xref: /openbmc/linux/drivers/md/dm-raid.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
21 
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26 
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define	MIN_RAID456_JOURNAL_SPACE (4*2048)
31 
32 static bool devices_handle_discard_safely = false;
33 
34 /*
35  * The following flags are used by dm-raid.c to set up the array state.
36  * They must be cleared before md_run is called.
37  */
38 #define FirstUse 10		/* rdev flag */
39 
40 struct raid_dev {
41 	/*
42 	 * Two DM devices, one to hold metadata and one to hold the
43 	 * actual data/parity.	The reason for this is to not confuse
44 	 * ti->len and give more flexibility in altering size and
45 	 * characteristics.
46 	 *
47 	 * While it is possible for this device to be associated
48 	 * with a different physical device than the data_dev, it
49 	 * is intended for it to be the same.
50 	 *    |--------- Physical Device ---------|
51 	 *    |- meta_dev -|------ data_dev ------|
52 	 */
53 	struct dm_dev *meta_dev;
54 	struct dm_dev *data_dev;
55 	struct md_rdev rdev;
56 };
57 
58 /*
59  * Bits for establishing rs->ctr_flags
60  *
61  * 1 = no flag value
62  * 2 = flag with value
63  */
64 #define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80 
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV		15 /* 2 */ /* Only with raid4/5/6! */
83 
84 /*
85  * Flags for rs->ctr_flags field.
86  */
87 #define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
88 #define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
89 #define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
90 #define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
91 #define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
92 #define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
93 #define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
94 #define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
95 #define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
96 #define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
97 #define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
98 #define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
99 #define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
100 #define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
101 #define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
102 #define CTR_FLAG_JOURNAL_DEV		(1 << __CTR_FLAG_JOURNAL_DEV)
103 
104 #define RESUME_STAY_FROZEN_FLAGS (CTR_FLAG_DELTA_DISKS | CTR_FLAG_DATA_OFFSET)
105 
106 /*
107  * Definitions of various constructor flags to
108  * be used in checks of valid / invalid flags
109  * per raid level.
110  */
111 /* Define all any sync flags */
112 #define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
113 
114 /* Define flags for options without argument (e.g. 'nosync') */
115 #define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
116 					 CTR_FLAG_RAID10_USE_NEAR_SETS)
117 
118 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
119 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
120 				  CTR_FLAG_WRITE_MOSTLY | \
121 				  CTR_FLAG_DAEMON_SLEEP | \
122 				  CTR_FLAG_MIN_RECOVERY_RATE | \
123 				  CTR_FLAG_MAX_RECOVERY_RATE | \
124 				  CTR_FLAG_MAX_WRITE_BEHIND | \
125 				  CTR_FLAG_STRIPE_CACHE | \
126 				  CTR_FLAG_REGION_SIZE | \
127 				  CTR_FLAG_RAID10_COPIES | \
128 				  CTR_FLAG_RAID10_FORMAT | \
129 				  CTR_FLAG_DELTA_DISKS | \
130 				  CTR_FLAG_DATA_OFFSET)
131 
132 /* Valid options definitions per raid level... */
133 
134 /* "raid0" does only accept data offset */
135 #define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
136 
137 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
138 #define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
139 				 CTR_FLAG_REBUILD | \
140 				 CTR_FLAG_WRITE_MOSTLY | \
141 				 CTR_FLAG_DAEMON_SLEEP | \
142 				 CTR_FLAG_MIN_RECOVERY_RATE | \
143 				 CTR_FLAG_MAX_RECOVERY_RATE | \
144 				 CTR_FLAG_MAX_WRITE_BEHIND | \
145 				 CTR_FLAG_REGION_SIZE | \
146 				 CTR_FLAG_DELTA_DISKS | \
147 				 CTR_FLAG_DATA_OFFSET)
148 
149 /* "raid10" does not accept any raid1 or stripe cache options */
150 #define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
151 				 CTR_FLAG_REBUILD | \
152 				 CTR_FLAG_DAEMON_SLEEP | \
153 				 CTR_FLAG_MIN_RECOVERY_RATE | \
154 				 CTR_FLAG_MAX_RECOVERY_RATE | \
155 				 CTR_FLAG_REGION_SIZE | \
156 				 CTR_FLAG_RAID10_COPIES | \
157 				 CTR_FLAG_RAID10_FORMAT | \
158 				 CTR_FLAG_DELTA_DISKS | \
159 				 CTR_FLAG_DATA_OFFSET | \
160 				 CTR_FLAG_RAID10_USE_NEAR_SETS)
161 
162 /*
163  * "raid4/5/6" do not accept any raid1 or raid10 specific options
164  *
165  * "raid6" does not accept "nosync", because it is not guaranteed
166  * that both parity and q-syndrome are being written properly with
167  * any writes
168  */
169 #define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
170 				 CTR_FLAG_REBUILD | \
171 				 CTR_FLAG_DAEMON_SLEEP | \
172 				 CTR_FLAG_MIN_RECOVERY_RATE | \
173 				 CTR_FLAG_MAX_RECOVERY_RATE | \
174 				 CTR_FLAG_STRIPE_CACHE | \
175 				 CTR_FLAG_REGION_SIZE | \
176 				 CTR_FLAG_DELTA_DISKS | \
177 				 CTR_FLAG_DATA_OFFSET | \
178 				 CTR_FLAG_JOURNAL_DEV)
179 
180 #define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
181 				 CTR_FLAG_REBUILD | \
182 				 CTR_FLAG_DAEMON_SLEEP | \
183 				 CTR_FLAG_MIN_RECOVERY_RATE | \
184 				 CTR_FLAG_MAX_RECOVERY_RATE | \
185 				 CTR_FLAG_STRIPE_CACHE | \
186 				 CTR_FLAG_REGION_SIZE | \
187 				 CTR_FLAG_DELTA_DISKS | \
188 				 CTR_FLAG_DATA_OFFSET | \
189 				 CTR_FLAG_JOURNAL_DEV)
190 /* ...valid options definitions per raid level */
191 
192 /*
193  * Flags for rs->runtime_flags field
194  * (RT_FLAG prefix meaning "runtime flag")
195  *
196  * These are all internal and used to define runtime state,
197  * e.g. to prevent another resume from preresume processing
198  * the raid set all over again.
199  */
200 #define RT_FLAG_RS_PRERESUMED		0
201 #define RT_FLAG_RS_RESUMED		1
202 #define RT_FLAG_RS_BITMAP_LOADED	2
203 #define RT_FLAG_UPDATE_SBS		3
204 #define RT_FLAG_RESHAPE_RS		4
205 
206 /* Array elements of 64 bit needed for rebuild/failed disk bits */
207 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
208 
209 /*
210  * raid set level, layout and chunk sectors backup/restore
211  */
212 struct rs_layout {
213 	int new_level;
214 	int new_layout;
215 	int new_chunk_sectors;
216 };
217 
218 struct raid_set {
219 	struct dm_target *ti;
220 
221 	uint32_t bitmap_loaded;
222 	uint32_t stripe_cache_entries;
223 	unsigned long ctr_flags;
224 	unsigned long runtime_flags;
225 
226 	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
227 
228 	int raid_disks;
229 	int delta_disks;
230 	int data_offset;
231 	int raid10_copies;
232 	int requested_bitmap_chunk_sectors;
233 
234 	struct mddev md;
235 	struct raid_type *raid_type;
236 	struct dm_target_callbacks callbacks;
237 
238 	/* Optional raid4/5/6 journal device */
239 	struct journal_dev {
240 		struct dm_dev *dev;
241 		struct md_rdev rdev;
242 	} journal_dev;
243 
244 	struct raid_dev dev[0];
245 };
246 
247 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
248 {
249 	struct mddev *mddev = &rs->md;
250 
251 	l->new_level = mddev->new_level;
252 	l->new_layout = mddev->new_layout;
253 	l->new_chunk_sectors = mddev->new_chunk_sectors;
254 }
255 
256 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
257 {
258 	struct mddev *mddev = &rs->md;
259 
260 	mddev->new_level = l->new_level;
261 	mddev->new_layout = l->new_layout;
262 	mddev->new_chunk_sectors = l->new_chunk_sectors;
263 }
264 
265 /* raid10 algorithms (i.e. formats) */
266 #define	ALGORITHM_RAID10_DEFAULT	0
267 #define	ALGORITHM_RAID10_NEAR		1
268 #define	ALGORITHM_RAID10_OFFSET		2
269 #define	ALGORITHM_RAID10_FAR		3
270 
271 /* Supported raid types and properties. */
272 static struct raid_type {
273 	const char *name;		/* RAID algorithm. */
274 	const char *descr;		/* Descriptor text for logging. */
275 	const unsigned int parity_devs;	/* # of parity devices. */
276 	const unsigned int minimal_devs;/* minimal # of devices in set. */
277 	const unsigned int level;	/* RAID level. */
278 	const unsigned int algorithm;	/* RAID algorithm. */
279 } raid_types[] = {
280 	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
281 	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
282 	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
283 	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
284 	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
285 	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
286 	{"raid4",	  "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
287 	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
288 	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
289 	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
290 	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
291 	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
292 	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
293 	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
294 	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
295 	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
296 	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
297 	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
298 	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
299 	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
300 };
301 
302 /* True, if @v is in inclusive range [@min, @max] */
303 static bool __within_range(long v, long min, long max)
304 {
305 	return v >= min && v <= max;
306 }
307 
308 /* All table line arguments are defined here */
309 static struct arg_name_flag {
310 	const unsigned long flag;
311 	const char *name;
312 } __arg_name_flags[] = {
313 	{ CTR_FLAG_SYNC, "sync"},
314 	{ CTR_FLAG_NOSYNC, "nosync"},
315 	{ CTR_FLAG_REBUILD, "rebuild"},
316 	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
317 	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
318 	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
319 	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
320 	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
321 	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
322 	{ CTR_FLAG_REGION_SIZE, "region_size"},
323 	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
324 	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
325 	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
326 	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
327 	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
328 	{ CTR_FLAG_JOURNAL_DEV, "journal_dev" },
329 };
330 
331 /* Return argument name string for given @flag */
332 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
333 {
334 	if (hweight32(flag) == 1) {
335 		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
336 
337 		while (anf-- > __arg_name_flags)
338 			if (flag & anf->flag)
339 				return anf->name;
340 
341 	} else
342 		DMERR("%s called with more than one flag!", __func__);
343 
344 	return NULL;
345 }
346 
347 /*
348  * Bool helpers to test for various raid levels of a raid set.
349  * It's level as reported by the superblock rather than
350  * the requested raid_type passed to the constructor.
351  */
352 /* Return true, if raid set in @rs is raid0 */
353 static bool rs_is_raid0(struct raid_set *rs)
354 {
355 	return !rs->md.level;
356 }
357 
358 /* Return true, if raid set in @rs is raid1 */
359 static bool rs_is_raid1(struct raid_set *rs)
360 {
361 	return rs->md.level == 1;
362 }
363 
364 /* Return true, if raid set in @rs is raid10 */
365 static bool rs_is_raid10(struct raid_set *rs)
366 {
367 	return rs->md.level == 10;
368 }
369 
370 /* Return true, if raid set in @rs is level 6 */
371 static bool rs_is_raid6(struct raid_set *rs)
372 {
373 	return rs->md.level == 6;
374 }
375 
376 /* Return true, if raid set in @rs is level 4, 5 or 6 */
377 static bool rs_is_raid456(struct raid_set *rs)
378 {
379 	return __within_range(rs->md.level, 4, 6);
380 }
381 
382 /* Return true, if raid set in @rs is reshapable */
383 static bool __is_raid10_far(int layout);
384 static bool rs_is_reshapable(struct raid_set *rs)
385 {
386 	return rs_is_raid456(rs) ||
387 	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
388 }
389 
390 /* Return true, if raid set in @rs is recovering */
391 static bool rs_is_recovering(struct raid_set *rs)
392 {
393 	return rs->md.recovery_cp < rs->md.dev_sectors;
394 }
395 
396 /* Return true, if raid set in @rs is reshaping */
397 static bool rs_is_reshaping(struct raid_set *rs)
398 {
399 	return rs->md.reshape_position != MaxSector;
400 }
401 
402 /*
403  * bool helpers to test for various raid levels of a raid type @rt
404  */
405 
406 /* Return true, if raid type in @rt is raid0 */
407 static bool rt_is_raid0(struct raid_type *rt)
408 {
409 	return !rt->level;
410 }
411 
412 /* Return true, if raid type in @rt is raid1 */
413 static bool rt_is_raid1(struct raid_type *rt)
414 {
415 	return rt->level == 1;
416 }
417 
418 /* Return true, if raid type in @rt is raid10 */
419 static bool rt_is_raid10(struct raid_type *rt)
420 {
421 	return rt->level == 10;
422 }
423 
424 /* Return true, if raid type in @rt is raid4/5 */
425 static bool rt_is_raid45(struct raid_type *rt)
426 {
427 	return __within_range(rt->level, 4, 5);
428 }
429 
430 /* Return true, if raid type in @rt is raid6 */
431 static bool rt_is_raid6(struct raid_type *rt)
432 {
433 	return rt->level == 6;
434 }
435 
436 /* Return true, if raid type in @rt is raid4/5/6 */
437 static bool rt_is_raid456(struct raid_type *rt)
438 {
439 	return __within_range(rt->level, 4, 6);
440 }
441 /* END: raid level bools */
442 
443 /* Return valid ctr flags for the raid level of @rs */
444 static unsigned long __valid_flags(struct raid_set *rs)
445 {
446 	if (rt_is_raid0(rs->raid_type))
447 		return RAID0_VALID_FLAGS;
448 	else if (rt_is_raid1(rs->raid_type))
449 		return RAID1_VALID_FLAGS;
450 	else if (rt_is_raid10(rs->raid_type))
451 		return RAID10_VALID_FLAGS;
452 	else if (rt_is_raid45(rs->raid_type))
453 		return RAID45_VALID_FLAGS;
454 	else if (rt_is_raid6(rs->raid_type))
455 		return RAID6_VALID_FLAGS;
456 
457 	return 0;
458 }
459 
460 /*
461  * Check for valid flags set on @rs
462  *
463  * Has to be called after parsing of the ctr flags!
