xref: /openbmc/linux/drivers/md/dm-raid.c (revision 05bcf503)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 
21 /*
22  * The following flags are used by dm-raid.c to set up the array state.
23  * They must be cleared before md_run is called.
24  */
25 #define FirstUse 10             /* rdev flag */
26 
27 struct raid_dev {
28 	/*
29 	 * Two DM devices, one to hold metadata and one to hold the
30 	 * actual data/parity.  The reason for this is to not confuse
31 	 * ti->len and give more flexibility in altering size and
32 	 * characteristics.
33 	 *
34 	 * While it is possible for this device to be associated
35 	 * with a different physical device than the data_dev, it
36 	 * is intended for it to be the same.
37 	 *    |--------- Physical Device ---------|
38 	 *    |- meta_dev -|------ data_dev ------|
39 	 */
40 	struct dm_dev *meta_dev;
41 	struct dm_dev *data_dev;
42 	struct md_rdev rdev;
43 };
44 
45 /*
46  * Flags for rs->print_flags field.
47  */
48 #define DMPF_SYNC              0x1
49 #define DMPF_NOSYNC            0x2
50 #define DMPF_REBUILD           0x4
51 #define DMPF_DAEMON_SLEEP      0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND  0x40
55 #define DMPF_STRIPE_CACHE      0x80
56 #define DMPF_REGION_SIZE       0x100
57 #define DMPF_RAID10_COPIES     0x200
58 #define DMPF_RAID10_FORMAT     0x400
59 
60 struct raid_set {
61 	struct dm_target *ti;
62 
63 	uint32_t bitmap_loaded;
64 	uint32_t print_flags;
65 
66 	struct mddev md;
67 	struct raid_type *raid_type;
68 	struct dm_target_callbacks callbacks;
69 
70 	struct raid_dev dev[0];
71 };
72 
73 /* Supported raid types and properties. */
74 static struct raid_type {
75 	const char *name;		/* RAID algorithm. */
76 	const char *descr;		/* Descriptor text for logging. */
77 	const unsigned parity_devs;	/* # of parity devices. */
78 	const unsigned minimal_devs;	/* minimal # of devices in set. */
79 	const unsigned level;		/* RAID level. */
80 	const unsigned algorithm;	/* RAID algorithm. */
81 } raid_types[] = {
82 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
83 	{"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
84 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
85 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
92 };
93 
94 static unsigned raid10_md_layout_to_copies(int layout)
95 {
96 	return layout & 0xFF;
97 }
98 
99 static int raid10_format_to_md_layout(char *format, unsigned copies)
100 {
101 	/* 1 "far" copy, and 'copies' "near" copies */
102 	return (1 << 8) | (copies & 0xFF);
103 }
104 
105 static struct raid_type *get_raid_type(char *name)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
110 		if (!strcmp(raid_types[i].name, name))
111 			return &raid_types[i];
112 
113 	return NULL;
114 }
115 
116 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
117 {
118 	unsigned i;
119 	struct raid_set *rs;
120 
121 	if (raid_devs <= raid_type->parity_devs) {
122 		ti->error = "Insufficient number of devices";
123 		return ERR_PTR(-EINVAL);
124 	}
125 
126 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
127 	if (!rs) {
128 		ti->error = "Cannot allocate raid context";
129 		return ERR_PTR(-ENOMEM);
130 	}
131 
132 	mddev_init(&rs->md);
133 
134 	rs->ti = ti;
135 	rs->raid_type = raid_type;
136 	rs->md.raid_disks = raid_devs;
137 	rs->md.level = raid_type->level;
138 	rs->md.new_level = rs->md.level;
139 	rs->md.layout = raid_type->algorithm;
140 	rs->md.new_layout = rs->md.layout;
141 	rs->md.delta_disks = 0;
142 	rs->md.recovery_cp = 0;
143 
144 	for (i = 0; i < raid_devs; i++)
