xref: /openbmc/linux/drivers/md/dm-raid.c (revision 75f25bd3)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 
10 #include "md.h"
11 #include "raid1.h"
12 #include "raid5.h"
13 #include "bitmap.h"
14 
15 #include <linux/device-mapper.h>
16 
17 #define DM_MSG_PREFIX "raid"
18 
19 /*
20  * The following flags are used by dm-raid.c to set up the array state.
21  * They must be cleared before md_run is called.
22  */
23 #define FirstUse 10             /* rdev flag */
24 
25 struct raid_dev {
26 	/*
27 	 * Two DM devices, one to hold metadata and one to hold the
28 	 * actual data/parity.  The reason for this is to not confuse
29 	 * ti->len and give more flexibility in altering size and
30 	 * characteristics.
31 	 *
32 	 * While it is possible for this device to be associated
33 	 * with a different physical device than the data_dev, it
34 	 * is intended for it to be the same.
35 	 *    |--------- Physical Device ---------|
36 	 *    |- meta_dev -|------ data_dev ------|
37 	 */
38 	struct dm_dev *meta_dev;
39 	struct dm_dev *data_dev;
40 	struct mdk_rdev_s rdev;
41 };
42 
43 /*
44  * Flags for rs->print_flags field.
45  */
46 #define DMPF_SYNC              0x1
47 #define DMPF_NOSYNC            0x2
48 #define DMPF_REBUILD           0x4
49 #define DMPF_DAEMON_SLEEP      0x8
50 #define DMPF_MIN_RECOVERY_RATE 0x10
51 #define DMPF_MAX_RECOVERY_RATE 0x20
52 #define DMPF_MAX_WRITE_BEHIND  0x40
53 #define DMPF_STRIPE_CACHE      0x80
54 #define DMPF_REGION_SIZE       0X100
55 struct raid_set {
56 	struct dm_target *ti;
57 
58 	uint64_t print_flags;
59 
60 	struct mddev_s md;
61 	struct raid_type *raid_type;
62 	struct dm_target_callbacks callbacks;
63 
64 	struct raid_dev dev[0];
65 };
66 
67 /* Supported raid types and properties. */
68 static struct raid_type {
69 	const char *name;		/* RAID algorithm. */
70 	const char *descr;		/* Descriptor text for logging. */
71 	const unsigned parity_devs;	/* # of parity devices. */
72 	const unsigned minimal_devs;	/* minimal # of devices in set. */
73 	const unsigned level;		/* RAID level. */
74 	const unsigned algorithm;	/* RAID algorithm. */
75 } raid_types[] = {
76 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
77 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
78 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
79 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
80 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
81 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
82 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
83 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
84 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
85 };
86 
87 static struct raid_type *get_raid_type(char *name)
88 {
89 	int i;
90 
91 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
92 		if (!strcmp(raid_types[i].name, name))
93 			return &raid_types[i];
94 
95 	return NULL;
96 }
97 
98 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
99 {
100 	unsigned i;
101 	struct raid_set *rs;
102 	sector_t sectors_per_dev;
103 
104 	if (raid_devs <= raid_type->parity_devs) {
105 		ti->error = "Insufficient number of devices";
106 		return ERR_PTR(-EINVAL);
107 	}
108 
109 	sectors_per_dev = ti->len;
110 	if ((raid_type->level > 1) &&
111 	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
112 		ti->error = "Target length not divisible by number of data devices";
113 		return ERR_PTR(-EINVAL);
114 	}
115 
116 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
117 	if (!rs) {
118 		ti->error = "Cannot allocate raid context";
119 		return ERR_PTR(-ENOMEM);
120 	}
121 
122 	mddev_init(&rs->md);
123 
124 	rs->ti = ti;
125 	rs->raid_type = raid_type;
126 	rs->md.raid_disks = raid_devs;
127 	rs->md.level = raid_type->level;
128 	rs->md.new_level = rs->md.level;
129 	rs->md.dev_sectors = sectors_per_dev;
130 	rs->md.layout = raid_type->algorithm;
131 	rs->md.new_layout = rs->md.layout;
132 	rs->md.delta_disks = 0;
133 	rs->md.recovery_cp = 0;
134 
135 	for (i = 0; i < raid_devs; i++)
136 		md_rdev_init(&rs->dev[i].rdev);
137 
138 	/*
139 	 * Remaining items to be initialized by further RAID params:
140 	 *  rs->md.persistent
141 	 *  rs->md.external
142 	 *  rs->md.chunk_sectors
143 	 *  rs->md.new_chunk_sectors
144 	 */
145 
146 	return rs;
147 }
148 
149 static void context_free(struct raid_set *rs)
150 {
151 	int i;
152 
153 	for (i = 0; i < rs->md.raid_disks; i++) {
154 		if (rs->dev[i].meta_dev)
155 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
156 		if (rs->dev[i].rdev.sb_page)
157 			put_page(rs->dev[i].rdev.sb_page);
158 		rs->dev[i].rdev.sb_page = NULL;
159 		rs->dev[i].rdev.sb_loaded = 0;
160 		if (rs->dev[i].data_dev)
161 			dm_put_device(rs->ti, rs->dev[i].data_dev);
162 	}
163 
164 	kfree(rs);
165 }
166 
167 /*
168  * For every device we have two words
169  *  <meta_dev>: meta device name or '-' if missing
170  *  <data_dev>: data device name or '-' if missing
171  *
172  * The following are permitted:
173  *    - -
174  *    - <data_dev>
175  *    <meta_dev> <data_dev>
176  *
177  * The following is not allowed:
178  *    <meta_dev> -
179  *
180  * This code parses those words.  If there is a failure,
181  * the caller must use context_free to unwind the operations.