464  */
465 static int rs_check_for_valid_flags(struct raid_set *rs)
466 {
467 	if (rs->ctr_flags & ~__valid_flags(rs)) {
468 		rs->ti->error = "Invalid flags combination";
469 		return -EINVAL;
470 	}
471 
472 	return 0;
473 }
474 
475 /* MD raid10 bit definitions and helpers */
476 #define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
477 #define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
478 #define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
479 #define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
480 
481 /* Return md raid10 near copies for @layout */
482 static unsigned int __raid10_near_copies(int layout)
483 {
484 	return layout & 0xFF;
485 }
486 
487 /* Return md raid10 far copies for @layout */
488 static unsigned int __raid10_far_copies(int layout)
489 {
490 	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
491 }
492 
493 /* Return true if md raid10 offset for @layout */
494 static bool __is_raid10_offset(int layout)
495 {
496 	return !!(layout & RAID10_OFFSET);
497 }
498 
499 /* Return true if md raid10 near for @layout */
500 static bool __is_raid10_near(int layout)
501 {
502 	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
503 }
504 
505 /* Return true if md raid10 far for @layout */
506 static bool __is_raid10_far(int layout)
507 {
508 	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
509 }
510 
511 /* Return md raid10 layout string for @layout */
512 static const char *raid10_md_layout_to_format(int layout)
513 {
514 	/*
515 	 * Bit 16 stands for "offset"
516 	 * (i.e. adjacent stripes hold copies)
517 	 *
518 	 * Refer to MD's raid10.c for details
519 	 */
520 	if (__is_raid10_offset(layout))
521 		return "offset";
522 
523 	if (__raid10_near_copies(layout) > 1)
524 		return "near";
525 
526 	WARN_ON(__raid10_far_copies(layout) < 2);
527 
528 	return "far";
529 }
530 
531 /* Return md raid10 algorithm for @name */
532 static int raid10_name_to_format(const char *name)
533 {
534 	if (!strcasecmp(name, "near"))
535 		return ALGORITHM_RAID10_NEAR;
536 	else if (!strcasecmp(name, "offset"))
537 		return ALGORITHM_RAID10_OFFSET;
538 	else if (!strcasecmp(name, "far"))
539 		return ALGORITHM_RAID10_FAR;
540 
541 	return -EINVAL;
542 }
543 
544 /* Return md raid10 copies for @layout */
545 static unsigned int raid10_md_layout_to_copies(int layout)
546 {
547 	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
548 }
549 
550 /* Return md raid10 format id for @format string */
551 static int raid10_format_to_md_layout(struct raid_set *rs,
552 				      unsigned int algorithm,
553 				      unsigned int copies)
554 {
555 	unsigned int n = 1, f = 1, r = 0;
556 
557 	/*
558 	 * MD resilienece flaw:
559 	 *
560 	 * enabling use_far_sets for far/offset formats causes copies
561 	 * to be colocated on the same devs together with their origins!
562 	 *
563 	 * -> disable it for now in the definition above
564 	 */
565 	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
566 	    algorithm == ALGORITHM_RAID10_NEAR)
567 		n = copies;
568 
569 	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
570 		f = copies;
571 		r = RAID10_OFFSET;
572 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
573 			r |= RAID10_USE_FAR_SETS;
574 
575 	} else if (algorithm == ALGORITHM_RAID10_FAR) {
576 		f = copies;
577 		r = !RAID10_OFFSET;
578 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
579 			r |= RAID10_USE_FAR_SETS;
580 
581 	} else
582 		return -EINVAL;
583 
584 	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
585 }
586 /* END: MD raid10 bit definitions and helpers */
587 
588 /* Check for any of the raid10 algorithms */
589 static bool __got_raid10(struct raid_type *rtp, const int layout)
590 {
591 	if (rtp->level == 10) {
592 		switch (rtp->algorithm) {
593 		case ALGORITHM_RAID10_DEFAULT:
594 		case ALGORITHM_RAID10_NEAR:
595 			return __is_raid10_near(layout);
596 		case ALGORITHM_RAID10_OFFSET:
597 			return __is_raid10_offset(layout);
598 		case ALGORITHM_RAID10_FAR:
599 			return __is_raid10_far(layout);
600 		default:
601 			break;
602 		}
603 	}
604 
605 	return false;
606 }
607 
608 /* Return raid_type for @name */
609 static struct raid_type *get_raid_type(const char *name)
610 {
611 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
612 
613 	while (rtp-- > raid_types)
614 		if (!strcasecmp(rtp->name, name))
615 			return rtp;
616 
617 	return NULL;
618 }
619 
620 /* Return raid_type for @name based derived from @level and @layout */
621 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
622 {
623 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
624 
625 	while (rtp-- > raid_types) {
626 		/* RAID10 special checks based on @layout flags/properties */
627 		if (rtp->level == level &&
628 		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
629 			return rtp;
630 	}
631 
632 	return NULL;
633 }
634 
635 /*
636  * Conditionally change bdev capacity of @rs
637  * in case of a disk add/remove reshape
638  */
639 static void rs_set_capacity(struct raid_set *rs)
640 {
641 	struct mddev *mddev = &rs->md;
642 	struct md_rdev *rdev;
643 	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
644 
645 	/*
646 	 * raid10 sets rdev->sector to the device size, which
647 	 * is unintended in case of out-of-place reshaping
648 	 */
649 	rdev_for_each(rdev, mddev)
650 		if (!test_bit(Journal, &rdev->flags))
651 			rdev->sectors = mddev->dev_sectors;
652 
653 	set_capacity(gendisk, mddev->array_sectors);
654 	revalidate_disk(gendisk);
655 }
656 
657 /*
658  * Set the mddev properties in @rs to the current
659  * ones retrieved from the freshest superblock
660  */
661 static void rs_set_cur(struct raid_set *rs)
662 {
663 	struct mddev *mddev = &rs->md;
664 
665 	mddev->new_level = mddev->level;
666 	mddev->new_layout = mddev->layout;
667 	mddev->new_chunk_sectors = mddev->chunk_sectors;
668 }
669 
670 /*
671  * Set the mddev properties in @rs to the new
672  * ones requested by the ctr
673  */
674 static void rs_set_new(struct raid_set *rs)
675 {
676 	struct mddev *mddev = &rs->md;
677 
678 	mddev->level = mddev->new_level;
679 	mddev->layout = mddev->new_layout;
680 	mddev->chunk_sectors = mddev->new_chunk_sectors;
681 	mddev->raid_disks = rs->raid_disks;
682 	mddev->delta_disks = 0;
683 }
684 
685 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
686 				       unsigned int raid_devs)
687 {
688 	unsigned int i;
689 	struct raid_set *rs;
690 
691 	if (raid_devs <= raid_type->parity_devs) {
692 		ti->error = "Insufficient number of devices";
693 		return ERR_PTR(-EINVAL);
694 	}
695 
696 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
697 	if (!rs) {
698 		ti->error = "Cannot allocate raid context";
699 		return ERR_PTR(-ENOMEM);
700 	}
701 
702 	mddev_init(&rs->md);
703 
704 	rs->raid_disks = raid_devs;
705 	rs->delta_disks = 0;
706 
707 	rs->ti = ti;
708 	rs->raid_type = raid_type;
709 	rs->stripe_cache_entries = 256;
710 	rs->md.raid_disks = raid_devs;
711 	rs->md.level = raid_type->level;
712 	rs->md.new_level = rs->md.level;
713 	rs->md.layout = raid_type->algorithm;
714 	rs->md.new_layout = rs->md.layout;
715 	rs->md.delta_disks = 0;
716 	rs->md.recovery_cp = MaxSector;
717 
718 	for (i = 0; i < raid_devs; i++)
719 		md_rdev_init(&rs->dev[i].rdev);
720 
721 	/*
722 	 * Remaining items to be initialized by further RAID params:
723 	 *  rs->md.persistent
724 	 *  rs->md.external
725 	 *  rs->md.chunk_sectors
726 	 *  rs->md.new_chunk_sectors
727 	 *  rs->md.dev_sectors
728 	 */
729 
730 	return rs;
731 }
732 
733 static void raid_set_free(struct raid_set *rs)
734 {
735 	int i;
736 
737 	if (rs->journal_dev.dev) {
738 		md_rdev_clear(&rs->journal_dev.rdev);
739 		dm_put_device(rs->ti, rs->journal_dev.dev);
740 	}
741 
742 	for (i = 0; i < rs->raid_disks; i++) {
743 		if (rs->dev[i].meta_dev)
744 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
745 		md_rdev_clear(&rs->dev[i].rdev);
746 		if (rs->dev[i].data_dev)
747 			dm_put_device(rs->ti, rs->dev[i].data_dev);
748 	}
749 
750 	kfree(rs);
751 }
752 
753 /*
754  * For every device we have two words
755  *  <meta_dev>: meta device name or '-' if missing
756  *  <data_dev>: data device name or '-' if missing
757  *
758  * The following are permitted:
759  *    - -
760  *    - <data_dev>
761  *    <meta_dev> <data_dev>
762  *
763  * The following is not allowed:
764  *    <meta_dev> -
765  *
766  * This code parses those words.  If there is a failure,
767  * the caller must use raid_set_free() to unwind the operations.
768  */
769 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
770 {
771 	int i;
772 	int rebuild = 0;
773 	int metadata_available = 0;
774 	int r = 0;
775 	const char *arg;
776 
777 	/* Put off the number of raid devices argument to get to dev pairs */
778 	arg = dm_shift_arg(as);
779 	if (!arg)
780 		return -EINVAL;
781 
782 	for (i = 0; i < rs->raid_disks; i++) {
783 		rs->dev[i].rdev.raid_disk = i;
784 
785 		rs->dev[i].meta_dev = NULL;
786 		rs->dev[i].data_dev = NULL;
787 
788 		/*
789 		 * There are no offsets initially.
790 		 * Out of place reshape will set them accordingly.
791 		 */
792 		rs->dev[i].rdev.data_offset = 0;
793 		rs->dev[i].rdev.new_data_offset = 0;
794 		rs->dev[i].rdev.mddev = &rs->md;
795 
796 		arg = dm_shift_arg(as);
797 		if (!arg)
798 			return -EINVAL;
799 
800 		if (strcmp(arg, "-")) {
801 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
802 					  &rs->dev[i].meta_dev);
803 			if (r) {
804 				rs->ti->error = "RAID metadata device lookup failure";
805 				return r;
806 			}
807 
808 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
809 			if (!rs->dev[i].rdev.sb_page) {
810 				rs->ti->error = "Failed to allocate superblock page";
811 				return -ENOMEM;
812 			}
813 		}
814 
815 		arg = dm_shift_arg(as);
816 		if (!arg)
817 			return -EINVAL;
818 
819 		if (!strcmp(arg, "-")) {
820 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
821 			    (!rs->dev[i].rdev.recovery_offset)) {
822 				rs->ti->error = "Drive designated for rebuild not specified";
823 				return -EINVAL;
824 			}
825 
826 			if (rs->dev[i].meta_dev) {
827 				rs->ti->error = "No data device supplied with metadata device";
828 				return -EINVAL;
829 			}
830 
831 			continue;
832 		}
833 
834 		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
835 				  &rs->dev[i].data_dev);
836 		if (r) {
837 			rs->ti->error = "RAID device lookup failure";
838 			return r;
839 		}
840 
841 		if (rs->dev[i].meta_dev) {
842 			metadata_available = 1;
843 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
844 		}
845 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
846 		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
847 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
848 			rebuild++;
849 	}
850 
851 	if (rs->journal_dev.dev)
852 		list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
853 
854 	if (metadata_available) {
855 		rs->md.external = 0;
856 		rs->md.persistent = 1;
857 		rs->md.major_version = 2;
858 	} else if (rebuild && !rs->md.recovery_cp) {
859 		/*
860 		 * Without metadata, we will not be able to tell if the array
861 		 * is in-sync or not - we must assume it is not.  Therefore,
862 		 * it is impossible to rebuild a drive.
863 		 *
864 		 * Even if there is metadata, the on-disk information may
865 		 * indicate that the array is not in-sync and it will then
866 		 * fail at that time.
867 		 *
868 		 * User could specify 'nosync' option if desperate.
869 		 */
870 		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
871 		return -EINVAL;
872 	}
873 
874 	return 0;
875 }
876 
877 /*
878  * validate_region_size
879  * @rs
880  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
881  *
882  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
883  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
884  *
885  * Returns: 0 on success, -EINVAL on failure.
886  */
887 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
888 {
889 	unsigned long min_region_size = rs->ti->len / (1 << 21);
890 
891 	if (rs_is_raid0(rs))
892 		return 0;
893 
894 	if (!region_size) {
895 		/*
896 		 * Choose a reasonable default.	 All figures in sectors.
897 		 */
898 		if (min_region_size > (1 << 13)) {
899 			/* If not a power of 2, make it the next power of 2 */
900 			region_size = roundup_pow_of_two(min_region_size);
901 			DMINFO("Choosing default region size of %lu sectors",
902 			       region_size);
903 		} else {
904 			DMINFO("Choosing default region size of 4MiB");
905 			region_size = 1 << 13; /* sectors */
906 		}
907 	} else {
908 		/*
909 		 * Validate user-supplied value.
910 		 */
911 		if (region_size > rs->ti->len) {
912 			rs->ti->error = "Supplied region size is too large";
913 			return -EINVAL;
914 		}
915 
916 		if (region_size < min_region_size) {
917 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
918 			      region_size, min_region_size);
919 			rs->ti->error = "Supplied region size is too small";
920 			return -EINVAL;
921 		}
922 
923 		if (!is_power_of_2(region_size)) {
924 			rs->ti->error = "Region size is not a power of 2";
925 			return -EINVAL;
926 		}
927 
928 		if (region_size < rs->md.chunk_sectors) {
929 			rs->ti->error = "Region size is smaller than the chunk size";
930 			return -EINVAL;
931 		}
932 	}
933 
934 	/*
935 	 * Convert sectors to bytes.
936 	 */
937 	rs->md.bitmap_info.chunksize = to_bytes(region_size);
938 
939 	return 0;
940 }
941 
942 /*
943  * validate_raid_redundancy
944  * @rs
945  *
946  * Determine if there are enough devices in the array that haven't
947  * failed (or are being rebuilt) to form a usable array.
948  *
949  * Returns: 0 on success, -EINVAL on failure.
950  */
951 static int validate_raid_redundancy(struct raid_set *rs)
952 {
953 	unsigned int i, rebuild_cnt = 0;
954 	unsigned int rebuilds_per_group = 0, copies;
955 	unsigned int group_size, last_group_start;
956 
957 	for (i = 0; i < rs->md.raid_disks; i++)
958 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
959 		    !rs->dev[i].rdev.sb_page)
960 			rebuild_cnt++;
961 
962 	switch (rs->raid_type->level) {
963 	case 0:
964 		break;
965 	case 1:
966 		if (rebuild_cnt >= rs->md.raid_disks)
967 			goto too_many;
968 		break;
969 	case 4:
970 	case 5:
971 	case 6:
972 		if (rebuild_cnt > rs->raid_type->parity_devs)
973 			goto too_many;
974 		break;
975 	case 10:
976 		copies = raid10_md_layout_to_copies(rs->md.new_layout);
977 		if (rebuild_cnt < copies)
978 			break;
979 
980 		/*
981 		 * It is possible to have a higher rebuild count for RAID10,
982 		 * as long as the failed devices occur in different mirror
983 		 * groups (i.e. different stripes).
984 		 *
985 		 * When checking "near" format, make sure no adjacent devices
986 		 * have failed beyond what can be handled.  In addition to the
987 		 * simple case where the number of devices is a multiple of the
988 		 * number of copies, we must also handle cases where the number
989 		 * of devices is not a multiple of the number of copies.
