xref: /openbmc/linux/drivers/md/dm-raid.c (revision 174cd4b1)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
21 
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26 
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define	MIN_RAID456_JOURNAL_SPACE (4*2048)
31 
32 static bool devices_handle_discard_safely = false;
33 
34 /*
35  * The following flags are used by dm-raid.c to set up the array state.
36  * They must be cleared before md_run is called.
37  */
38 #define FirstUse 10		/* rdev flag */
39 
40 struct raid_dev {
41 	/*
42 	 * Two DM devices, one to hold metadata and one to hold the
43 	 * actual data/parity.	The reason for this is to not confuse
44 	 * ti->len and give more flexibility in altering size and
45 	 * characteristics.
46 	 *
47 	 * While it is possible for this device to be associated
48 	 * with a different physical device than the data_dev, it
49 	 * is intended for it to be the same.
50 	 *    |--------- Physical Device ---------|
51 	 *    |- meta_dev -|------ data_dev ------|
52 	 */
53 	struct dm_dev *meta_dev;
54 	struct dm_dev *data_dev;
55 	struct md_rdev rdev;
56 };
57 
58 /*
59  * Bits for establishing rs->ctr_flags
60  *
61  * 1 = no flag value
62  * 2 = flag with value
63  */
64 #define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80 
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV		15 /* 2 */ /* Only with raid4/5/6! */
83 
84 /*
85  * Flags for rs->ctr_flags field.
86  */
87 #define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
88 #define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
89 #define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
90 #define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
91 #define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
92 #define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
93 #define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
94 #define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
95 #define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
96 #define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
97 #define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
98 #define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
99 #define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
100 #define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
101 #define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
102 #define CTR_FLAG_JOURNAL_DEV		(1 << __CTR_FLAG_JOURNAL_DEV)
103 
104 /*
105  * Definitions of various constructor flags to
106  * be used in checks of valid / invalid flags
107  * per raid level.
108  */
109 /* Define all any sync flags */
110 #define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
111 
112 /* Define flags for options without argument (e.g. 'nosync') */
113 #define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
114 					 CTR_FLAG_RAID10_USE_NEAR_SETS)
115 
116 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
117 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
118 				  CTR_FLAG_WRITE_MOSTLY | \
119 				  CTR_FLAG_DAEMON_SLEEP | \
120 				  CTR_FLAG_MIN_RECOVERY_RATE | \
121 				  CTR_FLAG_MAX_RECOVERY_RATE | \
122 				  CTR_FLAG_MAX_WRITE_BEHIND | \
123 				  CTR_FLAG_STRIPE_CACHE | \
124 				  CTR_FLAG_REGION_SIZE | \
125 				  CTR_FLAG_RAID10_COPIES | \
126 				  CTR_FLAG_RAID10_FORMAT | \
127 				  CTR_FLAG_DELTA_DISKS | \
128 				  CTR_FLAG_DATA_OFFSET)
129 
130 /* Valid options definitions per raid level... */
131 
132 /* "raid0" does only accept data offset */
133 #define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
134 
135 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
136 #define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
137 				 CTR_FLAG_REBUILD | \
138 				 CTR_FLAG_WRITE_MOSTLY | \
139 				 CTR_FLAG_DAEMON_SLEEP | \
140 				 CTR_FLAG_MIN_RECOVERY_RATE | \
141 				 CTR_FLAG_MAX_RECOVERY_RATE | \
142 				 CTR_FLAG_MAX_WRITE_BEHIND | \
143 				 CTR_FLAG_REGION_SIZE | \
144 				 CTR_FLAG_DELTA_DISKS | \
145 				 CTR_FLAG_DATA_OFFSET)
146 
147 /* "raid10" does not accept any raid1 or stripe cache options */
148 #define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
149 				 CTR_FLAG_REBUILD | \
150 				 CTR_FLAG_DAEMON_SLEEP | \
151 				 CTR_FLAG_MIN_RECOVERY_RATE | \
152 				 CTR_FLAG_MAX_RECOVERY_RATE | \
153 				 CTR_FLAG_REGION_SIZE | \
154 				 CTR_FLAG_RAID10_COPIES | \
155 				 CTR_FLAG_RAID10_FORMAT | \
156 				 CTR_FLAG_DELTA_DISKS | \
157 				 CTR_FLAG_DATA_OFFSET | \
158 				 CTR_FLAG_RAID10_USE_NEAR_SETS)
159 
160 /*
161  * "raid4/5/6" do not accept any raid1 or raid10 specific options
162  *
163  * "raid6" does not accept "nosync", because it is not guaranteed
164  * that both parity and q-syndrome are being written properly with
165  * any writes
166  */
167 #define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
168 				 CTR_FLAG_REBUILD | \
169 				 CTR_FLAG_DAEMON_SLEEP | \
170 				 CTR_FLAG_MIN_RECOVERY_RATE | \
171 				 CTR_FLAG_MAX_RECOVERY_RATE | \
172 				 CTR_FLAG_STRIPE_CACHE | \
173 				 CTR_FLAG_REGION_SIZE | \
174 				 CTR_FLAG_DELTA_DISKS | \
175 				 CTR_FLAG_DATA_OFFSET | \
176 				 CTR_FLAG_JOURNAL_DEV)
177 
178 #define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
179 				 CTR_FLAG_REBUILD | \
180 				 CTR_FLAG_DAEMON_SLEEP | \
181 				 CTR_FLAG_MIN_RECOVERY_RATE | \
182 				 CTR_FLAG_MAX_RECOVERY_RATE | \
183 				 CTR_FLAG_STRIPE_CACHE | \
184 				 CTR_FLAG_REGION_SIZE | \
185 				 CTR_FLAG_DELTA_DISKS | \
186 				 CTR_FLAG_DATA_OFFSET | \
187 				 CTR_FLAG_JOURNAL_DEV)
188 /* ...valid options definitions per raid level */
189 
190 /*
191  * Flags for rs->runtime_flags field
192  * (RT_FLAG prefix meaning "runtime flag")
193  *
194  * These are all internal and used to define runtime state,
195  * e.g. to prevent another resume from preresume processing
196  * the raid set all over again.
197  */
198 #define RT_FLAG_RS_PRERESUMED		0
199 #define RT_FLAG_RS_RESUMED		1
200 #define RT_FLAG_RS_BITMAP_LOADED	2
201 #define RT_FLAG_UPDATE_SBS		3
202 #define RT_FLAG_RESHAPE_RS		4
203 
204 /* Array elements of 64 bit needed for rebuild/failed disk bits */
205 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
206 
207 /*
208  * raid set level, layout and chunk sectors backup/restore
209  */
210 struct rs_layout {
211 	int new_level;
212 	int new_layout;
213 	int new_chunk_sectors;
214 };
215 
216 struct raid_set {
217 	struct dm_target *ti;
218 
219 	uint32_t bitmap_loaded;
220 	uint32_t stripe_cache_entries;
221 	unsigned long ctr_flags;
222 	unsigned long runtime_flags;
223 
224 	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
225 
226 	int raid_disks;
227 	int delta_disks;
228 	int data_offset;
229 	int raid10_copies;
230 	int requested_bitmap_chunk_sectors;
231 
232 	struct mddev md;
233 	struct raid_type *raid_type;
234 	struct dm_target_callbacks callbacks;
235 
236 	/* Optional raid4/5/6 journal device */
237 	struct journal_dev {
238 		struct dm_dev *dev;
239 		struct md_rdev rdev;
240 	} journal_dev;
241 
242 	struct raid_dev dev[0];
243 };
244 
245 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
246 {
247 	struct mddev *mddev = &rs->md;
248 
249 	l->new_level = mddev->new_level;
250 	l->new_layout = mddev->new_layout;
251 	l->new_chunk_sectors = mddev->new_chunk_sectors;
252 }
253 
254 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
255 {
256 	struct mddev *mddev = &rs->md;
257 
258 	mddev->new_level = l->new_level;
259 	mddev->new_layout = l->new_layout;
260 	mddev->new_chunk_sectors = l->new_chunk_sectors;
261 }
262 
263 /* raid10 algorithms (i.e. formats) */
264 #define	ALGORITHM_RAID10_DEFAULT	0
265 #define	ALGORITHM_RAID10_NEAR		1
266 #define	ALGORITHM_RAID10_OFFSET		2
267 #define	ALGORITHM_RAID10_FAR		3
268 
269 /* Supported raid types and properties. */
270 static struct raid_type {
271 	const char *name;		/* RAID algorithm. */
272 	const char *descr;		/* Descriptor text for logging. */
273 	const unsigned int parity_devs;	/* # of parity devices. */
274 	const unsigned int minimal_devs;/* minimal # of devices in set. */
275 	const unsigned int level;	/* RAID level. */
276 	const unsigned int algorithm;	/* RAID algorithm. */
277 } raid_types[] = {
278 	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
279 	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
280 	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
281 	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
282 	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
283 	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
284 	{"raid4",	  "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
285 	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
286 	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
287 	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
288 	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
289 	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
290 	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
291 	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
292 	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
293 	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
294 	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
295 	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
296 	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
297 	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
298 };
299 
300 /* True, if @v is in inclusive range [@min, @max] */
301 static bool __within_range(long v, long min, long max)
302 {
303 	return v >= min && v <= max;
304 }
305 
306 /* All table line arguments are defined here */
307 static struct arg_name_flag {
308 	const unsigned long flag;
309 	const char *name;
310 } __arg_name_flags[] = {
311 	{ CTR_FLAG_SYNC, "sync"},
312 	{ CTR_FLAG_NOSYNC, "nosync"},
313 	{ CTR_FLAG_REBUILD, "rebuild"},
314 	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
315 	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
316 	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
317 	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
318 	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
319 	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
320 	{ CTR_FLAG_REGION_SIZE, "region_size"},
321 	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
322 	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
323 	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
324 	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
325 	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
326 	{ CTR_FLAG_JOURNAL_DEV, "journal_dev" },
327 };
328 
329 /* Return argument name string for given @flag */
330 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
331 {
332 	if (hweight32(flag) == 1) {
333 		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
334 
335 		while (anf-- > __arg_name_flags)
336 			if (flag & anf->flag)
337 				return anf->name;
338 
339 	} else
340 		DMERR("%s called with more than one flag!", __func__);
341 
342 	return NULL;
343 }
344 
345 /*
346  * Bool helpers to test for various raid levels of a raid set.
347  * It's level as reported by the superblock rather than
348  * the requested raid_type passed to the constructor.
349  */
350 /* Return true, if raid set in @rs is raid0 */
351 static bool rs_is_raid0(struct raid_set *rs)
352 {
353 	return !rs->md.level;
354 }
355 
356 /* Return true, if raid set in @rs is raid1 */
357 static bool rs_is_raid1(struct raid_set *rs)
358 {
359 	return rs->md.level == 1;
360 }
361 
362 /* Return true, if raid set in @rs is raid10 */
363 static bool rs_is_raid10(struct raid_set *rs)
364 {
365 	return rs->md.level == 10;
366 }
367 
368 /* Return true, if raid set in @rs is level 6 */
369 static bool rs_is_raid6(struct raid_set *rs)
370 {
371 	return rs->md.level == 6;
372 }
373 
374 /* Return true, if raid set in @rs is level 4, 5 or 6 */
375 static bool rs_is_raid456(struct raid_set *rs)
376 {
377 	return __within_range(rs->md.level, 4, 6);
378 }
379 
380 /* Return true, if raid set in @rs is reshapable */
381 static bool __is_raid10_far(int layout);
382 static bool rs_is_reshapable(struct raid_set *rs)
383 {
384 	return rs_is_raid456(rs) ||
385 	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
386 }
387 
388 /* Return true, if raid set in @rs is recovering */
389 static bool rs_is_recovering(struct raid_set *rs)
390 {
391 	return rs->md.recovery_cp < rs->md.dev_sectors;
392 }
393 
394 /* Return true, if raid set in @rs is reshaping */
395 static bool rs_is_reshaping(struct raid_set *rs)
396 {
397 	return rs->md.reshape_position != MaxSector;
398 }
399 
400 /*
401  * bool helpers to test for various raid levels of a raid type @rt
402  */
403 
404 /* Return true, if raid type in @rt is raid0 */
405 static bool rt_is_raid0(struct raid_type *rt)
406 {
407 	return !rt->level;
408 }
409 
410 /* Return true, if raid type in @rt is raid1 */
411 static bool rt_is_raid1(struct raid_type *rt)
412 {
413 	return rt->level == 1;
414 }
415 
416 /* Return true, if raid type in @rt is raid10 */
417 static bool rt_is_raid10(struct raid_type *rt)
418 {
419 	return rt->level == 10;
420 }
421 
422 /* Return true, if raid type in @rt is raid4/5 */
423 static bool rt_is_raid45(struct raid_type *rt)
424 {
425 	return __within_range(rt->level, 4, 5);
426 }
427 
428 /* Return true, if raid type in @rt is raid6 */
429 static bool rt_is_raid6(struct raid_type *rt)
430 {
431 	return rt->level == 6;
432 }
433 
434 /* Return true, if raid type in @rt is raid4/5/6 */
435 static bool rt_is_raid456(struct raid_type *rt)
436 {
437 	return __within_range(rt->level, 4, 6);
438 }
439 /* END: raid level bools */
440 
441 /* Return valid ctr flags for the raid level of @rs */
442 static unsigned long __valid_flags(struct raid_set *rs)
443 {
444 	if (rt_is_raid0(rs->raid_type))
445 		return RAID0_VALID_FLAGS;
446 	else if (rt_is_raid1(rs->raid_type))
447 		return RAID1_VALID_FLAGS;
448 	else if (rt_is_raid10(rs->raid_type))
449 		return RAID10_VALID_FLAGS;
450 	else if (rt_is_raid45(rs->raid_type))
451 		return RAID45_VALID_FLAGS;
452 	else if (rt_is_raid6(rs->raid_type))
453 		return RAID6_VALID_FLAGS;
454 
455 	return 0;
456 }
457 
458 /*
459  * Check for valid flags set on @rs
460  *
461  * Has to be called after parsing of the ctr flags!