182  */
183 static int dev_parms(struct raid_set *rs, char **argv)
184 {
185 	int i;
186 	int rebuild = 0;
187 	int metadata_available = 0;
188 	int ret = 0;
189 
190 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
191 		rs->dev[i].rdev.raid_disk = i;
192 
193 		rs->dev[i].meta_dev = NULL;
194 		rs->dev[i].data_dev = NULL;
195 
196 		/*
197 		 * There are no offsets, since there is a separate device
198 		 * for data and metadata.
199 		 */
200 		rs->dev[i].rdev.data_offset = 0;
201 		rs->dev[i].rdev.mddev = &rs->md;
202 
203 		if (strcmp(argv[0], "-")) {
204 			ret = dm_get_device(rs->ti, argv[0],
205 					    dm_table_get_mode(rs->ti->table),
206 					    &rs->dev[i].meta_dev);
207 			rs->ti->error = "RAID metadata device lookup failure";
208 			if (ret)
209 				return ret;
210 
211 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
212 			if (!rs->dev[i].rdev.sb_page)
213 				return -ENOMEM;
214 		}
215 
216 		if (!strcmp(argv[1], "-")) {
217 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
218 			    (!rs->dev[i].rdev.recovery_offset)) {
219 				rs->ti->error = "Drive designated for rebuild not specified";
220 				return -EINVAL;
221 			}
222 
223 			rs->ti->error = "No data device supplied with metadata device";
224 			if (rs->dev[i].meta_dev)
225 				return -EINVAL;
226 
227 			continue;
228 		}
229 
230 		ret = dm_get_device(rs->ti, argv[1],
231 				    dm_table_get_mode(rs->ti->table),
232 				    &rs->dev[i].data_dev);
233 		if (ret) {
234 			rs->ti->error = "RAID device lookup failure";
235 			return ret;
236 		}
237 
238 		if (rs->dev[i].meta_dev) {
239 			metadata_available = 1;
240 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
241 		}
242 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
243 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
244 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
245 			rebuild++;
246 	}
247 
248 	if (metadata_available) {
249 		rs->md.external = 0;
250 		rs->md.persistent = 1;
251 		rs->md.major_version = 2;
252 	} else if (rebuild && !rs->md.recovery_cp) {
253 		/*
254 		 * Without metadata, we will not be able to tell if the array
255 		 * is in-sync or not - we must assume it is not.  Therefore,
256 		 * it is impossible to rebuild a drive.
257 		 *
258 		 * Even if there is metadata, the on-disk information may
259 		 * indicate that the array is not in-sync and it will then
260 		 * fail at that time.
261 		 *
262 		 * User could specify 'nosync' option if desperate.
263 		 */
264 		DMERR("Unable to rebuild drive while array is not in-sync");
265 		rs->ti->error = "RAID device lookup failure";
266 		return -EINVAL;
267 	}
268 
269 	return 0;
270 }
271 
272 /*
273  * validate_region_size
274  * @rs
275  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
276  *
277  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
278  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
279  *
280  * Returns: 0 on success, -EINVAL on failure.
281  */
282 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
283 {
284 	unsigned long min_region_size = rs->ti->len / (1 << 21);
285 
286 	if (!region_size) {
287 		/*
288 		 * Choose a reasonable default.  All figures in sectors.
289 		 */
290 		if (min_region_size > (1 << 13)) {
291 			DMINFO("Choosing default region size of %lu sectors",
292 			       region_size);
293 			region_size = min_region_size;
294 		} else {
295 			DMINFO("Choosing default region size of 4MiB");
296 			region_size = 1 << 13; /* sectors */
297 		}
298 	} else {
299 		/*
300 		 * Validate user-supplied value.