990 		 * E.g.	   dev1 dev2 dev3 dev4 dev5
991 		 *	    A	 A    B	   B	C
992 		 *	    C	 D    D	   E	E
993 		 */
994 		if (__is_raid10_near(rs->md.new_layout)) {
995 			for (i = 0; i < rs->md.raid_disks; i++) {
996 				if (!(i % copies))
997 					rebuilds_per_group = 0;
998 				if ((!rs->dev[i].rdev.sb_page ||
999 				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1000 				    (++rebuilds_per_group >= copies))
1001 					goto too_many;
1002 			}
1003 			break;
1004 		}
1005 
1006 		/*
1007 		 * When checking "far" and "offset" formats, we need to ensure
1008 		 * that the device that holds its copy is not also dead or
1009 		 * being rebuilt.  (Note that "far" and "offset" formats only
1010 		 * support two copies right now.  These formats also only ever
1011 		 * use the 'use_far_sets' variant.)
1012 		 *
1013 		 * This check is somewhat complicated by the need to account
1014 		 * for arrays that are not a multiple of (far) copies.	This
1015 		 * results in the need to treat the last (potentially larger)
1016 		 * set differently.
1017 		 */
1018 		group_size = (rs->md.raid_disks / copies);
1019 		last_group_start = (rs->md.raid_disks / group_size) - 1;
1020 		last_group_start *= group_size;
1021 		for (i = 0; i < rs->md.raid_disks; i++) {
1022 			if (!(i % copies) && !(i > last_group_start))
1023 				rebuilds_per_group = 0;
1024 			if ((!rs->dev[i].rdev.sb_page ||
1025 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1026 			    (++rebuilds_per_group >= copies))
1027 					goto too_many;
1028 		}
1029 		break;
1030 	default:
1031 		if (rebuild_cnt)
1032 			return -EINVAL;
1033 	}
1034 
1035 	return 0;
1036 
1037 too_many:
1038 	return -EINVAL;
1039 }
1040 
1041 /*
1042  * Possible arguments are...
1043  *	<chunk_size> [optional_args]
1044  *
1045  * Argument definitions
1046  *    <chunk_size>			The number of sectors per disk that
1047  *					will form the "stripe"
1048  *    [[no]sync]			Force or prevent recovery of the
1049  *					entire array
1050  *    [rebuild <idx>]			Rebuild the drive indicated by the index
1051  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1052  *					clear bits
1053  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1054  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1055  *    [write_mostly <idx>]		Indicate a write mostly drive via index
1056  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1057  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1058  *    [region_size <sectors>]		Defines granularity of bitmap
1059  *    [journal_dev <dev>]		raid4/5/6 journaling deviice
1060  *    					(i.e. write hole closing log)
1061  *
1062  * RAID10-only options:
1063  *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1064  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1065  */
1066 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1067 			     unsigned int num_raid_params)
1068 {
1069 	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1070 	unsigned int raid10_copies = 2;
1071 	unsigned int i, write_mostly = 0;
1072 	unsigned int region_size = 0;
1073 	sector_t max_io_len;
1074 	const char *arg, *key;
1075 	struct raid_dev *rd;
1076 	struct raid_type *rt = rs->raid_type;
1077 
1078 	arg = dm_shift_arg(as);
1079 	num_raid_params--; /* Account for chunk_size argument */
1080 
1081 	if (kstrtoint(arg, 10, &value) < 0) {
1082 		rs->ti->error = "Bad numerical argument given for chunk_size";
1083 		return -EINVAL;
1084 	}
1085 
1086 	/*
1087 	 * First, parse the in-order required arguments
1088 	 * "chunk_size" is the only argument of this type.
1089 	 */
1090 	if (rt_is_raid1(rt)) {
1091 		if (value)
1092 			DMERR("Ignoring chunk size parameter for RAID 1");
1093 		value = 0;
1094 	} else if (!is_power_of_2(value)) {
1095 		rs->ti->error = "Chunk size must be a power of 2";
1096 		return -EINVAL;
1097 	} else if (value < 8) {
1098 		rs->ti->error = "Chunk size value is too small";
1099 		return -EINVAL;
1100 	}
1101 
1102 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1103 
1104 	/*
1105 	 * We set each individual device as In_sync with a completed
1106 	 * 'recovery_offset'.  If there has been a device failure or
1107 	 * replacement then one of the following cases applies:
1108 	 *
1109 	 *   1) User specifies 'rebuild'.
1110 	 *	- Device is reset when param is read.
1111 	 *   2) A new device is supplied.
1112 	 *	- No matching superblock found, resets device.
1113 	 *   3) Device failure was transient and returns on reload.
1114 	 *	- Failure noticed, resets device for bitmap replay.
1115 	 *   4) Device hadn't completed recovery after previous failure.
1116 	 *	- Superblock is read and overrides recovery_offset.
1117 	 *
1118 	 * What is found in the superblocks of the devices is always
1119 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1120 	 */
1121 	for (i = 0; i < rs->raid_disks; i++) {
1122 		set_bit(In_sync, &rs->dev[i].rdev.flags);
1123 		rs->dev[i].rdev.recovery_offset = MaxSector;
1124 	}
1125 
1126 	/*
1127 	 * Second, parse the unordered optional arguments
1128 	 */
1129 	for (i = 0; i < num_raid_params; i++) {
1130 		key = dm_shift_arg(as);
1131 		if (!key) {
1132 			rs->ti->error = "Not enough raid parameters given";
1133 			return -EINVAL;
1134 		}
1135 
1136 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1137 			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1138 				rs->ti->error = "Only one 'nosync' argument allowed";
1139 				return -EINVAL;
1140 			}
1141 			continue;
1142 		}
1143 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1144 			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1145 				rs->ti->error = "Only one 'sync' argument allowed";
1146 				return -EINVAL;
1147 			}
1148 			continue;
1149 		}
1150 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1151 			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1152 				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1153 				return -EINVAL;
1154 			}
1155 			continue;
1156 		}
1157 
1158 		arg = dm_shift_arg(as);
1159 		i++; /* Account for the argument pairs */
1160 		if (!arg) {
1161 			rs->ti->error = "Wrong number of raid parameters given";
1162 			return -EINVAL;
1163 		}
1164 
1165 		/*
1166 		 * Parameters that take a string value are checked here.
1167 		 */
1168 		/* "raid10_format {near|offset|far} */
1169 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1170 			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1171 				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1172 				return -EINVAL;
1173 			}
1174 			if (!rt_is_raid10(rt)) {
1175 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1176 				return -EINVAL;
1177 			}
1178 			raid10_format = raid10_name_to_format(arg);
1179 			if (raid10_format < 0) {
1180 				rs->ti->error = "Invalid 'raid10_format' value given";
1181 				return raid10_format;
1182 			}
1183 			continue;
1184 		}
1185 
1186 		/* "journal_dev dev" */
1187 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1188 			int r;
1189 			struct md_rdev *jdev;
1190 
1191 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1192 				rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1193 				return -EINVAL;
1194 			}
1195 			if (!rt_is_raid456(rt)) {
1196 				rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1197 				return -EINVAL;
1198 			}
1199 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1200 					  &rs->journal_dev.dev);
1201 			if (r) {
1202 				rs->ti->error = "raid4/5/6 journal device lookup failure";
1203 				return r;
1204 			}
1205 			jdev = &rs->journal_dev.rdev;
1206 			md_rdev_init(jdev);
1207 			jdev->mddev = &rs->md;
1208 			jdev->bdev = rs->journal_dev.dev->bdev;
1209 			jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1210 			if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1211 				rs->ti->error = "No space for raid4/5/6 journal";
1212 				return -ENOSPC;
1213 			}
1214 			set_bit(Journal, &jdev->flags);
1215 			continue;
1216 		}
1217 
1218 		/*
1219 		 * Parameters with number values from here on.
1220 		 */
1221 		if (kstrtoint(arg, 10, &value) < 0) {
1222 			rs->ti->error = "Bad numerical argument given in raid params";
1223 			return -EINVAL;
1224 		}
1225 
1226 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1227 			/*
1228 			 * "rebuild" is being passed in by userspace to provide
1229 			 * indexes of replaced devices and to set up additional
1230 			 * devices on raid level takeover.
1231 			 */
1232 			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1233 				rs->ti->error = "Invalid rebuild index given";
1234 				return -EINVAL;
1235 			}
1236 
1237 			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1238 				rs->ti->error = "rebuild for this index already given";
1239 				return -EINVAL;
1240 			}
1241 
1242 			rd = rs->dev + value;
1243 			clear_bit(In_sync, &rd->rdev.flags);
1244 			clear_bit(Faulty, &rd->rdev.flags);
1245 			rd->rdev.recovery_offset = 0;
1246 			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1247 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1248 			if (!rt_is_raid1(rt)) {
1249 				rs->ti->error = "write_mostly option is only valid for RAID1";
1250 				return -EINVAL;
1251 			}
1252 
1253 			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1254 				rs->ti->error = "Invalid write_mostly index given";
1255 				return -EINVAL;
1256 			}
1257 
1258 			write_mostly++;
1259 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1260 			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1261 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1262 			if (!rt_is_raid1(rt)) {
1263 				rs->ti->error = "max_write_behind option is only valid for RAID1";
1264 				return -EINVAL;
1265 			}
1266 
1267 			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1268 				rs->ti->error = "Only one max_write_behind argument pair allowed";
1269 				return -EINVAL;
1270 			}
1271 
1272 			/*
1273 			 * In device-mapper, we specify things in sectors, but
1274 			 * MD records this value in kB
1275 			 */
1276 			value /= 2;
1277 			if (value > COUNTER_MAX) {
1278 				rs->ti->error = "Max write-behind limit out of range";
1279 				return -EINVAL;
1280 			}
1281 
1282 			rs->md.bitmap_info.max_write_behind = value;
1283 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1284 			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1285 				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1286 				return -EINVAL;
1287 			}
1288 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1289 				rs->ti->error = "daemon sleep period out of range";
1290 				return -EINVAL;
1291 			}
1292 			rs->md.bitmap_info.daemon_sleep = value;
1293 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1294 			/* Userspace passes new data_offset after having extended the the data image LV */
1295 			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1296 				rs->ti->error = "Only one data_offset argument pair allowed";
1297 				return -EINVAL;
1298 			}
1299 			/* Ensure sensible data offset */
1300 			if (value < 0 ||
1301 			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1302 				rs->ti->error = "Bogus data_offset value";
1303 				return -EINVAL;
1304 			}
1305 			rs->data_offset = value;
1306 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1307 			/* Define the +/-# of disks to add to/remove from the given raid set */
1308 			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1309 				rs->ti->error = "Only one delta_disks argument pair allowed";
1310 				return -EINVAL;
1311 			}
1312 			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1313 			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1314 				rs->ti->error = "Too many delta_disk requested";
1315 				return -EINVAL;
1316 			}
1317 
1318 			rs->delta_disks = value;
1319 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1320 			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1321 				rs->ti->error = "Only one stripe_cache argument pair allowed";
1322 				return -EINVAL;
1323 			}
1324 
1325 			if (!rt_is_raid456(rt)) {
1326 				rs->ti->error = "Inappropriate argument: stripe_cache";
1327 				return -EINVAL;
1328 			}
1329 
1330 			rs->stripe_cache_entries = value;
1331 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1332 			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1333 				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1334 				return -EINVAL;
1335 			}
1336 			if (value > INT_MAX) {
1337 				rs->ti->error = "min_recovery_rate out of range";
1338 				return -EINVAL;
1339 			}
1340 			rs->md.sync_speed_min = (int)value;
1341 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1342 			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1343 				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1344 				return -EINVAL;
1345 			}
1346 			if (value > INT_MAX) {
1347 				rs->ti->error = "max_recovery_rate out of range";
1348 				return -EINVAL;
1349 			}
1350 			rs->md.sync_speed_max = (int)value;
1351 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1352 			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1353 				rs->ti->error = "Only one region_size argument pair allowed";
1354 				return -EINVAL;
1355 			}
1356 
1357 			region_size = value;
1358 			rs->requested_bitmap_chunk_sectors = value;
1359 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1360 			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1361 				rs->ti->error = "Only one raid10_copies argument pair allowed";
1362 				return -EINVAL;
1363 			}
1364 
1365 			if (!__within_range(value, 2, rs->md.raid_disks)) {
1366 				rs->ti->error = "Bad value for 'raid10_copies'";
1367 				return -EINVAL;
1368 			}
1369 
1370 			raid10_copies = value;
1371 		} else {
1372 			DMERR("Unable to parse RAID parameter: %s", key);
1373 			rs->ti->error = "Unable to parse RAID parameter";
1374 			return -EINVAL;
1375 		}
1376 	}
1377 
1378 	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1379 	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1380 		rs->ti->error = "sync and nosync are mutually exclusive";
1381 		return -EINVAL;
1382 	}
1383 
1384 	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1385 	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1386 	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1387 		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1388 		return -EINVAL;
1389 	}
1390 
1391 	if (write_mostly >= rs->md.raid_disks) {
1392 		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1393 		return -EINVAL;
1394 	}
1395 
1396 	if (validate_region_size(rs, region_size))
1397 		return -EINVAL;
1398 
1399 	if (rs->md.chunk_sectors)
1400 		max_io_len = rs->md.chunk_sectors;
1401 	else
1402 		max_io_len = region_size;
1403 
1404 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1405 		return -EINVAL;
1406 
1407 	if (rt_is_raid10(rt)) {
1408 		if (raid10_copies > rs->md.raid_disks) {
1409 			rs->ti->error = "Not enough devices to satisfy specification";
1410 			return -EINVAL;
1411 		}
1412 
1413 		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1414 		if (rs->md.new_layout < 0) {
1415 			rs->ti->error = "Error getting raid10 format";
1416 			return rs->md.new_layout;
1417 		}
1418 
1419 		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1420 		if (!rt) {
1421 			rs->ti->error = "Failed to recognize new raid10 layout";
1422 			return -EINVAL;
1423 		}
1424 
1425 		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1426 		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1427 		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1428 			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1429 			return -EINVAL;
1430 		}
1431 	}
1432 
1433 	rs->raid10_copies = raid10_copies;
1434 
1435 	/* Assume there are no metadata devices until the drives are parsed */
1436 	rs->md.persistent = 0;
1437 	rs->md.external = 1;
1438 
1439 	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1440 	return rs_check_for_valid_flags(rs);
1441 }
1442 
1443 /* Set raid4/5/6 cache size */
1444 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1445 {
1446 	int r;
1447 	struct r5conf *conf;
1448 	struct mddev *mddev = &rs->md;
1449 	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1450 	uint32_t nr_stripes = rs->stripe_cache_entries;
1451 
1452 	if (!rt_is_raid456(rs->raid_type)) {
1453 		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1454 		return -EINVAL;
1455 	}
1456 
1457 	if (nr_stripes < min_stripes) {
1458 		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1459 		       nr_stripes, min_stripes);
1460 		nr_stripes = min_stripes;
1461 	}
1462 
1463 	conf = mddev->private;
1464 	if (!conf) {
1465 		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1466 		return -EINVAL;
1467 	}
1468 
1469 	/* Try setting number of stripes in raid456 stripe cache */
1470 	if (conf->min_nr_stripes != nr_stripes) {
1471 		r = raid5_set_cache_size(mddev, nr_stripes);
1472 		if (r) {
1473 			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1474 			return r;
1475 		}
1476 
1477 		DMINFO("%u stripe cache entries", nr_stripes);
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1484 static unsigned int mddev_data_stripes(struct raid_set *rs)
1485 {
1486 	return rs->md.raid_disks - rs->raid_type->parity_devs;
1487 }
1488 
1489 /* Return # of data stripes of @rs (i.e. as of ctr) */
1490 static unsigned int rs_data_stripes(struct raid_set *rs)
1491 {
1492 	return rs->raid_disks - rs->raid_type->parity_devs;
1493 }
1494 
1495 /*
1496  * Retrieve rdev->sectors from any valid raid device of @rs
1497  * to allow userpace to pass in arbitray "- -" device tupples.