145 		md_rdev_init(&rs->dev[i].rdev);
146 
147 	/*
148 	 * Remaining items to be initialized by further RAID params:
149 	 *  rs->md.persistent
150 	 *  rs->md.external
151 	 *  rs->md.chunk_sectors
152 	 *  rs->md.new_chunk_sectors
153 	 *  rs->md.dev_sectors
154 	 */
155 
156 	return rs;
157 }
158 
159 static void context_free(struct raid_set *rs)
160 {
161 	int i;
162 
163 	for (i = 0; i < rs->md.raid_disks; i++) {
164 		if (rs->dev[i].meta_dev)
165 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
166 		md_rdev_clear(&rs->dev[i].rdev);
167 		if (rs->dev[i].data_dev)
168 			dm_put_device(rs->ti, rs->dev[i].data_dev);
169 	}
170 
171 	kfree(rs);
172 }
173 
174 /*
175  * For every device we have two words
176  *  <meta_dev>: meta device name or '-' if missing
177  *  <data_dev>: data device name or '-' if missing
178  *
179  * The following are permitted:
180  *    - -
181  *    - <data_dev>
182  *    <meta_dev> <data_dev>
183  *
184  * The following is not allowed:
185  *    <meta_dev> -
186  *
187  * This code parses those words.  If there is a failure,
188  * the caller must use context_free to unwind the operations.
189  */
190 static int dev_parms(struct raid_set *rs, char **argv)
191 {
192 	int i;
193 	int rebuild = 0;
194 	int metadata_available = 0;
195 	int ret = 0;
196 
197 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
198 		rs->dev[i].rdev.raid_disk = i;
199 
200 		rs->dev[i].meta_dev = NULL;
201 		rs->dev[i].data_dev = NULL;
202 
203 		/*
204 		 * There are no offsets, since there is a separate device
205 		 * for data and metadata.
206 		 */
207 		rs->dev[i].rdev.data_offset = 0;
208 		rs->dev[i].rdev.mddev = &rs->md;
209 
210 		if (strcmp(argv[0], "-")) {
211 			ret = dm_get_device(rs->ti, argv[0],
212 					    dm_table_get_mode(rs->ti->table),
213 					    &rs->dev[i].meta_dev);
214 			rs->ti->error = "RAID metadata device lookup failure";
215 			if (ret)
216 				return ret;
217 
218 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
219 			if (!rs->dev[i].rdev.sb_page)
220 				return -ENOMEM;
221 		}
222 
223 		if (!strcmp(argv[1], "-")) {
224 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
225 			    (!rs->dev[i].rdev.recovery_offset)) {
226 				rs->ti->error = "Drive designated for rebuild not specified";
227 				return -EINVAL;
228 			}
229 
230 			rs->ti->error = "No data device supplied with metadata device";
231 			if (rs->dev[i].meta_dev)
232 				return -EINVAL;
233 
234 			continue;
235 		}
236 
237 		ret = dm_get_device(rs->ti, argv[1],
238 				    dm_table_get_mode(rs->ti->table),
239 				    &rs->dev[i].data_dev);
240 		if (ret) {
241 			rs->ti->error = "RAID device lookup failure";
242 			return ret;
243 		}
244 
245 		if (rs->dev[i].meta_dev) {
246 			metadata_available = 1;
247 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
248 		}
249 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
250 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
251 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
252 			rebuild++;
253 	}
254 
255 	if (metadata_available) {
256 		rs->md.external = 0;
257 		rs->md.persistent = 1;
258 		rs->md.major_version = 2;
259 	} else if (rebuild && !rs->md.recovery_cp) {
260 		/*
261 		 * Without metadata, we will not be able to tell if the array
262 		 * is in-sync or not - we must assume it is not.  Therefore,
263 		 * it is impossible to rebuild a drive.
264 		 *
265 		 * Even if there is metadata, the on-disk information may
266 		 * indicate that the array is not in-sync and it will then
267 		 * fail at that time.