301 		 */
302 		if (region_size > rs->ti->len) {
303 			rs->ti->error = "Supplied region size is too large";
304 			return -EINVAL;
305 		}
306 
307 		if (region_size < min_region_size) {
308 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
309 			      region_size, min_region_size);
310 			rs->ti->error = "Supplied region size is too small";
311 			return -EINVAL;
312 		}
313 
314 		if (!is_power_of_2(region_size)) {
315 			rs->ti->error = "Region size is not a power of 2";
316 			return -EINVAL;
317 		}
318 
319 		if (region_size < rs->md.chunk_sectors) {
320 			rs->ti->error = "Region size is smaller than the chunk size";
321 			return -EINVAL;
322 		}
323 	}
324 
325 	/*
326 	 * Convert sectors to bytes.
327 	 */
328 	rs->md.bitmap_info.chunksize = (region_size << 9);
329 
330 	return 0;
331 }
332 
333 /*
334  * Possible arguments are...
335  *	<chunk_size> [optional_args]
336  *
337  * Argument definitions
338  *    <chunk_size>			The number of sectors per disk that
339  *                                      will form the "stripe"
340  *    [[no]sync]			Force or prevent recovery of the
341  *                                      entire array
342  *    [rebuild <idx>]			Rebuild the drive indicated by the index
343  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
344  *                                      clear bits
345  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
346  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
347  *    [write_mostly <idx>]		Indicate a write mostly drive via index
348  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
349  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
350  *    [region_size <sectors>]           Defines granularity of bitmap
351  */
352 static int parse_raid_params(struct raid_set *rs, char **argv,
353 			     unsigned num_raid_params)
354 {
355 	unsigned i, rebuild_cnt = 0;
356 	unsigned long value, region_size = 0;
357 	char *key;
358 
359 	/*
360 	 * First, parse the in-order required arguments
361 	 * "chunk_size" is the only argument of this type.
362 	 */
363 	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
364 		rs->ti->error = "Bad chunk size";
365 		return -EINVAL;
366 	} else if (rs->raid_type->level == 1) {
367 		if (value)
368 			DMERR("Ignoring chunk size parameter for RAID 1");
369 		value = 0;
370 	} else if (!is_power_of_2(value)) {
371 		rs->ti->error = "Chunk size must be a power of 2";
372 		return -EINVAL;
373 	} else if (value < 8) {
374 		rs->ti->error = "Chunk size value is too small";
375 		return -EINVAL;
376 	}
377 
378 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
379 	argv++;
380 	num_raid_params--;
381 
382 	/*
383 	 * We set each individual device as In_sync with a completed
384 	 * 'recovery_offset'.  If there has been a device failure or
385 	 * replacement then one of the following cases applies:
386 	 *
387 	 *   1) User specifies 'rebuild'.
388 	 *      - Device is reset when param is read.
389 	 *   2) A new device is supplied.
390 	 *      - No matching superblock found, resets device.
391 	 *   3) Device failure was transient and returns on reload.
392 	 *      - Failure noticed, resets device for bitmap replay.
393 	 *   4) Device hadn't completed recovery after previous failure.
394 	 *      - Superblock is read and overrides recovery_offset.
395 	 *
396 	 * What is found in the superblocks of the devices is always
397 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
398 	 */
399 	for (i = 0; i < rs->md.raid_disks; i++) {
400 		set_bit(In_sync, &rs->dev[i].rdev.flags);
401 		rs->dev[i].rdev.recovery_offset = MaxSector;
402 	}
403 
404 	/*
405 	 * Second, parse the unordered optional arguments
406 	 */
407 	for (i = 0; i < num_raid_params; i++) {
408 		if (!strcasecmp(argv[i], "nosync")) {
409 			rs->md.recovery_cp = MaxSector;
410 			rs->print_flags |= DMPF_NOSYNC;
411 			continue;
412 		}
413 		if (!strcasecmp(argv[i], "sync")) {
414 			rs->md.recovery_cp = 0;
415 			rs->print_flags |= DMPF_SYNC;
416 			continue;
417 		}
418 
419 		/* The rest of the optional arguments come in key/value pairs */
420 		if ((i + 1) >= num_raid_params) {
421 			rs->ti->error = "Wrong number of raid parameters given";
422 			return -EINVAL;
423 		}
424 
425 		key = argv[i++];
426 		if (strict_strtoul(argv[i], 10, &value) < 0) {
427 			rs->ti->error = "Bad numerical argument given in raid params";
428 			return -EINVAL;
429 		}
430 
431 		if (!strcasecmp(key, "rebuild")) {
432 			rebuild_cnt++;
433 			if (((rs->raid_type->level != 1) &&
434 			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
435 			    ((rs->raid_type->level == 1) &&
436 			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
437 				rs->ti->error = "Too many rebuild devices specified for given RAID type";
438 				return -EINVAL;
