xref: /openbmc/linux/drivers/md/dm-raid.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* raid4/5/6 limit */
21 
22 static bool devices_handle_discard_safely = false;
23 
24 /*
25  * The following flags are used by dm-raid.c to set up the array state.
26  * They must be cleared before md_run is called.
27  */
28 #define FirstUse 10             /* rdev flag */
29 
30 struct raid_dev {
31 	/*
32 	 * Two DM devices, one to hold metadata and one to hold the
33 	 * actual data/parity.  The reason for this is to not confuse
34 	 * ti->len and give more flexibility in altering size and
35 	 * characteristics.
36 	 *
37 	 * While it is possible for this device to be associated
38 	 * with a different physical device than the data_dev, it
39 	 * is intended for it to be the same.
40 	 *    |--------- Physical Device ---------|
41 	 *    |- meta_dev -|------ data_dev ------|
42 	 */
43 	struct dm_dev *meta_dev;
44 	struct dm_dev *data_dev;
45 	struct md_rdev rdev;
46 };
47 
48 /*
49  * Flags for rs->ctr_flags field.
50  */
51 #define CTR_FLAG_SYNC              0x1
52 #define CTR_FLAG_NOSYNC            0x2
53 #define CTR_FLAG_REBUILD           0x4
54 #define CTR_FLAG_DAEMON_SLEEP      0x8
55 #define CTR_FLAG_MIN_RECOVERY_RATE 0x10
56 #define CTR_FLAG_MAX_RECOVERY_RATE 0x20
57 #define CTR_FLAG_MAX_WRITE_BEHIND  0x40
58 #define CTR_FLAG_STRIPE_CACHE      0x80
59 #define CTR_FLAG_REGION_SIZE       0x100
60 #define CTR_FLAG_RAID10_COPIES     0x200
61 #define CTR_FLAG_RAID10_FORMAT     0x400
62 
63 struct raid_set {
64 	struct dm_target *ti;
65 
66 	uint32_t bitmap_loaded;
67 	uint32_t ctr_flags;
68 
69 	struct mddev md;
70 	struct raid_type *raid_type;
71 	struct dm_target_callbacks callbacks;
72 
73 	struct raid_dev dev[0];
74 };
75 
76 /* Supported raid types and properties. */
77 static struct raid_type {
78 	const char *name;		/* RAID algorithm. */
79 	const char *descr;		/* Descriptor text for logging. */
80 	const unsigned parity_devs;	/* # of parity devices. */
81 	const unsigned minimal_devs;	/* minimal # of devices in set. */
82 	const unsigned level;		/* RAID level. */
83 	const unsigned algorithm;	/* RAID algorithm. */
84 } raid_types[] = {
85 	{"raid0",    "RAID0 (striping)",                0, 2, 0, 0 /* NONE */},
86 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
87 	{"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
88 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
89 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
90 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
91 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
92 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
93 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
94 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
95 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
96 };
97 
98 static char *raid10_md_layout_to_format(int layout)
99 {
100 	/*
101 	 * Bit 16 and 17 stand for "offset" and "use_far_sets"
102 	 * Refer to MD's raid10.c for details
103 	 */
104 	if ((layout & 0x10000) && (layout & 0x20000))
105 		return "offset";
106 
107 	if ((layout & 0xFF) > 1)
108 		return "near";
109 
110 	return "far";
111 }
112 
113 static unsigned raid10_md_layout_to_copies(int layout)
114 {
115 	if ((layout & 0xFF) > 1)
116 		return layout & 0xFF;
117 	return (layout >> 8) & 0xFF;
118 }
119 
120 static int raid10_format_to_md_layout(char *format, unsigned copies)
121 {
122 	unsigned n = 1, f = 1;
123 
124 	if (!strcasecmp("near", format))
125 		n = copies;
126 	else
127 		f = copies;
128 
129 	if (!strcasecmp("offset", format))
130 		return 0x30000 | (f << 8) | n;
131 
132 	if (!strcasecmp("far", format))
133 		return 0x20000 | (f << 8) | n;
134 
135 	return (f << 8) | n;
136 }
137 
138 static struct raid_type *get_raid_type(char *name)
139 {
140 	int i;
141 
142 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
143 		if (!strcmp(raid_types[i].name, name))
144 			return &raid_types[i];
145 
146 	return NULL;
147 }
148 
149 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
150 {
151 	unsigned i;
152 	struct raid_set *rs;
153 
154 	if (raid_devs <= raid_type->parity_devs) {
155 		ti->error = "Insufficient number of devices";
156 		return ERR_PTR(-EINVAL);
157 	}
158 
159 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
160 	if (!rs) {
161 		ti->error = "Cannot allocate raid context";
162 		return ERR_PTR(-ENOMEM);
163 	}
164 
165 	mddev_init(&rs->md);
166 
167 	rs->ti = ti;
168 	rs->raid_type = raid_type;
169 	rs->md.raid_disks = raid_devs;
170 	rs->md.level = raid_type->level;
171 	rs->md.new_level = rs->md.level;
172 	rs->md.layout = raid_type->algorithm;
173 	rs->md.new_layout = rs->md.layout;
174 	rs->md.delta_disks = 0;
175 	rs->md.recovery_cp = 0;
176 
177 	for (i = 0; i < raid_devs; i++)
178 		md_rdev_init(&rs->dev[i].rdev);
179 
180 	/*
181 	 * Remaining items to be initialized by further RAID params:
182 	 *  rs->md.persistent
183 	 *  rs->md.external
184 	 *  rs->md.chunk_sectors
185 	 *  rs->md.new_chunk_sectors
186 	 *  rs->md.dev_sectors
187 	 */
188 
189 	return rs;
190 }
191 
192 static void context_free(struct raid_set *rs)
193 {
194 	int i;
195 
196 	for (i = 0; i < rs->md.raid_disks; i++) {
197 		if (rs->dev[i].meta_dev)
198 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
199 		md_rdev_clear(&rs->dev[i].rdev);
200 		if (rs->dev[i].data_dev)
201 			dm_put_device(rs->ti, rs->dev[i].data_dev);
202 	}
203 
204 	kfree(rs);
205 }
206 
207 /*
208  * For every device we have two words
209  *  <meta_dev>: meta device name or '-' if missing
210  *  <data_dev>: data device name or '-' if missing
211  *
212  * The following are permitted:
213  *    - -
214  *    - <data_dev>
215  *    <meta_dev> <data_dev>
216  *
217  * The following is not allowed:
218  *    <meta_dev> -
219  *
220  * This code parses those words.  If there is a failure,
221  * the caller must use context_free to unwind the operations.
222  */
223 static int dev_parms(struct raid_set *rs, char **argv)
224 {
225 	int i;
226 	int rebuild = 0;
227 	int metadata_available = 0;
228 	int ret = 0;
229 
230 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
231 		rs->dev[i].rdev.raid_disk = i;
232 
233 		rs->dev[i].meta_dev = NULL;
234 		rs->dev[i].data_dev = NULL;
235 
236 		/*
237 		 * There are no offsets, since there is a separate device
238 		 * for data and metadata.