462  */
463 static int rs_check_for_valid_flags(struct raid_set *rs)
464 {
465 	if (rs->ctr_flags & ~__valid_flags(rs)) {
466 		rs->ti->error = "Invalid flags combination";
467 		return -EINVAL;
468 	}
469 
470 	return 0;
471 }
472 
473 /* MD raid10 bit definitions and helpers */
474 #define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
475 #define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
476 #define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
477 #define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
478 
479 /* Return md raid10 near copies for @layout */
480 static unsigned int __raid10_near_copies(int layout)
481 {
482 	return layout & 0xFF;
483 }
484 
485 /* Return md raid10 far copies for @layout */
486 static unsigned int __raid10_far_copies(int layout)
487 {
488 	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
489 }
490 
491 /* Return true if md raid10 offset for @layout */
492 static bool __is_raid10_offset(int layout)
493 {
494 	return !!(layout & RAID10_OFFSET);
495 }
496 
497 /* Return true if md raid10 near for @layout */
498 static bool __is_raid10_near(int layout)
499 {
500 	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
501 }
502 
503 /* Return true if md raid10 far for @layout */
504 static bool __is_raid10_far(int layout)
505 {
506 	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
507 }
508 
509 /* Return md raid10 layout string for @layout */
510 static const char *raid10_md_layout_to_format(int layout)
511 {
512 	/*
513 	 * Bit 16 stands for "offset"
514 	 * (i.e. adjacent stripes hold copies)
515 	 *
516 	 * Refer to MD's raid10.c for details
517 	 */
518 	if (__is_raid10_offset(layout))
519 		return "offset";
520 
521 	if (__raid10_near_copies(layout) > 1)
522 		return "near";
523 
524 	WARN_ON(__raid10_far_copies(layout) < 2);
525 
526 	return "far";
527 }
528 
529 /* Return md raid10 algorithm for @name */
530 static int raid10_name_to_format(const char *name)
531 {
532 	if (!strcasecmp(name, "near"))
533 		return ALGORITHM_RAID10_NEAR;
534 	else if (!strcasecmp(name, "offset"))
535 		return ALGORITHM_RAID10_OFFSET;
536 	else if (!strcasecmp(name, "far"))
537 		return ALGORITHM_RAID10_FAR;
538 
539 	return -EINVAL;
540 }
541 
542 /* Return md raid10 copies for @layout */
543 static unsigned int raid10_md_layout_to_copies(int layout)
544 {
545 	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
546 }
547 
548 /* Return md raid10 format id for @format string */
549 static int raid10_format_to_md_layout(struct raid_set *rs,
550 				      unsigned int algorithm,
551 				      unsigned int copies)
552 {
553 	unsigned int n = 1, f = 1, r = 0;
554 
555 	/*
556 	 * MD resilienece flaw:
557 	 *
558 	 * enabling use_far_sets for far/offset formats causes copies
559 	 * to be colocated on the same devs together with their origins!
560 	 *
561 	 * -> disable it for now in the definition above
562 	 */
563 	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
564 	    algorithm == ALGORITHM_RAID10_NEAR)
565 		n = copies;
566 
567 	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
568 		f = copies;
569 		r = RAID10_OFFSET;
570 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
571 			r |= RAID10_USE_FAR_SETS;
572 
573 	} else if (algorithm == ALGORITHM_RAID10_FAR) {
574 		f = copies;
575 		r = !RAID10_OFFSET;
576 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
577 			r |= RAID10_USE_FAR_SETS;
578 
579 	} else
580 		return -EINVAL;
581 
582 	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
583 }
584 /* END: MD raid10 bit definitions and helpers */
585 
586 /* Check for any of the raid10 algorithms */
587 static bool __got_raid10(struct raid_type *rtp, const int layout)
588 {
589 	if (rtp->level == 10) {
590 		switch (rtp->algorithm) {
591 		case ALGORITHM_RAID10_DEFAULT:
592 		case ALGORITHM_RAID10_NEAR:
593 			return __is_raid10_near(layout);
594 		case ALGORITHM_RAID10_OFFSET:
595 			return __is_raid10_offset(layout);
596 		case ALGORITHM_RAID10_FAR:
597 			return __is_raid10_far(layout);
598 		default:
599 			break;
600 		}
601 	}
602 
603 	return false;
604 }
605 
606 /* Return raid_type for @name */
607 static struct raid_type *get_raid_type(const char *name)
608 {
609 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
610 
611 	while (rtp-- > raid_types)
612 		if (!strcasecmp(rtp->name, name))
613 			return rtp;
614 
615 	return NULL;
616 }
617 
618 /* Return raid_type for @name based derived from @level and @layout */
619 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
620 {
621 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
622 
623 	while (rtp-- > raid_types) {
624 		/* RAID10 special checks based on @layout flags/properties */
625 		if (rtp->level == level &&
626 		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
627 			return rtp;
628 	}
629 
630 	return NULL;
631 }
632 
633 /*
634  * Conditionally change bdev capacity of @rs
635  * in case of a disk add/remove reshape
636  */
637 static void rs_set_capacity(struct raid_set *rs)
638 {
639 	struct mddev *mddev = &rs->md;
640 	struct md_rdev *rdev;
641 	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
642 
643 	/*
644 	 * raid10 sets rdev->sector to the device size, which
645 	 * is unintended in case of out-of-place reshaping
646 	 */
647 	rdev_for_each(rdev, mddev)
648 		if (!test_bit(Journal, &rdev->flags))
649 			rdev->sectors = mddev->dev_sectors;
650 
651 	set_capacity(gendisk, mddev->array_sectors);
652 	revalidate_disk(gendisk);
653 }
654 
655 /*
656  * Set the mddev properties in @rs to the current
657  * ones retrieved from the freshest superblock
658  */
659 static void rs_set_cur(struct raid_set *rs)
660 {
661 	struct mddev *mddev = &rs->md;
662 
663 	mddev->new_level = mddev->level;
664 	mddev->new_layout = mddev->layout;
665 	mddev->new_chunk_sectors = mddev->chunk_sectors;
666 }
667 
668 /*
669  * Set the mddev properties in @rs to the new
670  * ones requested by the ctr
671  */
672 static void rs_set_new(struct raid_set *rs)
673 {
674 	struct mddev *mddev = &rs->md;
675 
676 	mddev->level = mddev->new_level;
677 	mddev->layout = mddev->new_layout;
678 	mddev->chunk_sectors = mddev->new_chunk_sectors;
679 	mddev->raid_disks = rs->raid_disks;
680 	mddev->delta_disks = 0;
681 }
682 
683 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
684 				       unsigned int raid_devs)
685 {
686 	unsigned int i;
687 	struct raid_set *rs;
688 
689 	if (raid_devs <= raid_type->parity_devs) {
690 		ti->error = "Insufficient number of devices";
691 		return ERR_PTR(-EINVAL);
692 	}
693 
694 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
695 	if (!rs) {
696 		ti->error = "Cannot allocate raid context";
697 		return ERR_PTR(-ENOMEM);
698 	}
699 
700 	mddev_init(&rs->md);
701 
702 	rs->raid_disks = raid_devs;
703 	rs->delta_disks = 0;
704 
705 	rs->ti = ti;
706 	rs->raid_type = raid_type;
707 	rs->stripe_cache_entries = 256;
708 	rs->md.raid_disks = raid_devs;
709 	rs->md.level = raid_type->level;
710 	rs->md.new_level = rs->md.level;
711 	rs->md.layout = raid_type->algorithm;
712 	rs->md.new_layout = rs->md.layout;
713 	rs->md.delta_disks = 0;
714 	rs->md.recovery_cp = MaxSector;
715 
716 	for (i = 0; i < raid_devs; i++)
717 		md_rdev_init(&rs->dev[i].rdev);
718 
719 	/*
720 	 * Remaining items to be initialized by further RAID params:
721 	 *  rs->md.persistent
722 	 *  rs->md.external
723 	 *  rs->md.chunk_sectors
724 	 *  rs->md.new_chunk_sectors
725 	 *  rs->md.dev_sectors
726 	 */
727 
728 	return rs;
729 }
730 
731 static void raid_set_free(struct raid_set *rs)
732 {
733 	int i;
734 
735 	if (rs->journal_dev.dev) {
736 		md_rdev_clear(&rs->journal_dev.rdev);
737 		dm_put_device(rs->ti, rs->journal_dev.dev);
738 	}
739 
740 	for (i = 0; i < rs->raid_disks; i++) {
741 		if (rs->dev[i].meta_dev)
742 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
743 		md_rdev_clear(&rs->dev[i].rdev);
744 		if (rs->dev[i].data_dev)
745 			dm_put_device(rs->ti, rs->dev[i].data_dev);
746 	}
747 
748 	kfree(rs);
749 }
750 
751 /*
752  * For every device we have two words
753  *  <meta_dev>: meta device name or '-' if missing
754  *  <data_dev>: data device name or '-' if missing
755  *
756  * The following are permitted:
757  *    - -
758  *    - <data_dev>
759  *    <meta_dev> <data_dev>
760  *
761  * The following is not allowed:
762  *    <meta_dev> -
763  *
764  * This code parses those words.  If there is a failure,
765  * the caller must use raid_set_free() to unwind the operations.
766  */
767 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
768 {
769 	int i;
770 	int rebuild = 0;
771 	int metadata_available = 0;
772 	int r = 0;
773 	const char *arg;
774 
775 	/* Put off the number of raid devices argument to get to dev pairs */
776 	arg = dm_shift_arg(as);
777 	if (!arg)
778 		return -EINVAL;
779 
780 	for (i = 0; i < rs->raid_disks; i++) {
781 		rs->dev[i].rdev.raid_disk = i;
782 
783 		rs->dev[i].meta_dev = NULL;
784 		rs->dev[i].data_dev = NULL;
785 
786 		/*
787 		 * There are no offsets initially.
788 		 * Out of place reshape will set them accordingly.
789 		 */
790 		rs->dev[i].rdev.data_offset = 0;
791 		rs->dev[i].rdev.new_data_offset = 0;
792 		rs->dev[i].rdev.mddev = &rs->md;
793 
794 		arg = dm_shift_arg(as);
795 		if (!arg)
796 			return -EINVAL;
797 
798 		if (strcmp(arg, "-")) {
799 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
800 					  &rs->dev[i].meta_dev);
801 			if (r) {
802 				rs->ti->error = "RAID metadata device lookup failure";
803 				return r;
804 			}
805 
806 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
807 			if (!rs->dev[i].rdev.sb_page) {
808 				rs->ti->error = "Failed to allocate superblock page";
809 				return -ENOMEM;
810 			}
811 		}
812 
813 		arg = dm_shift_arg(as);
814 		if (!arg)
815 			return -EINVAL;
816 
817 		if (!strcmp(arg, "-")) {
818 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
819 			    (!rs->dev[i].rdev.recovery_offset)) {
820 				rs->ti->error = "Drive designated for rebuild not specified";
821 				return -EINVAL;
822 			}
823 
824 			if (rs->dev[i].meta_dev) {
825 				rs->ti->error = "No data device supplied with metadata device";
826 				return -EINVAL;
827 			}
828 
829 			continue;
830 		}
831 
832 		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
833 				  &rs->dev[i].data_dev);
834 		if (r) {
835 			rs->ti->error = "RAID device lookup failure";
836 			return r;
837 		}
838 
839 		if (rs->dev[i].meta_dev) {
840 			metadata_available = 1;
841 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
842 		}
843 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
844 		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
845 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
846 			rebuild++;
847 	}
848 
849 	if (rs->journal_dev.dev)
850 		list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
851 
852 	if (metadata_available) {
853 		rs->md.external = 0;
854 		rs->md.persistent = 1;
855 		rs->md.major_version = 2;
856 	} else if (rebuild && !rs->md.recovery_cp) {
857 		/*
858 		 * Without metadata, we will not be able to tell if the array
859 		 * is in-sync or not - we must assume it is not.  Therefore,
860 		 * it is impossible to rebuild a drive.
861 		 *
862 		 * Even if there is metadata, the on-disk information may
863 		 * indicate that the array is not in-sync and it will then
864 		 * fail at that time.
865 		 *
866 		 * User could specify 'nosync' option if desperate.
867 		 */
868 		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
869 		return -EINVAL;
870 	}
871 
872 	return 0;
873 }
874 
875 /*
876  * validate_region_size
877  * @rs
878  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
879  *
880  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
881  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
882  *
883  * Returns: 0 on success, -EINVAL on failure.
884  */
885 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
886 {
887 	unsigned long min_region_size = rs->ti->len / (1 << 21);
888 
889 	if (rs_is_raid0(rs))
890 		return 0;
891 
892 	if (!region_size) {
893 		/*
894 		 * Choose a reasonable default.	 All figures in sectors.
895 		 */
896 		if (min_region_size > (1 << 13)) {
897 			/* If not a power of 2, make it the next power of 2 */
898 			region_size = roundup_pow_of_two(min_region_size);
899 			DMINFO("Choosing default region size of %lu sectors",
900 			       region_size);
901 		} else {
902 			DMINFO("Choosing default region size of 4MiB");
903 			region_size = 1 << 13; /* sectors */
904 		}
905 	} else {
906 		/*
907 		 * Validate user-supplied value.
908 		 */
909 		if (region_size > rs->ti->len) {
910 			rs->ti->error = "Supplied region size is too large";
911 			return -EINVAL;
912 		}
913 
914 		if (region_size < min_region_size) {
915 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
916 			      region_size, min_region_size);
917 			rs->ti->error = "Supplied region size is too small";
918 			return -EINVAL;
919 		}
920 
921 		if (!is_power_of_2(region_size)) {
922 			rs->ti->error = "Region size is not a power of 2";
923 			return -EINVAL;
924 		}
925 
926 		if (region_size < rs->md.chunk_sectors) {
927 			rs->ti->error = "Region size is smaller than the chunk size";
928 			return -EINVAL;
929 		}
930 	}
931 
932 	/*
933 	 * Convert sectors to bytes.
934 	 */
935 	rs->md.bitmap_info.chunksize = to_bytes(region_size);
936 
937 	return 0;
938 }
939 
940 /*
941  * validate_raid_redundancy
942  * @rs
943  *
944  * Determine if there are enough devices in the array that haven't
945  * failed (or are being rebuilt) to form a usable array.
946  *
947  * Returns: 0 on success, -EINVAL on failure.
948  */
949 static int validate_raid_redundancy(struct raid_set *rs)
950 {
951 	unsigned int i, rebuild_cnt = 0;
952 	unsigned int rebuilds_per_group = 0, copies;
953 	unsigned int group_size, last_group_start;
954 
955 	for (i = 0; i < rs->md.raid_disks; i++)
956 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
957 		    !rs->dev[i].rdev.sb_page)
958 			rebuild_cnt++;
959 
960 	switch (rs->raid_type->level) {
961 	case 0:
962 		break;
963 	case 1:
964 		if (rebuild_cnt >= rs->md.raid_disks)
965 			goto too_many;
966 		break;
967 	case 4:
968 	case 5:
969 	case 6:
970 		if (rebuild_cnt > rs->raid_type->parity_devs)
971 			goto too_many;
972 		break;
973 	case 10:
974 		copies = raid10_md_layout_to_copies(rs->md.new_layout);
975 		if (rebuild_cnt < copies)
976 			break;
977 
978 		/*
979 		 * It is possible to have a higher rebuild count for RAID10,
980 		 * as long as the failed devices occur in different mirror
981 		 * groups (i.e. different stripes).
982 		 *
983 		 * When checking "near" format, make sure no adjacent devices
984 		 * have failed beyond what can be handled.  In addition to the
985 		 * simple case where the number of devices is a multiple of the
986 		 * number of copies, we must also handle cases where the number
987 		 * of devices is not a multiple of the number of copies.