439 			}
440 			if (value > rs->md.raid_disks) {
441 				rs->ti->error = "Invalid rebuild index given";
442 				return -EINVAL;
443 			}
444 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
445 			rs->dev[value].rdev.recovery_offset = 0;
446 			rs->print_flags |= DMPF_REBUILD;
447 		} else if (!strcasecmp(key, "write_mostly")) {
448 			if (rs->raid_type->level != 1) {
449 				rs->ti->error = "write_mostly option is only valid for RAID1";
450 				return -EINVAL;
451 			}
452 			if (value > rs->md.raid_disks) {
453 				rs->ti->error = "Invalid write_mostly drive index given";
454 				return -EINVAL;
455 			}
456 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
457 		} else if (!strcasecmp(key, "max_write_behind")) {
458 			if (rs->raid_type->level != 1) {
459 				rs->ti->error = "max_write_behind option is only valid for RAID1";
460 				return -EINVAL;
461 			}
462 			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
463 
464 			/*
465 			 * In device-mapper, we specify things in sectors, but
466 			 * MD records this value in kB
467 			 */
468 			value /= 2;
469 			if (value > COUNTER_MAX) {
470 				rs->ti->error = "Max write-behind limit out of range";
471 				return -EINVAL;
472 			}
473 			rs->md.bitmap_info.max_write_behind = value;
474 		} else if (!strcasecmp(key, "daemon_sleep")) {
475 			rs->print_flags |= DMPF_DAEMON_SLEEP;
476 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
477 				rs->ti->error = "daemon sleep period out of range";
478 				return -EINVAL;
479 			}
480 			rs->md.bitmap_info.daemon_sleep = value;
481 		} else if (!strcasecmp(key, "stripe_cache")) {
482 			rs->print_flags |= DMPF_STRIPE_CACHE;
483 
484 			/*
485 			 * In device-mapper, we specify things in sectors, but
486 			 * MD records this value in kB
487 			 */
488 			value /= 2;
489 
490 			if (rs->raid_type->level < 5) {
491 				rs->ti->error = "Inappropriate argument: stripe_cache";
492 				return -EINVAL;
493 			}
494 			if (raid5_set_cache_size(&rs->md, (int)value)) {
495 				rs->ti->error = "Bad stripe_cache size";
496 				return -EINVAL;
497 			}
498 		} else if (!strcasecmp(key, "min_recovery_rate")) {
499 			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
500 			if (value > INT_MAX) {
501 				rs->ti->error = "min_recovery_rate out of range";
502 				return -EINVAL;
503 			}
504 			rs->md.sync_speed_min = (int)value;
505 		} else if (!strcasecmp(key, "max_recovery_rate")) {
506 			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
507 			if (value > INT_MAX) {
508 				rs->ti->error = "max_recovery_rate out of range";
509 				return -EINVAL;
510 			}
511 			rs->md.sync_speed_max = (int)value;
512 		} else if (!strcasecmp(key, "region_size")) {
513 			rs->print_flags |= DMPF_REGION_SIZE;
514 			region_size = value;
515 		} else {
516 			DMERR("Unable to parse RAID parameter: %s", key);
517 			rs->ti->error = "Unable to parse RAID parameters";
518 			return -EINVAL;
519 		}
520 	}
521 
522 	if (validate_region_size(rs, region_size))
523 		return -EINVAL;
524 
525 	if (rs->md.chunk_sectors)
526 		rs->ti->split_io = rs->md.chunk_sectors;
527 	else
528 		rs->ti->split_io = region_size;
529 
530 	if (rs->md.chunk_sectors)
531 		rs->ti->split_io = rs->md.chunk_sectors;
532 	else
533 		rs->ti->split_io = region_size;
534 
535 	/* Assume there are no metadata devices until the drives are parsed */
536 	rs->md.persistent = 0;
537 	rs->md.external = 1;
538 
539 	return 0;
540 }
541 
542 static void do_table_event(struct work_struct *ws)
543 {
544 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
545 
546 	dm_table_event(rs->ti->table);
547 }
548 
549 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
550 {
551 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
552 
553 	if (rs->raid_type->level == 1)
554 		return md_raid1_congested(&rs->md, bits);
555 
556 	return md_raid5_congested(&rs->md, bits);
557 }
558 
559 /*
560  * This structure is never routinely used by userspace, unlike md superblocks.
561  * Devices with this superblock should only ever be accessed via device-mapper.
562  */
563 #define DM_RAID_MAGIC 0x64526D44
564 struct dm_raid_superblock {
565 	__le32 magic;		/* "DmRd" */
566 	__le32 features;	/* Used to indicate possible future changes */
567 
568 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
569 	__le32 array_position;	/* The position of this drive in the array */
570 
571 	__le64 events;		/* Incremented by md when superblock updated */
572 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
573 
574 	/*
575 	 * This offset tracks the progress of the repair or replacement of
576 	 * an individual drive.
577 	 */
578 	__le64 disk_recovery_offset;
579 
580 	/*
581 	 * This offset tracks the progress of the initial array
582 	 * synchronisation/parity calculation.