239 		 */
240 		rs->dev[i].rdev.data_offset = 0;
241 		rs->dev[i].rdev.mddev = &rs->md;
242 
243 		if (strcmp(argv[0], "-")) {
244 			ret = dm_get_device(rs->ti, argv[0],
245 					    dm_table_get_mode(rs->ti->table),
246 					    &rs->dev[i].meta_dev);
247 			rs->ti->error = "RAID metadata device lookup failure";
248 			if (ret)
249 				return ret;
250 
251 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
252 			if (!rs->dev[i].rdev.sb_page)
253 				return -ENOMEM;
254 		}
255 
256 		if (!strcmp(argv[1], "-")) {
257 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
258 			    (!rs->dev[i].rdev.recovery_offset)) {
259 				rs->ti->error = "Drive designated for rebuild not specified";
260 				return -EINVAL;
261 			}
262 
263 			rs->ti->error = "No data device supplied with metadata device";
264 			if (rs->dev[i].meta_dev)
265 				return -EINVAL;
266 
267 			continue;
268 		}
269 
270 		ret = dm_get_device(rs->ti, argv[1],
271 				    dm_table_get_mode(rs->ti->table),
272 				    &rs->dev[i].data_dev);
273 		if (ret) {
274 			rs->ti->error = "RAID device lookup failure";
275 			return ret;
276 		}
277 
278 		if (rs->dev[i].meta_dev) {
279 			metadata_available = 1;
280 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
281 		}
282 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
283 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
284 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
285 			rebuild++;
286 	}
287 
288 	if (metadata_available) {
289 		rs->md.external = 0;
290 		rs->md.persistent = 1;
291 		rs->md.major_version = 2;
292 	} else if (rebuild && !rs->md.recovery_cp) {
293 		/*
294 		 * Without metadata, we will not be able to tell if the array
295 		 * is in-sync or not - we must assume it is not.  Therefore,
296 		 * it is impossible to rebuild a drive.
297 		 *
298 		 * Even if there is metadata, the on-disk information may
299 		 * indicate that the array is not in-sync and it will then
300 		 * fail at that time.
301 		 *
302 		 * User could specify 'nosync' option if desperate.
303 		 */
304 		DMERR("Unable to rebuild drive while array is not in-sync");
305 		rs->ti->error = "RAID device lookup failure";
306 		return -EINVAL;
307 	}
308 
309 	return 0;
310 }
311 
312 /*
313  * validate_region_size
314  * @rs
315  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
316  *
317  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
318  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
319  *
320  * Returns: 0 on success, -EINVAL on failure.
321  */
322 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
323 {
324 	unsigned long min_region_size = rs->ti->len / (1 << 21);
325 
326 	if (!region_size) {
327 		/*
328 		 * Choose a reasonable default.  All figures in sectors.
329 		 */
330 		if (min_region_size > (1 << 13)) {
331 			/* If not a power of 2, make it the next power of 2 */
332 			region_size = roundup_pow_of_two(min_region_size);
333 			DMINFO("Choosing default region size of %lu sectors",
334 			       region_size);
335 		} else {
336 			DMINFO("Choosing default region size of 4MiB");
337 			region_size = 1 << 13; /* sectors */
338 		}
339 	} else {
340 		/*
341 		 * Validate user-supplied value.
342 		 */
343 		if (region_size > rs->ti->len) {
344 			rs->ti->error = "Supplied region size is too large";
345 			return -EINVAL;
346 		}
347 
348 		if (region_size < min_region_size) {
349 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
350 			      region_size, min_region_size);
351 			rs->ti->error = "Supplied region size is too small";
352 			return -EINVAL;
353 		}
354 
355 		if (!is_power_of_2(region_size)) {
356 			rs->ti->error = "Region size is not a power of 2";
357 			return -EINVAL;
358 		}
359 
360 		if (region_size < rs->md.chunk_sectors) {
361 			rs->ti->error = "Region size is smaller than the chunk size";
362 			return -EINVAL;
363 		}
364 	}
365 
366 	/*
367 	 * Convert sectors to bytes.
368 	 */
369 	rs->md.bitmap_info.chunksize = (region_size << 9);
370 
371 	return 0;
372 }
373 
374 /*
375  * validate_raid_redundancy
376  * @rs
377  *
378  * Determine if there are enough devices in the array that haven't
379  * failed (or are being rebuilt) to form a usable array.
380  *
381  * Returns: 0 on success, -EINVAL on failure.
382  */
383 static int validate_raid_redundancy(struct raid_set *rs)
384 {
385 	unsigned i, rebuild_cnt = 0;
386 	unsigned rebuilds_per_group = 0, copies, d;
387 	unsigned group_size, last_group_start;
388 
389 	for (i = 0; i < rs->md.raid_disks; i++)
390 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
391 		    !rs->dev[i].rdev.sb_page)
392 			rebuild_cnt++;
393 
394 	switch (rs->raid_type->level) {
395 	case 1:
396 		if (rebuild_cnt >= rs->md.raid_disks)
397 			goto too_many;
398 		break;
399 	case 4:
400 	case 5:
401 	case 6:
402 		if (rebuild_cnt > rs->raid_type->parity_devs)
403 			goto too_many;
404 		break;
405 	case 10:
406 		copies = raid10_md_layout_to_copies(rs->md.layout);
407 		if (rebuild_cnt < copies)
408 			break;
409 
410 		/*
411 		 * It is possible to have a higher rebuild count for RAID10,
412 		 * as long as the failed devices occur in different mirror
413 		 * groups (i.e. different stripes).
414 		 *
415 		 * When checking "near" format, make sure no adjacent devices
416 		 * have failed beyond what can be handled.  In addition to the
417 		 * simple case where the number of devices is a multiple of the
418 		 * number of copies, we must also handle cases where the number
419 		 * of devices is not a multiple of the number of copies.
420 		 * E.g.    dev1 dev2 dev3 dev4 dev5
421 		 *          A    A    B    B    C
422 		 *          C    D    D    E    E
423 		 */
424 		if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
425 			for (i = 0; i < rs->md.raid_disks * copies; i++) {
426 				if (!(i % copies))
427 					rebuilds_per_group = 0;
428 				d = i % rs->md.raid_disks;
429 				if ((!rs->dev[d].rdev.sb_page ||
430 				     !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
431 				    (++rebuilds_per_group >= copies))
432 					goto too_many;
433 			}
434 			break;
435 		}
436 
437 		/*
438 		 * When checking "far" and "offset" formats, we need to ensure
439 		 * that the device that holds its copy is not also dead or
440 		 * being rebuilt.  (Note that "far" and "offset" formats only
441 		 * support two copies right now.  These formats also only ever
442 		 * use the 'use_far_sets' variant.)
443 		 *
444 		 * This check is somewhat complicated by the need to account
445 		 * for arrays that are not a multiple of (far) copies.  This
446 		 * results in the need to treat the last (potentially larger)
447 		 * set differently.
448 		 */
449 		group_size = (rs->md.raid_disks / copies);
450 		last_group_start = (rs->md.raid_disks / group_size) - 1;
451 		last_group_start *= group_size;
452 		for (i = 0; i < rs->md.raid_disks; i++) {
453 			if (!(i % copies) && !(i > last_group_start))
454 				rebuilds_per_group = 0;
455 			if ((!rs->dev[i].rdev.sb_page ||
456 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
457 			    (++rebuilds_per_group >= copies))
458 					goto too_many;
459 		}
460 		break;
461 	default:
462 		if (rebuild_cnt)
463 			return -EINVAL;
464 	}
465 
466 	return 0;
467 
468 too_many:
469 	return -EINVAL;
470 }
471 
472 /*
473  * Possible arguments are...