1498  */
1499 static sector_t __rdev_sectors(struct raid_set *rs)
1500 {
1501 	int i;
1502 
1503 	for (i = 0; i < rs->md.raid_disks; i++) {
1504 		struct md_rdev *rdev = &rs->dev[i].rdev;
1505 
1506 		if (!test_bit(Journal, &rdev->flags) &&
1507 		    rdev->bdev && rdev->sectors)
1508 			return rdev->sectors;
1509 	}
1510 
1511 	BUG(); /* Constructor ensures we got some. */
1512 }
1513 
1514 /* Calculate the sectors per device and per array used for @rs */
1515 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1516 {
1517 	int delta_disks;
1518 	unsigned int data_stripes;
1519 	struct mddev *mddev = &rs->md;
1520 	struct md_rdev *rdev;
1521 	sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1522 
1523 	if (use_mddev) {
1524 		delta_disks = mddev->delta_disks;
1525 		data_stripes = mddev_data_stripes(rs);
1526 	} else {
1527 		delta_disks = rs->delta_disks;
1528 		data_stripes = rs_data_stripes(rs);
1529 	}
1530 
1531 	/* Special raid1 case w/o delta_disks support (yet) */
1532 	if (rt_is_raid1(rs->raid_type))
1533 		;
1534 	else if (rt_is_raid10(rs->raid_type)) {
1535 		if (rs->raid10_copies < 2 ||
1536 		    delta_disks < 0) {
1537 			rs->ti->error = "Bogus raid10 data copies or delta disks";
1538 			return -EINVAL;
1539 		}
1540 
1541 		dev_sectors *= rs->raid10_copies;
1542 		if (sector_div(dev_sectors, data_stripes))
1543 			goto bad;
1544 
1545 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1546 		if (sector_div(array_sectors, rs->raid10_copies))
1547 			goto bad;
1548 
1549 	} else if (sector_div(dev_sectors, data_stripes))
1550 		goto bad;
1551 
1552 	else
1553 		/* Striped layouts */
1554 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1555 
1556 	rdev_for_each(rdev, mddev)
1557 		if (!test_bit(Journal, &rdev->flags))
1558 			rdev->sectors = dev_sectors;
1559 
1560 	mddev->array_sectors = array_sectors;
1561 	mddev->dev_sectors = dev_sectors;
1562 
1563 	return 0;
1564 bad:
1565 	rs->ti->error = "Target length not divisible by number of data devices";
1566 	return -EINVAL;
1567 }
1568 
1569 /* Setup recovery on @rs */
1570 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1571 {
1572 	/* raid0 does not recover */
1573 	if (rs_is_raid0(rs))
1574 		rs->md.recovery_cp = MaxSector;
1575 	/*
1576 	 * A raid6 set has to be recovered either
1577 	 * completely or for the grown part to
1578 	 * ensure proper parity and Q-Syndrome
1579 	 */
1580 	else if (rs_is_raid6(rs))
1581 		rs->md.recovery_cp = dev_sectors;
1582 	/*
1583 	 * Other raid set types may skip recovery
1584 	 * depending on the 'nosync' flag.
1585 	 */
1586 	else
1587 		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1588 				     ? MaxSector : dev_sectors;
1589 }
1590 
1591 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1592 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1593 {
1594 	if (!dev_sectors)
1595 		/* New raid set or 'sync' flag provided */
1596 		__rs_setup_recovery(rs, 0);
1597 	else if (dev_sectors == MaxSector)
1598 		/* Prevent recovery */
1599 		__rs_setup_recovery(rs, MaxSector);
1600 	else if (__rdev_sectors(rs) < dev_sectors)
1601 		/* Grown raid set */
1602 		__rs_setup_recovery(rs, __rdev_sectors(rs));
1603 	else
1604 		__rs_setup_recovery(rs, MaxSector);
1605 }
1606 
1607 static void do_table_event(struct work_struct *ws)
1608 {
1609 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1610 
1611 	smp_rmb(); /* Make sure we access most actual mddev properties */
1612 	if (!rs_is_reshaping(rs))
1613 		rs_set_capacity(rs);
1614 	dm_table_event(rs->ti->table);
1615 }
1616 
1617 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1618 {
1619 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1620 
1621 	return mddev_congested(&rs->md, bits);
1622 }
1623 
1624 /*
1625  * Make sure a valid takover (level switch) is being requested on @rs
1626  *
1627  * Conversions of raid sets from one MD personality to another
1628  * have to conform to restrictions which are enforced here.
1629  */
1630 static int rs_check_takeover(struct raid_set *rs)
1631 {
1632 	struct mddev *mddev = &rs->md;
1633 	unsigned int near_copies;
1634 
1635 	if (rs->md.degraded) {
1636 		rs->ti->error = "Can't takeover degraded raid set";
1637 		return -EPERM;
1638 	}
1639 
1640 	if (rs_is_reshaping(rs)) {
1641 		rs->ti->error = "Can't takeover reshaping raid set";
1642 		return -EPERM;
1643 	}
1644 
1645 	switch (mddev->level) {
1646 	case 0:
1647 		/* raid0 -> raid1/5 with one disk */
1648 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1649 		    mddev->raid_disks == 1)
1650 			return 0;
1651 
1652 		/* raid0 -> raid10 */
1653 		if (mddev->new_level == 10 &&
1654 		    !(rs->raid_disks % mddev->raid_disks))
1655 			return 0;
1656 
1657 		/* raid0 with multiple disks -> raid4/5/6 */
1658 		if (__within_range(mddev->new_level, 4, 6) &&
1659 		    mddev->new_layout == ALGORITHM_PARITY_N &&
1660 		    mddev->raid_disks > 1)
1661 			return 0;
1662 
1663 		break;
1664 
1665 	case 10:
1666 		/* Can't takeover raid10_offset! */
1667 		if (__is_raid10_offset(mddev->layout))
1668 			break;
1669 
1670 		near_copies = __raid10_near_copies(mddev->layout);
1671 
1672 		/* raid10* -> raid0 */
1673 		if (mddev->new_level == 0) {
1674 			/* Can takeover raid10_near with raid disks divisable by data copies! */
1675 			if (near_copies > 1 &&
1676 			    !(mddev->raid_disks % near_copies)) {
1677 				mddev->raid_disks /= near_copies;
1678 				mddev->delta_disks = mddev->raid_disks;
1679 				return 0;
1680 			}
1681 
1682 			/* Can takeover raid10_far */
1683 			if (near_copies == 1 &&
1684 			    __raid10_far_copies(mddev->layout) > 1)
1685 				return 0;
1686 
1687 			break;
1688 		}
1689 
1690 		/* raid10_{near,far} -> raid1 */
1691 		if (mddev->new_level == 1 &&
1692 		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1693 			return 0;
1694 
1695 		/* raid10_{near,far} with 2 disks -> raid4/5 */
1696 		if (__within_range(mddev->new_level, 4, 5) &&
1697 		    mddev->raid_disks == 2)
1698 			return 0;
1699 		break;
1700 
1701 	case 1:
1702 		/* raid1 with 2 disks -> raid4/5 */
1703 		if (__within_range(mddev->new_level, 4, 5) &&
1704 		    mddev->raid_disks == 2) {
1705 			mddev->degraded = 1;
1706 			return 0;
1707 		}
1708 
1709 		/* raid1 -> raid0 */
1710 		if (mddev->new_level == 0 &&
1711 		    mddev->raid_disks == 1)
1712 			return 0;
1713 
1714 		/* raid1 -> raid10 */
1715 		if (mddev->new_level == 10)
1716 			return 0;
1717 		break;
1718 
1719 	case 4:
1720 		/* raid4 -> raid0 */
1721 		if (mddev->new_level == 0)
1722 			return 0;
1723 
1724 		/* raid4 -> raid1/5 with 2 disks */
1725 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1726 		    mddev->raid_disks == 2)
1727 			return 0;
1728 
1729 		/* raid4 -> raid5/6 with parity N */
1730 		if (__within_range(mddev->new_level, 5, 6) &&
1731 		    mddev->layout == ALGORITHM_PARITY_N)
1732 			return 0;
1733 		break;
1734 
1735 	case 5:
1736 		/* raid5 with parity N -> raid0 */
1737 		if (mddev->new_level == 0 &&
1738 		    mddev->layout == ALGORITHM_PARITY_N)
1739 			return 0;
1740 
1741 		/* raid5 with parity N -> raid4 */
1742 		if (mddev->new_level == 4 &&
1743 		    mddev->layout == ALGORITHM_PARITY_N)
1744 			return 0;
1745 
1746 		/* raid5 with 2 disks -> raid1/4/10 */
1747 		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1748 		    mddev->raid_disks == 2)
1749 			return 0;
1750 
1751 		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1752 		if (mddev->new_level == 6 &&
1753 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1754 		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1755 			return 0;
1756 		break;
1757 
1758 	case 6:
1759 		/* raid6 with parity N -> raid0 */
1760 		if (mddev->new_level == 0 &&
1761 		    mddev->layout == ALGORITHM_PARITY_N)
1762 			return 0;
1763 
1764 		/* raid6 with parity N -> raid4 */
1765 		if (mddev->new_level == 4 &&
1766 		    mddev->layout == ALGORITHM_PARITY_N)
1767 			return 0;
1768 
1769 		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1770 		if (mddev->new_level == 5 &&
1771 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1772 		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1773 			return 0;
1774 
1775 	default:
1776 		break;
1777 	}
1778 
1779 	rs->ti->error = "takeover not possible";
1780 	return -EINVAL;
1781 }
1782 
1783 /* True if @rs requested to be taken over */
1784 static bool rs_takeover_requested(struct raid_set *rs)
1785 {
1786 	return rs->md.new_level != rs->md.level;
1787 }
1788 
1789 /* True if @rs is requested to reshape by ctr */
1790 static bool rs_reshape_requested(struct raid_set *rs)
1791 {
1792 	bool change;
1793 	struct mddev *mddev = &rs->md;
1794 
1795 	if (rs_takeover_requested(rs))
1796 		return false;
1797 
1798 	if (!mddev->level)
1799 		return false;
1800 
1801 	change = mddev->new_layout != mddev->layout ||
1802 		 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1803 		 rs->delta_disks;
1804 
1805 	/* Historical case to support raid1 reshape without delta disks */
1806 	if (mddev->level == 1) {
1807 		if (rs->delta_disks)
1808 			return !!rs->delta_disks;
1809 
1810 		return !change &&
1811 		       mddev->raid_disks != rs->raid_disks;
1812 	}
1813 
1814 	if (mddev->level == 10)
1815 		return change &&
1816 		       !__is_raid10_far(mddev->new_layout) &&
1817 		       rs->delta_disks >= 0;
1818 
1819 	return change;
1820 }
1821 
1822 /*  Features */
1823 #define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1824 
1825 /* State flags for sb->flags */
1826 #define	SB_FLAG_RESHAPE_ACTIVE		0x1
1827 #define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1828 
1829 /*
1830  * This structure is never routinely used by userspace, unlike md superblocks.
1831  * Devices with this superblock should only ever be accessed via device-mapper.
1832  */
1833 #define DM_RAID_MAGIC 0x64526D44
1834 struct dm_raid_superblock {
1835 	__le32 magic;		/* "DmRd" */
1836 	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1837 
1838 	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1839 	__le32 array_position;	/* The position of this drive in the raid set */
1840 
1841 	__le64 events;		/* Incremented by md when superblock updated */
1842 	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1843 				/* indicate failures (see extension below) */
1844 
1845 	/*
1846 	 * This offset tracks the progress of the repair or replacement of
1847 	 * an individual drive.
1848 	 */
1849 	__le64 disk_recovery_offset;
1850 
1851 	/*
1852 	 * This offset tracks the progress of the initial raid set
1853 	 * synchronisation/parity calculation.
1854 	 */
1855 	__le64 array_resync_offset;
1856 
1857 	/*
1858 	 * raid characteristics
1859 	 */
1860 	__le32 level;
1861 	__le32 layout;
1862 	__le32 stripe_sectors;
1863 
1864 	/********************************************************************
1865 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1866 	 *
1867 	 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1868 	 */
1869 
1870 	__le32 flags; /* Flags defining array states for reshaping */
1871 
1872 	/*
1873 	 * This offset tracks the progress of a raid
1874 	 * set reshape in order to be able to restart it
1875 	 */
1876 	__le64 reshape_position;
1877 
1878 	/*
1879 	 * These define the properties of the array in case of an interrupted reshape
1880 	 */
1881 	__le32 new_level;
1882 	__le32 new_layout;
1883 	__le32 new_stripe_sectors;
1884 	__le32 delta_disks;
1885 
1886 	__le64 array_sectors; /* Array size in sectors */
1887 
1888 	/*
1889 	 * Sector offsets to data on devices (reshaping).
1890 	 * Needed to support out of place reshaping, thus
1891 	 * not writing over any stripes whilst converting
1892 	 * them from old to new layout
1893 	 */
1894 	__le64 data_offset;
1895 	__le64 new_data_offset;
1896 
1897 	__le64 sectors; /* Used device size in sectors */
1898 
1899 	/*
1900 	 * Additonal Bit field of devices indicating failures to support
1901 	 * up to 256 devices with the 1.9.0 on-disk metadata format
1902 	 */
1903 	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1904 
1905 	__le32 incompat_features;	/* Used to indicate any incompatible features */
1906 
1907 	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1908 } __packed;
1909 
1910 /*
1911  * Check for reshape constraints on raid set @rs:
1912  *
1913  * - reshape function non-existent
1914  * - degraded set
1915  * - ongoing recovery
1916  * - ongoing reshape
1917  *
1918  * Returns 0 if none or -EPERM if given constraint
1919  * and error message reference in @errmsg
1920  */
1921 static int rs_check_reshape(struct raid_set *rs)
1922 {
1923 	struct mddev *mddev = &rs->md;
1924 
1925 	if (!mddev->pers || !mddev->pers->check_reshape)
1926 		rs->ti->error = "Reshape not supported";
1927 	else if (mddev->degraded)
1928 		rs->ti->error = "Can't reshape degraded raid set";
1929 	else if (rs_is_recovering(rs))
1930 		rs->ti->error = "Convert request on recovering raid set prohibited";
1931 	else if (rs_is_reshaping(rs))
1932 		rs->ti->error = "raid set already reshaping!";
1933 	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1934 		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1935 	else
1936 		return 0;
1937 
1938 	return -EPERM;
1939 }
1940 
1941 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
1942 {
1943 	BUG_ON(!rdev->sb_page);
1944 
1945 	if (rdev->sb_loaded && !force_reload)
1946 		return 0;
1947 
1948 	rdev->sb_loaded = 0;
1949 
1950 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1951 		DMERR("Failed to read superblock of device at position %d",
1952 		      rdev->raid_disk);
1953 		md_error(rdev->mddev, rdev);
1954 		set_bit(Faulty, &rdev->flags);
1955 		return -EIO;
1956 	}
1957 
1958 	rdev->sb_loaded = 1;
1959 
1960 	return 0;
1961 }
1962 
1963 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1964 {
1965 	failed_devices[0] = le64_to_cpu(sb->failed_devices);
1966 	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1967 
1968 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1969 		int i = ARRAY_SIZE(sb->extended_failed_devices);
1970 
1971 		while (i--)
1972 			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1973 	}
1974 }
1975 
1976 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1977 {
1978 	int i = ARRAY_SIZE(sb->extended_failed_devices);
1979 
1980 	sb->failed_devices = cpu_to_le64(failed_devices[0]);
1981 	while (i--)
1982 		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1983 }
1984 
1985 /*
1986  * Synchronize the superblock members with the raid set properties
1987  *
1988  * All superblock data is little endian.