268 		 *
269 		 * User could specify 'nosync' option if desperate.
270 		 */
271 		DMERR("Unable to rebuild drive while array is not in-sync");
272 		rs->ti->error = "RAID device lookup failure";
273 		return -EINVAL;
274 	}
275 
276 	return 0;
277 }
278 
279 /*
280  * validate_region_size
281  * @rs
282  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
283  *
284  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
285  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
286  *
287  * Returns: 0 on success, -EINVAL on failure.
288  */
289 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
290 {
291 	unsigned long min_region_size = rs->ti->len / (1 << 21);
292 
293 	if (!region_size) {
294 		/*
295 		 * Choose a reasonable default.  All figures in sectors.
296 		 */
297 		if (min_region_size > (1 << 13)) {
298 			DMINFO("Choosing default region size of %lu sectors",
299 			       region_size);
300 			region_size = min_region_size;
301 		} else {
302 			DMINFO("Choosing default region size of 4MiB");
303 			region_size = 1 << 13; /* sectors */
304 		}
305 	} else {
306 		/*
307 		 * Validate user-supplied value.
308 		 */
309 		if (region_size > rs->ti->len) {
310 			rs->ti->error = "Supplied region size is too large";
311 			return -EINVAL;
312 		}
313 
314 		if (region_size < min_region_size) {
315 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
316 			      region_size, min_region_size);
317 			rs->ti->error = "Supplied region size is too small";
318 			return -EINVAL;
319 		}
320 
321 		if (!is_power_of_2(region_size)) {
322 			rs->ti->error = "Region size is not a power of 2";
323 			return -EINVAL;
324 		}
325 
326 		if (region_size < rs->md.chunk_sectors) {
327 			rs->ti->error = "Region size is smaller than the chunk size";
328 			return -EINVAL;
329 		}
330 	}
331 
332 	/*
333 	 * Convert sectors to bytes.
334 	 */
335 	rs->md.bitmap_info.chunksize = (region_size << 9);
336 
337 	return 0;
338 }
339 
340 /*
341  * validate_rebuild_devices
342  * @rs
343  *
344  * Determine if the devices specified for rebuild can result in a valid
345  * usable array that is capable of rebuilding the given devices.
346  *
347  * Returns: 0 on success, -EINVAL on failure.
348  */
349 static int validate_rebuild_devices(struct raid_set *rs)
350 {
351 	unsigned i, rebuild_cnt = 0;
352 	unsigned rebuilds_per_group, copies, d;
353 
354 	if (!(rs->print_flags & DMPF_REBUILD))
355 		return 0;
356 
357 	for (i = 0; i < rs->md.raid_disks; i++)
358 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
359 			rebuild_cnt++;
360 
361 	switch (rs->raid_type->level) {
362 	case 1:
363 		if (rebuild_cnt >= rs->md.raid_disks)
364 			goto too_many;
365 		break;
366 	case 4:
367 	case 5:
368 	case 6:
369 		if (rebuild_cnt > rs->raid_type->parity_devs)
370 			goto too_many;
371 		break;
372 	case 10:
373 		copies = raid10_md_layout_to_copies(rs->md.layout);
374 		if (rebuild_cnt < copies)
375 			break;
376 
377 		/*
378 		 * It is possible to have a higher rebuild count for RAID10,
379 		 * as long as the failed devices occur in different mirror
380 		 * groups (i.e. different stripes).
381 		 *
382 		 * Right now, we only allow for "near" copies.  When other
383 		 * formats are added, we will have to check those too.
384 		 *
385 		 * When checking "near" format, make sure no adjacent devices
386 		 * have failed beyond what can be handled.  In addition to the
387 		 * simple case where the number of devices is a multiple of the
388 		 * number of copies, we must also handle cases where the number
389 		 * of devices is not a multiple of the number of copies.