474  *	<chunk_size> [optional_args]
475  *
476  * Argument definitions
477  *    <chunk_size>			The number of sectors per disk that
478  *                                      will form the "stripe"
479  *    [[no]sync]			Force or prevent recovery of the
480  *                                      entire array
481  *    [rebuild <idx>]			Rebuild the drive indicated by the index
482  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
483  *                                      clear bits
484  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
485  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
486  *    [write_mostly <idx>]		Indicate a write mostly drive via index
487  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
488  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
489  *    [region_size <sectors>]           Defines granularity of bitmap
490  *
491  * RAID10-only options:
492  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
493  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
494  */
495 static int parse_raid_params(struct raid_set *rs, char **argv,
496 			     unsigned num_raid_params)
497 {
498 	char *raid10_format = "near";
499 	unsigned raid10_copies = 2;
500 	unsigned i;
501 	unsigned long value, region_size = 0;
502 	sector_t sectors_per_dev = rs->ti->len;
503 	sector_t max_io_len;
504 	char *key;
505 
506 	/*
507 	 * First, parse the in-order required arguments
508 	 * "chunk_size" is the only argument of this type.
509 	 */
510 	if ((kstrtoul(argv[0], 10, &value) < 0)) {
511 		rs->ti->error = "Bad chunk size";
512 		return -EINVAL;
513 	} else if (rs->raid_type->level == 1) {
514 		if (value)
515 			DMERR("Ignoring chunk size parameter for RAID 1");
516 		value = 0;
517 	} else if (!is_power_of_2(value)) {
518 		rs->ti->error = "Chunk size must be a power of 2";
519 		return -EINVAL;
520 	} else if (value < 8) {
521 		rs->ti->error = "Chunk size value is too small";
522 		return -EINVAL;
523 	}
524 
525 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
526 	argv++;
527 	num_raid_params--;
528 
529 	/*
530 	 * We set each individual device as In_sync with a completed
531 	 * 'recovery_offset'.  If there has been a device failure or
532 	 * replacement then one of the following cases applies:
533 	 *
534 	 *   1) User specifies 'rebuild'.
535 	 *      - Device is reset when param is read.
536 	 *   2) A new device is supplied.
537 	 *      - No matching superblock found, resets device.
538 	 *   3) Device failure was transient and returns on reload.
539 	 *      - Failure noticed, resets device for bitmap replay.
540 	 *   4) Device hadn't completed recovery after previous failure.
541 	 *      - Superblock is read and overrides recovery_offset.
542 	 *
543 	 * What is found in the superblocks of the devices is always
544 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
545 	 */
546 	for (i = 0; i < rs->md.raid_disks; i++) {
547 		set_bit(In_sync, &rs->dev[i].rdev.flags);
548 		rs->dev[i].rdev.recovery_offset = MaxSector;
549 	}
550 
551 	/*
552 	 * Second, parse the unordered optional arguments
553 	 */
554 	for (i = 0; i < num_raid_params; i++) {
555 		if (!strcasecmp(argv[i], "nosync")) {
556 			rs->md.recovery_cp = MaxSector;
557 			rs->ctr_flags |= CTR_FLAG_NOSYNC;
558 			continue;
559 		}
560 		if (!strcasecmp(argv[i], "sync")) {
561 			rs->md.recovery_cp = 0;
562 			rs->ctr_flags |= CTR_FLAG_SYNC;
563 			continue;
564 		}
565 
566 		/* The rest of the optional arguments come in key/value pairs */
567 		if ((i + 1) >= num_raid_params) {
568 			rs->ti->error = "Wrong number of raid parameters given";
569 			return -EINVAL;
570 		}
571 
572 		key = argv[i++];
573 
574 		/* Parameters that take a string value are checked here. */
575 		if (!strcasecmp(key, "raid10_format")) {
576 			if (rs->raid_type->level != 10) {
577 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
578 				return -EINVAL;
579 			}
580 			if (strcmp("near", argv[i]) &&
581 			    strcmp("far", argv[i]) &&
582 			    strcmp("offset", argv[i])) {
583 				rs->ti->error = "Invalid 'raid10_format' value given";
584 				return -EINVAL;
585 			}
586 			raid10_format = argv[i];
587 			rs->ctr_flags |= CTR_FLAG_RAID10_FORMAT;
588 			continue;
589 		}
590 
591 		if (kstrtoul(argv[i], 10, &value) < 0) {
592 			rs->ti->error = "Bad numerical argument given in raid params";
593 			return -EINVAL;
594 		}
595 
596 		/* Parameters that take a numeric value are checked here */
597 		if (!strcasecmp(key, "rebuild")) {
598 			if (value >= rs->md.raid_disks) {
599 				rs->ti->error = "Invalid rebuild index given";
600 				return -EINVAL;
601 			}
602 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
603 			rs->dev[value].rdev.recovery_offset = 0;
604 			rs->ctr_flags |= CTR_FLAG_REBUILD;
605 		} else if (!strcasecmp(key, "write_mostly")) {
606 			if (rs->raid_type->level != 1) {
607 				rs->ti->error = "write_mostly option is only valid for RAID1";
608 				return -EINVAL;
609 			}
610 			if (value >= rs->md.raid_disks) {
611 				rs->ti->error = "Invalid write_mostly drive index given";
612 				return -EINVAL;
613 			}
614 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
615 		} else if (!strcasecmp(key, "max_write_behind")) {
616 			if (rs->raid_type->level != 1) {
617 				rs->ti->error = "max_write_behind option is only valid for RAID1";
618 				return -EINVAL;
619 			}
620 			rs->ctr_flags |= CTR_FLAG_MAX_WRITE_BEHIND;
621 
622 			/*
623 			 * In device-mapper, we specify things in sectors, but
624 			 * MD records this value in kB
625 			 */
626 			value /= 2;
627 			if (value > COUNTER_MAX) {
628 				rs->ti->error = "Max write-behind limit out of range";
629 				return -EINVAL;
630 			}
631 			rs->md.bitmap_info.max_write_behind = value;
632 		} else if (!strcasecmp(key, "daemon_sleep")) {
633 			rs->ctr_flags |= CTR_FLAG_DAEMON_SLEEP;
634 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
635 				rs->ti->error = "daemon sleep period out of range";
636 				return -EINVAL;
637 			}
638 			rs->md.bitmap_info.daemon_sleep = value;
639 		} else if (!strcasecmp(key, "stripe_cache")) {
640 			rs->ctr_flags |= CTR_FLAG_STRIPE_CACHE;
641 
642 			/*
643 			 * In device-mapper, we specify things in sectors, but
644 			 * MD records this value in kB
645 			 */
646 			value /= 2;
647 
648 			if ((rs->raid_type->level != 5) &&
649 			    (rs->raid_type->level != 6)) {
650 				rs->ti->error = "Inappropriate argument: stripe_cache";
651 				return -EINVAL;
652 			}
653 			if (raid5_set_cache_size(&rs->md, (int)value)) {
654 				rs->ti->error = "Bad stripe_cache size";
655 				return -EINVAL;
656 			}
657 		} else if (!strcasecmp(key, "min_recovery_rate")) {
658 			rs->ctr_flags |= CTR_FLAG_MIN_RECOVERY_RATE;
659 			if (value > INT_MAX) {
660 				rs->ti->error = "min_recovery_rate out of range";
661 				return -EINVAL;
662 			}
663 			rs->md.sync_speed_min = (int)value;
664 		} else if (!strcasecmp(key, "max_recovery_rate")) {
665 			rs->ctr_flags |= CTR_FLAG_MAX_RECOVERY_RATE;
666 			if (value > INT_MAX) {
667 				rs->ti->error = "max_recovery_rate out of range";
668 				return -EINVAL;
669 			}
670 			rs->md.sync_speed_max = (int)value;
671 		} else if (!strcasecmp(key, "region_size")) {
672 			rs->ctr_flags |= CTR_FLAG_REGION_SIZE;
673 			region_size = value;
674 		} else if (!strcasecmp(key, "raid10_copies") &&
675 			   (rs->raid_type->level == 10)) {
676 			if ((value < 2) || (value > 0xFF)) {
677 				rs->ti->error = "Bad value for 'raid10_copies'";
678 				return -EINVAL;
679 			}
680 			rs->ctr_flags |= CTR_FLAG_RAID10_COPIES;
681 			raid10_copies = value;
682 		} else {
683 			DMERR("Unable to parse RAID parameter: %s", key);
684 			rs->ti->error = "Unable to parse RAID parameters";
685 			return -EINVAL;
686 		}
687 	}
688 
689 	if (validate_region_size(rs, region_size))
690 		return -EINVAL;
691 
692 	if (rs->md.chunk_sectors)
693 		max_io_len = rs->md.chunk_sectors;
694 	else
695 		max_io_len = region_size;
696 
697 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
698 		return -EINVAL;
699 
700 	if (rs->raid_type->level == 10) {
701 		if (raid10_copies > rs->md.raid_disks) {
702 			rs->ti->error = "Not enough devices to satisfy specification";
703 			return -EINVAL;
704 		}
705 
706 		/*
707 		 * If the format is not "near", we only support
708 		 * two copies at the moment.