988 		 * E.g.	   dev1 dev2 dev3 dev4 dev5
989 		 *	    A	 A    B	   B	C
990 		 *	    C	 D    D	   E	E
991 		 */
992 		if (__is_raid10_near(rs->md.new_layout)) {
993 			for (i = 0; i < rs->md.raid_disks; i++) {
994 				if (!(i % copies))
995 					rebuilds_per_group = 0;
996 				if ((!rs->dev[i].rdev.sb_page ||
997 				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
998 				    (++rebuilds_per_group >= copies))
999 					goto too_many;
1000 			}
1001 			break;
1002 		}
1003 
1004 		/*
1005 		 * When checking "far" and "offset" formats, we need to ensure
1006 		 * that the device that holds its copy is not also dead or
1007 		 * being rebuilt.  (Note that "far" and "offset" formats only
1008 		 * support two copies right now.  These formats also only ever
1009 		 * use the 'use_far_sets' variant.)
1010 		 *
1011 		 * This check is somewhat complicated by the need to account
1012 		 * for arrays that are not a multiple of (far) copies.	This
1013 		 * results in the need to treat the last (potentially larger)
1014 		 * set differently.
1015 		 */
1016 		group_size = (rs->md.raid_disks / copies);
1017 		last_group_start = (rs->md.raid_disks / group_size) - 1;
1018 		last_group_start *= group_size;
1019 		for (i = 0; i < rs->md.raid_disks; i++) {
1020 			if (!(i % copies) && !(i > last_group_start))
1021 				rebuilds_per_group = 0;
1022 			if ((!rs->dev[i].rdev.sb_page ||
1023 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1024 			    (++rebuilds_per_group >= copies))
1025 					goto too_many;
1026 		}
1027 		break;
1028 	default:
1029 		if (rebuild_cnt)
1030 			return -EINVAL;
1031 	}
1032 
1033 	return 0;
1034 
1035 too_many:
1036 	return -EINVAL;
1037 }
1038 
1039 /*
1040  * Possible arguments are...
1041  *	<chunk_size> [optional_args]
1042  *
1043  * Argument definitions
1044  *    <chunk_size>			The number of sectors per disk that
1045  *					will form the "stripe"
1046  *    [[no]sync]			Force or prevent recovery of the
1047  *					entire array
1048  *    [rebuild <idx>]			Rebuild the drive indicated by the index
1049  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1050  *					clear bits
1051  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1052  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1053  *    [write_mostly <idx>]		Indicate a write mostly drive via index
1054  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1055  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1056  *    [region_size <sectors>]		Defines granularity of bitmap
1057  *    [journal_dev <dev>]		raid4/5/6 journaling deviice
1058  *    					(i.e. write hole closing log)
1059  *
1060  * RAID10-only options:
1061  *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1062  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1063  */
1064 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1065 			     unsigned int num_raid_params)
1066 {
1067 	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1068 	unsigned int raid10_copies = 2;
1069 	unsigned int i, write_mostly = 0;
1070 	unsigned int region_size = 0;
1071 	sector_t max_io_len;
1072 	const char *arg, *key;
1073 	struct raid_dev *rd;
1074 	struct raid_type *rt = rs->raid_type;
1075 
1076 	arg = dm_shift_arg(as);
1077 	num_raid_params--; /* Account for chunk_size argument */
1078 
1079 	if (kstrtoint(arg, 10, &value) < 0) {
1080 		rs->ti->error = "Bad numerical argument given for chunk_size";
1081 		return -EINVAL;
1082 	}
1083 
1084 	/*
1085 	 * First, parse the in-order required arguments
1086 	 * "chunk_size" is the only argument of this type.
1087 	 */
1088 	if (rt_is_raid1(rt)) {
1089 		if (value)
1090 			DMERR("Ignoring chunk size parameter for RAID 1");
1091 		value = 0;
1092 	} else if (!is_power_of_2(value)) {
1093 		rs->ti->error = "Chunk size must be a power of 2";
1094 		return -EINVAL;
1095 	} else if (value < 8) {
1096 		rs->ti->error = "Chunk size value is too small";
1097 		return -EINVAL;
1098 	}
1099 
1100 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1101 
1102 	/*
1103 	 * We set each individual device as In_sync with a completed
1104 	 * 'recovery_offset'.  If there has been a device failure or
1105 	 * replacement then one of the following cases applies:
1106 	 *
1107 	 *   1) User specifies 'rebuild'.
1108 	 *	- Device is reset when param is read.
1109 	 *   2) A new device is supplied.
1110 	 *	- No matching superblock found, resets device.
1111 	 *   3) Device failure was transient and returns on reload.
1112 	 *	- Failure noticed, resets device for bitmap replay.
1113 	 *   4) Device hadn't completed recovery after previous failure.
1114 	 *	- Superblock is read and overrides recovery_offset.
1115 	 *
1116 	 * What is found in the superblocks of the devices is always
1117 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1118 	 */
1119 	for (i = 0; i < rs->raid_disks; i++) {
1120 		set_bit(In_sync, &rs->dev[i].rdev.flags);
1121 		rs->dev[i].rdev.recovery_offset = MaxSector;
1122 	}
1123 
1124 	/*
1125 	 * Second, parse the unordered optional arguments
1126 	 */
1127 	for (i = 0; i < num_raid_params; i++) {
1128 		key = dm_shift_arg(as);
1129 		if (!key) {
1130 			rs->ti->error = "Not enough raid parameters given";
1131 			return -EINVAL;
1132 		}
1133 
1134 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1135 			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1136 				rs->ti->error = "Only one 'nosync' argument allowed";
1137 				return -EINVAL;
1138 			}
1139 			continue;
1140 		}
1141 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1142 			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1143 				rs->ti->error = "Only one 'sync' argument allowed";
1144 				return -EINVAL;
1145 			}
1146 			continue;
1147 		}
1148 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1149 			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1150 				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1151 				return -EINVAL;
1152 			}
1153 			continue;
1154 		}
1155 
1156 		arg = dm_shift_arg(as);
1157 		i++; /* Account for the argument pairs */
1158 		if (!arg) {
1159 			rs->ti->error = "Wrong number of raid parameters given";
1160 			return -EINVAL;
1161 		}
1162 
1163 		/*
1164 		 * Parameters that take a string value are checked here.
1165 		 */
1166 		/* "raid10_format {near|offset|far} */
1167 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1168 			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1169 				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1170 				return -EINVAL;
1171 			}
1172 			if (!rt_is_raid10(rt)) {
1173 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1174 				return -EINVAL;
1175 			}
1176 			raid10_format = raid10_name_to_format(arg);
1177 			if (raid10_format < 0) {
1178 				rs->ti->error = "Invalid 'raid10_format' value given";
1179 				return raid10_format;
1180 			}
1181 			continue;
1182 		}
1183 
1184 		/* "journal_dev dev" */
1185 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1186 			int r;
1187 			struct md_rdev *jdev;
1188 
1189 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1190 				rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1191 				return -EINVAL;
1192 			}
1193 			if (!rt_is_raid456(rt)) {
1194 				rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1195 				return -EINVAL;
1196 			}
1197 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1198 					  &rs->journal_dev.dev);
1199 			if (r) {
1200 				rs->ti->error = "raid4/5/6 journal device lookup failure";
1201 				return r;
1202 			}
1203 			jdev = &rs->journal_dev.rdev;
1204 			md_rdev_init(jdev);
1205 			jdev->mddev = &rs->md;
1206 			jdev->bdev = rs->journal_dev.dev->bdev;
1207 			jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1208 			if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1209 				rs->ti->error = "No space for raid4/5/6 journal";
1210 				return -ENOSPC;
1211 			}
1212 			set_bit(Journal, &jdev->flags);
1213 			continue;
1214 		}
1215 
1216 		/*
1217 		 * Parameters with number values from here on.
1218 		 */
1219 		if (kstrtoint(arg, 10, &value) < 0) {
1220 			rs->ti->error = "Bad numerical argument given in raid params";
1221 			return -EINVAL;
1222 		}
1223 
1224 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1225 			/*
1226 			 * "rebuild" is being passed in by userspace to provide
1227 			 * indexes of replaced devices and to set up additional
1228 			 * devices on raid level takeover.
1229 			 */
1230 			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1231 				rs->ti->error = "Invalid rebuild index given";
1232 				return -EINVAL;
1233 			}
1234 
1235 			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1236 				rs->ti->error = "rebuild for this index already given";
1237 				return -EINVAL;
1238 			}
1239 
1240 			rd = rs->dev + value;
1241 			clear_bit(In_sync, &rd->rdev.flags);
1242 			clear_bit(Faulty, &rd->rdev.flags);
1243 			rd->rdev.recovery_offset = 0;
1244 			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1245 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1246 			if (!rt_is_raid1(rt)) {
1247 				rs->ti->error = "write_mostly option is only valid for RAID1";
1248 				return -EINVAL;
1249 			}
1250 
1251 			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1252 				rs->ti->error = "Invalid write_mostly index given";
1253 				return -EINVAL;
1254 			}
1255 
1256 			write_mostly++;
1257 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1258 			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1259 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1260 			if (!rt_is_raid1(rt)) {
1261 				rs->ti->error = "max_write_behind option is only valid for RAID1";
1262 				return -EINVAL;
1263 			}
1264 
1265 			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1266 				rs->ti->error = "Only one max_write_behind argument pair allowed";
1267 				return -EINVAL;
1268 			}
1269 
1270 			/*
1271 			 * In device-mapper, we specify things in sectors, but
1272 			 * MD records this value in kB
1273 			 */
1274 			value /= 2;
1275 			if (value > COUNTER_MAX) {
1276 				rs->ti->error = "Max write-behind limit out of range";
1277 				return -EINVAL;
1278 			}
1279 
1280 			rs->md.bitmap_info.max_write_behind = value;
1281 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1282 			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1283 				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1284 				return -EINVAL;
1285 			}
1286 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1287 				rs->ti->error = "daemon sleep period out of range";
1288 				return -EINVAL;
1289 			}
1290 			rs->md.bitmap_info.daemon_sleep = value;
1291 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1292 			/* Userspace passes new data_offset after having extended the the data image LV */
1293 			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1294 				rs->ti->error = "Only one data_offset argument pair allowed";
1295 				return -EINVAL;
1296 			}
1297 			/* Ensure sensible data offset */
1298 			if (value < 0 ||
1299 			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1300 				rs->ti->error = "Bogus data_offset value";
1301 				return -EINVAL;
1302 			}
1303 			rs->data_offset = value;
1304 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1305 			/* Define the +/-# of disks to add to/remove from the given raid set */
1306 			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1307 				rs->ti->error = "Only one delta_disks argument pair allowed";
1308 				return -EINVAL;
1309 			}
1310 			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1311 			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1312 				rs->ti->error = "Too many delta_disk requested";
1313 				return -EINVAL;
1314 			}
1315 
1316 			rs->delta_disks = value;
1317 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1318 			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1319 				rs->ti->error = "Only one stripe_cache argument pair allowed";
1320 				return -EINVAL;
1321 			}
1322 
1323 			if (!rt_is_raid456(rt)) {
1324 				rs->ti->error = "Inappropriate argument: stripe_cache";
1325 				return -EINVAL;
1326 			}
1327 
1328 			rs->stripe_cache_entries = value;
1329 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1330 			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1331 				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1332 				return -EINVAL;
1333 			}
1334 			if (value > INT_MAX) {
1335 				rs->ti->error = "min_recovery_rate out of range";
1336 				return -EINVAL;
1337 			}
1338 			rs->md.sync_speed_min = (int)value;
1339 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1340 			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1341 				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1342 				return -EINVAL;
1343 			}
1344 			if (value > INT_MAX) {
1345 				rs->ti->error = "max_recovery_rate out of range";
1346 				return -EINVAL;
1347 			}
1348 			rs->md.sync_speed_max = (int)value;
1349 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1350 			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1351 				rs->ti->error = "Only one region_size argument pair allowed";
1352 				return -EINVAL;
1353 			}
1354 
1355 			region_size = value;
1356 			rs->requested_bitmap_chunk_sectors = value;
1357 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1358 			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1359 				rs->ti->error = "Only one raid10_copies argument pair allowed";
1360 				return -EINVAL;
1361 			}
1362 
1363 			if (!__within_range(value, 2, rs->md.raid_disks)) {
1364 				rs->ti->error = "Bad value for 'raid10_copies'";
1365 				return -EINVAL;
1366 			}
1367 
1368 			raid10_copies = value;
1369 		} else {
1370 			DMERR("Unable to parse RAID parameter: %s", key);
1371 			rs->ti->error = "Unable to parse RAID parameter";
1372 			return -EINVAL;
1373 		}
1374 	}
1375 
1376 	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1377 	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1378 		rs->ti->error = "sync and nosync are mutually exclusive";
1379 		return -EINVAL;
1380 	}
1381 
1382 	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1383 	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1384 	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1385 		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1386 		return -EINVAL;
1387 	}
1388 
1389 	if (write_mostly >= rs->md.raid_disks) {
1390 		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1391 		return -EINVAL;
1392 	}
1393 
1394 	if (validate_region_size(rs, region_size))
1395 		return -EINVAL;
1396 
1397 	if (rs->md.chunk_sectors)
1398 		max_io_len = rs->md.chunk_sectors;
1399 	else
1400 		max_io_len = region_size;
1401 
1402 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1403 		return -EINVAL;
1404 
1405 	if (rt_is_raid10(rt)) {
1406 		if (raid10_copies > rs->md.raid_disks) {
1407 			rs->ti->error = "Not enough devices to satisfy specification";
1408 			return -EINVAL;
1409 		}
1410 
1411 		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1412 		if (rs->md.new_layout < 0) {
1413 			rs->ti->error = "Error getting raid10 format";
1414 			return rs->md.new_layout;
1415 		}
1416 
1417 		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1418 		if (!rt) {
1419 			rs->ti->error = "Failed to recognize new raid10 layout";
1420 			return -EINVAL;
1421 		}
1422 
1423 		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1424 		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1425 		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1426 			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1427 			return -EINVAL;
1428 		}
1429 	}
1430 
1431 	rs->raid10_copies = raid10_copies;
1432 
1433 	/* Assume there are no metadata devices until the drives are parsed */
1434 	rs->md.persistent = 0;
1435 	rs->md.external = 1;
1436 
1437 	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1438 	return rs_check_for_valid_flags(rs);
1439 }
1440 
1441 /* Set raid4/5/6 cache size */
1442 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1443 {
1444 	int r;
1445 	struct r5conf *conf;
1446 	struct mddev *mddev = &rs->md;
1447 	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1448 	uint32_t nr_stripes = rs->stripe_cache_entries;
1449 
1450 	if (!rt_is_raid456(rs->raid_type)) {
1451 		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1452 		return -EINVAL;
1453 	}
1454 
1455 	if (nr_stripes < min_stripes) {
1456 		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1457 		       nr_stripes, min_stripes);
1458 		nr_stripes = min_stripes;
1459 	}
1460 
1461 	conf = mddev->private;
1462 	if (!conf) {
1463 		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1464 		return -EINVAL;
1465 	}
1466 
1467 	/* Try setting number of stripes in raid456 stripe cache */
1468 	if (conf->min_nr_stripes != nr_stripes) {
1469 		r = raid5_set_cache_size(mddev, nr_stripes);
1470 		if (r) {
1471 			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1472 			return r;
1473 		}
1474 
1475 		DMINFO("%u stripe cache entries", nr_stripes);
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1482 static unsigned int mddev_data_stripes(struct raid_set *rs)
1483 {
1484 	return rs->md.raid_disks - rs->raid_type->parity_devs;
1485 }
1486 
1487 /* Return # of data stripes of @rs (i.e. as of ctr) */
1488 static unsigned int rs_data_stripes(struct raid_set *rs)
1489 {
1490 	return rs->raid_disks - rs->raid_type->parity_devs;
1491 }
1492 
1493 /*
1494  * Retrieve rdev->sectors from any valid raid device of @rs
1495  * to allow userpace to pass in arbitray "- -" device tupples.