583 	 */
584 	__le64 array_resync_offset;
585 
586 	/*
587 	 * RAID characteristics
588 	 */
589 	__le32 level;
590 	__le32 layout;
591 	__le32 stripe_sectors;
592 
593 	__u8 pad[452];		/* Round struct to 512 bytes. */
594 				/* Always set to 0 when writing. */
595 } __packed;
596 
597 static int read_disk_sb(mdk_rdev_t *rdev, int size)
598 {
599 	BUG_ON(!rdev->sb_page);
600 
601 	if (rdev->sb_loaded)
602 		return 0;
603 
604 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
605 		DMERR("Failed to read device superblock");
606 		return -EINVAL;
607 	}
608 
609 	rdev->sb_loaded = 1;
610 
611 	return 0;
612 }
613 
614 static void super_sync(mddev_t *mddev, mdk_rdev_t *rdev)
615 {
616 	mdk_rdev_t *r, *t;
617 	uint64_t failed_devices;
618 	struct dm_raid_superblock *sb;
619 
620 	sb = page_address(rdev->sb_page);
621 	failed_devices = le64_to_cpu(sb->failed_devices);
622 
623 	rdev_for_each(r, t, mddev)
624 		if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
625 			failed_devices |= (1ULL << r->raid_disk);
626 
627 	memset(sb, 0, sizeof(*sb));
628 
629 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
630 	sb->features = cpu_to_le32(0);	/* No features yet */
631 
632 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
633 	sb->array_position = cpu_to_le32(rdev->raid_disk);
634 
635 	sb->events = cpu_to_le64(mddev->events);
636 	sb->failed_devices = cpu_to_le64(failed_devices);
637 
638 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
639 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
640 
641 	sb->level = cpu_to_le32(mddev->level);
642 	sb->layout = cpu_to_le32(mddev->layout);
643 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
644 }
645 
646 /*
647  * super_load
648  *
649  * This function creates a superblock if one is not found on the device
650  * and will decide which superblock to use if there's a choice.
651  *
652  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
653  */
654 static int super_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev)
655 {
656 	int ret;
657 	struct dm_raid_superblock *sb;
658 	struct dm_raid_superblock *refsb;
659 	uint64_t events_sb, events_refsb;
660 
661 	rdev->sb_start = 0;
662 	rdev->sb_size = sizeof(*sb);
663 
664 	ret = read_disk_sb(rdev, rdev->sb_size);
665 	if (ret)
666 		return ret;
667 
668 	sb = page_address(rdev->sb_page);
669 	if (sb->magic != cpu_to_le32(DM_RAID_MAGIC)) {
670 		super_sync(rdev->mddev, rdev);
671 
672 		set_bit(FirstUse, &rdev->flags);
673 
674 		/* Force writing of superblocks to disk */
675 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
676 
677 		/* Any superblock is better than none, choose that if given */
678 		return refdev ? 0 : 1;
679 	}
680 
681 	if (!refdev)
682 		return 1;
683 
684 	events_sb = le64_to_cpu(sb->events);
685 
686 	refsb = page_address(refdev->sb_page);
687 	events_refsb = le64_to_cpu(refsb->events);
688 
689 	return (events_sb > events_refsb) ? 1 : 0;
690 }
691 
692 static int super_init_validation(mddev_t *mddev, mdk_rdev_t *rdev)
693 {
694 	int role;
695 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
696 	uint64_t events_sb;
697 	uint64_t failed_devices;
698 	struct dm_raid_superblock *sb;
699 	uint32_t new_devs = 0;
700 	uint32_t rebuilds = 0;
701 	mdk_rdev_t *r, *t;
702 	struct dm_raid_superblock *sb2;
703 
704 	sb = page_address(rdev->sb_page);
705 	events_sb = le64_to_cpu(sb->events);
706 	failed_devices = le64_to_cpu(sb->failed_devices);
707 
708 	/*
709 	 * Initialise to 1 if this is a new superblock.
710 	 */
711 	mddev->events = events_sb ? : 1;
712 
713 	/*
714 	 * Reshaping is not currently allowed
715 	 */
716 	if ((le32_to_cpu(sb->level) != mddev->level) ||
717 	    (le32_to_cpu(sb->layout) != mddev->layout) ||
718 	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
719 		DMERR("Reshaping arrays not yet supported.");
720 		return -EINVAL;
721 	}
722 
723 	/* We can only change the number of devices in RAID1 right now */
724 	if ((rs->raid_type->level != 1) &&
725 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
726 		DMERR("Reshaping arrays not yet supported.");
727 		return -EINVAL;
728 	}
729 
730 	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
731 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
732 
733 	/*
734 	 * During load, we set FirstUse if a new superblock was written.
735 	 * There are two reasons we might not have a superblock:
736 	 * 1) The array is brand new - in which case, all of the
737 	 *    devices must have their In_sync bit set.  Also,
738 	 *    recovery_cp must be 0, unless forced.
739 	 * 2) This is a new device being added to an old array
740 	 *    and the new device needs to be rebuilt - in which
741 	 *    case the In_sync bit will /not/ be set and
742 	 *    recovery_cp must be MaxSector.