709 		 */
710 		if (strcmp("near", raid10_format) && (raid10_copies > 2)) {
711 			rs->ti->error = "Too many copies for given RAID10 format.";
712 			return -EINVAL;
713 		}
714 
715 		/* (Len * #mirrors) / #devices */
716 		sectors_per_dev = rs->ti->len * raid10_copies;
717 		sector_div(sectors_per_dev, rs->md.raid_disks);
718 
719 		rs->md.layout = raid10_format_to_md_layout(raid10_format,
720 							   raid10_copies);
721 		rs->md.new_layout = rs->md.layout;
722 	} else if ((!rs->raid_type->level || rs->raid_type->level > 1) &&
723 		   sector_div(sectors_per_dev,
724 			      (rs->md.raid_disks - rs->raid_type->parity_devs))) {
725 		rs->ti->error = "Target length not divisible by number of data devices";
726 		return -EINVAL;
727 	}
728 	rs->md.dev_sectors = sectors_per_dev;
729 
730 	/* Assume there are no metadata devices until the drives are parsed */
731 	rs->md.persistent = 0;
732 	rs->md.external = 1;
733 
734 	return 0;
735 }
736 
737 static void do_table_event(struct work_struct *ws)
738 {
739 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
740 
741 	dm_table_event(rs->ti->table);
742 }
743 
744 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
745 {
746 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
747 
748 	return mddev_congested(&rs->md, bits);
749 }
750 
751 /*
752  * This structure is never routinely used by userspace, unlike md superblocks.
753  * Devices with this superblock should only ever be accessed via device-mapper.
754  */
755 #define DM_RAID_MAGIC 0x64526D44
756 struct dm_raid_superblock {
757 	__le32 magic;		/* "DmRd" */
758 	__le32 features;	/* Used to indicate possible future changes */
759 
760 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
761 	__le32 array_position;	/* The position of this drive in the array */
762 
763 	__le64 events;		/* Incremented by md when superblock updated */
764 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
765 
766 	/*
767 	 * This offset tracks the progress of the repair or replacement of
768 	 * an individual drive.
769 	 */
770 	__le64 disk_recovery_offset;
771 
772 	/*
773 	 * This offset tracks the progress of the initial array
774 	 * synchronisation/parity calculation.
775 	 */
776 	__le64 array_resync_offset;
777 
778 	/*
779 	 * RAID characteristics
780 	 */
781 	__le32 level;
782 	__le32 layout;
783 	__le32 stripe_sectors;
784 
785 	/* Remainder of a logical block is zero-filled when writing (see super_sync()). */
786 } __packed;
787 
788 static int read_disk_sb(struct md_rdev *rdev, int size)
789 {
790 	BUG_ON(!rdev->sb_page);
791 
792 	if (rdev->sb_loaded)
793 		return 0;
794 
795 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
796 		DMERR("Failed to read superblock of device at position %d",
797 		      rdev->raid_disk);
798 		md_error(rdev->mddev, rdev);
799 		return -EINVAL;
800 	}
801 
802 	rdev->sb_loaded = 1;
803 
804 	return 0;
805 }
806 
807 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
808 {
809 	int i;
810 	uint64_t failed_devices;
811 	struct dm_raid_superblock *sb;
812 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
813 
814 	sb = page_address(rdev->sb_page);
815 	failed_devices = le64_to_cpu(sb->failed_devices);
816 
817 	for (i = 0; i < mddev->raid_disks; i++)
818 		if (!rs->dev[i].data_dev ||
819 		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
820 			failed_devices |= (1ULL << i);
821 
822 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
823 
824 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
825 	sb->features = cpu_to_le32(0);	/* No features yet */
826 
827 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
828 	sb->array_position = cpu_to_le32(rdev->raid_disk);
829 
830 	sb->events = cpu_to_le64(mddev->events);
831 	sb->failed_devices = cpu_to_le64(failed_devices);
832 
833 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
834 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
835 
836 	sb->level = cpu_to_le32(mddev->level);
837 	sb->layout = cpu_to_le32(mddev->layout);
838 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
839 }
840 
841 /*
842  * super_load
843  *
844  * This function creates a superblock if one is not found on the device
845  * and will decide which superblock to use if there's a choice.
846  *
847  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
848  */
849 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
850 {
851 	int ret;
852 	struct dm_raid_superblock *sb;
853 	struct dm_raid_superblock *refsb;
854 	uint64_t events_sb, events_refsb;
855 
856 	rdev->sb_start = 0;
857 	rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
858 	if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
859 		DMERR("superblock size of a logical block is no longer valid");
860 		return -EINVAL;
861 	}
862 
863 	ret = read_disk_sb(rdev, rdev->sb_size);
864 	if (ret)
865 		return ret;
866 
867 	sb = page_address(rdev->sb_page);
868 
869 	/*
870 	 * Two cases that we want to write new superblocks and rebuild:
871 	 * 1) New device (no matching magic number)
872 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
873 	 */
874 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
875 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
876 		super_sync(rdev->mddev, rdev);
877 
878 		set_bit(FirstUse, &rdev->flags);
879 
880 		/* Force writing of superblocks to disk */
881 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
882 
883 		/* Any superblock is better than none, choose that if given */
884 		return refdev ? 0 : 1;
885 	}
886 
887 	if (!refdev)
888 		return 1;
889 
890 	events_sb = le64_to_cpu(sb->events);
891 
892 	refsb = page_address(refdev->sb_page);
893 	events_refsb = le64_to_cpu(refsb->events);
894 
895 	return (events_sb > events_refsb) ? 1 : 0;
896 }
897 
898 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
899 {
900 	int role;
901 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
902 	uint64_t events_sb;
903 	uint64_t failed_devices;
904 	struct dm_raid_superblock *sb;
905 	uint32_t new_devs = 0;
906 	uint32_t rebuilds = 0;
907 	struct md_rdev *r;
908 	struct dm_raid_superblock *sb2;
909 
910 	sb = page_address(rdev->sb_page);
911 	events_sb = le64_to_cpu(sb->events);
912 	failed_devices = le64_to_cpu(sb->failed_devices);
913 
914 	/*
915 	 * Initialise to 1 if this is a new superblock.