390 		 * E.g.    dev1 dev2 dev3 dev4 dev5
391 		 *          A    A    B    B    C
392 		 *          C    D    D    E    E
393 		 */
394 		rebuilds_per_group = 0;
395 		for (i = 0; i < rs->md.raid_disks * copies; i++) {
396 			d = i % rs->md.raid_disks;
397 			if (!test_bit(In_sync, &rs->dev[d].rdev.flags) &&
398 			    (++rebuilds_per_group >= copies))
399 				goto too_many;
400 			if (!((i + 1) % copies))
401 				rebuilds_per_group = 0;
402 		}
403 		break;
404 	default:
405 		DMERR("The rebuild parameter is not supported for %s",
406 		      rs->raid_type->name);
407 		rs->ti->error = "Rebuild not supported for this RAID type";
408 		return -EINVAL;
409 	}
410 
411 	return 0;
412 
413 too_many:
414 	rs->ti->error = "Too many rebuild devices specified";
415 	return -EINVAL;
416 }
417 
418 /*
419  * Possible arguments are...
420  *	<chunk_size> [optional_args]
421  *
422  * Argument definitions
423  *    <chunk_size>			The number of sectors per disk that
424  *                                      will form the "stripe"
425  *    [[no]sync]			Force or prevent recovery of the
426  *                                      entire array
427  *    [rebuild <idx>]			Rebuild the drive indicated by the index
428  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
429  *                                      clear bits
430  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
431  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
432  *    [write_mostly <idx>]		Indicate a write mostly drive via index
433  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
434  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
435  *    [region_size <sectors>]           Defines granularity of bitmap
436  *
437  * RAID10-only options:
438  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
439  *    [raid10_format <near>]            Layout algorithm.  (Default: near)
440  */
441 static int parse_raid_params(struct raid_set *rs, char **argv,
442 			     unsigned num_raid_params)
443 {
444 	char *raid10_format = "near";
445 	unsigned raid10_copies = 2;
446 	unsigned i;
447 	unsigned long value, region_size = 0;
448 	sector_t sectors_per_dev = rs->ti->len;
449 	sector_t max_io_len;
450 	char *key;
451 
452 	/*
453 	 * First, parse the in-order required arguments
454 	 * "chunk_size" is the only argument of this type.
455 	 */
456 	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
457 		rs->ti->error = "Bad chunk size";
458 		return -EINVAL;
459 	} else if (rs->raid_type->level == 1) {
460 		if (value)
461 			DMERR("Ignoring chunk size parameter for RAID 1");
462 		value = 0;
463 	} else if (!is_power_of_2(value)) {
464 		rs->ti->error = "Chunk size must be a power of 2";
465 		return -EINVAL;
466 	} else if (value < 8) {
467 		rs->ti->error = "Chunk size value is too small";
468 		return -EINVAL;
469 	}
470 
471 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
472 	argv++;
473 	num_raid_params--;
474 
475 	/*
476 	 * We set each individual device as In_sync with a completed
477 	 * 'recovery_offset'.  If there has been a device failure or
478 	 * replacement then one of the following cases applies:
479 	 *
480 	 *   1) User specifies 'rebuild'.
481 	 *      - Device is reset when param is read.
482 	 *   2) A new device is supplied.
483 	 *      - No matching superblock found, resets device.
484 	 *   3) Device failure was transient and returns on reload.
485 	 *      - Failure noticed, resets device for bitmap replay.
486 	 *   4) Device hadn't completed recovery after previous failure.
487 	 *      - Superblock is read and overrides recovery_offset.