1496  */
1497 static sector_t __rdev_sectors(struct raid_set *rs)
1498 {
1499 	int i;
1500 
1501 	for (i = 0; i < rs->md.raid_disks; i++) {
1502 		struct md_rdev *rdev = &rs->dev[i].rdev;
1503 
1504 		if (!test_bit(Journal, &rdev->flags) &&
1505 		    rdev->bdev && rdev->sectors)
1506 			return rdev->sectors;
1507 	}
1508 
1509 	BUG(); /* Constructor ensures we got some. */
1510 }
1511 
1512 /* Calculate the sectors per device and per array used for @rs */
1513 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1514 {
1515 	int delta_disks;
1516 	unsigned int data_stripes;
1517 	struct mddev *mddev = &rs->md;
1518 	struct md_rdev *rdev;
1519 	sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1520 
1521 	if (use_mddev) {
1522 		delta_disks = mddev->delta_disks;
1523 		data_stripes = mddev_data_stripes(rs);
1524 	} else {
1525 		delta_disks = rs->delta_disks;
1526 		data_stripes = rs_data_stripes(rs);
1527 	}
1528 
1529 	/* Special raid1 case w/o delta_disks support (yet) */
1530 	if (rt_is_raid1(rs->raid_type))
1531 		;
1532 	else if (rt_is_raid10(rs->raid_type)) {
1533 		if (rs->raid10_copies < 2 ||
1534 		    delta_disks < 0) {
1535 			rs->ti->error = "Bogus raid10 data copies or delta disks";
1536 			return -EINVAL;
1537 		}
1538 
1539 		dev_sectors *= rs->raid10_copies;
1540 		if (sector_div(dev_sectors, data_stripes))
1541 			goto bad;
1542 
1543 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1544 		if (sector_div(array_sectors, rs->raid10_copies))
1545 			goto bad;
1546 
1547 	} else if (sector_div(dev_sectors, data_stripes))
1548 		goto bad;
1549 
1550 	else
1551 		/* Striped layouts */
1552 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1553 
1554 	rdev_for_each(rdev, mddev)
1555 		if (!test_bit(Journal, &rdev->flags))
1556 			rdev->sectors = dev_sectors;
1557 
1558 	mddev->array_sectors = array_sectors;
1559 	mddev->dev_sectors = dev_sectors;
1560 
1561 	return 0;
1562 bad:
1563 	rs->ti->error = "Target length not divisible by number of data devices";
1564 	return -EINVAL;
1565 }
1566 
1567 /* Setup recovery on @rs */
1568 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1569 {
1570 	/* raid0 does not recover */
1571 	if (rs_is_raid0(rs))
1572 		rs->md.recovery_cp = MaxSector;
1573 	/*
1574 	 * A raid6 set has to be recovered either
1575 	 * completely or for the grown part to
1576 	 * ensure proper parity and Q-Syndrome
1577 	 */
1578 	else if (rs_is_raid6(rs))
1579 		rs->md.recovery_cp = dev_sectors;
1580 	/*
1581 	 * Other raid set types may skip recovery
1582 	 * depending on the 'nosync' flag.
1583 	 */
1584 	else
1585 		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1586 				     ? MaxSector : dev_sectors;
1587 }
1588 
1589 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1590 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1591 {
1592 	if (!dev_sectors)
1593 		/* New raid set or 'sync' flag provided */
1594 		__rs_setup_recovery(rs, 0);
1595 	else if (dev_sectors == MaxSector)
1596 		/* Prevent recovery */
1597 		__rs_setup_recovery(rs, MaxSector);
1598 	else if (__rdev_sectors(rs) < dev_sectors)
1599 		/* Grown raid set */
1600 		__rs_setup_recovery(rs, __rdev_sectors(rs));
1601 	else
1602 		__rs_setup_recovery(rs, MaxSector);
1603 }
1604 
1605 static void do_table_event(struct work_struct *ws)
1606 {
1607 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1608 
1609 	smp_rmb(); /* Make sure we access most actual mddev properties */
1610 	if (!rs_is_reshaping(rs))
1611 		rs_set_capacity(rs);
1612 	dm_table_event(rs->ti->table);
1613 }
1614 
1615 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1616 {
1617 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1618 
1619 	return mddev_congested(&rs->md, bits);
1620 }
1621 
1622 /*
1623  * Make sure a valid takover (level switch) is being requested on @rs
1624  *
1625  * Conversions of raid sets from one MD personality to another
1626  * have to conform to restrictions which are enforced here.
1627  */
1628 static int rs_check_takeover(struct raid_set *rs)
1629 {
1630 	struct mddev *mddev = &rs->md;
1631 	unsigned int near_copies;
1632 
1633 	if (rs->md.degraded) {
1634 		rs->ti->error = "Can't takeover degraded raid set";
1635 		return -EPERM;
1636 	}
1637 
1638 	if (rs_is_reshaping(rs)) {
1639 		rs->ti->error = "Can't takeover reshaping raid set";
1640 		return -EPERM;
1641 	}
1642 
1643 	switch (mddev->level) {
1644 	case 0:
1645 		/* raid0 -> raid1/5 with one disk */
1646 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1647 		    mddev->raid_disks == 1)
1648 			return 0;
1649 
1650 		/* raid0 -> raid10 */
1651 		if (mddev->new_level == 10 &&
1652 		    !(rs->raid_disks % mddev->raid_disks))
1653 			return 0;
1654 
1655 		/* raid0 with multiple disks -> raid4/5/6 */
1656 		if (__within_range(mddev->new_level, 4, 6) &&
1657 		    mddev->new_layout == ALGORITHM_PARITY_N &&
1658 		    mddev->raid_disks > 1)
1659 			return 0;
1660 
1661 		break;
1662 
1663 	case 10:
1664 		/* Can't takeover raid10_offset! */
1665 		if (__is_raid10_offset(mddev->layout))
1666 			break;
1667 
1668 		near_copies = __raid10_near_copies(mddev->layout);
1669 
1670 		/* raid10* -> raid0 */
1671 		if (mddev->new_level == 0) {
1672 			/* Can takeover raid10_near with raid disks divisable by data copies! */
1673 			if (near_copies > 1 &&
1674 			    !(mddev->raid_disks % near_copies)) {
1675 				mddev->raid_disks /= near_copies;
1676 				mddev->delta_disks = mddev->raid_disks;
1677 				return 0;
1678 			}
1679 
1680 			/* Can takeover raid10_far */
1681 			if (near_copies == 1 &&
1682 			    __raid10_far_copies(mddev->layout) > 1)
1683 				return 0;
1684 
1685 			break;
1686 		}
1687 
1688 		/* raid10_{near,far} -> raid1 */
1689 		if (mddev->new_level == 1 &&
1690 		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1691 			return 0;
1692 
1693 		/* raid10_{near,far} with 2 disks -> raid4/5 */
1694 		if (__within_range(mddev->new_level, 4, 5) &&
1695 		    mddev->raid_disks == 2)
1696 			return 0;
1697 		break;
1698 
1699 	case 1:
1700 		/* raid1 with 2 disks -> raid4/5 */
1701 		if (__within_range(mddev->new_level, 4, 5) &&
1702 		    mddev->raid_disks == 2) {
1703 			mddev->degraded = 1;
1704 			return 0;
1705 		}
1706 
1707 		/* raid1 -> raid0 */
1708 		if (mddev->new_level == 0 &&
1709 		    mddev->raid_disks == 1)
1710 			return 0;
1711 
1712 		/* raid1 -> raid10 */
1713 		if (mddev->new_level == 10)
1714 			return 0;
1715 		break;
1716 
1717 	case 4:
1718 		/* raid4 -> raid0 */
1719 		if (mddev->new_level == 0)
1720 			return 0;
1721 
1722 		/* raid4 -> raid1/5 with 2 disks */
1723 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1724 		    mddev->raid_disks == 2)
1725 			return 0;
1726 
1727 		/* raid4 -> raid5/6 with parity N */
1728 		if (__within_range(mddev->new_level, 5, 6) &&
1729 		    mddev->layout == ALGORITHM_PARITY_N)
1730 			return 0;
1731 		break;
1732 
1733 	case 5:
1734 		/* raid5 with parity N -> raid0 */
1735 		if (mddev->new_level == 0 &&
1736 		    mddev->layout == ALGORITHM_PARITY_N)
1737 			return 0;
1738 
1739 		/* raid5 with parity N -> raid4 */
1740 		if (mddev->new_level == 4 &&
1741 		    mddev->layout == ALGORITHM_PARITY_N)
1742 			return 0;
1743 
1744 		/* raid5 with 2 disks -> raid1/4/10 */
1745 		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1746 		    mddev->raid_disks == 2)
1747 			return 0;
1748 
1749 		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1750 		if (mddev->new_level == 6 &&
1751 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1752 		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1753 			return 0;
1754 		break;
1755 
1756 	case 6:
1757 		/* raid6 with parity N -> raid0 */
1758 		if (mddev->new_level == 0 &&
1759 		    mddev->layout == ALGORITHM_PARITY_N)
1760 			return 0;
1761 
1762 		/* raid6 with parity N -> raid4 */
1763 		if (mddev->new_level == 4 &&
1764 		    mddev->layout == ALGORITHM_PARITY_N)
1765 			return 0;
1766 
1767 		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1768 		if (mddev->new_level == 5 &&
1769 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1770 		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1771 			return 0;
1772 
1773 	default:
1774 		break;
1775 	}
1776 
1777 	rs->ti->error = "takeover not possible";
1778 	return -EINVAL;
1779 }
1780 
1781 /* True if @rs requested to be taken over */
1782 static bool rs_takeover_requested(struct raid_set *rs)
1783 {
1784 	return rs->md.new_level != rs->md.level;
1785 }
1786 
1787 /* True if @rs is requested to reshape by ctr */
1788 static bool rs_reshape_requested(struct raid_set *rs)
1789 {
1790 	bool change;
1791 	struct mddev *mddev = &rs->md;
1792 
1793 	if (rs_takeover_requested(rs))
1794 		return false;
1795 
1796 	if (!mddev->level)
1797 		return false;
1798 
1799 	change = mddev->new_layout != mddev->layout ||
1800 		 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1801 		 rs->delta_disks;
1802 
1803 	/* Historical case to support raid1 reshape without delta disks */
1804 	if (mddev->level == 1) {
1805 		if (rs->delta_disks)
1806 			return !!rs->delta_disks;
1807 
1808 		return !change &&
1809 		       mddev->raid_disks != rs->raid_disks;
1810 	}
1811 
1812 	if (mddev->level == 10)
1813 		return change &&
1814 		       !__is_raid10_far(mddev->new_layout) &&
1815 		       rs->delta_disks >= 0;
1816 
1817 	return change;
1818 }
1819 
1820 /*  Features */
1821 #define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1822 
1823 /* State flags for sb->flags */
1824 #define	SB_FLAG_RESHAPE_ACTIVE		0x1
1825 #define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1826 
1827 /*
1828  * This structure is never routinely used by userspace, unlike md superblocks.
1829  * Devices with this superblock should only ever be accessed via device-mapper.
1830  */
1831 #define DM_RAID_MAGIC 0x64526D44
1832 struct dm_raid_superblock {
1833 	__le32 magic;		/* "DmRd" */
1834 	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1835 
1836 	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1837 	__le32 array_position;	/* The position of this drive in the raid set */
1838 
1839 	__le64 events;		/* Incremented by md when superblock updated */
1840 	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1841 				/* indicate failures (see extension below) */
1842 
1843 	/*
1844 	 * This offset tracks the progress of the repair or replacement of
1845 	 * an individual drive.
1846 	 */
1847 	__le64 disk_recovery_offset;
1848 
1849 	/*
1850 	 * This offset tracks the progress of the initial raid set
1851 	 * synchronisation/parity calculation.
1852 	 */
1853 	__le64 array_resync_offset;
1854 
1855 	/*
1856 	 * raid characteristics
1857 	 */
1858 	__le32 level;
1859 	__le32 layout;
1860 	__le32 stripe_sectors;
1861 
1862 	/********************************************************************
1863 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1864 	 *
1865 	 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1866 	 */
1867 
1868 	__le32 flags; /* Flags defining array states for reshaping */
1869 
1870 	/*
1871 	 * This offset tracks the progress of a raid
1872 	 * set reshape in order to be able to restart it
1873 	 */
1874 	__le64 reshape_position;
1875 
1876 	/*
1877 	 * These define the properties of the array in case of an interrupted reshape
1878 	 */
1879 	__le32 new_level;
1880 	__le32 new_layout;
1881 	__le32 new_stripe_sectors;
1882 	__le32 delta_disks;
1883 
1884 	__le64 array_sectors; /* Array size in sectors */
1885 
1886 	/*
1887 	 * Sector offsets to data on devices (reshaping).
1888 	 * Needed to support out of place reshaping, thus
1889 	 * not writing over any stripes whilst converting
1890 	 * them from old to new layout
1891 	 */
1892 	__le64 data_offset;
1893 	__le64 new_data_offset;
1894 
1895 	__le64 sectors; /* Used device size in sectors */
1896 
1897 	/*
1898 	 * Additonal Bit field of devices indicating failures to support
1899 	 * up to 256 devices with the 1.9.0 on-disk metadata format
1900 	 */
1901 	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1902 
1903 	__le32 incompat_features;	/* Used to indicate any incompatible features */
1904 
1905 	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1906 } __packed;
1907 
1908 /*
1909  * Check for reshape constraints on raid set @rs:
1910  *
1911  * - reshape function non-existent
1912  * - degraded set
1913  * - ongoing recovery
1914  * - ongoing reshape
1915  *
1916  * Returns 0 if none or -EPERM if given constraint
1917  * and error message reference in @errmsg
1918  */
1919 static int rs_check_reshape(struct raid_set *rs)
1920 {
1921 	struct mddev *mddev = &rs->md;
1922 
1923 	if (!mddev->pers || !mddev->pers->check_reshape)
1924 		rs->ti->error = "Reshape not supported";
1925 	else if (mddev->degraded)
1926 		rs->ti->error = "Can't reshape degraded raid set";
1927 	else if (rs_is_recovering(rs))
1928 		rs->ti->error = "Convert request on recovering raid set prohibited";
1929 	else if (rs_is_reshaping(rs))
1930 		rs->ti->error = "raid set already reshaping!";
1931 	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1932 		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1933 	else
1934 		return 0;
1935 
1936 	return -EPERM;
1937 }
1938 
1939 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
1940 {
1941 	BUG_ON(!rdev->sb_page);
1942 
1943 	if (rdev->sb_loaded && !force_reload)
1944 		return 0;
1945 
1946 	rdev->sb_loaded = 0;
1947 
1948 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1949 		DMERR("Failed to read superblock of device at position %d",
1950 		      rdev->raid_disk);
1951 		md_error(rdev->mddev, rdev);
1952 		set_bit(Faulty, &rdev->flags);
1953 		return -EIO;
1954 	}
1955 
1956 	rdev->sb_loaded = 1;
1957 
1958 	return 0;
1959 }
1960 
1961 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1962 {
1963 	failed_devices[0] = le64_to_cpu(sb->failed_devices);
1964 	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1965 
1966 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1967 		int i = ARRAY_SIZE(sb->extended_failed_devices);
1968 
1969 		while (i--)
1970 			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1971 	}
1972 }
1973 
1974 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1975 {
1976 	int i = ARRAY_SIZE(sb->extended_failed_devices);
1977 
1978 	sb->failed_devices = cpu_to_le64(failed_devices[0]);
1979 	while (i--)
1980 		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1981 }
1982 
1983 /*
1984  * Synchronize the superblock members with the raid set properties
1985  *
1986  * All superblock data is little endian.