916 	 */
917 	mddev->events = events_sb ? : 1;
918 
919 	/*
920 	 * Reshaping is not currently allowed
921 	 */
922 	if (le32_to_cpu(sb->level) != mddev->level) {
923 		DMERR("Reshaping arrays not yet supported. (RAID level change)");
924 		return -EINVAL;
925 	}
926 	if (le32_to_cpu(sb->layout) != mddev->layout) {
927 		DMERR("Reshaping arrays not yet supported. (RAID layout change)");
928 		DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
929 		DMERR("  Old layout: %s w/ %d copies",
930 		      raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
931 		      raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
932 		DMERR("  New layout: %s w/ %d copies",
933 		      raid10_md_layout_to_format(mddev->layout),
934 		      raid10_md_layout_to_copies(mddev->layout));
935 		return -EINVAL;
936 	}
937 	if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
938 		DMERR("Reshaping arrays not yet supported. (stripe sectors change)");
939 		return -EINVAL;
940 	}
941 
942 	/* We can only change the number of devices in RAID1 right now */
943 	if ((rs->raid_type->level != 1) &&
944 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
945 		DMERR("Reshaping arrays not yet supported. (device count change)");
946 		return -EINVAL;
947 	}
948 
949 	if (!(rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)))
950 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
951 
952 	/*
953 	 * During load, we set FirstUse if a new superblock was written.
954 	 * There are two reasons we might not have a superblock:
955 	 * 1) The array is brand new - in which case, all of the
956 	 *    devices must have their In_sync bit set.  Also,
957 	 *    recovery_cp must be 0, unless forced.
958 	 * 2) This is a new device being added to an old array
959 	 *    and the new device needs to be rebuilt - in which
960 	 *    case the In_sync bit will /not/ be set and
961 	 *    recovery_cp must be MaxSector.
962 	 */
963 	rdev_for_each(r, mddev) {
964 		if (!test_bit(In_sync, &r->flags)) {
965 			DMINFO("Device %d specified for rebuild: "
966 			       "Clearing superblock", r->raid_disk);
967 			rebuilds++;
968 		} else if (test_bit(FirstUse, &r->flags))
969 			new_devs++;
970 	}
971 
972 	if (!rebuilds) {
973 		if (new_devs == mddev->raid_disks) {
974 			DMINFO("Superblocks created for new array");
975 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
976 		} else if (new_devs) {
977 			DMERR("New device injected "
978 			      "into existing array without 'rebuild' "
979 			      "parameter specified");
980 			return -EINVAL;
981 		}
982 	} else if (new_devs) {
983 		DMERR("'rebuild' devices cannot be "
984 		      "injected into an array with other first-time devices");
985 		return -EINVAL;
986 	} else if (mddev->recovery_cp != MaxSector) {
987 		DMERR("'rebuild' specified while array is not in-sync");
988 		return -EINVAL;
989 	}
990 
991 	/*
992 	 * Now we set the Faulty bit for those devices that are
993 	 * recorded in the superblock as failed.
994 	 */
995 	rdev_for_each(r, mddev) {
996 		if (!r->sb_page)
997 			continue;
998 		sb2 = page_address(r->sb_page);
999 		sb2->failed_devices = 0;
1000 
1001 		/*
1002 		 * Check for any device re-ordering.
1003 		 */
1004 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1005 			role = le32_to_cpu(sb2->array_position);
1006 			if (role != r->raid_disk) {
1007 				if (rs->raid_type->level != 1) {
1008 					rs->ti->error = "Cannot change device "
1009 						"positions in RAID array";
1010 					return -EINVAL;
1011 				}
1012 				DMINFO("RAID1 device #%d now at position #%d",
1013 				       role, r->raid_disk);
1014 			}
1015 
1016 			/*
1017 			 * Partial recovery is performed on
1018 			 * returning failed devices.
1019 			 */
1020 			if (failed_devices & (1 << role))
1021 				set_bit(Faulty, &r->flags);
1022 		}
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
1029 {
1030 	struct mddev *mddev = &rs->md;
1031 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
1032 
1033 	/*
1034 	 * If mddev->events is not set, we know we have not yet initialized
1035 	 * the array.
1036 	 */
1037 	if (!mddev->events && super_init_validation(mddev, rdev))
1038 		return -EINVAL;
1039 
1040 	/* Enable bitmap creation for RAID levels != 0 */
1041 	mddev->bitmap_info.offset = (rs->raid_type->level) ? to_sector(4096) : 0;
1042 	rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
1043 
1044 	if (!test_bit(FirstUse, &rdev->flags)) {
1045 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
1046 		if (rdev->recovery_offset != MaxSector)
1047 			clear_bit(In_sync, &rdev->flags);
1048 	}
1049 
1050 	/*
1051 	 * If a device comes back, set it as not In_sync and no longer faulty.
1052 	 */
1053 	if (test_bit(Faulty, &rdev->flags)) {
1054 		clear_bit(Faulty, &rdev->flags);
1055 		clear_bit(In_sync, &rdev->flags);
1056 		rdev->saved_raid_disk = rdev->raid_disk;
1057 		rdev->recovery_offset = 0;
1058 	}
1059 
1060 	clear_bit(FirstUse, &rdev->flags);
1061 
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Analyse superblocks and select the freshest.
1067  */
1068 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1069 {
1070 	int ret;
1071 	struct raid_dev *dev;
1072 	struct md_rdev *rdev, *tmp, *freshest;
1073 	struct mddev *mddev = &rs->md;
1074 
1075 	freshest = NULL;
1076 	rdev_for_each_safe(rdev, tmp, mddev) {
1077 		/*
1078 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
1079 		 * the array to undergo initialization again as
1080 		 * though it were new.  This is the intended effect
1081 		 * of the "sync" directive.
1082 		 *
1083 		 * When reshaping capability is added, we must ensure
1084 		 * that the "sync" directive is disallowed during the
1085 		 * reshape.
1086 		 */
1087 		rdev->sectors = to_sector(i_size_read(rdev->bdev->bd_inode));
1088 
1089 		if (rs->ctr_flags & CTR_FLAG_SYNC)
1090 			continue;
1091 
1092 		if (!rdev->meta_bdev)
1093 			continue;
1094 
1095 		ret = super_load(rdev, freshest);
1096 
1097 		switch (ret) {
1098 		case 1:
1099 			freshest = rdev;
1100 			break;
1101 		case 0:
1102 			break;
1103 		default:
1104 			dev = container_of(rdev, struct raid_dev, rdev);
1105 			if (dev->meta_dev)
1106 				dm_put_device(ti, dev->meta_dev);
1107 
1108 			dev->meta_dev = NULL;
1109 			rdev->meta_bdev = NULL;
1110 
1111 			if (rdev->sb_page)
1112 				put_page(rdev->sb_page);
1113 
1114 			rdev->sb_page = NULL;
1115 
1116 			rdev->sb_loaded = 0;
1117 
1118 			/*
1119 			 * We might be able to salvage the data device
1120 			 * even though the meta device has failed.  For
1121 			 * now, we behave as though '- -' had been
1122 			 * set for this device in the table.