488 	 *
489 	 * What is found in the superblocks of the devices is always
490 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
491 	 */
492 	for (i = 0; i < rs->md.raid_disks; i++) {
493 		set_bit(In_sync, &rs->dev[i].rdev.flags);
494 		rs->dev[i].rdev.recovery_offset = MaxSector;
495 	}
496 
497 	/*
498 	 * Second, parse the unordered optional arguments
499 	 */
500 	for (i = 0; i < num_raid_params; i++) {
501 		if (!strcasecmp(argv[i], "nosync")) {
502 			rs->md.recovery_cp = MaxSector;
503 			rs->print_flags |= DMPF_NOSYNC;
504 			continue;
505 		}
506 		if (!strcasecmp(argv[i], "sync")) {
507 			rs->md.recovery_cp = 0;
508 			rs->print_flags |= DMPF_SYNC;
509 			continue;
510 		}
511 
512 		/* The rest of the optional arguments come in key/value pairs */
513 		if ((i + 1) >= num_raid_params) {
514 			rs->ti->error = "Wrong number of raid parameters given";
515 			return -EINVAL;
516 		}
517 
518 		key = argv[i++];
519 
520 		/* Parameters that take a string value are checked here. */
521 		if (!strcasecmp(key, "raid10_format")) {
522 			if (rs->raid_type->level != 10) {
523 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
524 				return -EINVAL;
525 			}
526 			if (strcmp("near", argv[i])) {
527 				rs->ti->error = "Invalid 'raid10_format' value given";
528 				return -EINVAL;
529 			}
530 			raid10_format = argv[i];
531 			rs->print_flags |= DMPF_RAID10_FORMAT;
532 			continue;
533 		}
534 
535 		if (strict_strtoul(argv[i], 10, &value) < 0) {
536 			rs->ti->error = "Bad numerical argument given in raid params";
537 			return -EINVAL;
538 		}
539 
540 		/* Parameters that take a numeric value are checked here */
541 		if (!strcasecmp(key, "rebuild")) {
542 			if (value >= rs->md.raid_disks) {
543 				rs->ti->error = "Invalid rebuild index given";
544 				return -EINVAL;
545 			}
546 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
547 			rs->dev[value].rdev.recovery_offset = 0;
548 			rs->print_flags |= DMPF_REBUILD;
549 		} else if (!strcasecmp(key, "write_mostly")) {
550 			if (rs->raid_type->level != 1) {
551 				rs->ti->error = "write_mostly option is only valid for RAID1";
552 				return -EINVAL;
553 			}
554 			if (value >= rs->md.raid_disks) {
555 				rs->ti->error = "Invalid write_mostly drive index given";
556 				return -EINVAL;
557 			}
558 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
559 		} else if (!strcasecmp(key, "max_write_behind")) {
560 			if (rs->raid_type->level != 1) {
561 				rs->ti->error = "max_write_behind option is only valid for RAID1";
562 				return -EINVAL;
563 			}
564 			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
565 
566 			/*
567 			 * In device-mapper, we specify things in sectors, but
568 			 * MD records this value in kB
569 			 */
570 			value /= 2;
571 			if (value > COUNTER_MAX) {
572 				rs->ti->error = "Max write-behind limit out of range";
573 				return -EINVAL;
574 			}
575 			rs->md.bitmap_info.max_write_behind = value;
576 		} else if (!strcasecmp(key, "daemon_sleep")) {
577 			rs->print_flags |= DMPF_DAEMON_SLEEP;
578 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
579 				rs->ti->error = "daemon sleep period out of range";
580 				return -EINVAL;
581 			}
582 			rs->md.bitmap_info.daemon_sleep = value;
583 		} else if (!strcasecmp(key, "stripe_cache")) {
584 			rs->print_flags |= DMPF_STRIPE_CACHE;
585 
586 			/*
587 			 * In device-mapper, we specify things in sectors, but
588 			 * MD records this value in kB
589 			 */
590 			value /= 2;
591 
592 			if ((rs->raid_type->level != 5) &&
593 			    (rs->raid_type->level != 6)) {
594 				rs->ti->error = "Inappropriate argument: stripe_cache";
595 				return -EINVAL;
596 			}
597 			if (raid5_set_cache_size(&rs->md, (int)value)) {
598 				rs->ti->error = "Bad stripe_cache size";
