4028 .io_hints = raid_io_hints, 4029 .postsuspend = raid_postsuspend, 4030 .preresume = raid_preresume, 4031 .resume = raid_resume, 4032 }; 4033 4034 static int __init dm_raid_init(void) 4035 { 4036 DMINFO("Loading target version %u.%u.%u", 4037 raid_target.version[0], 4038 raid_target.version[1], 4039 raid_target.version[2]); 4040 return dm_register_target(&raid_target); 4041 } 4042 4043 static void __exit dm_raid_exit(void) 4044 { 4045 dm_unregister_target(&raid_target); 4046 } 4047 4048 module_init(dm_raid_init); 4049 module_exit(dm_raid_exit); 4050 4051 module_param(devices_handle_discard_safely, bool, 0644); 4052 MODULE_PARM_DESC(devices_handle_discard_safely, 4053 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4054 4055 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4056 MODULE_ALIAS("dm-raid0"); 4057 MODULE_ALIAS("dm-raid1"); 4058 MODULE_ALIAS("dm-raid10"); 4059 MODULE_ALIAS("dm-raid4"); 4060 MODULE_ALIAS("dm-raid5"); 4061 MODULE_ALIAS("dm-raid6"); 4062 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4063 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4064 MODULE_LICENSE("GPL"); 4065