1989  */
1990 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1991 {
1992 	bool update_failed_devices = false;
1993 	unsigned int i;
1994 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1995 	struct dm_raid_superblock *sb;
1996 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
1997 
1998 	/* No metadata device, no superblock */
1999 	if (!rdev->meta_bdev)
2000 		return;
2001 
2002 	BUG_ON(!rdev->sb_page);
2003 
2004 	sb = page_address(rdev->sb_page);
2005 
2006 	sb_retrieve_failed_devices(sb, failed_devices);
2007 
2008 	for (i = 0; i < rs->raid_disks; i++)
2009 		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2010 			update_failed_devices = true;
2011 			set_bit(i, (void *) failed_devices);
2012 		}
2013 
2014 	if (update_failed_devices)
2015 		sb_update_failed_devices(sb, failed_devices);
2016 
2017 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2018 	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2019 
2020 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
2021 	sb->array_position = cpu_to_le32(rdev->raid_disk);
2022 
2023 	sb->events = cpu_to_le64(mddev->events);
2024 
2025 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2026 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2027 
2028 	sb->level = cpu_to_le32(mddev->level);
2029 	sb->layout = cpu_to_le32(mddev->layout);
2030 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2031 
2032 	sb->new_level = cpu_to_le32(mddev->new_level);
2033 	sb->new_layout = cpu_to_le32(mddev->new_layout);
2034 	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2035 
2036 	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2037 
2038 	smp_rmb(); /* Make sure we access most recent reshape position */
2039 	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2040 	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2041 		/* Flag ongoing reshape */
2042 		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2043 
2044 		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2045 			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2046 	} else {
2047 		/* Clear reshape flags */
2048 		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2049 	}
2050 
2051 	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2052 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2053 	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2054 	sb->sectors = cpu_to_le64(rdev->sectors);
2055 	sb->incompat_features = cpu_to_le32(0);
2056 
2057 	/* Zero out the rest of the payload after the size of the superblock */
2058 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2059 }
2060 
2061 /*
2062  * super_load
2063  *
2064  * This function creates a superblock if one is not found on the device
2065  * and will decide which superblock to use if there's a choice.
2066  *
2067  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2068  */
2069 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2070 {
2071 	int r;
2072 	struct dm_raid_superblock *sb;
2073 	struct dm_raid_superblock *refsb;
2074 	uint64_t events_sb, events_refsb;
2075 
2076 	rdev->sb_start = 0;
2077 	rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2078 	if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
2079 		DMERR("superblock size of a logical block is no longer valid");
2080 		return -EINVAL;
2081 	}
2082 
2083 	r = read_disk_sb(rdev, rdev->sb_size, false);
2084 	if (r)
2085 		return r;
2086 
2087 	sb = page_address(rdev->sb_page);
2088 
2089 	/*
2090 	 * Two cases that we want to write new superblocks and rebuild:
2091 	 * 1) New device (no matching magic number)
2092 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2093 	 */
2094 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2095 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2096 		super_sync(rdev->mddev, rdev);
2097 
2098 		set_bit(FirstUse, &rdev->flags);
2099 		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2100 
2101 		/* Force writing of superblocks to disk */
2102 		set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2103 
2104 		/* Any superblock is better than none, choose that if given */
2105 		return refdev ? 0 : 1;
2106 	}
2107 
2108 	if (!refdev)
2109 		return 1;
2110 
2111 	events_sb = le64_to_cpu(sb->events);
2112 
2113 	refsb = page_address(refdev->sb_page);
2114 	events_refsb = le64_to_cpu(refsb->events);
2115 
2116 	return (events_sb > events_refsb) ? 1 : 0;
2117 }
2118 
2119 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2120 {
2121 	int role;
2122 	unsigned int d;
2123 	struct mddev *mddev = &rs->md;
2124 	uint64_t events_sb;
2125 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2126 	struct dm_raid_superblock *sb;
2127 	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2128 	struct md_rdev *r;
2129 	struct dm_raid_superblock *sb2;
2130 
2131 	sb = page_address(rdev->sb_page);
2132 	events_sb = le64_to_cpu(sb->events);
2133 
2134 	/*
2135 	 * Initialise to 1 if this is a new superblock.
2136 	 */
2137 	mddev->events = events_sb ? : 1;
2138 
2139 	mddev->reshape_position = MaxSector;
2140 
2141 	mddev->raid_disks = le32_to_cpu(sb->num_devices);
2142 	mddev->level = le32_to_cpu(sb->level);
2143 	mddev->layout = le32_to_cpu(sb->layout);
2144 	mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2145 
2146 	/*
2147 	 * Reshaping is supported, e.g. reshape_position is valid
2148 	 * in superblock and superblock content is authoritative.
2149 	 */
2150 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2151 		/* Superblock is authoritative wrt given raid set layout! */
2152 		mddev->new_level = le32_to_cpu(sb->new_level);
2153 		mddev->new_layout = le32_to_cpu(sb->new_layout);
2154 		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2155 		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2156 		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2157 
2158 		/* raid was reshaping and got interrupted */
2159 		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2160 			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2161 				DMERR("Reshape requested but raid set is still reshaping");
2162 				return -EINVAL;
2163 			}
2164 
2165 			if (mddev->delta_disks < 0 ||
2166 			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2167 				mddev->reshape_backwards = 1;
2168 			else
2169 				mddev->reshape_backwards = 0;
2170 
2171 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2172 			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2173 		}
2174 
2175 	} else {
2176 		/*
2177 		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2178 		 */
2179 		struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2180 		struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2181 
2182 		if (rs_takeover_requested(rs)) {
2183 			if (rt_cur && rt_new)
2184 				DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2185 				      rt_cur->name, rt_new->name);
2186 			else
2187 				DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2188 			return -EINVAL;
2189 		} else if (rs_reshape_requested(rs)) {
2190 			DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2191 			if (mddev->layout != mddev->new_layout) {
2192 				if (rt_cur && rt_new)
2193 					DMERR("	 current layout %s vs new layout %s",
2194 					      rt_cur->name, rt_new->name);
2195 				else
2196 					DMERR("	 current layout 0x%X vs new layout 0x%X",
2197 					      le32_to_cpu(sb->layout), mddev->new_layout);
2198 			}
2199 			if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2200 				DMERR("	 current stripe sectors %u vs new stripe sectors %u",
2201 				      mddev->chunk_sectors, mddev->new_chunk_sectors);
2202 			if (rs->delta_disks)
2203 				DMERR("	 current %u disks vs new %u disks",
2204 				      mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2205 			if (rs_is_raid10(rs)) {
2206 				DMERR("	 Old layout: %s w/ %u copies",
2207 				      raid10_md_layout_to_format(mddev->layout),
2208 				      raid10_md_layout_to_copies(mddev->layout));
2209 				DMERR("	 New layout: %s w/ %u copies",
2210 				      raid10_md_layout_to_format(mddev->new_layout),
2211 				      raid10_md_layout_to_copies(mddev->new_layout));
2212 			}
2213 			return -EINVAL;
2214 		}
2215 
2216 		DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2217 	}
2218 
2219 	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2220 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2221 
2222 	/*
2223 	 * During load, we set FirstUse if a new superblock was written.
2224 	 * There are two reasons we might not have a superblock:
2225 	 * 1) The raid set is brand new - in which case, all of the
2226 	 *    devices must have their In_sync bit set.	Also,
2227 	 *    recovery_cp must be 0, unless forced.
2228 	 * 2) This is a new device being added to an old raid set
2229 	 *    and the new device needs to be rebuilt - in which
2230 	 *    case the In_sync bit will /not/ be set and
2231 	 *    recovery_cp must be MaxSector.
2232 	 * 3) This is/are a new device(s) being added to an old
2233 	 *    raid set during takeover to a higher raid level
2234 	 *    to provide capacity for redundancy or during reshape
2235 	 *    to add capacity to grow the raid set.
2236 	 */
2237 	d = 0;
2238 	rdev_for_each(r, mddev) {
2239 		if (test_bit(Journal, &rdev->flags))
2240 			continue;
2241 
2242 		if (test_bit(FirstUse, &r->flags))
2243 			new_devs++;
2244 
2245 		if (!test_bit(In_sync, &r->flags)) {
2246 			DMINFO("Device %d specified for rebuild; clearing superblock",
2247 				r->raid_disk);
2248 			rebuilds++;
2249 
2250 			if (test_bit(FirstUse, &r->flags))
2251 				rebuild_and_new++;
2252 		}
2253 
2254 		d++;
2255 	}
2256 
2257 	if (new_devs == rs->raid_disks || !rebuilds) {
2258 		/* Replace a broken device */
2259 		if (new_devs == 1 && !rs->delta_disks)
2260 			;
2261 		if (new_devs == rs->raid_disks) {
2262 			DMINFO("Superblocks created for new raid set");
2263 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2264 		} else if (new_devs != rebuilds &&
2265 			   new_devs != rs->delta_disks) {
2266 			DMERR("New device injected into existing raid set without "
2267 			      "'delta_disks' or 'rebuild' parameter specified");
2268 			return -EINVAL;
2269 		}
2270 	} else if (new_devs && new_devs != rebuilds) {
2271 		DMERR("%u 'rebuild' devices cannot be injected into"
2272 		      " a raid set with %u other first-time devices",
2273 		      rebuilds, new_devs);
2274 		return -EINVAL;
2275 	} else if (rebuilds) {
2276 		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2277 			DMERR("new device%s provided without 'rebuild'",
2278 			      new_devs > 1 ? "s" : "");
2279 			return -EINVAL;
2280 		} else if (rs_is_recovering(rs)) {
2281 			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2282 			      (unsigned long long) mddev->recovery_cp);
2283 			return -EINVAL;
2284 		} else if (rs_is_reshaping(rs)) {
2285 			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2286 			      (unsigned long long) mddev->reshape_position);
2287 			return -EINVAL;
2288 		}
2289 	}
2290 
2291 	/*
2292 	 * Now we set the Faulty bit for those devices that are
2293 	 * recorded in the superblock as failed.
2294 	 */
2295 	sb_retrieve_failed_devices(sb, failed_devices);
2296 	rdev_for_each(r, mddev) {
2297 		if (test_bit(Journal, &rdev->flags) ||
2298 		    !r->sb_page)
2299 			continue;
2300 		sb2 = page_address(r->sb_page);
2301 		sb2->failed_devices = 0;
2302 		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2303 
2304 		/*
2305 		 * Check for any device re-ordering.
2306 		 */
2307 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2308 			role = le32_to_cpu(sb2->array_position);
2309 			if (role < 0)
2310 				continue;
2311 
2312 			if (role != r->raid_disk) {
2313 				if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2314 					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2315 					    rs->raid_disks % rs->raid10_copies) {
2316 						rs->ti->error =
2317 							"Cannot change raid10 near set to odd # of devices!";
2318 						return -EINVAL;
2319 					}
2320 
2321 					sb2->array_position = cpu_to_le32(r->raid_disk);
2322 
2323 				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2324 					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2325 					   !rt_is_raid1(rs->raid_type)) {
2326 					rs->ti->error = "Cannot change device positions in raid set";
2327 					return -EINVAL;
2328 				}
2329 
2330 				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2331 			}
2332 
2333 			/*
2334 			 * Partial recovery is performed on
2335 			 * returning failed devices.
2336 			 */
2337 			if (test_bit(role, (void *) failed_devices))
2338 				set_bit(Faulty, &r->flags);
2339 		}
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2346 {
2347 	struct mddev *mddev = &rs->md;
2348 	struct dm_raid_superblock *sb;
2349 
2350 	if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2351 		return 0;
2352 
2353 	sb = page_address(rdev->sb_page);
2354 
2355 	/*
2356 	 * If mddev->events is not set, we know we have not yet initialized
2357 	 * the array.
2358 	 */
2359 	if (!mddev->events && super_init_validation(rs, rdev))
2360 		return -EINVAL;
2361 
2362 	if (le32_to_cpu(sb->compat_features) &&
2363 	    le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2364 		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2365 		return -EINVAL;
2366 	}
2367 
2368 	if (sb->incompat_features) {
2369 		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2370 		return -EINVAL;
2371 	}
2372 
2373 	/* Enable bitmap creation for RAID levels != 0 */
2374 	mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2375 	mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2376 
2377 	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2378 		/* Retrieve device size stored in superblock to be prepared for shrink */
2379 		rdev->sectors = le64_to_cpu(sb->sectors);
2380 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2381 		if (rdev->recovery_offset == MaxSector)
2382 			set_bit(In_sync, &rdev->flags);
2383 		/*
2384 		 * If no reshape in progress -> we're recovering single
2385 		 * disk(s) and have to set the device(s) to out-of-sync
2386 		 */
2387 		else if (!rs_is_reshaping(rs))
2388 			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2389 	}
2390 
2391 	/*
2392 	 * If a device comes back, set it as not In_sync and no longer faulty.
2393 	 */
2394 	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2395 		rdev->recovery_offset = 0;
2396 		clear_bit(In_sync, &rdev->flags);
2397 		rdev->saved_raid_disk = rdev->raid_disk;
2398 	}
2399 
2400 	/* Reshape support -> restore repective data offsets */
2401 	rdev->data_offset = le64_to_cpu(sb->data_offset);
2402 	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2403 
2404 	return 0;
2405 }
2406 
2407 /*
2408  * Analyse superblocks and select the freshest.
2409  */
2410 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2411 {
2412 	int r;
2413 	struct md_rdev *rdev, *freshest;
2414 	struct mddev *mddev = &rs->md;
2415 
2416 	freshest = NULL;
2417 	rdev_for_each(rdev, mddev) {
2418 		if (test_bit(Journal, &rdev->flags))
2419 			continue;
2420 
2421 		/*
2422 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2423 		 * the array to undergo initialization again as
2424 		 * though it were new.	This is the intended effect
2425 		 * of the "sync" directive.
2426 		 *
2427 		 * With reshaping capability added, we must ensure that
2428 		 * that the "sync" directive is disallowed during the reshape.