599 				return -EINVAL;
600 			}
601 		} else if (!strcasecmp(key, "min_recovery_rate")) {
602 			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
603 			if (value > INT_MAX) {
604 				rs->ti->error = "min_recovery_rate out of range";
605 				return -EINVAL;
606 			}
607 			rs->md.sync_speed_min = (int)value;
608 		} else if (!strcasecmp(key, "max_recovery_rate")) {
609 			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
610 			if (value > INT_MAX) {
611 				rs->ti->error = "max_recovery_rate out of range";
612 				return -EINVAL;
613 			}
614 			rs->md.sync_speed_max = (int)value;
615 		} else if (!strcasecmp(key, "region_size")) {
616 			rs->print_flags |= DMPF_REGION_SIZE;
617 			region_size = value;
618 		} else if (!strcasecmp(key, "raid10_copies") &&
619 			   (rs->raid_type->level == 10)) {
620 			if ((value < 2) || (value > 0xFF)) {
621 				rs->ti->error = "Bad value for 'raid10_copies'";
622 				return -EINVAL;
623 			}
624 			rs->print_flags |= DMPF_RAID10_COPIES;
625 			raid10_copies = value;
626 		} else {
627 			DMERR("Unable to parse RAID parameter: %s", key);
628 			rs->ti->error = "Unable to parse RAID parameters";
629 			return -EINVAL;
630 		}
631 	}
632 
633 	if (validate_region_size(rs, region_size))
634 		return -EINVAL;
635 
636 	if (rs->md.chunk_sectors)
637 		max_io_len = rs->md.chunk_sectors;
638 	else
639 		max_io_len = region_size;
640 
641 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
642 		return -EINVAL;
643 
644 	if (rs->raid_type->level == 10) {
645 		if (raid10_copies > rs->md.raid_disks) {
646 			rs->ti->error = "Not enough devices to satisfy specification";
647 			return -EINVAL;
648 		}
649 
650 		/* (Len * #mirrors) / #devices */
651 		sectors_per_dev = rs->ti->len * raid10_copies;
652 		sector_div(sectors_per_dev, rs->md.raid_disks);
653 
654 		rs->md.layout = raid10_format_to_md_layout(raid10_format,
655 							   raid10_copies);
656 		rs->md.new_layout = rs->md.layout;
657 	} else if ((rs->raid_type->level > 1) &&
658 		   sector_div(sectors_per_dev,
659 			      (rs->md.raid_disks - rs->raid_type->parity_devs))) {
660 		rs->ti->error = "Target length not divisible by number of data devices";
661 		return -EINVAL;
662 	}
663 	rs->md.dev_sectors = sectors_per_dev;
664 
665 	if (validate_rebuild_devices(rs))
666 		return -EINVAL;
667 
668 	/* Assume there are no metadata devices until the drives are parsed */
669 	rs->md.persistent = 0;
670 	rs->md.external = 1;
671 
672 	return 0;
673 }
674 
675 static void do_table_event(struct work_struct *ws)
676 {
677 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
678 
679 	dm_table_event(rs->ti->table);
680 }
681 
682 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
683 {
684 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
685 
686 	if (rs->raid_type->level == 1)
687 		return md_raid1_congested(&rs->md, bits);
688 
689 	if (rs->raid_type->level == 10)
690 		return md_raid10_congested(&rs->md, bits);
691 
692 	return md_raid5_congested(&rs->md, bits);
693 }
694 
695 /*
696  * This structure is never routinely used by userspace, unlike md superblocks.
697  * Devices with this superblock should only ever be accessed via device-mapper.
698  */
699 #define DM_RAID_MAGIC 0x64526D44
700 struct dm_raid_superblock {
701 	__le32 magic;		/* "DmRd" */
702 	__le32 features;	/* Used to indicate possible future changes */
703 
704 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
705 	__le32 array_position;	/* The position of this drive in the array */
706 
707 	__le64 events;		/* Incremented by md when superblock updated */
708 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
709 
710 	/*
711 	 * This offset tracks the progress of the repair or replacement of
712 	 * an individual drive.