1123 			 */
1124 			if (dev->data_dev)
1125 				dm_put_device(ti, dev->data_dev);
1126 
1127 			dev->data_dev = NULL;
1128 			rdev->bdev = NULL;
1129 
1130 			list_del(&rdev->same_set);
1131 		}
1132 	}
1133 
1134 	if (!freshest)
1135 		return 0;
1136 
1137 	if (validate_raid_redundancy(rs)) {
1138 		rs->ti->error = "Insufficient redundancy to activate array";
1139 		return -EINVAL;
1140 	}
1141 
1142 	/*
1143 	 * Validation of the freshest device provides the source of
1144 	 * validation for the remaining devices.
1145 	 */
1146 	ti->error = "Unable to assemble array: Invalid superblocks";
1147 	if (super_validate(rs, freshest))
1148 		return -EINVAL;
1149 
1150 	rdev_for_each(rdev, mddev)
1151 		if ((rdev != freshest) && super_validate(rs, rdev))
1152 			return -EINVAL;
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * Enable/disable discard support on RAID set depending on
1159  * RAID level and discard properties of underlying RAID members.
1160  */
1161 static void configure_discard_support(struct dm_target *ti, struct raid_set *rs)
1162 {
1163 	int i;
1164 	bool raid456;
1165 
1166 	/* Assume discards not supported until after checks below. */
1167 	ti->discards_supported = false;
1168 
1169 	/* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
1170 	raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
1171 
1172 	for (i = 0; i < rs->md.raid_disks; i++) {
1173 		struct request_queue *q;
1174 
1175 		if (!rs->dev[i].rdev.bdev)
1176 			continue;
1177 
1178 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
1179 		if (!q || !blk_queue_discard(q))
1180 			return;
1181 
1182 		if (raid456) {
1183 			if (!q->limits.discard_zeroes_data)
1184 				return;
1185 			if (!devices_handle_discard_safely) {
1186 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
1187 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
1188 				return;
1189 			}
1190 		}
1191 	}
1192 
1193 	/* All RAID members properly support discards */
1194 	ti->discards_supported = true;
1195 
1196 	/*
1197 	 * RAID1 and RAID10 personalities require bio splitting,
1198 	 * RAID0/4/5/6 don't and process large discard bios properly.
1199 	 */
1200 	ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
1201 	ti->num_discard_bios = 1;
1202 }
1203 
1204 /*
1205  * Construct a RAID4/5/6 mapping:
1206  * Args:
1207  *	<raid_type> <#raid_params> <raid_params>		\
1208  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1209  *
1210  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1211  * details on possible <raid_params>.
1212  */
1213 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1214 {
1215 	int ret;
1216 	struct raid_type *rt;
1217 	unsigned long num_raid_params, num_raid_devs;
1218 	struct raid_set *rs = NULL;
1219 
1220 	/* Must have at least <raid_type> <#raid_params> */
1221 	if (argc < 2) {
1222 		ti->error = "Too few arguments";
1223 		return -EINVAL;
1224 	}
1225 
1226 	/* raid type */
1227 	rt = get_raid_type(argv[0]);
1228 	if (!rt) {
1229 		ti->error = "Unrecognised raid_type";
1230 		return -EINVAL;
1231 	}
1232 	argc--;
1233 	argv++;
1234 
1235 	/* number of RAID parameters */
1236 	if (kstrtoul(argv[0], 10, &num_raid_params) < 0) {
1237 		ti->error = "Cannot understand number of RAID parameters";
1238 		return -EINVAL;
1239 	}
1240 	argc--;
1241 	argv++;
1242 
1243 	/* Skip over RAID params for now and find out # of devices */
1244 	if (num_raid_params >= argc) {
1245 		ti->error = "Arguments do not agree with counts given";
1246 		return -EINVAL;
1247 	}
1248 
1249 	if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1250 	    (num_raid_devs > MAX_RAID_DEVICES)) {
1251 		ti->error = "Cannot understand number of raid devices";
1252 		return -EINVAL;
1253 	}
1254 
1255 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1256 	if (argc != (num_raid_devs * 2)) {
1257 		ti->error = "Supplied RAID devices does not match the count given";
1258 		return -EINVAL;
1259 	}
1260 
1261 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1262 	if (IS_ERR(rs))
1263 		return PTR_ERR(rs);
1264 
1265 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1266 	if (ret)
1267 		goto bad;
1268 
1269 	argv += num_raid_params + 1;
1270 
1271 	ret = dev_parms(rs, argv);
1272 	if (ret)
1273 		goto bad;
1274 
1275 	rs->md.sync_super = super_sync;
1276 	ret = analyse_superblocks(ti, rs);
1277 	if (ret)
1278 		goto bad;
1279 
1280 	INIT_WORK(&rs->md.event_work, do_table_event);
1281 	ti->private = rs;
1282 	ti->num_flush_bios = 1;
1283 
1284 	/*
1285 	 * Disable/enable discard support on RAID set.
1286 	 */
1287 	configure_discard_support(ti, rs);
1288 
1289 	/* Has to be held on running the array */
1290 	mddev_lock_nointr(&rs->md);
1291 	ret = md_run(&rs->md);
1292 	rs->md.in_sync = 0; /* Assume already marked dirty */
1293 	mddev_unlock(&rs->md);
1294 
1295 	if (ret) {
1296 		ti->error = "Fail to run raid array";
1297 		goto bad;
1298 	}
1299 
1300 	if (ti->len != rs->md.array_sectors) {
1301 		ti->error = "Array size does not match requested target length";
1302 		ret = -EINVAL;
1303 		goto size_mismatch;
1304 	}
1305 	rs->callbacks.congested_fn = raid_is_congested;
1306 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1307 
1308 	mddev_suspend(&rs->md);
1309 	return 0;
1310 
1311 size_mismatch:
1312 	md_stop(&rs->md);
1313 bad:
1314 	context_free(rs);
1315 
1316 	return ret;
1317 }
1318 
1319 static void raid_dtr(struct dm_target *ti)
1320 {
1321 	struct raid_set *rs = ti->private;
1322 
1323 	list_del_init(&rs->callbacks.list);
1324 	md_stop(&rs->md);
1325 	context_free(rs);
1326 }
1327 
1328 static int raid_map(struct dm_target *ti, struct bio *bio)
1329 {
1330 	struct raid_set *rs = ti->private;
1331 	struct mddev *mddev = &rs->md;
1332 
1333 	mddev->pers->make_request(mddev, bio);
1334 
1335 	return DM_MAPIO_SUBMITTED;
1336 }
1337 
1338 static const char *decipher_sync_action(struct mddev *mddev)
1339 {
1340 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
1341 		return "frozen";
1342 
1343 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1344 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
1345 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1346 			return "reshape";
1347 
1348 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1349 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1350 				return "resync";
1351 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1352 				return "check";
1353 			return "repair";
1354 		}
1355 
1356 		if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
1357 			return "recover";
1358 	}
1359 
1360 	return "idle";
1361 }
1362 
1363 static void raid_status(struct dm_target *ti, status_type_t type,
1364 			unsigned status_flags, char *result, unsigned maxlen)
1365 {
1366 	struct raid_set *rs = ti->private;
1367 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1368 	unsigned sz = 0;
1369 	int i, array_in_sync = 0;
1370 	sector_t sync;
1371 
1372 	switch (type) {
1373 	case STATUSTYPE_INFO:
1374 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1375 
1376 		if (rs->raid_type->level) {
1377 			if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1378 				sync = rs->md.curr_resync_completed;
1379 			else
1380 				sync = rs->md.recovery_cp;
1381 
1382 			if (sync >= rs->md.resync_max_sectors) {
1383 				/*
1384 				 * Sync complete.