2429 		 */
2430 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2431 			continue;
2432 
2433 		if (!rdev->meta_bdev)
2434 			continue;
2435 
2436 		r = super_load(rdev, freshest);
2437 
2438 		switch (r) {
2439 		case 1:
2440 			freshest = rdev;
2441 			break;
2442 		case 0:
2443 			break;
2444 		default:
2445 			/* This is a failure to read the superblock from the metadata device. */
2446 			/*
2447 			 * We have to keep any raid0 data/metadata device pairs or
2448 			 * the MD raid0 personality will fail to start the array.
2449 			 */
2450 			if (rs_is_raid0(rs))
2451 				continue;
2452 
2453 			/*
2454 			 * We keep the dm_devs to be able to emit the device tuple
2455 			 * properly on the table line in raid_status() (rather than
2456 			 * mistakenly acting as if '- -' got passed into the constructor).
2457 			 *
2458 			 * The rdev has to stay on the same_set list to allow for
2459 			 * the attempt to restore faulty devices on second resume.
2460 			 */
2461 			rdev->raid_disk = rdev->saved_raid_disk = -1;
2462 			break;
2463 		}
2464 	}
2465 
2466 	if (!freshest)
2467 		return 0;
2468 
2469 	if (validate_raid_redundancy(rs)) {
2470 		rs->ti->error = "Insufficient redundancy to activate array";
2471 		return -EINVAL;
2472 	}
2473 
2474 	/*
2475 	 * Validation of the freshest device provides the source of
2476 	 * validation for the remaining devices.
2477 	 */
2478 	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2479 	if (super_validate(rs, freshest))
2480 		return -EINVAL;
2481 
2482 	rdev_for_each(rdev, mddev)
2483 		if (!test_bit(Journal, &rdev->flags) &&
2484 		    rdev != freshest &&
2485 		    super_validate(rs, rdev))
2486 			return -EINVAL;
2487 	return 0;
2488 }
2489 
2490 /*
2491  * Adjust data_offset and new_data_offset on all disk members of @rs
2492  * for out of place reshaping if requested by contructor
2493  *
2494  * We need free space at the beginning of each raid disk for forward
2495  * and at the end for backward reshapes which userspace has to provide
2496  * via remapping/reordering of space.
2497  */
2498 static int rs_adjust_data_offsets(struct raid_set *rs)
2499 {
2500 	sector_t data_offset = 0, new_data_offset = 0;
2501 	struct md_rdev *rdev;
2502 
2503 	/* Constructor did not request data offset change */
2504 	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2505 		if (!rs_is_reshapable(rs))
2506 			goto out;
2507 
2508 		return 0;
2509 	}
2510 
2511 	/* HM FIXME: get InSync raid_dev? */
2512 	rdev = &rs->dev[0].rdev;
2513 
2514 	if (rs->delta_disks < 0) {
2515 		/*
2516 		 * Removing disks (reshaping backwards):
2517 		 *
2518 		 * - before reshape: data is at offset 0 and free space
2519 		 *		     is at end of each component LV
2520 		 *
2521 		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2522 		 */
2523 		data_offset = 0;
2524 		new_data_offset = rs->data_offset;
2525 
2526 	} else if (rs->delta_disks > 0) {
2527 		/*
2528 		 * Adding disks (reshaping forwards):
2529 		 *
2530 		 * - before reshape: data is at offset rs->data_offset != 0 and
2531 		 *		     free space is at begin of each component LV
2532 		 *
2533 		 * - after reshape: data is at offset 0 on each component LV
2534 		 */
2535 		data_offset = rs->data_offset;
2536 		new_data_offset = 0;
2537 
2538 	} else {
2539 		/*
2540 		 * User space passes in 0 for data offset after having removed reshape space
2541 		 *
2542 		 * - or - (data offset != 0)
2543 		 *
2544 		 * Changing RAID layout or chunk size -> toggle offsets
2545 		 *
2546 		 * - before reshape: data is at offset rs->data_offset 0 and
2547 		 *		     free space is at end of each component LV
2548 		 *		     -or-
2549 		 *                   data is at offset rs->data_offset != 0 and
2550 		 *		     free space is at begin of each component LV
2551 		 *
2552 		 * - after reshape: data is at offset 0 if it was at offset != 0
2553 		 *                  or at offset != 0 if it was at offset 0
2554 		 *                  on each component LV
2555 		 *
2556 		 */
2557 		data_offset = rs->data_offset ? rdev->data_offset : 0;
2558 		new_data_offset = data_offset ? 0 : rs->data_offset;
2559 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2560 	}
2561 
2562 	/*
2563 	 * Make sure we got a minimum amount of free sectors per device
2564 	 */
2565 	if (rs->data_offset &&
2566 	    to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2567 		rs->ti->error = data_offset ? "No space for forward reshape" :
2568 					      "No space for backward reshape";
2569 		return -ENOSPC;
2570 	}
2571 out:
2572 	/* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2573 	rdev_for_each(rdev, &rs->md) {
2574 		if (!test_bit(Journal, &rdev->flags)) {
2575 			rdev->data_offset = data_offset;
2576 			rdev->new_data_offset = new_data_offset;
2577 		}
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2584 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2585 {
2586 	int i = 0;
2587 	struct md_rdev *rdev;
2588 
2589 	rdev_for_each(rdev, &rs->md) {
2590 		if (!test_bit(Journal, &rdev->flags)) {
2591 			rdev->raid_disk = i++;
2592 			rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2593 		}
2594 	}
2595 }
2596 
2597 /*
2598  * Setup @rs for takeover by a different raid level
2599  */
2600 static int rs_setup_takeover(struct raid_set *rs)
2601 {
2602 	struct mddev *mddev = &rs->md;
2603 	struct md_rdev *rdev;
2604 	unsigned int d = mddev->raid_disks = rs->raid_disks;
2605 	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2606 
2607 	if (rt_is_raid10(rs->raid_type)) {
2608 		if (mddev->level == 0) {
2609 			/* Userpace reordered disks -> adjust raid_disk indexes */
2610 			__reorder_raid_disk_indexes(rs);
2611 
2612 			/* raid0 -> raid10_far layout */
2613 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2614 								   rs->raid10_copies);
2615 		} else if (mddev->level == 1)
2616 			/* raid1 -> raid10_near layout */
2617 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2618 								   rs->raid_disks);
2619 		else
2620 			return -EINVAL;
2621 
2622 	}
2623 
2624 	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2625 	mddev->recovery_cp = MaxSector;
2626 
2627 	while (d--) {
2628 		rdev = &rs->dev[d].rdev;
2629 
2630 		if (test_bit(d, (void *) rs->rebuild_disks)) {
2631 			clear_bit(In_sync, &rdev->flags);
2632 			clear_bit(Faulty, &rdev->flags);
2633 			mddev->recovery_cp = rdev->recovery_offset = 0;
2634 			/* Bitmap has to be created when we do an "up" takeover */
2635 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2636 		}
2637 
2638 		rdev->new_data_offset = new_data_offset;
2639 	}
2640 
2641 	return 0;
2642 }
2643 
2644 /* Prepare @rs for reshape */
2645 static int rs_prepare_reshape(struct raid_set *rs)
2646 {
2647 	bool reshape;
2648 	struct mddev *mddev = &rs->md;
2649 
2650 	if (rs_is_raid10(rs)) {
2651 		if (rs->raid_disks != mddev->raid_disks &&
2652 		    __is_raid10_near(mddev->layout) &&
2653 		    rs->raid10_copies &&
2654 		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2655 			/*
2656 			 * raid disk have to be multiple of data copies to allow this conversion,
2657 			 *
2658 			 * This is actually not a reshape it is a
2659 			 * rebuild of any additional mirrors per group
2660 			 */
2661 			if (rs->raid_disks % rs->raid10_copies) {
2662 				rs->ti->error = "Can't reshape raid10 mirror groups";
2663 				return -EINVAL;
2664 			}
2665 
2666 			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2667 			__reorder_raid_disk_indexes(rs);
2668 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2669 								   rs->raid10_copies);
2670 			mddev->new_layout = mddev->layout;
2671 			reshape = false;
2672 		} else
2673 			reshape = true;
2674 
2675 	} else if (rs_is_raid456(rs))
2676 		reshape = true;
2677 
2678 	else if (rs_is_raid1(rs)) {
2679 		if (rs->delta_disks) {
2680 			/* Process raid1 via delta_disks */
2681 			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2682 			reshape = true;
2683 		} else {
2684 			/* Process raid1 without delta_disks */
2685 			mddev->raid_disks = rs->raid_disks;
2686 			reshape = false;
2687 		}
2688 	} else {
2689 		rs->ti->error = "Called with bogus raid type";
2690 		return -EINVAL;
2691 	}
2692 
2693 	if (reshape) {
2694 		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2695 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2696 	} else if (mddev->raid_disks < rs->raid_disks)
2697 		/* Create new superblocks and bitmaps, if any new disks */
2698 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2699 
2700 	return 0;
2701 }
2702 
2703 /*
2704  *
2705  * - change raid layout
2706  * - change chunk size
2707  * - add disks
2708  * - remove disks
2709  */
2710 static int rs_setup_reshape(struct raid_set *rs)
2711 {
2712 	int r = 0;
2713 	unsigned int cur_raid_devs, d;
2714 	struct mddev *mddev = &rs->md;
2715 	struct md_rdev *rdev;
2716 
2717 	mddev->delta_disks = rs->delta_disks;
2718 	cur_raid_devs = mddev->raid_disks;
2719 
2720 	/* Ignore impossible layout change whilst adding/removing disks */
2721 	if (mddev->delta_disks &&
2722 	    mddev->layout != mddev->new_layout) {
2723 		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2724 		mddev->new_layout = mddev->layout;
2725 	}
2726 
2727 	/*
2728 	 * Adjust array size:
2729 	 *
2730 	 * - in case of adding disks, array size has
2731 	 *   to grow after the disk adding reshape,
2732 	 *   which'll hapen in the event handler;
2733 	 *   reshape will happen forward, so space has to
2734 	 *   be available at the beginning of each disk
2735 	 *
2736 	 * - in case of removing disks, array size
2737 	 *   has to shrink before starting the reshape,
2738 	 *   which'll happen here;
2739 	 *   reshape will happen backward, so space has to
2740 	 *   be available at the end of each disk
2741 	 *
2742 	 * - data_offset and new_data_offset are
2743 	 *   adjusted for aforementioned out of place
2744 	 *   reshaping based on userspace passing in
2745 	 *   the "data_offset <sectors>" key/value
2746 	 *   pair via the constructor
2747 	 */
2748 
2749 	/* Add disk(s) */
2750 	if (rs->delta_disks > 0) {
2751 		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2752 		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2753 			rdev = &rs->dev[d].rdev;
2754 			clear_bit(In_sync, &rdev->flags);
2755 
2756 			/*
2757 			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2758 			 * by md, which'll store that erroneously in the superblock on reshape
2759 			 */
2760 			rdev->saved_raid_disk = -1;
2761 			rdev->raid_disk = d;
2762 
2763 			rdev->sectors = mddev->dev_sectors;
2764 			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2765 		}
2766 
2767 		mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2768 
2769 	/* Remove disk(s) */
2770 	} else if (rs->delta_disks < 0) {
2771 		r = rs_set_dev_and_array_sectors(rs, true);
2772 		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2773 
2774 	/* Change layout and/or chunk size */
2775 	} else {
2776 		/*
2777 		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2778 		 *
2779 		 * keeping number of disks and do layout change ->
2780 		 *
2781 		 * toggle reshape_backward depending on data_offset:
2782 		 *
2783 		 * - free space upfront -> reshape forward
2784 		 *
2785 		 * - free space at the end -> reshape backward
2786 		 *
2787 		 *
2788 		 * This utilizes free reshape space avoiding the need
2789 		 * for userspace to move (parts of) LV segments in
2790 		 * case of layout/chunksize change  (for disk
2791 		 * adding/removing reshape space has to be at
2792 		 * the proper address (see above with delta_disks):
2793 		 *
2794 		 * add disk(s)   -> begin
2795 		 * remove disk(s)-> end
2796 		 */
2797 		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2798 	}
2799 
2800 	return r;
2801 }
2802 
2803 /*
2804  * Enable/disable discard support on RAID set depending on
2805  * RAID level and discard properties of underlying RAID members.
2806  */
2807 static void configure_discard_support(struct raid_set *rs)
2808 {
2809 	int i;
2810 	bool raid456;
2811 	struct dm_target *ti = rs->ti;
2812 
2813 	/* Assume discards not supported until after checks below. */
2814 	ti->discards_supported = false;
2815 
2816 	/* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2817 	raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2818 
2819 	for (i = 0; i < rs->raid_disks; i++) {
2820 		struct request_queue *q;
2821 
2822 		if (!rs->dev[i].rdev.bdev)
2823 			continue;
2824 
2825 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
2826 		if (!q || !blk_queue_discard(q))
2827 			return;
2828 
2829 		if (raid456) {
2830 			if (!q->limits.discard_zeroes_data)
2831 				return;
2832 			if (!devices_handle_discard_safely) {
2833 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2834 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2835 				return;
2836 			}
2837 		}
2838 	}
2839 
2840 	/* All RAID members properly support discards */
2841 	ti->discards_supported = true;
2842 
2843 	/*
2844 	 * RAID1 and RAID10 personalities require bio splitting,
2845 	 * RAID0/4/5/6 don't and process large discard bios properly.
2846 	 */
2847 	ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2848 	ti->num_discard_bios = 1;
2849 }
2850 
2851 /*
2852  * Construct a RAID0/1/10/4/5/6 mapping:
2853  * Args:
2854  *	<raid_type> <#raid_params> <raid_params>{0,}	\
2855  *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
2856  *
2857  * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
2858  * details on possible <raid_params>.
2859  *
2860  * Userspace is free to initialize the metadata devices, hence the superblocks to
2861  * enforce recreation based on the passed in table parameters.
2862  *
2863  */
2864 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2865 {
2866 	int r;
2867 	bool resize;
2868 	struct raid_type *rt;
2869 	unsigned int num_raid_params, num_raid_devs;
2870 	sector_t calculated_dev_sectors;
2871 	struct raid_set *rs = NULL;
2872 	const char *arg;
2873 	struct rs_layout rs_layout;
2874 	struct dm_arg_set as = { argc, argv }, as_nrd;
2875 	struct dm_arg _args[] = {
2876 		{ 0, as.argc, "Cannot understand number of raid parameters" },
2877 		{ 1, 254, "Cannot understand number of raid devices parameters" }
2878 	};
2879 
2880 	/* Must have <raid_type> */
2881 	arg = dm_shift_arg(&as);
2882 	if (!arg) {
2883 		ti->error = "No arguments";
2884 		return -EINVAL;
2885 	}
2886 
2887 	rt = get_raid_type(arg);
2888 	if (!rt) {
2889 		ti->error = "Unrecognised raid_type";
2890 		return -EINVAL;
2891 	}
2892 
2893 	/* Must have <#raid_params> */
2894 	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2895 		return -EINVAL;
2896 
2897 	/* number of raid device tupples <meta_dev data_dev> */
2898 	as_nrd = as;
2899 	dm_consume_args(&as_nrd, num_raid_params);
2900 	_args[1].max = (as_nrd.argc - 1) / 2;
2901 	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2902 		return -EINVAL;
2903 
2904 	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2905 		ti->error = "Invalid number of supplied raid devices";
2906 		return -EINVAL;
2907 	}
2908 
2909 	rs = raid_set_alloc(ti, rt, num_raid_devs);
2910 	if (IS_ERR(rs))
2911 		return PTR_ERR(rs);
2912 
2913 	r = parse_raid_params(rs, &as, num_raid_params);
2914 	if (r)
2915 		goto bad;
2916 
2917 	r = parse_dev_params(rs, &as);
2918 	if (r)
2919 		goto bad;
2920 
2921 	rs->md.sync_super = super_sync;
2922 
2923 	/*
2924 	 * Calculate ctr requested array and device sizes to allow
2925 	 * for superblock analysis needing device sizes defined.