713 	 */
714 	__le64 disk_recovery_offset;
715 
716 	/*
717 	 * This offset tracks the progress of the initial array
718 	 * synchronisation/parity calculation.
719 	 */
720 	__le64 array_resync_offset;
721 
722 	/*
723 	 * RAID characteristics
724 	 */
725 	__le32 level;
726 	__le32 layout;
727 	__le32 stripe_sectors;
728 
729 	__u8 pad[452];		/* Round struct to 512 bytes. */
730 				/* Always set to 0 when writing. */
731 } __packed;
732 
733 static int read_disk_sb(struct md_rdev *rdev, int size)
734 {
735 	BUG_ON(!rdev->sb_page);
736 
737 	if (rdev->sb_loaded)
738 		return 0;
739 
740 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
741 		DMERR("Failed to read superblock of device at position %d",
742 		      rdev->raid_disk);
743 		md_error(rdev->mddev, rdev);
744 		return -EINVAL;
745 	}
746 
747 	rdev->sb_loaded = 1;
748 
749 	return 0;
750 }
751 
752 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
753 {
754 	int i;
755 	uint64_t failed_devices;
756 	struct dm_raid_superblock *sb;
757 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
758 
759 	sb = page_address(rdev->sb_page);
760 	failed_devices = le64_to_cpu(sb->failed_devices);
761 
762 	for (i = 0; i < mddev->raid_disks; i++)
763 		if (!rs->dev[i].data_dev ||
764 		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
765 			failed_devices |= (1ULL << i);
766 
767 	memset(sb, 0, sizeof(*sb));
768 
769 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
770 	sb->features = cpu_to_le32(0);	/* No features yet */
771 
772 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
773 	sb->array_position = cpu_to_le32(rdev->raid_disk);
774 
775 	sb->events = cpu_to_le64(mddev->events);
776 	sb->failed_devices = cpu_to_le64(failed_devices);
777 
778 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
779 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
780 
781 	sb->level = cpu_to_le32(mddev->level);
782 	sb->layout = cpu_to_le32(mddev->layout);
783 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
784 }
785 
786 /*
787  * super_load
788  *
789  * This function creates a superblock if one is not found on the device
790  * and will decide which superblock to use if there's a choice.
791  *
792  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
793  */
794 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
795 {
796 	int ret;
797 	struct dm_raid_superblock *sb;
798 	struct dm_raid_superblock *refsb;
799 	uint64_t events_sb, events_refsb;
800 
801 	rdev->sb_start = 0;
802 	rdev->sb_size = sizeof(*sb);
803 
804 	ret = read_disk_sb(rdev, rdev->sb_size);
805 	if (ret)
806 		return ret;
807 
808 	sb = page_address(rdev->sb_page);
809 
810 	/*
811 	 * Two cases that we want to write new superblocks and rebuild:
812 	 * 1) New device (no matching magic number)
813 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
814 	 */
815 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
816 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
817 		super_sync(rdev->mddev, rdev);
818 
819 		set_bit(FirstUse, &rdev->flags);
820 
821 		/* Force writing of superblocks to disk */
822 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
823 
824 		/* Any superblock is better than none, choose that if given */
825 		return refdev ? 0 : 1;
826 	}
827 
828 	if (!refdev)
829 		return 1;
830 
831 	events_sb = le64_to_cpu(sb->events);
832 
833 	refsb = page_address(refdev->sb_page);
834 	events_refsb = le64_to_cpu(refsb->events);
835 
836 	return (events_sb > events_refsb) ? 1 : 0;
837 }
838 
839 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
840 {
841 	int role;
842 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
843 	uint64_t events_sb;
844 	uint64_t failed_devices;
845 	struct dm_raid_superblock *sb;
846 	uint32_t new_devs = 0;
847 	uint32_t rebuilds = 0;
848 	struct md_rdev *r;
849 	struct dm_raid_superblock *sb2;
850 
851 	sb = page_address(rdev->sb_page);
852 	events_sb = le64_to_cpu(sb->events);
853 	failed_devices = le64_to_cpu(sb->failed_devices);
854 
855 	/*
856 	 * Initialise to 1 if this is a new superblock.