1987  */
1988 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1989 {
1990 	bool update_failed_devices = false;
1991 	unsigned int i;
1992 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1993 	struct dm_raid_superblock *sb;
1994 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
1995 
1996 	/* No metadata device, no superblock */
1997 	if (!rdev->meta_bdev)
1998 		return;
1999 
2000 	BUG_ON(!rdev->sb_page);
2001 
2002 	sb = page_address(rdev->sb_page);
2003 
2004 	sb_retrieve_failed_devices(sb, failed_devices);
2005 
2006 	for (i = 0; i < rs->raid_disks; i++)
2007 		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2008 			update_failed_devices = true;
2009 			set_bit(i, (void *) failed_devices);
2010 		}
2011 
2012 	if (update_failed_devices)
2013 		sb_update_failed_devices(sb, failed_devices);
2014 
2015 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2016 	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2017 
2018 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
2019 	sb->array_position = cpu_to_le32(rdev->raid_disk);
2020 
2021 	sb->events = cpu_to_le64(mddev->events);
2022 
2023 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2024 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2025 
2026 	sb->level = cpu_to_le32(mddev->level);
2027 	sb->layout = cpu_to_le32(mddev->layout);
2028 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2029 
2030 	sb->new_level = cpu_to_le32(mddev->new_level);
2031 	sb->new_layout = cpu_to_le32(mddev->new_layout);
2032 	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2033 
2034 	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2035 
2036 	smp_rmb(); /* Make sure we access most recent reshape position */
2037 	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2038 	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2039 		/* Flag ongoing reshape */
2040 		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2041 
2042 		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2043 			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2044 	} else {
2045 		/* Clear reshape flags */
2046 		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2047 	}
2048 
2049 	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2050 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2051 	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2052 	sb->sectors = cpu_to_le64(rdev->sectors);
2053 	sb->incompat_features = cpu_to_le32(0);
2054 
2055 	/* Zero out the rest of the payload after the size of the superblock */
2056 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2057 }
2058 
2059 /*
2060  * super_load
2061  *
2062  * This function creates a superblock if one is not found on the device
2063  * and will decide which superblock to use if there's a choice.
2064  *
2065  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2066  */
2067 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2068 {
2069 	int r;
2070 	struct dm_raid_superblock *sb;
2071 	struct dm_raid_superblock *refsb;
2072 	uint64_t events_sb, events_refsb;
2073 
2074 	rdev->sb_start = 0;
2075 	rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2076 	if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
2077 		DMERR("superblock size of a logical block is no longer valid");
2078 		return -EINVAL;
2079 	}
2080 
2081 	r = read_disk_sb(rdev, rdev->sb_size, false);
2082 	if (r)
2083 		return r;
2084 
2085 	sb = page_address(rdev->sb_page);
2086 
2087 	/*
2088 	 * Two cases that we want to write new superblocks and rebuild:
2089 	 * 1) New device (no matching magic number)
2090 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2091 	 */
2092 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2093 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2094 		super_sync(rdev->mddev, rdev);
2095 
2096 		set_bit(FirstUse, &rdev->flags);
2097 		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2098 
2099 		/* Force writing of superblocks to disk */
2100 		set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2101 
2102 		/* Any superblock is better than none, choose that if given */
2103 		return refdev ? 0 : 1;
2104 	}
2105 
2106 	if (!refdev)
2107 		return 1;
2108 
2109 	events_sb = le64_to_cpu(sb->events);
2110 
2111 	refsb = page_address(refdev->sb_page);
2112 	events_refsb = le64_to_cpu(refsb->events);
2113 
2114 	return (events_sb > events_refsb) ? 1 : 0;
2115 }
2116 
2117 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2118 {
2119 	int role;
2120 	unsigned int d;
2121 	struct mddev *mddev = &rs->md;
2122 	uint64_t events_sb;
2123 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2124 	struct dm_raid_superblock *sb;
2125 	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2126 	struct md_rdev *r;
2127 	struct dm_raid_superblock *sb2;
2128 
2129 	sb = page_address(rdev->sb_page);
2130 	events_sb = le64_to_cpu(sb->events);
2131 
2132 	/*
2133 	 * Initialise to 1 if this is a new superblock.
2134 	 */
2135 	mddev->events = events_sb ? : 1;
2136 
2137 	mddev->reshape_position = MaxSector;
2138 
2139 	mddev->raid_disks = le32_to_cpu(sb->num_devices);
2140 	mddev->level = le32_to_cpu(sb->level);
2141 	mddev->layout = le32_to_cpu(sb->layout);
2142 	mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2143 
2144 	/*
2145 	 * Reshaping is supported, e.g. reshape_position is valid
2146 	 * in superblock and superblock content is authoritative.
2147 	 */
2148 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2149 		/* Superblock is authoritative wrt given raid set layout! */
2150 		mddev->new_level = le32_to_cpu(sb->new_level);
2151 		mddev->new_layout = le32_to_cpu(sb->new_layout);
2152 		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2153 		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2154 		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2155 
2156 		/* raid was reshaping and got interrupted */
2157 		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2158 			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2159 				DMERR("Reshape requested but raid set is still reshaping");
2160 				return -EINVAL;
2161 			}
2162 
2163 			if (mddev->delta_disks < 0 ||
2164 			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2165 				mddev->reshape_backwards = 1;
2166 			else
2167 				mddev->reshape_backwards = 0;
2168 
2169 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2170 			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2171 		}
2172 
2173 	} else {
2174 		/*
2175 		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2176 		 */
2177 		struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2178 		struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2179 
2180 		if (rs_takeover_requested(rs)) {
2181 			if (rt_cur && rt_new)
2182 				DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2183 				      rt_cur->name, rt_new->name);
2184 			else
2185 				DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2186 			return -EINVAL;
2187 		} else if (rs_reshape_requested(rs)) {
2188 			DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2189 			if (mddev->layout != mddev->new_layout) {
2190 				if (rt_cur && rt_new)
2191 					DMERR("	 current layout %s vs new layout %s",
2192 					      rt_cur->name, rt_new->name);
2193 				else
2194 					DMERR("	 current layout 0x%X vs new layout 0x%X",
2195 					      le32_to_cpu(sb->layout), mddev->new_layout);
2196 			}
2197 			if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2198 				DMERR("	 current stripe sectors %u vs new stripe sectors %u",
2199 				      mddev->chunk_sectors, mddev->new_chunk_sectors);
2200 			if (rs->delta_disks)
2201 				DMERR("	 current %u disks vs new %u disks",
2202 				      mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2203 			if (rs_is_raid10(rs)) {
2204 				DMERR("	 Old layout: %s w/ %u copies",
2205 				      raid10_md_layout_to_format(mddev->layout),
2206 				      raid10_md_layout_to_copies(mddev->layout));
2207 				DMERR("	 New layout: %s w/ %u copies",
2208 				      raid10_md_layout_to_format(mddev->new_layout),
2209 				      raid10_md_layout_to_copies(mddev->new_layout));
2210 			}
2211 			return -EINVAL;
2212 		}
2213 
2214 		DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2215 	}
2216 
2217 	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2218 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2219 
2220 	/*
2221 	 * During load, we set FirstUse if a new superblock was written.
2222 	 * There are two reasons we might not have a superblock:
2223 	 * 1) The raid set is brand new - in which case, all of the
2224 	 *    devices must have their In_sync bit set.	Also,
2225 	 *    recovery_cp must be 0, unless forced.
2226 	 * 2) This is a new device being added to an old raid set
2227 	 *    and the new device needs to be rebuilt - in which
2228 	 *    case the In_sync bit will /not/ be set and
2229 	 *    recovery_cp must be MaxSector.
2230 	 * 3) This is/are a new device(s) being added to an old
2231 	 *    raid set during takeover to a higher raid level
2232 	 *    to provide capacity for redundancy or during reshape
2233 	 *    to add capacity to grow the raid set.
2234 	 */
2235 	d = 0;
2236 	rdev_for_each(r, mddev) {
2237 		if (test_bit(Journal, &rdev->flags))
2238 			continue;
2239 
2240 		if (test_bit(FirstUse, &r->flags))
2241 			new_devs++;
2242 
2243 		if (!test_bit(In_sync, &r->flags)) {
2244 			DMINFO("Device %d specified for rebuild; clearing superblock",
2245 				r->raid_disk);
2246 			rebuilds++;
2247 
2248 			if (test_bit(FirstUse, &r->flags))
2249 				rebuild_and_new++;
2250 		}
2251 
2252 		d++;
2253 	}
2254 
2255 	if (new_devs == rs->raid_disks || !rebuilds) {
2256 		/* Replace a broken device */
2257 		if (new_devs == 1 && !rs->delta_disks)
2258 			;
2259 		if (new_devs == rs->raid_disks) {
2260 			DMINFO("Superblocks created for new raid set");
2261 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2262 		} else if (new_devs != rebuilds &&
2263 			   new_devs != rs->delta_disks) {
2264 			DMERR("New device injected into existing raid set without "
2265 			      "'delta_disks' or 'rebuild' parameter specified");
2266 			return -EINVAL;
2267 		}
2268 	} else if (new_devs && new_devs != rebuilds) {
2269 		DMERR("%u 'rebuild' devices cannot be injected into"
2270 		      " a raid set with %u other first-time devices",
2271 		      rebuilds, new_devs);
2272 		return -EINVAL;
2273 	} else if (rebuilds) {
2274 		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2275 			DMERR("new device%s provided without 'rebuild'",
2276 			      new_devs > 1 ? "s" : "");
2277 			return -EINVAL;
2278 		} else if (rs_is_recovering(rs)) {
2279 			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2280 			      (unsigned long long) mddev->recovery_cp);
2281 			return -EINVAL;
2282 		} else if (rs_is_reshaping(rs)) {
2283 			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2284 			      (unsigned long long) mddev->reshape_position);
2285 			return -EINVAL;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Now we set the Faulty bit for those devices that are
2291 	 * recorded in the superblock as failed.
2292 	 */
2293 	sb_retrieve_failed_devices(sb, failed_devices);
2294 	rdev_for_each(r, mddev) {
2295 		if (test_bit(Journal, &rdev->flags) ||
2296 		    !r->sb_page)
2297 			continue;
2298 		sb2 = page_address(r->sb_page);
2299 		sb2->failed_devices = 0;
2300 		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2301 
2302 		/*
2303 		 * Check for any device re-ordering.
2304 		 */
2305 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2306 			role = le32_to_cpu(sb2->array_position);
2307 			if (role < 0)
2308 				continue;
2309 
2310 			if (role != r->raid_disk) {
2311 				if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2312 					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2313 					    rs->raid_disks % rs->raid10_copies) {
2314 						rs->ti->error =
2315 							"Cannot change raid10 near set to odd # of devices!";
2316 						return -EINVAL;
2317 					}
2318 
2319 					sb2->array_position = cpu_to_le32(r->raid_disk);
2320 
2321 				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2322 					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2323 					   !rt_is_raid1(rs->raid_type)) {
2324 					rs->ti->error = "Cannot change device positions in raid set";
2325 					return -EINVAL;
2326 				}
2327 
2328 				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2329 			}
2330 
2331 			/*
2332 			 * Partial recovery is performed on
2333 			 * returning failed devices.
2334 			 */
2335 			if (test_bit(role, (void *) failed_devices))
2336 				set_bit(Faulty, &r->flags);
2337 		}
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2344 {
2345 	struct mddev *mddev = &rs->md;
2346 	struct dm_raid_superblock *sb;
2347 
2348 	if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2349 		return 0;
2350 
2351 	sb = page_address(rdev->sb_page);
2352 
2353 	/*
2354 	 * If mddev->events is not set, we know we have not yet initialized
2355 	 * the array.
2356 	 */
2357 	if (!mddev->events && super_init_validation(rs, rdev))
2358 		return -EINVAL;
2359 
2360 	if (le32_to_cpu(sb->compat_features) &&
2361 	    le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2362 		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2363 		return -EINVAL;
2364 	}
2365 
2366 	if (sb->incompat_features) {
2367 		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2368 		return -EINVAL;
2369 	}
2370 
2371 	/* Enable bitmap creation for RAID levels != 0 */
2372 	mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2373 	mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2374 
2375 	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2376 		/* Retrieve device size stored in superblock to be prepared for shrink */
2377 		rdev->sectors = le64_to_cpu(sb->sectors);
2378 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2379 		if (rdev->recovery_offset == MaxSector)
2380 			set_bit(In_sync, &rdev->flags);
2381 		/*
2382 		 * If no reshape in progress -> we're recovering single
2383 		 * disk(s) and have to set the device(s) to out-of-sync
2384 		 */
2385 		else if (!rs_is_reshaping(rs))
2386 			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2387 	}
2388 
2389 	/*
2390 	 * If a device comes back, set it as not In_sync and no longer faulty.
2391 	 */
2392 	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2393 		rdev->recovery_offset = 0;
2394 		clear_bit(In_sync, &rdev->flags);
2395 		rdev->saved_raid_disk = rdev->raid_disk;
2396 	}
2397 
2398 	/* Reshape support -> restore repective data offsets */
2399 	rdev->data_offset = le64_to_cpu(sb->data_offset);
2400 	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2401 
2402 	return 0;
2403 }
2404 
2405 /*
2406  * Analyse superblocks and select the freshest.
2407  */
2408 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2409 {
2410 	int r;
2411 	struct md_rdev *rdev, *freshest;
2412 	struct mddev *mddev = &rs->md;
2413 
2414 	freshest = NULL;
2415 	rdev_for_each(rdev, mddev) {
2416 		if (test_bit(Journal, &rdev->flags))
2417 			continue;
2418 
2419 		/*
2420 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2421 		 * the array to undergo initialization again as
2422 		 * though it were new.	This is the intended effect
2423 		 * of the "sync" directive.