2926 	 *
2927 	 * Any existing superblock will overwrite the array and device sizes
2928 	 */
2929 	r = rs_set_dev_and_array_sectors(rs, false);
2930 	if (r)
2931 		goto bad;
2932 
2933 	calculated_dev_sectors = rs->md.dev_sectors;
2934 
2935 	/*
2936 	 * Backup any new raid set level, layout, ...
2937 	 * requested to be able to compare to superblock
2938 	 * members for conversion decisions.
2939 	 */
2940 	rs_config_backup(rs, &rs_layout);
2941 
2942 	r = analyse_superblocks(ti, rs);
2943 	if (r)
2944 		goto bad;
2945 
2946 	resize = calculated_dev_sectors != __rdev_sectors(rs);
2947 
2948 	INIT_WORK(&rs->md.event_work, do_table_event);
2949 	ti->private = rs;
2950 	ti->num_flush_bios = 1;
2951 
2952 	/* Restore any requested new layout for conversion decision */
2953 	rs_config_restore(rs, &rs_layout);
2954 
2955 	/*
2956 	 * Now that we have any superblock metadata available,
2957 	 * check for new, recovering, reshaping, to be taken over,
2958 	 * to be reshaped or an existing, unchanged raid set to
2959 	 * run in sequence.
2960 	 */
2961 	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2962 		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2963 		if (rs_is_raid6(rs) &&
2964 		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2965 			ti->error = "'nosync' not allowed for new raid6 set";
2966 			r = -EINVAL;
2967 			goto bad;
2968 		}
2969 		rs_setup_recovery(rs, 0);
2970 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2971 		rs_set_new(rs);
2972 	} else if (rs_is_recovering(rs)) {
2973 		/* A recovering raid set may be resized */
2974 		; /* skip setup rs */
2975 	} else if (rs_is_reshaping(rs)) {
2976 		/* Have to reject size change request during reshape */
2977 		if (resize) {
2978 			ti->error = "Can't resize a reshaping raid set";
2979 			r = -EPERM;
2980 			goto bad;
2981 		}
2982 		/* skip setup rs */
2983 	} else if (rs_takeover_requested(rs)) {
2984 		if (rs_is_reshaping(rs)) {
2985 			ti->error = "Can't takeover a reshaping raid set";
2986 			r = -EPERM;
2987 			goto bad;
2988 		}
2989 
2990 		/* We can't takeover a journaled raid4/5/6 */
2991 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
2992 			ti->error = "Can't takeover a journaled raid4/5/6 set";
2993 			r = -EPERM;
2994 			goto bad;
2995 		}
2996 
2997 		/*
2998 		 * If a takeover is needed, userspace sets any additional
2999 		 * devices to rebuild and we can check for a valid request here.
3000 		 *
3001 		 * If acceptible, set the level to the new requested
3002 		 * one, prohibit requesting recovery, allow the raid
3003 		 * set to run and store superblocks during resume.
3004 		 */
3005 		r = rs_check_takeover(rs);
3006 		if (r)
3007 			goto bad;
3008 
3009 		r = rs_setup_takeover(rs);
3010 		if (r)
3011 			goto bad;
3012 
3013 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3014 		/* Takeover ain't recovery, so disable recovery */
3015 		rs_setup_recovery(rs, MaxSector);
3016 		rs_set_new(rs);
3017 	} else if (rs_reshape_requested(rs)) {
3018 		/*
3019 		 * No need to check for 'ongoing' takeover here, because takeover
3020 		 * is an instant operation as oposed to an ongoing reshape.
3021 		 */
3022 
3023 		/* We can't reshape a journaled raid4/5/6 */
3024 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3025 			ti->error = "Can't reshape a journaled raid4/5/6 set";
3026 			r = -EPERM;
3027 			goto bad;
3028 		}
3029 
3030 		/*
3031 		  * We can only prepare for a reshape here, because the
3032 		  * raid set needs to run to provide the repective reshape
3033 		  * check functions via its MD personality instance.
3034 		  *
3035 		  * So do the reshape check after md_run() succeeded.
3036 		  */
3037 		r = rs_prepare_reshape(rs);
3038 		if (r)
3039 			return r;
3040 
3041 		/* Reshaping ain't recovery, so disable recovery */
3042 		rs_setup_recovery(rs, MaxSector);
3043 		rs_set_cur(rs);
3044 	} else {
3045 		/* May not set recovery when a device rebuild is requested */
3046 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3047 			rs_setup_recovery(rs, MaxSector);
3048 			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3049 		} else
3050 			rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3051 					      0 : (resize ? calculated_dev_sectors : MaxSector));
3052 		rs_set_cur(rs);
3053 	}
3054 
3055 	/* If constructor requested it, change data and new_data offsets */
3056 	r = rs_adjust_data_offsets(rs);
3057 	if (r)
3058 		goto bad;
3059 
3060 	/* Start raid set read-only and assumed clean to change in raid_resume() */
3061 	rs->md.ro = 1;
3062 	rs->md.in_sync = 1;
3063 	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3064 
3065 	/* Has to be held on running the array */
3066 	mddev_lock_nointr(&rs->md);
3067 	r = md_run(&rs->md);
3068 	rs->md.in_sync = 0; /* Assume already marked dirty */
3069 
3070 	if (r) {
3071 		ti->error = "Failed to run raid array";
3072 		mddev_unlock(&rs->md);
3073 		goto bad;
3074 	}
3075 
3076 	rs->callbacks.congested_fn = raid_is_congested;
3077 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3078 
3079 	mddev_suspend(&rs->md);
3080 
3081 	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3082 	if (rs_is_raid456(rs)) {
3083 		r = rs_set_raid456_stripe_cache(rs);
3084 		if (r)
3085 			goto bad_stripe_cache;
3086 	}
3087 
3088 	/* Now do an early reshape check */
3089 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3090 		r = rs_check_reshape(rs);
3091 		if (r)
3092 			goto bad_check_reshape;
3093 
3094 		/* Restore new, ctr requested layout to perform check */
3095 		rs_config_restore(rs, &rs_layout);
3096 
3097 		if (rs->md.pers->start_reshape) {
3098 			r = rs->md.pers->check_reshape(&rs->md);
3099 			if (r) {
3100 				ti->error = "Reshape check failed";
3101 				goto bad_check_reshape;
3102 			}
3103 		}
3104 	}
3105 
3106 	/* Disable/enable discard support on raid set. */
3107 	configure_discard_support(rs);
3108 
3109 	mddev_unlock(&rs->md);
3110 	return 0;
3111 
3112 bad_stripe_cache:
3113 bad_check_reshape:
3114 	md_stop(&rs->md);
3115 bad:
3116 	raid_set_free(rs);
3117 
3118 	return r;
3119 }
3120 
3121 static void raid_dtr(struct dm_target *ti)
3122 {
3123 	struct raid_set *rs = ti->private;
3124 
3125 	list_del_init(&rs->callbacks.list);
3126 	md_stop(&rs->md);
3127 	raid_set_free(rs);
3128 }
3129 
3130 static int raid_map(struct dm_target *ti, struct bio *bio)
3131 {
3132 	struct raid_set *rs = ti->private;
3133 	struct mddev *mddev = &rs->md;
3134 
3135 	/*
3136 	 * If we're reshaping to add disk(s)), ti->len and
3137 	 * mddev->array_sectors will differ during the process
3138 	 * (ti->len > mddev->array_sectors), so we have to requeue
3139 	 * bios with addresses > mddev->array_sectors here or
3140 	 * there will occur accesses past EOD of the component
3141 	 * data images thus erroring the raid set.
3142 	 */
3143 	if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3144 		return DM_MAPIO_REQUEUE;
3145 
3146 	mddev->pers->make_request(mddev, bio);
3147 
3148 	return DM_MAPIO_SUBMITTED;
3149 }
3150 
3151 /* Return string describing the current sync action of @mddev */
3152 static const char *decipher_sync_action(struct mddev *mddev)
3153 {
3154 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3155 		return "frozen";
3156 
3157 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3158 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3159 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3160 			return "reshape";
3161 
3162 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3163 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3164 				return "resync";
3165 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3166 				return "check";
3167 			return "repair";
3168 		}
3169 
3170 		if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3171 			return "recover";
3172 	}
3173 
3174 	return "idle";
3175 }
3176 
3177 /*
3178  * Return status string for @rdev
3179  *
3180  * Status characters:
3181  *
3182  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3183  *  'a' = Alive but not in-sync
3184  *  'A' = Alive and in-sync raid set component or alive raid4/5/6 journal device
3185  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3186  */
3187 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3188 {
3189 	if (!rdev->bdev)
3190 		return "-";
3191 	else if (test_bit(Faulty, &rdev->flags))
3192 		return "D";
3193 	else if (test_bit(Journal, &rdev->flags))
3194 		return "A";
3195 	else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3196 		return "a";
3197 	else
3198 		return "A";
3199 }
3200 
3201 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3202 static sector_t rs_get_progress(struct raid_set *rs,
3203 				sector_t resync_max_sectors, bool *array_in_sync)
3204 {
3205 	sector_t r, recovery_cp, curr_resync_completed;
3206 	struct mddev *mddev = &rs->md;
3207 
3208 	curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3209 	recovery_cp = mddev->recovery_cp;
3210 	*array_in_sync = false;
3211 
3212 	if (rs_is_raid0(rs)) {
3213 		r = resync_max_sectors;
3214 		*array_in_sync = true;
3215 
3216 	} else {
3217 		r = mddev->reshape_position;
3218 
3219 		/* Reshape is relative to the array size */
3220 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3221 		    r != MaxSector) {
3222 			if (r == MaxSector) {
3223 				*array_in_sync = true;
3224 				r = resync_max_sectors;
3225 			} else {
3226 				/* Got to reverse on backward reshape */
3227 				if (mddev->reshape_backwards)
3228 					r = mddev->array_sectors - r;
3229 
3230 				/* Devide by # of data stripes */
3231 				sector_div(r, mddev_data_stripes(rs));
3232 			}
3233 
3234 		/* Sync is relative to the component device size */
3235 		} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3236 			r = curr_resync_completed;
3237 		else
3238 			r = recovery_cp;
3239 
3240 		if (r == MaxSector) {
3241 			/*
3242 			 * Sync complete.
3243 			 */
3244 			*array_in_sync = true;
3245 			r = resync_max_sectors;
3246 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3247 			/*
3248 			 * If "check" or "repair" is occurring, the raid set has
3249 			 * undergone an initial sync and the health characters
3250 			 * should not be 'a' anymore.
3251 			 */
3252 			*array_in_sync = true;
3253 		} else {
3254 			struct md_rdev *rdev;
3255 
3256 			/*
3257 			 * The raid set may be doing an initial sync, or it may
3258 			 * be rebuilding individual components.	 If all the
3259 			 * devices are In_sync, then it is the raid set that is
3260 			 * being initialized.
3261 			 */
3262 			rdev_for_each(rdev, mddev)
3263 				if (!test_bit(Journal, &rdev->flags) &&
3264 				    !test_bit(In_sync, &rdev->flags))
3265 					*array_in_sync = true;
3266 #if 0
3267 			r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3268 #endif
3269 		}
3270 	}
3271 
3272 	return r;
3273 }
3274 
3275 /* Helper to return @dev name or "-" if !@dev */
3276 static const char *__get_dev_name(struct dm_dev *dev)
3277 {
3278 	return dev ? dev->name : "-";
3279 }
3280 
3281 static void raid_status(struct dm_target *ti, status_type_t type,
3282 			unsigned int status_flags, char *result, unsigned int maxlen)
3283 {
3284 	struct raid_set *rs = ti->private;
3285 	struct mddev *mddev = &rs->md;
3286 	struct r5conf *conf = mddev->private;
3287 	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3288 	bool array_in_sync;
3289 	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3290 	unsigned int sz = 0;
3291 	unsigned int rebuild_disks;
3292 	unsigned int write_mostly_params = 0;
3293 	sector_t progress, resync_max_sectors, resync_mismatches;
3294 	const char *sync_action;
3295 	struct raid_type *rt;
3296 
3297 	switch (type) {
3298 	case STATUSTYPE_INFO:
3299 		/* *Should* always succeed */
3300 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3301 		if (!rt)
3302 			return;
3303 
3304 		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3305 
3306 		/* Access most recent mddev properties for status output */
3307 		smp_rmb();
3308 		/* Get sensible max sectors even if raid set not yet started */
3309 		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3310 				      mddev->resync_max_sectors : mddev->dev_sectors;
3311 		progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3312 		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3313 				    atomic64_read(&mddev->resync_mismatches) : 0;
3314 		sync_action = decipher_sync_action(&rs->md);
3315 
3316 		/* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3317 		for (i = 0; i < rs->raid_disks; i++)
3318 			DMEMIT(__raid_dev_status(&rs->dev[i].rdev, array_in_sync));
3319 
3320 		/*
3321 		 * In-sync/Reshape ratio:
3322 		 *  The in-sync ratio shows the progress of:
3323 		 *   - Initializing the raid set
3324 		 *   - Rebuilding a subset of devices of the raid set
3325 		 *  The user can distinguish between the two by referring
3326 		 *  to the status characters.
3327 		 *
3328 		 *  The reshape ratio shows the progress of
3329 		 *  changing the raid layout or the number of
3330 		 *  disks of a raid set
3331 		 */
3332 		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3333 				     (unsigned long long) resync_max_sectors);
3334 
3335 		/*
3336 		 * v1.5.0+:
3337 		 *
3338 		 * Sync action:
3339 		 *   See Documentation/device-mapper/dm-raid.txt for
3340 		 *   information on each of these states.
3341 		 */
3342 		DMEMIT(" %s", sync_action);
3343 
3344 		/*
3345 		 * v1.5.0+:
3346 		 *
3347 		 * resync_mismatches/mismatch_cnt
3348 		 *   This field shows the number of discrepancies found when
3349 		 *   performing a "check" of the raid set.
3350 		 */
3351 		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3352 
3353 		/*
3354 		 * v1.9.0+:
3355 		 *
3356 		 * data_offset (needed for out of space reshaping)
3357 		 *   This field shows the data offset into the data
3358 		 *   image LV where the first stripes data starts.