743 	 */
744 	rdev_for_each(r, t, mddev) {
745 		if (!test_bit(In_sync, &r->flags)) {
746 			if (!test_bit(FirstUse, &r->flags))
747 				DMERR("Superblock area of "
748 				      "rebuild device %d should have been "
749 				      "cleared.", r->raid_disk);
750 			set_bit(FirstUse, &r->flags);
751 			rebuilds++;
752 		} else if (test_bit(FirstUse, &r->flags))
753 			new_devs++;
754 	}
755 
756 	if (!rebuilds) {
757 		if (new_devs == mddev->raid_disks) {
758 			DMINFO("Superblocks created for new array");
759 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
760 		} else if (new_devs) {
761 			DMERR("New device injected "
762 			      "into existing array without 'rebuild' "
763 			      "parameter specified");
764 			return -EINVAL;
765 		}
766 	} else if (new_devs) {
767 		DMERR("'rebuild' devices cannot be "
768 		      "injected into an array with other first-time devices");
769 		return -EINVAL;
770 	} else if (mddev->recovery_cp != MaxSector) {
771 		DMERR("'rebuild' specified while array is not in-sync");
772 		return -EINVAL;
773 	}
774 
775 	/*
776 	 * Now we set the Faulty bit for those devices that are
777 	 * recorded in the superblock as failed.
778 	 */
779 	rdev_for_each(r, t, mddev) {
780 		if (!r->sb_page)
781 			continue;
782 		sb2 = page_address(r->sb_page);
783 		sb2->failed_devices = 0;
784 
785 		/*
786 		 * Check for any device re-ordering.
787 		 */
788 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
789 			role = le32_to_cpu(sb2->array_position);
790 			if (role != r->raid_disk) {
791 				if (rs->raid_type->level != 1) {
792 					rs->ti->error = "Cannot change device "
793 						"positions in RAID array";
794 					return -EINVAL;
795 				}
796 				DMINFO("RAID1 device #%d now at position #%d",
797 				       role, r->raid_disk);
798 			}
799 
800 			/*
801 			 * Partial recovery is performed on
802 			 * returning failed devices.
803 			 */
804 			if (failed_devices & (1 << role))
805 				set_bit(Faulty, &r->flags);
806 		}
807 	}
808 
809 	return 0;
810 }
811 
812 static int super_validate(mddev_t *mddev, mdk_rdev_t *rdev)
813 {
814 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
815 
816 	/*
817 	 * If mddev->events is not set, we know we have not yet initialized
818 	 * the array.
819 	 */
820 	if (!mddev->events && super_init_validation(mddev, rdev))
821 		return -EINVAL;
822 
823 	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
824 	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
825 	if (!test_bit(FirstUse, &rdev->flags)) {
826 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
827 		if (rdev->recovery_offset != MaxSector)
828 			clear_bit(In_sync, &rdev->flags);
829 	}
830 
831 	/*
832 	 * If a device comes back, set it as not In_sync and no longer faulty.
833 	 */
834 	if (test_bit(Faulty, &rdev->flags)) {
835 		clear_bit(Faulty, &rdev->flags);
836 		clear_bit(In_sync, &rdev->flags);
837 		rdev->saved_raid_disk = rdev->raid_disk;
838 		rdev->recovery_offset = 0;
839 	}
840 
841 	clear_bit(FirstUse, &rdev->flags);
842 
843 	return 0;
844 }
845 
846 /*
847  * Analyse superblocks and select the freshest.
848  */
849 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
850 {
851 	int ret;
852 	mdk_rdev_t *rdev, *freshest, *tmp;
853 	mddev_t *mddev = &rs->md;
854 
855 	freshest = NULL;
856 	rdev_for_each(rdev, tmp, mddev) {
857 		if (!rdev->meta_bdev)
858 			continue;
859 
860 		ret = super_load(rdev, freshest);
861 
862 		switch (ret) {
863 		case 1:
864 			freshest = rdev;
865 			break;
866 		case 0:
867 			break;
868 		default:
869 			ti->error = "Failed to load superblock";
870 			return ret;
871 		}
872 	}
873 
874 	if (!freshest)
875 		return 0;
876 
877 	/*
878 	 * Validation of the freshest device provides the source of
879 	 * validation for the remaining devices.
880 	 */
881 	ti->error = "Unable to assemble array: Invalid superblocks";
882 	if (super_validate(mddev, freshest))
883 		return -EINVAL;
884 
885 	rdev_for_each(rdev, tmp, mddev)
886 		if ((rdev != freshest) && super_validate(mddev, rdev))
887 			return -EINVAL;
888 
889 	return 0;
890 }
891 
892 /*
893  * Construct a RAID4/5/6 mapping:
894  * Args:
895  *	<raid_type> <#raid_params> <raid_params>		\
896  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
897  *
898  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
899  * details on possible <raid_params>.