2424 		 *
2425 		 * With reshaping capability added, we must ensure that
2426 		 * that the "sync" directive is disallowed during the reshape.
2427 		 */
2428 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2429 			continue;
2430 
2431 		if (!rdev->meta_bdev)
2432 			continue;
2433 
2434 		r = super_load(rdev, freshest);
2435 
2436 		switch (r) {
2437 		case 1:
2438 			freshest = rdev;
2439 			break;
2440 		case 0:
2441 			break;
2442 		default:
2443 			/* This is a failure to read the superblock from the metadata device. */
2444 			/*
2445 			 * We have to keep any raid0 data/metadata device pairs or
2446 			 * the MD raid0 personality will fail to start the array.
2447 			 */
2448 			if (rs_is_raid0(rs))
2449 				continue;
2450 
2451 			/*
2452 			 * We keep the dm_devs to be able to emit the device tuple
2453 			 * properly on the table line in raid_status() (rather than
2454 			 * mistakenly acting as if '- -' got passed into the constructor).
2455 			 *
2456 			 * The rdev has to stay on the same_set list to allow for
2457 			 * the attempt to restore faulty devices on second resume.
2458 			 */
2459 			rdev->raid_disk = rdev->saved_raid_disk = -1;
2460 			break;
2461 		}
2462 	}
2463 
2464 	if (!freshest)
2465 		return 0;
2466 
2467 	if (validate_raid_redundancy(rs)) {
2468 		rs->ti->error = "Insufficient redundancy to activate array";
2469 		return -EINVAL;
2470 	}
2471 
2472 	/*
2473 	 * Validation of the freshest device provides the source of
2474 	 * validation for the remaining devices.
2475 	 */
2476 	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2477 	if (super_validate(rs, freshest))
2478 		return -EINVAL;
2479 
2480 	rdev_for_each(rdev, mddev)
2481 		if (!test_bit(Journal, &rdev->flags) &&
2482 		    rdev != freshest &&
2483 		    super_validate(rs, rdev))
2484 			return -EINVAL;
2485 	return 0;
2486 }
2487 
2488 /*
2489  * Adjust data_offset and new_data_offset on all disk members of @rs
2490  * for out of place reshaping if requested by contructor
2491  *
2492  * We need free space at the beginning of each raid disk for forward
2493  * and at the end for backward reshapes which userspace has to provide
2494  * via remapping/reordering of space.
2495  */
2496 static int rs_adjust_data_offsets(struct raid_set *rs)
2497 {
2498 	sector_t data_offset = 0, new_data_offset = 0;
2499 	struct md_rdev *rdev;
2500 
2501 	/* Constructor did not request data offset change */
2502 	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2503 		if (!rs_is_reshapable(rs))
2504 			goto out;
2505 
2506 		return 0;
2507 	}
2508 
2509 	/* HM FIXME: get InSync raid_dev? */
2510 	rdev = &rs->dev[0].rdev;
2511 
2512 	if (rs->delta_disks < 0) {
2513 		/*
2514 		 * Removing disks (reshaping backwards):
2515 		 *
2516 		 * - before reshape: data is at offset 0 and free space
2517 		 *		     is at end of each component LV
2518 		 *
2519 		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2520 		 */
2521 		data_offset = 0;
2522 		new_data_offset = rs->data_offset;
2523 
2524 	} else if (rs->delta_disks > 0) {
2525 		/*
2526 		 * Adding disks (reshaping forwards):
2527 		 *
2528 		 * - before reshape: data is at offset rs->data_offset != 0 and
2529 		 *		     free space is at begin of each component LV
2530 		 *
2531 		 * - after reshape: data is at offset 0 on each component LV
2532 		 */
2533 		data_offset = rs->data_offset;
2534 		new_data_offset = 0;
2535 
2536 	} else {
2537 		/*
2538 		 * User space passes in 0 for data offset after having removed reshape space
2539 		 *
2540 		 * - or - (data offset != 0)
2541 		 *
2542 		 * Changing RAID layout or chunk size -> toggle offsets
2543 		 *
2544 		 * - before reshape: data is at offset rs->data_offset 0 and
2545 		 *		     free space is at end of each component LV
2546 		 *		     -or-
2547 		 *                   data is at offset rs->data_offset != 0 and
2548 		 *		     free space is at begin of each component LV
2549 		 *
2550 		 * - after reshape: data is at offset 0 if it was at offset != 0
2551 		 *                  or at offset != 0 if it was at offset 0
2552 		 *                  on each component LV
2553 		 *
2554 		 */
2555 		data_offset = rs->data_offset ? rdev->data_offset : 0;
2556 		new_data_offset = data_offset ? 0 : rs->data_offset;
2557 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2558 	}
2559 
2560 	/*
2561 	 * Make sure we got a minimum amount of free sectors per device
2562 	 */
2563 	if (rs->data_offset &&
2564 	    to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2565 		rs->ti->error = data_offset ? "No space for forward reshape" :
2566 					      "No space for backward reshape";
2567 		return -ENOSPC;
2568 	}
2569 out:
2570 	/* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2571 	rdev_for_each(rdev, &rs->md) {
2572 		if (!test_bit(Journal, &rdev->flags)) {
2573 			rdev->data_offset = data_offset;
2574 			rdev->new_data_offset = new_data_offset;
2575 		}
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2582 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2583 {
2584 	int i = 0;
2585 	struct md_rdev *rdev;
2586 
2587 	rdev_for_each(rdev, &rs->md) {
2588 		if (!test_bit(Journal, &rdev->flags)) {
2589 			rdev->raid_disk = i++;
2590 			rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2591 		}
2592 	}
2593 }
2594 
2595 /*
2596  * Setup @rs for takeover by a different raid level
2597  */
2598 static int rs_setup_takeover(struct raid_set *rs)
2599 {
2600 	struct mddev *mddev = &rs->md;
2601 	struct md_rdev *rdev;
2602 	unsigned int d = mddev->raid_disks = rs->raid_disks;
2603 	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2604 
2605 	if (rt_is_raid10(rs->raid_type)) {
2606 		if (mddev->level == 0) {
2607 			/* Userpace reordered disks -> adjust raid_disk indexes */
2608 			__reorder_raid_disk_indexes(rs);
2609 
2610 			/* raid0 -> raid10_far layout */
2611 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2612 								   rs->raid10_copies);
2613 		} else if (mddev->level == 1)
2614 			/* raid1 -> raid10_near layout */
2615 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2616 								   rs->raid_disks);
2617 		else
2618 			return -EINVAL;
2619 
2620 	}
2621 
2622 	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2623 	mddev->recovery_cp = MaxSector;
2624 
2625 	while (d--) {
2626 		rdev = &rs->dev[d].rdev;
2627 
2628 		if (test_bit(d, (void *) rs->rebuild_disks)) {
2629 			clear_bit(In_sync, &rdev->flags);
2630 			clear_bit(Faulty, &rdev->flags);
2631 			mddev->recovery_cp = rdev->recovery_offset = 0;
2632 			/* Bitmap has to be created when we do an "up" takeover */
2633 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2634 		}
2635 
2636 		rdev->new_data_offset = new_data_offset;
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 /* Prepare @rs for reshape */
2643 static int rs_prepare_reshape(struct raid_set *rs)
2644 {
2645 	bool reshape;
2646 	struct mddev *mddev = &rs->md;
2647 
2648 	if (rs_is_raid10(rs)) {
2649 		if (rs->raid_disks != mddev->raid_disks &&
2650 		    __is_raid10_near(mddev->layout) &&
2651 		    rs->raid10_copies &&
2652 		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2653 			/*
2654 			 * raid disk have to be multiple of data copies to allow this conversion,
2655 			 *
2656 			 * This is actually not a reshape it is a
2657 			 * rebuild of any additional mirrors per group
2658 			 */
2659 			if (rs->raid_disks % rs->raid10_copies) {
2660 				rs->ti->error = "Can't reshape raid10 mirror groups";
2661 				return -EINVAL;
2662 			}
2663 
2664 			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2665 			__reorder_raid_disk_indexes(rs);
2666 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2667 								   rs->raid10_copies);
2668 			mddev->new_layout = mddev->layout;
2669 			reshape = false;
2670 		} else
2671 			reshape = true;
2672 
2673 	} else if (rs_is_raid456(rs))
2674 		reshape = true;
2675 
2676 	else if (rs_is_raid1(rs)) {
2677 		if (rs->delta_disks) {
2678 			/* Process raid1 via delta_disks */
2679 			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2680 			reshape = true;
2681 		} else {
2682 			/* Process raid1 without delta_disks */
2683 			mddev->raid_disks = rs->raid_disks;
2684 			reshape = false;
2685 		}
2686 	} else {
2687 		rs->ti->error = "Called with bogus raid type";
2688 		return -EINVAL;
2689 	}
2690 
2691 	if (reshape) {
2692 		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2693 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2694 	} else if (mddev->raid_disks < rs->raid_disks)
2695 		/* Create new superblocks and bitmaps, if any new disks */
2696 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2697 
2698 	return 0;
2699 }
2700 
2701 /*
2702  *
2703  * - change raid layout
2704  * - change chunk size
2705  * - add disks
2706  * - remove disks
2707  */
2708 static int rs_setup_reshape(struct raid_set *rs)
2709 {
2710 	int r = 0;
2711 	unsigned int cur_raid_devs, d;
2712 	struct mddev *mddev = &rs->md;
2713 	struct md_rdev *rdev;
2714 
2715 	mddev->delta_disks = rs->delta_disks;
2716 	cur_raid_devs = mddev->raid_disks;
2717 
2718 	/* Ignore impossible layout change whilst adding/removing disks */
2719 	if (mddev->delta_disks &&
2720 	    mddev->layout != mddev->new_layout) {
2721 		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2722 		mddev->new_layout = mddev->layout;
2723 	}
2724 
2725 	/*
2726 	 * Adjust array size:
2727 	 *
2728 	 * - in case of adding disks, array size has
2729 	 *   to grow after the disk adding reshape,
2730 	 *   which'll hapen in the event handler;
2731 	 *   reshape will happen forward, so space has to
2732 	 *   be available at the beginning of each disk
2733 	 *
2734 	 * - in case of removing disks, array size
2735 	 *   has to shrink before starting the reshape,
2736 	 *   which'll happen here;
2737 	 *   reshape will happen backward, so space has to
2738 	 *   be available at the end of each disk
2739 	 *
2740 	 * - data_offset and new_data_offset are
2741 	 *   adjusted for aforementioned out of place
2742 	 *   reshaping based on userspace passing in
2743 	 *   the "data_offset <sectors>" key/value
2744 	 *   pair via the constructor
2745 	 */
2746 
2747 	/* Add disk(s) */
2748 	if (rs->delta_disks > 0) {
2749 		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2750 		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2751 			rdev = &rs->dev[d].rdev;
2752 			clear_bit(In_sync, &rdev->flags);
2753 
2754 			/*
2755 			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2756 			 * by md, which'll store that erroneously in the superblock on reshape
2757 			 */
2758 			rdev->saved_raid_disk = -1;
2759 			rdev->raid_disk = d;
2760 
2761 			rdev->sectors = mddev->dev_sectors;
2762 			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2763 		}
2764 
2765 		mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2766 
2767 	/* Remove disk(s) */
2768 	} else if (rs->delta_disks < 0) {
2769 		r = rs_set_dev_and_array_sectors(rs, true);
2770 		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2771 
2772 	/* Change layout and/or chunk size */
2773 	} else {
2774 		/*
2775 		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2776 		 *
2777 		 * keeping number of disks and do layout change ->
2778 		 *
2779 		 * toggle reshape_backward depending on data_offset:
2780 		 *
2781 		 * - free space upfront -> reshape forward
2782 		 *
2783 		 * - free space at the end -> reshape backward
2784 		 *
2785 		 *
2786 		 * This utilizes free reshape space avoiding the need
2787 		 * for userspace to move (parts of) LV segments in
2788 		 * case of layout/chunksize change  (for disk
2789 		 * adding/removing reshape space has to be at
2790 		 * the proper address (see above with delta_disks):
2791 		 *
2792 		 * add disk(s)   -> begin
2793 		 * remove disk(s)-> end
2794 		 */
2795 		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2796 	}
2797 
2798 	return r;
2799 }
2800 
2801 /*
2802  * Enable/disable discard support on RAID set depending on
2803  * RAID level and discard properties of underlying RAID members.
2804  */
2805 static void configure_discard_support(struct raid_set *rs)
2806 {
2807 	int i;
2808 	bool raid456;
2809 	struct dm_target *ti = rs->ti;
2810 
2811 	/* Assume discards not supported until after checks below. */
2812 	ti->discards_supported = false;
2813 
2814 	/* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2815 	raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2816 
2817 	for (i = 0; i < rs->raid_disks; i++) {
2818 		struct request_queue *q;
2819 
2820 		if (!rs->dev[i].rdev.bdev)
2821 			continue;
2822 
2823 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
2824 		if (!q || !blk_queue_discard(q))
2825 			return;
2826 
2827 		if (raid456) {
2828 			if (!q->limits.discard_zeroes_data)
2829 				return;
2830 			if (!devices_handle_discard_safely) {
2831 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2832 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2833 				return;
2834 			}
2835 		}
2836 	}
2837 
2838 	/* All RAID members properly support discards */
2839 	ti->discards_supported = true;
2840 
2841 	/*
2842 	 * RAID1 and RAID10 personalities require bio splitting,
2843 	 * RAID0/4/5/6 don't and process large discard bios properly.
2844 	 */
2845 	ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2846 	ti->num_discard_bios = 1;
2847 }
2848 
2849 /*
2850  * Construct a RAID0/1/10/4/5/6 mapping:
2851  * Args:
2852  *	<raid_type> <#raid_params> <raid_params>{0,}	\
2853  *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
2854  *
2855  * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
2856  * details on possible <raid_params>.
2857  *
2858  * Userspace is free to initialize the metadata devices, hence the superblocks to
2859  * enforce recreation based on the passed in table parameters.