3359 		 *
3360 		 * We keep data_offset equal on all raid disks of the set,
3361 		 * so retrieving it from the first raid disk is sufficient.
3362 		 */
3363 		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3364 
3365 		/*
3366 		 * v1.10.0+:
3367 		 */
3368 		DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3369 			      __raid_dev_status(&rs->journal_dev.rdev, 0) : "-");
3370 		break;
3371 
3372 	case STATUSTYPE_TABLE:
3373 		/* Report the table line string you would use to construct this raid set */
3374 
3375 		/* Calculate raid parameter count */
3376 		for (i = 0; i < rs->raid_disks; i++)
3377 			if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3378 				write_mostly_params += 2;
3379 		rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3380 		raid_param_cnt += rebuild_disks * 2 +
3381 				  write_mostly_params +
3382 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3383 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3384 				  (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0);
3385 		/* Emit table line */
3386 		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3387 		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3388 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3389 					 raid10_md_layout_to_format(mddev->layout));
3390 		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3391 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3392 					 raid10_md_layout_to_copies(mddev->layout));
3393 		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3394 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3395 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3396 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3397 		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3398 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3399 					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3400 		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3401 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3402 					   (unsigned long long) rs->data_offset);
3403 		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3404 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3405 					  mddev->bitmap_info.daemon_sleep);
3406 		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3407 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3408 					 max(rs->delta_disks, mddev->delta_disks));
3409 		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3410 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3411 					 max_nr_stripes);
3412 		if (rebuild_disks)
3413 			for (i = 0; i < rs->raid_disks; i++)
3414 				if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3415 					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3416 							 rs->dev[i].rdev.raid_disk);
3417 		if (write_mostly_params)
3418 			for (i = 0; i < rs->raid_disks; i++)
3419 				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3420 					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3421 					       rs->dev[i].rdev.raid_disk);
3422 		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3423 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3424 					  mddev->bitmap_info.max_write_behind);
3425 		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3426 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3427 					 mddev->sync_speed_max);
3428 		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3429 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3430 					 mddev->sync_speed_min);
3431 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3432 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3433 					__get_dev_name(rs->journal_dev.dev));
3434 		DMEMIT(" %d", rs->raid_disks);
3435 		for (i = 0; i < rs->raid_disks; i++)
3436 			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3437 					 __get_dev_name(rs->dev[i].data_dev));
3438 	}
3439 }
3440 
3441 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3442 {
3443 	struct raid_set *rs = ti->private;
3444 	struct mddev *mddev = &rs->md;
3445 
3446 	if (!mddev->pers || !mddev->pers->sync_request)
3447 		return -EINVAL;
3448 
3449 	if (!strcasecmp(argv[0], "frozen"))
3450 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3451 	else
3452 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3453 
3454 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3455 		if (mddev->sync_thread) {
3456 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3457 			md_reap_sync_thread(mddev);
3458 		}
3459 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3460 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3461 		return -EBUSY;
3462 	else if (!strcasecmp(argv[0], "resync"))
3463 		; /* MD_RECOVERY_NEEDED set below */
3464 	else if (!strcasecmp(argv[0], "recover"))
3465 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3466 	else {
3467 		if (!strcasecmp(argv[0], "check")) {
3468 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3469 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3470 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3471 		} else if (!strcasecmp(argv[0], "repair")) {
3472 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3473 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3474 		} else
3475 			return -EINVAL;
3476 	}
3477 	if (mddev->ro == 2) {
3478 		/* A write to sync_action is enough to justify
3479 		 * canceling read-auto mode
3480 		 */
3481 		mddev->ro = 0;
3482 		if (!mddev->suspended && mddev->sync_thread)
3483 			md_wakeup_thread(mddev->sync_thread);
3484 	}
3485 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3486 	if (!mddev->suspended && mddev->thread)
3487 		md_wakeup_thread(mddev->thread);
3488 
3489 	return 0;
3490 }
3491 
3492 static int raid_iterate_devices(struct dm_target *ti,
3493 				iterate_devices_callout_fn fn, void *data)
3494 {
3495 	struct raid_set *rs = ti->private;
3496 	unsigned int i;
3497 	int r = 0;
3498 
3499 	for (i = 0; !r && i < rs->md.raid_disks; i++)
3500 		if (rs->dev[i].data_dev)
3501 			r = fn(ti,
3502 				 rs->dev[i].data_dev,
3503 				 0, /* No offset on data devs */
3504 				 rs->md.dev_sectors,
3505 				 data);
3506 
3507 	return r;
3508 }
3509 
3510 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3511 {
3512 	struct raid_set *rs = ti->private;
3513 	unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3514 
3515 	blk_limits_io_min(limits, chunk_size);
3516 	blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3517 }
3518 
3519 static void raid_presuspend(struct dm_target *ti)
3520 {
3521 	struct raid_set *rs = ti->private;
3522 
3523 	md_stop_writes(&rs->md);
3524 }
3525 
3526 static void raid_postsuspend(struct dm_target *ti)
3527 {
3528 	struct raid_set *rs = ti->private;
3529 
3530 	if (!rs->md.suspended)
3531 		mddev_suspend(&rs->md);
3532 
3533 	rs->md.ro = 1;
3534 }
3535 
3536 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3537 {
3538 	int i;
3539 	uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3540 	unsigned long flags;
3541 	bool cleared = false;
3542 	struct dm_raid_superblock *sb;
3543 	struct mddev *mddev = &rs->md;
3544 	struct md_rdev *r;
3545 
3546 	/* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3547 	if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3548 		return;
3549 
3550 	memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3551 
3552 	for (i = 0; i < mddev->raid_disks; i++) {
3553 		r = &rs->dev[i].rdev;
3554 		/* HM FIXME: enhance journal device recovery processing */
3555 		if (test_bit(Journal, &r->flags))
3556 			continue;
3557 
3558 		if (test_bit(Faulty, &r->flags) &&
3559 		    r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3560 			DMINFO("Faulty %s device #%d has readable super block."
3561 			       "  Attempting to revive it.",
3562 			       rs->raid_type->name, i);
3563 
3564 			/*
3565 			 * Faulty bit may be set, but sometimes the array can
3566 			 * be suspended before the personalities can respond
3567 			 * by removing the device from the array (i.e. calling
3568 			 * 'hot_remove_disk').	If they haven't yet removed
3569 			 * the failed device, its 'raid_disk' number will be
3570 			 * '>= 0' - meaning we must call this function
3571 			 * ourselves.
3572 			 */
3573 			flags = r->flags;
3574 			clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3575 			if (r->raid_disk >= 0) {
3576 				if (mddev->pers->hot_remove_disk(mddev, r)) {
3577 					/* Failed to revive this device, try next */
3578 					r->flags = flags;
3579 					continue;
3580 				}
3581 			} else
3582 				r->raid_disk = r->saved_raid_disk = i;
3583 
3584 			clear_bit(Faulty, &r->flags);
3585 			clear_bit(WriteErrorSeen, &r->flags);
3586 
3587 			if (mddev->pers->hot_add_disk(mddev, r)) {
3588 				/* Failed to revive this device, try next */
3589 				r->raid_disk = r->saved_raid_disk = -1;
3590 				r->flags = flags;
3591 			} else {
3592 				clear_bit(In_sync, &r->flags);
3593 				r->recovery_offset = 0;
3594 				set_bit(i, (void *) cleared_failed_devices);
3595 				cleared = true;
3596 			}
3597 		}
3598 	}
3599 
3600 	/* If any failed devices could be cleared, update all sbs failed_devices bits */
3601 	if (cleared) {
3602 		uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3603 
3604 		rdev_for_each(r, &rs->md) {
3605 			if (test_bit(Journal, &r->flags))
3606 				continue;
3607 
3608 			sb = page_address(r->sb_page);
3609 			sb_retrieve_failed_devices(sb, failed_devices);
3610 
3611 			for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3612 				failed_devices[i] &= ~cleared_failed_devices[i];
3613 
3614 			sb_update_failed_devices(sb, failed_devices);
3615 		}
3616 	}
3617 }
3618 
3619 static int __load_dirty_region_bitmap(struct raid_set *rs)
3620 {
3621 	int r = 0;
3622 
3623 	/* Try loading the bitmap unless "raid0", which does not have one */
3624 	if (!rs_is_raid0(rs) &&
3625 	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3626 		r = bitmap_load(&rs->md);
3627 		if (r)
3628 			DMERR("Failed to load bitmap");
3629 	}
3630 
3631 	return r;
3632 }
3633 
3634 /* Enforce updating all superblocks */
3635 static void rs_update_sbs(struct raid_set *rs)
3636 {
3637 	struct mddev *mddev = &rs->md;
3638 	int ro = mddev->ro;
3639 
3640 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3641 	mddev->ro = 0;
3642 	md_update_sb(mddev, 1);
3643 	mddev->ro = ro;
3644 }
3645 
3646 /*
3647  * Reshape changes raid algorithm of @rs to new one within personality
3648  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3649  * disks from a raid set thus growing/shrinking it or resizes the set
3650  *
3651  * Call mddev_lock_nointr() before!
3652  */
3653 static int rs_start_reshape(struct raid_set *rs)
3654 {
3655 	int r;
3656 	struct mddev *mddev = &rs->md;
3657 	struct md_personality *pers = mddev->pers;
3658 
3659 	r = rs_setup_reshape(rs);
3660 	if (r)
3661 		return r;
3662 
3663 	/* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3664 	if (mddev->suspended)
3665 		mddev_resume(mddev);
3666 
3667 	/*
3668 	 * Check any reshape constraints enforced by the personalility
3669 	 *
3670 	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3671 	 */
3672 	r = pers->check_reshape(mddev);
3673 	if (r) {
3674 		rs->ti->error = "pers->check_reshape() failed";
3675 		return r;
3676 	}
3677 
3678 	/*
3679 	 * Personality may not provide start reshape method in which
3680 	 * case check_reshape above has already covered everything
3681 	 */
3682 	if (pers->start_reshape) {
3683 		r = pers->start_reshape(mddev);
3684 		if (r) {
3685 			rs->ti->error = "pers->start_reshape() failed";
3686 			return r;
3687 		}
3688 	}
3689 
3690 	/* Suspend because a resume will happen in raid_resume() */
3691 	if (!mddev->suspended)
3692 		mddev_suspend(mddev);
3693 
3694 	/*
3695 	 * Now reshape got set up, update superblocks to
3696 	 * reflect the fact so that a table reload will
3697 	 * access proper superblock content in the ctr.
3698 	 */
3699 	rs_update_sbs(rs);
3700 
3701 	return 0;
3702 }
3703 
3704 static int raid_preresume(struct dm_target *ti)
3705 {
3706 	int r;
3707 	struct raid_set *rs = ti->private;
3708 	struct mddev *mddev = &rs->md;
3709 
3710 	/* This is a resume after a suspend of the set -> it's already started */
3711 	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3712 		return 0;
3713 
3714 	/*
3715 	 * The superblocks need to be updated on disk if the
3716 	 * array is new or new devices got added (thus zeroed
3717 	 * out by userspace) or __load_dirty_region_bitmap
3718 	 * will overwrite them in core with old data or fail.
3719 	 */
3720 	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3721 		rs_update_sbs(rs);
3722 
3723 	/* Load the bitmap from disk unless raid0 */
3724 	r = __load_dirty_region_bitmap(rs);
3725 	if (r)
3726 		return r;
3727 
3728 	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3729 	if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3730 	    mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3731 		r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3732 				  to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3733 		if (r)
3734 			DMERR("Failed to resize bitmap");
3735 	}
3736 
3737 	/* Check for any resize/reshape on @rs and adjust/initiate */
3738 	/* Be prepared for mddev_resume() in raid_resume() */
3739 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3740 	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3741 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3742 		mddev->resync_min = mddev->recovery_cp;
3743 	}
3744 
3745 	rs_set_capacity(rs);
3746 
3747 	/* Check for any reshape request unless new raid set */
3748 	if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3749 		/* Initiate a reshape. */
3750 		mddev_lock_nointr(mddev);
3751 		r = rs_start_reshape(rs);
3752 		mddev_unlock(mddev);
3753 		if (r)
3754 			DMWARN("Failed to check/start reshape, continuing without change");
3755 		r = 0;
3756 	}
3757 
3758 	return r;
3759 }
3760 
3761 static void raid_resume(struct dm_target *ti)
3762 {
3763 	struct raid_set *rs = ti->private;
3764 	struct mddev *mddev = &rs->md;
3765 
3766 	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3767 		/*
3768 		 * A secondary resume while the device is active.
3769 		 * Take this opportunity to check whether any failed
3770 		 * devices are reachable again.
3771 		 */
3772 		attempt_restore_of_faulty_devices(rs);
3773 	}
3774 
3775 	mddev->ro = 0;
3776 	mddev->in_sync = 0;
3777 
3778 	/*
3779 	 * Keep the RAID set frozen if reshape/rebuild flags are set.
3780 	 * The RAID set is unfrozen once the next table load/resume,
3781 	 * which clears the reshape/rebuild flags, occurs.
3782 	 * This ensures that the constructor for the inactive table
3783 	 * retrieves an up-to-date reshape_position.
3784 	 */
3785 	if (!(rs->ctr_flags & RESUME_STAY_FROZEN_FLAGS))
3786 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3787 
3788 	if (mddev->suspended)
3789 		mddev_resume(mddev);
3790 }
3791 
3792 static struct target_type raid_target = {
3793 	.name = "raid",
3794 	.version = {1, 10, 1},
3795 	.module = THIS_MODULE,
3796 	.ctr = raid_ctr,
3797 	.dtr = raid_dtr,
3798 	.map = raid_map,
3799 	.status = raid_status,
3800 	.message = raid_message,
3801 	.iterate_devices = raid_iterate_devices,
3802 	.io_hints = raid_io_hints,
3803 	.presuspend = raid_presuspend,
3804 	.postsuspend = raid_postsuspend,
3805 	.preresume = raid_preresume,
3806 	.resume = raid_resume,
3807 };
3808 
3809 static int __init dm_raid_init(void)
3810 {
3811 	DMINFO("Loading target version %u.%u.%u",
3812 	       raid_target.version[0],
3813 	       raid_target.version[1],
3814 	       raid_target.version[2]);
3815 	return dm_register_target(&raid_target);
3816 }
3817 
3818 static void __exit dm_raid_exit(void)
3819 {
3820 	dm_unregister_target(&raid_target);
3821 }
3822 
3823 module_init(dm_raid_init);
3824 module_exit(dm_raid_exit);
3825 
3826 module_param(devices_handle_discard_safely, bool, 0644);
3827 MODULE_PARM_DESC(devices_handle_discard_safely,
3828 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3829 
3830 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3831 MODULE_ALIAS("dm-raid0");
3832 MODULE_ALIAS("dm-raid1");
3833 MODULE_ALIAS("dm-raid10");
3834 MODULE_ALIAS("dm-raid4");
3835 MODULE_ALIAS("dm-raid5");
3836 MODULE_ALIAS("dm-raid6");
3837 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3838 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3839 MODULE_LICENSE("GPL");
3840