900  */
901 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
902 {
903 	int ret;
904 	struct raid_type *rt;
905 	unsigned long num_raid_params, num_raid_devs;
906 	struct raid_set *rs = NULL;
907 
908 	/* Must have at least <raid_type> <#raid_params> */
909 	if (argc < 2) {
910 		ti->error = "Too few arguments";
911 		return -EINVAL;
912 	}
913 
914 	/* raid type */
915 	rt = get_raid_type(argv[0]);
916 	if (!rt) {
917 		ti->error = "Unrecognised raid_type";
918 		return -EINVAL;
919 	}
920 	argc--;
921 	argv++;
922 
923 	/* number of RAID parameters */
924 	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
925 		ti->error = "Cannot understand number of RAID parameters";
926 		return -EINVAL;
927 	}
928 	argc--;
929 	argv++;
930 
931 	/* Skip over RAID params for now and find out # of devices */
932 	if (num_raid_params + 1 > argc) {
933 		ti->error = "Arguments do not agree with counts given";
934 		return -EINVAL;
935 	}
936 
937 	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
938 	    (num_raid_devs >= INT_MAX)) {
939 		ti->error = "Cannot understand number of raid devices";
940 		return -EINVAL;
941 	}
942 
943 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
944 	if (IS_ERR(rs))
945 		return PTR_ERR(rs);
946 
947 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
948 	if (ret)
949 		goto bad;
950 
951 	ret = -EINVAL;
952 
953 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
954 	argv += num_raid_params + 1;
955 
956 	if (argc != (num_raid_devs * 2)) {
957 		ti->error = "Supplied RAID devices does not match the count given";
958 		goto bad;
959 	}
960 
961 	ret = dev_parms(rs, argv);
962 	if (ret)
963 		goto bad;
964 
965 	rs->md.sync_super = super_sync;
966 	ret = analyse_superblocks(ti, rs);
967 	if (ret)
968 		goto bad;
969 
970 	INIT_WORK(&rs->md.event_work, do_table_event);
971 	ti->private = rs;
972 
973 	mutex_lock(&rs->md.reconfig_mutex);
974 	ret = md_run(&rs->md);
975 	rs->md.in_sync = 0; /* Assume already marked dirty */
976 	mutex_unlock(&rs->md.reconfig_mutex);
977 
978 	if (ret) {
979 		ti->error = "Fail to run raid array";
980 		goto bad;
981 	}
982 
983 	rs->callbacks.congested_fn = raid_is_congested;
984 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
985 
986 	mddev_suspend(&rs->md);
987 	return 0;
988 
989 bad:
990 	context_free(rs);
991 
992 	return ret;
993 }
994 
995 static void raid_dtr(struct dm_target *ti)
996 {
997 	struct raid_set *rs = ti->private;
998 
999 	list_del_init(&rs->callbacks.list);
1000 	md_stop(&rs->md);
1001 	context_free(rs);
1002 }
1003 
1004 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1005 {
1006 	struct raid_set *rs = ti->private;
1007 	mddev_t *mddev = &rs->md;
1008 
1009 	mddev->pers->make_request(mddev, bio);
1010 
1011 	return DM_MAPIO_SUBMITTED;
1012 }
1013 
1014 static int raid_status(struct dm_target *ti, status_type_t type,
1015 		       char *result, unsigned maxlen)
1016 {
1017 	struct raid_set *rs = ti->private;
1018 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1019 	unsigned sz = 0;
1020 	int i;
1021 	sector_t sync;
1022 
1023 	switch (type) {
1024 	case STATUSTYPE_INFO:
1025 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1026 
1027 		for (i = 0; i < rs->md.raid_disks; i++) {
1028 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1029 				DMEMIT("D");
1030 			else if (test_bit(In_sync, &rs->dev[i].rdev.flags))
1031 				DMEMIT("A");
1032 			else
1033 				DMEMIT("a");
1034 		}
1035 
1036 		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1037 			sync = rs->md.curr_resync_completed;
1038 		else
1039 			sync = rs->md.recovery_cp;
1040 
1041 		if (sync > rs->md.resync_max_sectors)
1042 			sync = rs->md.resync_max_sectors;
1043 
1044 		DMEMIT(" %llu/%llu",
1045 		       (unsigned long long) sync,
1046 		       (unsigned long long) rs->md.resync_max_sectors);
1047 
1048 		break;
1049 	case STATUSTYPE_TABLE:
1050 		/* The string you would use to construct this array */
1051 		for (i = 0; i < rs->md.raid_disks; i++) {
1052 			if ((rs->print_flags & DMPF_REBUILD) &&
1053 			    rs->dev[i].data_dev &&
1054 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1055 				raid_param_cnt += 2; /* for rebuilds */
1056 			if (rs->dev[i].data_dev &&
1057 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1058 				raid_param_cnt += 2;
1059 		}
1060 