1385 				 */
1386 				array_in_sync = 1;
1387 				sync = rs->md.resync_max_sectors;
1388 			} else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
1389 				/*
1390 				 * If "check" or "repair" is occurring, the array has
1391 				 * undergone and initial sync and the health characters
1392 				 * should not be 'a' anymore.
1393 				 */
1394 				array_in_sync = 1;
1395 			} else {
1396 				/*
1397 				 * The array may be doing an initial sync, or it may
1398 				 * be rebuilding individual components.  If all the
1399 				 * devices are In_sync, then it is the array that is
1400 				 * being initialized.
1401 				 */
1402 				for (i = 0; i < rs->md.raid_disks; i++)
1403 					if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1404 						array_in_sync = 1;
1405 			}
1406 		} else {
1407 			/* RAID0 */
1408 			array_in_sync = 1;
1409 			sync = rs->md.resync_max_sectors;
1410 		}
1411 
1412 		/*
1413 		 * Status characters:
1414 		 *  'D' = Dead/Failed device
1415 		 *  'a' = Alive but not in-sync
1416 		 *  'A' = Alive and in-sync
1417 		 */
1418 		for (i = 0; i < rs->md.raid_disks; i++) {
1419 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1420 				DMEMIT("D");
1421 			else if (!array_in_sync ||
1422 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1423 				DMEMIT("a");
1424 			else
1425 				DMEMIT("A");
1426 		}
1427 
1428 		/*
1429 		 * In-sync ratio:
1430 		 *  The in-sync ratio shows the progress of:
1431 		 *   - Initializing the array
1432 		 *   - Rebuilding a subset of devices of the array
1433 		 *  The user can distinguish between the two by referring
1434 		 *  to the status characters.
1435 		 */
1436 		DMEMIT(" %llu/%llu",
1437 		       (unsigned long long) sync,
1438 		       (unsigned long long) rs->md.resync_max_sectors);
1439 
1440 		/*
1441 		 * Sync action:
1442 		 *   See Documentation/device-mapper/dm-raid.c for
1443 		 *   information on each of these states.
1444 		 */
1445 		DMEMIT(" %s", decipher_sync_action(&rs->md));
1446 
1447 		/*
1448 		 * resync_mismatches/mismatch_cnt
1449 		 *   This field shows the number of discrepancies found when
1450 		 *   performing a "check" of the array.
1451 		 */
1452 		DMEMIT(" %llu",
1453 		       (strcmp(rs->md.last_sync_action, "check")) ? 0 :
1454 		       (unsigned long long)
1455 		       atomic64_read(&rs->md.resync_mismatches));
1456 		break;
1457 	case STATUSTYPE_TABLE:
1458 		/* The string you would use to construct this array */
1459 		for (i = 0; i < rs->md.raid_disks; i++) {
1460 			if ((rs->ctr_flags & CTR_FLAG_REBUILD) &&
1461 			    rs->dev[i].data_dev &&
1462 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1463 				raid_param_cnt += 2; /* for rebuilds */
1464 			if (rs->dev[i].data_dev &&
1465 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1466 				raid_param_cnt += 2;
1467 		}
1468 
1469 		raid_param_cnt += (hweight32(rs->ctr_flags & ~CTR_FLAG_REBUILD) * 2);
1470 		if (rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC))
1471 			raid_param_cnt--;
1472 
1473 		DMEMIT("%s %u %u", rs->raid_type->name,
1474 		       raid_param_cnt, rs->md.chunk_sectors);
1475 
1476 		if ((rs->ctr_flags & CTR_FLAG_SYNC) &&
1477 		    (rs->md.recovery_cp == MaxSector))
1478 			DMEMIT(" sync");
1479 		if (rs->ctr_flags & CTR_FLAG_NOSYNC)
1480 			DMEMIT(" nosync");
1481 
1482 		for (i = 0; i < rs->md.raid_disks; i++)
1483 			if ((rs->ctr_flags & CTR_FLAG_REBUILD) &&
1484 			    rs->dev[i].data_dev &&
1485 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1486 				DMEMIT(" rebuild %u", i);
1487 
1488 		if (rs->ctr_flags & CTR_FLAG_DAEMON_SLEEP)
1489 			DMEMIT(" daemon_sleep %lu",
1490 			       rs->md.bitmap_info.daemon_sleep);
1491 
1492 		if (rs->ctr_flags & CTR_FLAG_MIN_RECOVERY_RATE)
1493 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1494 
1495 		if (rs->ctr_flags & CTR_FLAG_MAX_RECOVERY_RATE)
1496 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1497 
1498 		for (i = 0; i < rs->md.raid_disks; i++)
1499 			if (rs->dev[i].data_dev &&
1500 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1501 				DMEMIT(" write_mostly %u", i);
1502 
1503 		if (rs->ctr_flags & CTR_FLAG_MAX_WRITE_BEHIND)
1504 			DMEMIT(" max_write_behind %lu",
1505 			       rs->md.bitmap_info.max_write_behind);
1506 
1507 		if (rs->ctr_flags & CTR_FLAG_STRIPE_CACHE) {
1508 			struct r5conf *conf = rs->md.private;
1509 
1510 			/* convert from kiB to sectors */
1511 			DMEMIT(" stripe_cache %d",
1512 			       conf ? conf->max_nr_stripes * 2 : 0);
1513 		}
1514 
1515 		if (rs->ctr_flags & CTR_FLAG_REGION_SIZE)
1516 			DMEMIT(" region_size %lu",
1517 			       rs->md.bitmap_info.chunksize >> 9);
1518 
1519 		if (rs->ctr_flags & CTR_FLAG_RAID10_COPIES)
1520 			DMEMIT(" raid10_copies %u",
1521 			       raid10_md_layout_to_copies(rs->md.layout));
1522 
1523 		if (rs->ctr_flags & CTR_FLAG_RAID10_FORMAT)
1524 			DMEMIT(" raid10_format %s",
1525 			       raid10_md_layout_to_format(rs->md.layout));
1526 
1527 		DMEMIT(" %d", rs->md.raid_disks);
1528 		for (i = 0; i < rs->md.raid_disks; i++) {
1529 			if (rs->dev[i].meta_dev)
1530 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1531 			else
1532 				DMEMIT(" -");
1533 
1534 			if (rs->dev[i].data_dev)
1535 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1536 			else
1537 				DMEMIT(" -");
1538 		}
1539 	}
1540 }
1541 
1542 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
1543 {
1544 	struct raid_set *rs = ti->private;
1545 	struct mddev *mddev = &rs->md;
1546 
1547 	if (!strcasecmp(argv[0], "reshape")) {
1548 		DMERR("Reshape not supported.");
1549 		return -EINVAL;
1550 	}
1551 
1552 	if (!mddev->pers || !mddev->pers->sync_request)
1553 		return -EINVAL;
1554 
1555 	if (!strcasecmp(argv[0], "frozen"))
1556 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1557 	else
1558 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1559 
1560 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
1561 		if (mddev->sync_thread) {
1562 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1563 			md_reap_sync_thread(mddev);
1564 		}
1565 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1566 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1567 		return -EBUSY;