2860  *
2861  */
2862 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2863 {
2864 	int r;
2865 	bool resize;
2866 	struct raid_type *rt;
2867 	unsigned int num_raid_params, num_raid_devs;
2868 	sector_t calculated_dev_sectors;
2869 	struct raid_set *rs = NULL;
2870 	const char *arg;
2871 	struct rs_layout rs_layout;
2872 	struct dm_arg_set as = { argc, argv }, as_nrd;
2873 	struct dm_arg _args[] = {
2874 		{ 0, as.argc, "Cannot understand number of raid parameters" },
2875 		{ 1, 254, "Cannot understand number of raid devices parameters" }
2876 	};
2877 
2878 	/* Must have <raid_type> */
2879 	arg = dm_shift_arg(&as);
2880 	if (!arg) {
2881 		ti->error = "No arguments";
2882 		return -EINVAL;
2883 	}
2884 
2885 	rt = get_raid_type(arg);
2886 	if (!rt) {
2887 		ti->error = "Unrecognised raid_type";
2888 		return -EINVAL;
2889 	}
2890 
2891 	/* Must have <#raid_params> */
2892 	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2893 		return -EINVAL;
2894 
2895 	/* number of raid device tupples <meta_dev data_dev> */
2896 	as_nrd = as;
2897 	dm_consume_args(&as_nrd, num_raid_params);
2898 	_args[1].max = (as_nrd.argc - 1) / 2;
2899 	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2900 		return -EINVAL;
2901 
2902 	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2903 		ti->error = "Invalid number of supplied raid devices";
2904 		return -EINVAL;
2905 	}
2906 
2907 	rs = raid_set_alloc(ti, rt, num_raid_devs);
2908 	if (IS_ERR(rs))
2909 		return PTR_ERR(rs);
2910 
2911 	r = parse_raid_params(rs, &as, num_raid_params);
2912 	if (r)
2913 		goto bad;
2914 
2915 	r = parse_dev_params(rs, &as);
2916 	if (r)
2917 		goto bad;
2918 
2919 	rs->md.sync_super = super_sync;
2920 
2921 	/*
2922 	 * Calculate ctr requested array and device sizes to allow
2923 	 * for superblock analysis needing device sizes defined.
2924 	 *
2925 	 * Any existing superblock will overwrite the array and device sizes
2926 	 */
2927 	r = rs_set_dev_and_array_sectors(rs, false);
2928 	if (r)
2929 		goto bad;
2930 
2931 	calculated_dev_sectors = rs->md.dev_sectors;
2932 
2933 	/*
2934 	 * Backup any new raid set level, layout, ...
2935 	 * requested to be able to compare to superblock
2936 	 * members for conversion decisions.
2937 	 */
2938 	rs_config_backup(rs, &rs_layout);
2939 
2940 	r = analyse_superblocks(ti, rs);
2941 	if (r)
2942 		goto bad;
2943 
2944 	resize = calculated_dev_sectors != __rdev_sectors(rs);
2945 
2946 	INIT_WORK(&rs->md.event_work, do_table_event);
2947 	ti->private = rs;
2948 	ti->num_flush_bios = 1;
2949 
2950 	/* Restore any requested new layout for conversion decision */
2951 	rs_config_restore(rs, &rs_layout);
2952 
2953 	/*
2954 	 * Now that we have any superblock metadata available,
2955 	 * check for new, recovering, reshaping, to be taken over,
2956 	 * to be reshaped or an existing, unchanged raid set to
2957 	 * run in sequence.
2958 	 */
2959 	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2960 		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2961 		if (rs_is_raid6(rs) &&
2962 		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2963 			ti->error = "'nosync' not allowed for new raid6 set";
2964 			r = -EINVAL;
2965 			goto bad;
2966 		}
2967 		rs_setup_recovery(rs, 0);
2968 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2969 		rs_set_new(rs);
2970 	} else if (rs_is_recovering(rs)) {
2971 		/* A recovering raid set may be resized */
2972 		; /* skip setup rs */
2973 	} else if (rs_is_reshaping(rs)) {
2974 		/* Have to reject size change request during reshape */
2975 		if (resize) {
2976 			ti->error = "Can't resize a reshaping raid set";
2977 			r = -EPERM;
2978 			goto bad;
2979 		}
2980 		/* skip setup rs */
2981 	} else if (rs_takeover_requested(rs)) {
2982 		if (rs_is_reshaping(rs)) {
2983 			ti->error = "Can't takeover a reshaping raid set";
2984 			r = -EPERM;
2985 			goto bad;
2986 		}
2987 
2988 		/* We can't takeover a journaled raid4/5/6 */
2989 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
2990 			ti->error = "Can't takeover a journaled raid4/5/6 set";
2991 			r = -EPERM;
2992 			goto bad;
2993 		}
2994 
2995 		/*
2996 		 * If a takeover is needed, userspace sets any additional
2997 		 * devices to rebuild and we can check for a valid request here.
2998 		 *
2999 		 * If acceptible, set the level to the new requested
3000 		 * one, prohibit requesting recovery, allow the raid
3001 		 * set to run and store superblocks during resume.
3002 		 */
3003 		r = rs_check_takeover(rs);
3004 		if (r)
3005 			goto bad;
3006 
3007 		r = rs_setup_takeover(rs);
3008 		if (r)
3009 			goto bad;
3010 
3011 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3012 		/* Takeover ain't recovery, so disable recovery */
3013 		rs_setup_recovery(rs, MaxSector);
3014 		rs_set_new(rs);
3015 	} else if (rs_reshape_requested(rs)) {
3016 		/*
3017 		 * No need to check for 'ongoing' takeover here, because takeover
3018 		 * is an instant operation as oposed to an ongoing reshape.
3019 		 */
3020 
3021 		/* We can't reshape a journaled raid4/5/6 */
3022 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3023 			ti->error = "Can't reshape a journaled raid4/5/6 set";
3024 			r = -EPERM;
3025 			goto bad;
3026 		}
3027 
3028 		/*
3029 		  * We can only prepare for a reshape here, because the
3030 		  * raid set needs to run to provide the repective reshape
3031 		  * check functions via its MD personality instance.
3032 		  *
3033 		  * So do the reshape check after md_run() succeeded.
3034 		  */
3035 		r = rs_prepare_reshape(rs);
3036 		if (r)
3037 			return r;
3038 
3039 		/* Reshaping ain't recovery, so disable recovery */
3040 		rs_setup_recovery(rs, MaxSector);
3041 		rs_set_cur(rs);
3042 	} else {
3043 		/* May not set recovery when a device rebuild is requested */
3044 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3045 			rs_setup_recovery(rs, MaxSector);
3046 			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3047 		} else
3048 			rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3049 					      0 : (resize ? calculated_dev_sectors : MaxSector));
3050 		rs_set_cur(rs);
3051 	}
3052 
3053 	/* If constructor requested it, change data and new_data offsets */
3054 	r = rs_adjust_data_offsets(rs);
3055 	if (r)
3056 		goto bad;
3057 
3058 	/* Start raid set read-only and assumed clean to change in raid_resume() */
3059 	rs->md.ro = 1;
3060 	rs->md.in_sync = 1;
3061 	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3062 
3063 	/* Has to be held on running the array */
3064 	mddev_lock_nointr(&rs->md);
3065 	r = md_run(&rs->md);
3066 	rs->md.in_sync = 0; /* Assume already marked dirty */
3067 
3068 	if (r) {
3069 		ti->error = "Failed to run raid array";
3070 		mddev_unlock(&rs->md);
3071 		goto bad;
3072 	}
3073 
3074 	rs->callbacks.congested_fn = raid_is_congested;
3075 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3076 
3077 	mddev_suspend(&rs->md);
3078 
3079 	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3080 	if (rs_is_raid456(rs)) {
3081 		r = rs_set_raid456_stripe_cache(rs);
3082 		if (r)
3083 			goto bad_stripe_cache;
3084 	}
3085 
3086 	/* Now do an early reshape check */
3087 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3088 		r = rs_check_reshape(rs);
3089 		if (r)
3090 			goto bad_check_reshape;
3091 
3092 		/* Restore new, ctr requested layout to perform check */
3093 		rs_config_restore(rs, &rs_layout);
3094 
3095 		if (rs->md.pers->start_reshape) {
3096 			r = rs->md.pers->check_reshape(&rs->md);
3097 			if (r) {
3098 				ti->error = "Reshape check failed";
3099 				goto bad_check_reshape;
3100 			}
3101 		}
3102 	}
3103 
3104 	/* Disable/enable discard support on raid set. */
3105 	configure_discard_support(rs);
3106 
3107 	mddev_unlock(&rs->md);
3108 	return 0;
3109 
3110 bad_stripe_cache:
3111 bad_check_reshape:
3112 	md_stop(&rs->md);
3113 bad:
3114 	raid_set_free(rs);
3115 
3116 	return r;
3117 }
3118 
3119 static void raid_dtr(struct dm_target *ti)
3120 {
3121 	struct raid_set *rs = ti->private;
3122 
3123 	list_del_init(&rs->callbacks.list);
3124 	md_stop(&rs->md);
3125 	raid_set_free(rs);
3126 }
3127 
3128 static int raid_map(struct dm_target *ti, struct bio *bio)
3129 {
3130 	struct raid_set *rs = ti->private;
3131 	struct mddev *mddev = &rs->md;
3132 
3133 	/*
3134 	 * If we're reshaping to add disk(s)), ti->len and
3135 	 * mddev->array_sectors will differ during the process
3136 	 * (ti->len > mddev->array_sectors), so we have to requeue
3137 	 * bios with addresses > mddev->array_sectors here or
3138 	 * there will occur accesses past EOD of the component
3139 	 * data images thus erroring the raid set.
3140 	 */
3141 	if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3142 		return DM_MAPIO_REQUEUE;
3143 
3144 	mddev->pers->make_request(mddev, bio);
3145 
3146 	return DM_MAPIO_SUBMITTED;
3147 }
3148 
3149 /* Return string describing the current sync action of @mddev */
3150 static const char *decipher_sync_action(struct mddev *mddev)
3151 {
3152 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3153 		return "frozen";
3154 
3155 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3156 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3157 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3158 			return "reshape";
3159 
3160 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3161 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3162 				return "resync";
3163 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3164 				return "check";
3165 			return "repair";
3166 		}
3167 
3168 		if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3169 			return "recover";
3170 	}
3171 
3172 	return "idle";
3173 }
3174 
3175 /*
3176  * Return status string for @rdev
3177  *
3178  * Status characters:
3179  *
3180  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3181  *  'a' = Alive but not in-sync
3182  *  'A' = Alive and in-sync raid set component or alive raid4/5/6 journal device
3183  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3184  */
3185 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3186 {
3187 	if (!rdev->bdev)
3188 		return "-";
3189 	else if (test_bit(Faulty, &rdev->flags))
3190 		return "D";
3191 	else if (test_bit(Journal, &rdev->flags))
3192 		return "A";
3193 	else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3194 		return "a";
3195 	else
3196 		return "A";
3197 }
3198 
3199 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3200 static sector_t rs_get_progress(struct raid_set *rs,
3201 				sector_t resync_max_sectors, bool *array_in_sync)
3202 {
3203 	sector_t r, recovery_cp, curr_resync_completed;
3204 	struct mddev *mddev = &rs->md;
3205 
3206 	curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3207 	recovery_cp = mddev->recovery_cp;
3208 	*array_in_sync = false;
3209 
3210 	if (rs_is_raid0(rs)) {
3211 		r = resync_max_sectors;
3212 		*array_in_sync = true;
3213 
3214 	} else {
3215 		r = mddev->reshape_position;
3216 
3217 		/* Reshape is relative to the array size */
3218 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3219 		    r != MaxSector) {
3220 			if (r == MaxSector) {
3221 				*array_in_sync = true;
3222 				r = resync_max_sectors;
3223 			} else {
3224 				/* Got to reverse on backward reshape */
3225 				if (mddev->reshape_backwards)
3226 					r = mddev->array_sectors - r;
3227 
3228 				/* Devide by # of data stripes */
3229 				sector_div(r, mddev_data_stripes(rs));
3230 			}
3231 
3232 		/* Sync is relative to the component device size */
3233 		} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3234 			r = curr_resync_completed;
3235 		else
3236 			r = recovery_cp;
3237 
3238 		if (r == MaxSector) {
3239 			/*
3240 			 * Sync complete.
3241 			 */
3242 			*array_in_sync = true;
3243 			r = resync_max_sectors;
3244 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3245 			/*
3246 			 * If "check" or "repair" is occurring, the raid set has
3247 			 * undergone an initial sync and the health characters
3248 			 * should not be 'a' anymore.
3249 			 */
3250 			*array_in_sync = true;
3251 		} else {
3252 			struct md_rdev *rdev;
3253 
3254 			/*
3255 			 * The raid set may be doing an initial sync, or it may
3256 			 * be rebuilding individual components.	 If all the
3257 			 * devices are In_sync, then it is the raid set that is
3258 			 * being initialized.
3259 			 */
3260 			rdev_for_each(rdev, mddev)
3261 				if (!test_bit(Journal, &rdev->flags) &&
3262 				    !test_bit(In_sync, &rdev->flags))
3263 					*array_in_sync = true;
3264 #if 0
3265 			r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3266 #endif
3267 		}
3268 	}
3269 
3270 	return r;
3271 }
3272 
3273 /* Helper to return @dev name or "-" if !@dev */
3274 static const char *__get_dev_name(struct dm_dev *dev)
3275 {
3276 	return dev ? dev->name : "-";
3277 }
3278 
3279 static void raid_status(struct dm_target *ti, status_type_t type,
3280 			unsigned int status_flags, char *result, unsigned int maxlen)
3281 {
3282 	struct raid_set *rs = ti->private;
3283 	struct mddev *mddev = &rs->md;
3284 	struct r5conf *conf = mddev->private;
3285 	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3286 	bool array_in_sync;
3287 	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3288 	unsigned int sz = 0;
3289 	unsigned int rebuild_disks;
3290 	unsigned int write_mostly_params = 0;
3291 	sector_t progress, resync_max_sectors, resync_mismatches;
3292 	const char *sync_action;
3293 	struct raid_type *rt;
3294 
3295 	switch (type) {
3296 	case STATUSTYPE_INFO:
3297 		/* *Should* always succeed */
3298 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3299 		if (!rt)
3300 			return;
3301 
3302 		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3303 
3304 		/* Access most recent mddev properties for status output */
3305 		smp_rmb();
3306 		/* Get sensible max sectors even if raid set not yet started */
3307 		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3308 				      mddev->resync_max_sectors : mddev->dev_sectors;
3309 		progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3310 		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3311 				    atomic64_read(&mddev->resync_mismatches) : 0;
3312 		sync_action = decipher_sync_action(&rs->md);
3313 
3314 		/* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3315 		for (i = 0; i < rs->raid_disks; i++)
3316 			DMEMIT(__raid_dev_status(&rs->dev[i].rdev, array_in_sync));
3317 
3318 		/*
3319 		 * In-sync/Reshape ratio:
3320 		 *  The in-sync ratio shows the progress of:
3321 		 *   - Initializing the raid set
3322 		 *   - Rebuilding a subset of devices of the raid set
3323 		 *  The user can distinguish between the two by referring
3324 		 *  to the status characters.
3325 		 *
3326 		 *  The reshape ratio shows the progress of
3327 		 *  changing the raid layout or the number of
3328 		 *  disks of a raid set
3329 		 */
3330 		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3331 				     (unsigned long long) resync_max_sectors);
3332 
3333 		/*
3334 		 * v1.5.0+:
3335 		 *
3336 		 * Sync action:
3337 		 *   See Documentation/device-mapper/dm-raid.txt for
3338 		 *   information on each of these states.