1061 		raid_param_cnt += (hweight64(rs->print_flags & ~DMPF_REBUILD) * 2);
1062 		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1063 			raid_param_cnt--;
1064 
1065 		DMEMIT("%s %u %u", rs->raid_type->name,
1066 		       raid_param_cnt, rs->md.chunk_sectors);
1067 
1068 		if ((rs->print_flags & DMPF_SYNC) &&
1069 		    (rs->md.recovery_cp == MaxSector))
1070 			DMEMIT(" sync");
1071 		if (rs->print_flags & DMPF_NOSYNC)
1072 			DMEMIT(" nosync");
1073 
1074 		for (i = 0; i < rs->md.raid_disks; i++)
1075 			if ((rs->print_flags & DMPF_REBUILD) &&
1076 			    rs->dev[i].data_dev &&
1077 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1078 				DMEMIT(" rebuild %u", i);
1079 
1080 		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1081 			DMEMIT(" daemon_sleep %lu",
1082 			       rs->md.bitmap_info.daemon_sleep);
1083 
1084 		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1085 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1086 
1087 		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1088 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1089 
1090 		for (i = 0; i < rs->md.raid_disks; i++)
1091 			if (rs->dev[i].data_dev &&
1092 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1093 				DMEMIT(" write_mostly %u", i);
1094 
1095 		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1096 			DMEMIT(" max_write_behind %lu",
1097 			       rs->md.bitmap_info.max_write_behind);
1098 
1099 		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1100 			raid5_conf_t *conf = rs->md.private;
1101 
1102 			/* convert from kiB to sectors */
1103 			DMEMIT(" stripe_cache %d",
1104 			       conf ? conf->max_nr_stripes * 2 : 0);
1105 		}
1106 
1107 		if (rs->print_flags & DMPF_REGION_SIZE)
1108 			DMEMIT(" region_size %lu",
1109 			       rs->md.bitmap_info.chunksize >> 9);
1110 
1111 		DMEMIT(" %d", rs->md.raid_disks);
1112 		for (i = 0; i < rs->md.raid_disks; i++) {
1113 			if (rs->dev[i].meta_dev)
1114 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1115 			else
1116 				DMEMIT(" -");
1117 
1118 			if (rs->dev[i].data_dev)
1119 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1120 			else
1121 				DMEMIT(" -");
1122 		}
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1129 {
1130 	struct raid_set *rs = ti->private;
1131 	unsigned i;
1132 	int ret = 0;
1133 
1134 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1135 		if (rs->dev[i].data_dev)
1136 			ret = fn(ti,
1137 				 rs->dev[i].data_dev,
1138 				 0, /* No offset on data devs */
1139 				 rs->md.dev_sectors,
1140 				 data);
1141 
1142 	return ret;
1143 }
1144 
1145 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1146 {
1147 	struct raid_set *rs = ti->private;
1148 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1149 	raid5_conf_t *conf = rs->md.private;
1150 
1151 	blk_limits_io_min(limits, chunk_size);
1152 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1153 }
1154 
1155 static void raid_presuspend(struct dm_target *ti)
1156 {
1157 	struct raid_set *rs = ti->private;
1158 
1159 	md_stop_writes(&rs->md);
1160 }
1161 
1162 static void raid_postsuspend(struct dm_target *ti)
1163 {
1164 	struct raid_set *rs = ti->private;
1165 
1166 	mddev_suspend(&rs->md);
1167 }
1168 
1169 static void raid_resume(struct dm_target *ti)
1170 {
1171 	struct raid_set *rs = ti->private;
1172 
1173 	bitmap_load(&rs->md);
1174 	mddev_resume(&rs->md);
1175 }
1176 
1177 static struct target_type raid_target = {
1178 	.name = "raid",
1179 	.version = {1, 1, 0},
1180 	.module = THIS_MODULE,
1181 	.ctr = raid_ctr,
1182 	.dtr = raid_dtr,
1183 	.map = raid_map,
1184 	.status = raid_status,
1185 	.iterate_devices = raid_iterate_devices,
1186 	.io_hints = raid_io_hints,
1187 	.presuspend = raid_presuspend,
1188 	.postsuspend = raid_postsuspend,
1189 	.resume = raid_resume,
1190 };
1191 
1192 static int __init dm_raid_init(void)
1193 {
1194 	return dm_register_target(&raid_target);
1195 }
1196 
1197 static void __exit dm_raid_exit(void)
1198 {
1199 	dm_unregister_target(&raid_target);
1200 }
1201 
1202 module_init(dm_raid_init);
1203 module_exit(dm_raid_exit);
1204 
1205 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1206 MODULE_ALIAS("dm-raid4");
1207 MODULE_ALIAS("dm-raid5");
1208 MODULE_ALIAS("dm-raid6");
1209 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1210 MODULE_LICENSE("GPL");
1211