1568 	else if (!strcasecmp(argv[0], "resync"))
1569 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1570 	else if (!strcasecmp(argv[0], "recover")) {
1571 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1572 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1573 	} else {
1574 		if (!strcasecmp(argv[0], "check"))
1575 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1576 		else if (!!strcasecmp(argv[0], "repair"))
1577 			return -EINVAL;
1578 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1579 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1580 	}
1581 	if (mddev->ro == 2) {
1582 		/* A write to sync_action is enough to justify
1583 		 * canceling read-auto mode
1584 		 */
1585 		mddev->ro = 0;
1586 		if (!mddev->suspended)
1587 			md_wakeup_thread(mddev->sync_thread);
1588 	}
1589 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1590 	if (!mddev->suspended)
1591 		md_wakeup_thread(mddev->thread);
1592 
1593 	return 0;
1594 }
1595 
1596 static int raid_iterate_devices(struct dm_target *ti,
1597 				iterate_devices_callout_fn fn, void *data)
1598 {
1599 	struct raid_set *rs = ti->private;
1600 	unsigned i;
1601 	int ret = 0;
1602 
1603 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1604 		if (rs->dev[i].data_dev)
1605 			ret = fn(ti,
1606 				 rs->dev[i].data_dev,
1607 				 0, /* No offset on data devs */
1608 				 rs->md.dev_sectors,
1609 				 data);
1610 
1611 	return ret;
1612 }
1613 
1614 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1615 {
1616 	struct raid_set *rs = ti->private;
1617 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1618 	struct r5conf *conf = rs->md.private;
1619 
1620 	blk_limits_io_min(limits, chunk_size);
1621 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1622 }
1623 
1624 static void raid_presuspend(struct dm_target *ti)
1625 {
1626 	struct raid_set *rs = ti->private;
1627 
1628 	md_stop_writes(&rs->md);
1629 }
1630 
1631 static void raid_postsuspend(struct dm_target *ti)
1632 {
1633 	struct raid_set *rs = ti->private;
1634 
1635 	mddev_suspend(&rs->md);
1636 }
1637 
1638 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
1639 {
1640 	int i;
1641 	uint64_t failed_devices, cleared_failed_devices = 0;
1642 	unsigned long flags;
1643 	struct dm_raid_superblock *sb;
1644 	struct md_rdev *r;
1645 
1646 	for (i = 0; i < rs->md.raid_disks; i++) {
1647 		r = &rs->dev[i].rdev;
1648 		if (test_bit(Faulty, &r->flags) && r->sb_page &&
1649 		    sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) {
1650 			DMINFO("Faulty %s device #%d has readable super block."
1651 			       "  Attempting to revive it.",
1652 			       rs->raid_type->name, i);
1653 
1654 			/*
1655 			 * Faulty bit may be set, but sometimes the array can
1656 			 * be suspended before the personalities can respond
1657 			 * by removing the device from the array (i.e. calling
1658 			 * 'hot_remove_disk').  If they haven't yet removed
1659 			 * the failed device, its 'raid_disk' number will be
1660 			 * '>= 0' - meaning we must call this function
1661 			 * ourselves.
1662 			 */
1663 			if ((r->raid_disk >= 0) &&
1664 			    (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
1665 				/* Failed to revive this device, try next */
1666 				continue;
1667 
1668 			r->raid_disk = i;
1669 			r->saved_raid_disk = i;
1670 			flags = r->flags;
1671 			clear_bit(Faulty, &r->flags);
1672 			clear_bit(WriteErrorSeen, &r->flags);
1673 			clear_bit(In_sync, &r->flags);
1674 			if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
1675 				r->raid_disk = -1;
1676 				r->saved_raid_disk = -1;
1677 				r->flags = flags;
1678 			} else {
1679 				r->recovery_offset = 0;
1680 				cleared_failed_devices |= 1 << i;
1681 			}
1682 		}
1683 	}
1684 	if (cleared_failed_devices) {
1685 		rdev_for_each(r, &rs->md) {
1686 			sb = page_address(r->sb_page);
1687 			failed_devices = le64_to_cpu(sb->failed_devices);
1688 			failed_devices &= ~cleared_failed_devices;
1689 			sb->failed_devices = cpu_to_le64(failed_devices);
1690 		}
1691 	}
1692 }
1693 
1694 static void raid_resume(struct dm_target *ti)
1695 {
1696 	struct raid_set *rs = ti->private;
1697 
1698 	if (rs->raid_type->level) {
1699 		set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1700 
1701 		if (!rs->bitmap_loaded) {
1702 			bitmap_load(&rs->md);
1703 			rs->bitmap_loaded = 1;
1704 		} else {
1705 			/*
1706 			 * A secondary resume while the device is active.
1707 			 * Take this opportunity to check whether any failed
1708 			 * devices are reachable again.
1709 			 */
1710 			attempt_restore_of_faulty_devices(rs);
1711 		}
1712 
1713 		clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1714 	}
1715 
1716 	mddev_resume(&rs->md);
1717 }
1718 
1719 static struct target_type raid_target = {
1720 	.name = "raid",
1721 	.version = {1, 7, 0},
1722 	.module = THIS_MODULE,
1723 	.ctr = raid_ctr,
1724 	.dtr = raid_dtr,
1725 	.map = raid_map,
1726 	.status = raid_status,
1727 	.message = raid_message,
1728 	.iterate_devices = raid_iterate_devices,
1729 	.io_hints = raid_io_hints,
1730 	.presuspend = raid_presuspend,
1731 	.postsuspend = raid_postsuspend,
1732 	.resume = raid_resume,
1733 };
1734 
1735 static int __init dm_raid_init(void)
1736 {
1737 	DMINFO("Loading target version %u.%u.%u",
1738 	       raid_target.version[0],
1739 	       raid_target.version[1],
1740 	       raid_target.version[2]);
1741 	return dm_register_target(&raid_target);
1742 }
1743 
1744 static void __exit dm_raid_exit(void)
1745 {
1746 	dm_unregister_target(&raid_target);
1747 }
1748 
1749 module_init(dm_raid_init);
1750 module_exit(dm_raid_exit);
1751 
1752 module_param(devices_handle_discard_safely, bool, 0644);
1753 MODULE_PARM_DESC(devices_handle_discard_safely,
1754 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
1755 
1756 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1757 MODULE_ALIAS("dm-raid1");
1758 MODULE_ALIAS("dm-raid10");
1759 MODULE_ALIAS("dm-raid4");
1760 MODULE_ALIAS("dm-raid5");
1761 MODULE_ALIAS("dm-raid6");
1762 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1763 MODULE_LICENSE("GPL");
1764