3339 		 */
3340 		DMEMIT(" %s", sync_action);
3341 
3342 		/*
3343 		 * v1.5.0+:
3344 		 *
3345 		 * resync_mismatches/mismatch_cnt
3346 		 *   This field shows the number of discrepancies found when
3347 		 *   performing a "check" of the raid set.
3348 		 */
3349 		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3350 
3351 		/*
3352 		 * v1.9.0+:
3353 		 *
3354 		 * data_offset (needed for out of space reshaping)
3355 		 *   This field shows the data offset into the data
3356 		 *   image LV where the first stripes data starts.
3357 		 *
3358 		 * We keep data_offset equal on all raid disks of the set,
3359 		 * so retrieving it from the first raid disk is sufficient.
3360 		 */
3361 		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3362 
3363 		/*
3364 		 * v1.10.0+:
3365 		 */
3366 		DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3367 			      __raid_dev_status(&rs->journal_dev.rdev, 0) : "-");
3368 		break;
3369 
3370 	case STATUSTYPE_TABLE:
3371 		/* Report the table line string you would use to construct this raid set */
3372 
3373 		/* Calculate raid parameter count */
3374 		for (i = 0; i < rs->raid_disks; i++)
3375 			if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3376 				write_mostly_params += 2;
3377 		rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3378 		raid_param_cnt += rebuild_disks * 2 +
3379 				  write_mostly_params +
3380 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3381 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3382 				  (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0);
3383 		/* Emit table line */
3384 		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3385 		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3386 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3387 					 raid10_md_layout_to_format(mddev->layout));
3388 		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3389 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3390 					 raid10_md_layout_to_copies(mddev->layout));
3391 		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3392 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3393 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3394 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3395 		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3396 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3397 					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3398 		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3399 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3400 					   (unsigned long long) rs->data_offset);
3401 		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3402 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3403 					  mddev->bitmap_info.daemon_sleep);
3404 		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3405 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3406 					 max(rs->delta_disks, mddev->delta_disks));
3407 		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3408 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3409 					 max_nr_stripes);
3410 		if (rebuild_disks)
3411 			for (i = 0; i < rs->raid_disks; i++)
3412 				if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3413 					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3414 							 rs->dev[i].rdev.raid_disk);
3415 		if (write_mostly_params)
3416 			for (i = 0; i < rs->raid_disks; i++)
3417 				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3418 					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3419 					       rs->dev[i].rdev.raid_disk);
3420 		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3421 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3422 					  mddev->bitmap_info.max_write_behind);
3423 		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3424 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3425 					 mddev->sync_speed_max);
3426 		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3427 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3428 					 mddev->sync_speed_min);
3429 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3430 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3431 					__get_dev_name(rs->journal_dev.dev));
3432 		DMEMIT(" %d", rs->raid_disks);
3433 		for (i = 0; i < rs->raid_disks; i++)
3434 			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3435 					 __get_dev_name(rs->dev[i].data_dev));
3436 	}
3437 }
3438 
3439 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3440 {
3441 	struct raid_set *rs = ti->private;
3442 	struct mddev *mddev = &rs->md;
3443 
3444 	if (!mddev->pers || !mddev->pers->sync_request)
3445 		return -EINVAL;
3446 
3447 	if (!strcasecmp(argv[0], "frozen"))
3448 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3449 	else
3450 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3451 
3452 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3453 		if (mddev->sync_thread) {
3454 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3455 			md_reap_sync_thread(mddev);
3456 		}
3457 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3458 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3459 		return -EBUSY;
3460 	else if (!strcasecmp(argv[0], "resync"))
3461 		; /* MD_RECOVERY_NEEDED set below */
3462 	else if (!strcasecmp(argv[0], "recover"))
3463 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3464 	else {
3465 		if (!strcasecmp(argv[0], "check"))
3466 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3467 		else if (!strcasecmp(argv[0], "repair")) {
3468 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3469 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3470 		} else
3471 			return -EINVAL;
3472 	}
3473 	if (mddev->ro == 2) {
3474 		/* A write to sync_action is enough to justify
3475 		 * canceling read-auto mode
3476 		 */
3477 		mddev->ro = 0;
3478 		if (!mddev->suspended && mddev->sync_thread)
3479 			md_wakeup_thread(mddev->sync_thread);
3480 	}
3481 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3482 	if (!mddev->suspended && mddev->thread)
3483 		md_wakeup_thread(mddev->thread);
3484 
3485 	return 0;
3486 }
3487 
3488 static int raid_iterate_devices(struct dm_target *ti,
3489 				iterate_devices_callout_fn fn, void *data)
3490 {
3491 	struct raid_set *rs = ti->private;
3492 	unsigned int i;
3493 	int r = 0;
3494 
3495 	for (i = 0; !r && i < rs->md.raid_disks; i++)
3496 		if (rs->dev[i].data_dev)
3497 			r = fn(ti,
3498 				 rs->dev[i].data_dev,
3499 				 0, /* No offset on data devs */
3500 				 rs->md.dev_sectors,
3501 				 data);
3502 
3503 	return r;
3504 }
3505 
3506 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3507 {
3508 	struct raid_set *rs = ti->private;
3509 	unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3510 
3511 	blk_limits_io_min(limits, chunk_size);
3512 	blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3513 }
3514 
3515 static void raid_presuspend(struct dm_target *ti)
3516 {
3517 	struct raid_set *rs = ti->private;
3518 
3519 	md_stop_writes(&rs->md);
3520 }
3521 
3522 static void raid_postsuspend(struct dm_target *ti)
3523 {
3524 	struct raid_set *rs = ti->private;
3525 
3526 	if (!rs->md.suspended)
3527 		mddev_suspend(&rs->md);
3528 
3529 	rs->md.ro = 1;
3530 }
3531 
3532 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3533 {
3534 	int i;
3535 	uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3536 	unsigned long flags;
3537 	bool cleared = false;
3538 	struct dm_raid_superblock *sb;
3539 	struct mddev *mddev = &rs->md;
3540 	struct md_rdev *r;
3541 
3542 	/* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3543 	if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3544 		return;
3545 
3546 	memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3547 
3548 	for (i = 0; i < mddev->raid_disks; i++) {
3549 		r = &rs->dev[i].rdev;
3550 		/* HM FIXME: enhance journal device recovery processing */
3551 		if (test_bit(Journal, &r->flags))
3552 			continue;
3553 
3554 		if (test_bit(Faulty, &r->flags) &&
3555 		    r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3556 			DMINFO("Faulty %s device #%d has readable super block."
3557 			       "  Attempting to revive it.",
3558 			       rs->raid_type->name, i);
3559 
3560 			/*
3561 			 * Faulty bit may be set, but sometimes the array can
3562 			 * be suspended before the personalities can respond
3563 			 * by removing the device from the array (i.e. calling
3564 			 * 'hot_remove_disk').	If they haven't yet removed
3565 			 * the failed device, its 'raid_disk' number will be
3566 			 * '>= 0' - meaning we must call this function
3567 			 * ourselves.
3568 			 */
3569 			flags = r->flags;
3570 			clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3571 			if (r->raid_disk >= 0) {
3572 				if (mddev->pers->hot_remove_disk(mddev, r)) {
3573 					/* Failed to revive this device, try next */
3574 					r->flags = flags;
3575 					continue;
3576 				}
3577 			} else
3578 				r->raid_disk = r->saved_raid_disk = i;
3579 
3580 			clear_bit(Faulty, &r->flags);
3581 			clear_bit(WriteErrorSeen, &r->flags);
3582 
3583 			if (mddev->pers->hot_add_disk(mddev, r)) {
3584 				/* Failed to revive this device, try next */
3585 				r->raid_disk = r->saved_raid_disk = -1;
3586 				r->flags = flags;
3587 			} else {
3588 				clear_bit(In_sync, &r->flags);
3589 				r->recovery_offset = 0;
3590 				set_bit(i, (void *) cleared_failed_devices);
3591 				cleared = true;
3592 			}
3593 		}
3594 	}
3595 
3596 	/* If any failed devices could be cleared, update all sbs failed_devices bits */
3597 	if (cleared) {
3598 		uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3599 
3600 		rdev_for_each(r, &rs->md) {
3601 			if (test_bit(Journal, &r->flags))
3602 				continue;
3603 
3604 			sb = page_address(r->sb_page);
3605 			sb_retrieve_failed_devices(sb, failed_devices);
3606 
3607 			for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3608 				failed_devices[i] &= ~cleared_failed_devices[i];
3609 
3610 			sb_update_failed_devices(sb, failed_devices);
3611 		}
3612 	}
3613 }
3614 
3615 static int __load_dirty_region_bitmap(struct raid_set *rs)
3616 {
3617 	int r = 0;
3618 
3619 	/* Try loading the bitmap unless "raid0", which does not have one */
3620 	if (!rs_is_raid0(rs) &&
3621 	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3622 		r = bitmap_load(&rs->md);
3623 		if (r)
3624 			DMERR("Failed to load bitmap");
3625 	}
3626 
3627 	return r;
3628 }
3629 
3630 /* Enforce updating all superblocks */
3631 static void rs_update_sbs(struct raid_set *rs)
3632 {
3633 	struct mddev *mddev = &rs->md;
3634 	int ro = mddev->ro;
3635 
3636 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3637 	mddev->ro = 0;
3638 	md_update_sb(mddev, 1);
3639 	mddev->ro = ro;
3640 }
3641 
3642 /*
3643  * Reshape changes raid algorithm of @rs to new one within personality
3644  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3645  * disks from a raid set thus growing/shrinking it or resizes the set
3646  *
3647  * Call mddev_lock_nointr() before!
3648  */
3649 static int rs_start_reshape(struct raid_set *rs)
3650 {
3651 	int r;
3652 	struct mddev *mddev = &rs->md;
3653 	struct md_personality *pers = mddev->pers;
3654 
3655 	r = rs_setup_reshape(rs);
3656 	if (r)
3657 		return r;
3658 
3659 	/* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3660 	if (mddev->suspended)
3661 		mddev_resume(mddev);
3662 
3663 	/*
3664 	 * Check any reshape constraints enforced by the personalility
3665 	 *
3666 	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3667 	 */
3668 	r = pers->check_reshape(mddev);
3669 	if (r) {
3670 		rs->ti->error = "pers->check_reshape() failed";
3671 		return r;
3672 	}
3673 
3674 	/*
3675 	 * Personality may not provide start reshape method in which
3676 	 * case check_reshape above has already covered everything
3677 	 */
3678 	if (pers->start_reshape) {
3679 		r = pers->start_reshape(mddev);
3680 		if (r) {
3681 			rs->ti->error = "pers->start_reshape() failed";
3682 			return r;
3683 		}
3684 	}
3685 
3686 	/* Suspend because a resume will happen in raid_resume() */
3687 	if (!mddev->suspended)
3688 		mddev_suspend(mddev);
3689 
3690 	/*
3691 	 * Now reshape got set up, update superblocks to
3692 	 * reflect the fact so that a table reload will
3693 	 * access proper superblock content in the ctr.
3694 	 */
3695 	rs_update_sbs(rs);
3696 
3697 	return 0;
3698 }
3699 
3700 static int raid_preresume(struct dm_target *ti)
3701 {
3702 	int r;
3703 	struct raid_set *rs = ti->private;
3704 	struct mddev *mddev = &rs->md;
3705 
3706 	/* This is a resume after a suspend of the set -> it's already started */
3707 	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3708 		return 0;
3709 
3710 	/*
3711 	 * The superblocks need to be updated on disk if the
3712 	 * array is new or new devices got added (thus zeroed
3713 	 * out by userspace) or __load_dirty_region_bitmap
3714 	 * will overwrite them in core with old data or fail.
3715 	 */
3716 	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3717 		rs_update_sbs(rs);
3718 
3719 	/* Load the bitmap from disk unless raid0 */
3720 	r = __load_dirty_region_bitmap(rs);
3721 	if (r)
3722 		return r;
3723 
3724 	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3725 	if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3726 	    mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3727 		r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3728 				  to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3729 		if (r)
3730 			DMERR("Failed to resize bitmap");
3731 	}
3732 
3733 	/* Check for any resize/reshape on @rs and adjust/initiate */
3734 	/* Be prepared for mddev_resume() in raid_resume() */
3735 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3736 	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3737 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3738 		mddev->resync_min = mddev->recovery_cp;
3739 	}
3740 
3741 	rs_set_capacity(rs);
3742 
3743 	/* Check for any reshape request unless new raid set */
3744 	if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3745 		/* Initiate a reshape. */
3746 		mddev_lock_nointr(mddev);
3747 		r = rs_start_reshape(rs);
3748 		mddev_unlock(mddev);
3749 		if (r)
3750 			DMWARN("Failed to check/start reshape, continuing without change");
3751 		r = 0;
3752 	}
3753 
3754 	return r;
3755 }
3756 
3757 static void raid_resume(struct dm_target *ti)
3758 {
3759 	struct raid_set *rs = ti->private;
3760 	struct mddev *mddev = &rs->md;
3761 
3762 	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3763 		/*
3764 		 * A secondary resume while the device is active.
3765 		 * Take this opportunity to check whether any failed
3766 		 * devices are reachable again.
3767 		 */
3768 		attempt_restore_of_faulty_devices(rs);
3769 	}
3770 
3771 	mddev->ro = 0;
3772 	mddev->in_sync = 0;
3773 
3774 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3775 
3776 	if (mddev->suspended)
3777 		mddev_resume(mddev);
3778 }
3779 
3780 static struct target_type raid_target = {
3781 	.name = "raid",
3782 	.version = {1, 10, 0},
3783 	.module = THIS_MODULE,
3784 	.ctr = raid_ctr,
3785 	.dtr = raid_dtr,
3786 	.map = raid_map,
3787 	.status = raid_status,
3788 	.message = raid_message,
3789 	.iterate_devices = raid_iterate_devices,
3790 	.io_hints = raid_io_hints,
3791 	.presuspend = raid_presuspend,
3792 	.postsuspend = raid_postsuspend,
3793 	.preresume = raid_preresume,
3794 	.resume = raid_resume,
3795 };
3796 
3797 static int __init dm_raid_init(void)
3798 {
3799 	DMINFO("Loading target version %u.%u.%u",
3800 	       raid_target.version[0],
3801 	       raid_target.version[1],
3802 	       raid_target.version[2]);
3803 	return dm_register_target(&raid_target);
3804 }
3805 
3806 static void __exit dm_raid_exit(void)
3807 {
3808 	dm_unregister_target(&raid_target);
3809 }
3810 
3811 module_init(dm_raid_init);
3812 module_exit(dm_raid_exit);
3813 
3814 module_param(devices_handle_discard_safely, bool, 0644);
3815 MODULE_PARM_DESC(devices_handle_discard_safely,
3816 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3817 
3818 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3819 MODULE_ALIAS("dm-raid0");
3820 MODULE_ALIAS("dm-raid1");
3821 MODULE_ALIAS("dm-raid10");
3822 MODULE_ALIAS("dm-raid4");
3823 MODULE_ALIAS("dm-raid5");
3824 MODULE_ALIAS("dm-raid6");
3825 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3826 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3827 MODULE_LICENSE("GPL");
3828