857 	 */
858 	mddev->events = events_sb ? : 1;
859 
860 	/*
861 	 * Reshaping is not currently allowed
862 	 */
863 	if ((le32_to_cpu(sb->level) != mddev->level) ||
864 	    (le32_to_cpu(sb->layout) != mddev->layout) ||
865 	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
866 		DMERR("Reshaping arrays not yet supported.");
867 		return -EINVAL;
868 	}
869 
870 	/* We can only change the number of devices in RAID1 right now */
871 	if ((rs->raid_type->level != 1) &&
872 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
873 		DMERR("Reshaping arrays not yet supported.");
874 		return -EINVAL;
875 	}
876 
877 	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
878 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
879 
880 	/*
881 	 * During load, we set FirstUse if a new superblock was written.
882 	 * There are two reasons we might not have a superblock:
883 	 * 1) The array is brand new - in which case, all of the
884 	 *    devices must have their In_sync bit set.  Also,
885 	 *    recovery_cp must be 0, unless forced.
886 	 * 2) This is a new device being added to an old array
887 	 *    and the new device needs to be rebuilt - in which
888 	 *    case the In_sync bit will /not/ be set and
889 	 *    recovery_cp must be MaxSector.
890 	 */
891 	rdev_for_each(r, mddev) {
892 		if (!test_bit(In_sync, &r->flags)) {
893 			DMINFO("Device %d specified for rebuild: "
894 			       "Clearing superblock", r->raid_disk);
895 			rebuilds++;
896 		} else if (test_bit(FirstUse, &r->flags))
897 			new_devs++;
898 	}
899 
900 	if (!rebuilds) {
901 		if (new_devs == mddev->raid_disks) {
902 			DMINFO("Superblocks created for new array");
903 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
904 		} else if (new_devs) {
905 			DMERR("New device injected "
906 			      "into existing array without 'rebuild' "
907 			      "parameter specified");
908 			return -EINVAL;
909 		}
910 	} else if (new_devs) {
911 		DMERR("'rebuild' devices cannot be "
912 		      "injected into an array with other first-time devices");
913 		return -EINVAL;
914 	} else if (mddev->recovery_cp != MaxSector) {
915 		DMERR("'rebuild' specified while array is not in-sync");
916 		return -EINVAL;
917 	}
918 
919 	/*
920 	 * Now we set the Faulty bit for those devices that are
921 	 * recorded in the superblock as failed.
922 	 */
923 	rdev_for_each(r, mddev) {
924 		if (!r->sb_page)
925 			continue;
926 		sb2 = page_address(r->sb_page);
927 		sb2->failed_devices = 0;
928 
929 		/*
930 		 * Check for any device re-ordering.
931 		 */
932 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
933 			role = le32_to_cpu(sb2->array_position);
934 			if (role != r->raid_disk) {
935 				if (rs->raid_type->level != 1) {
936 					rs->ti->error = "Cannot change device "
937 						"positions in RAID array";
938 					return -EINVAL;
939 				}
940 				DMINFO("RAID1 device #%d now at position #%d",
941 				       role, r->raid_disk);
942 			}
943 
944 			/*
945 			 * Partial recovery is performed on
946 			 * returning failed devices.
947 			 */
948 			if (failed_devices & (1 << role))
949 				set_bit(Faulty, &r->flags);
950 		}
951 	}
952 
953 	return 0;
954 }
955 
956 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
957 {
958 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
959 
960 	/*
961 	 * If mddev->events is not set, we know we have not yet initialized
962 	 * the array.
963 	 */
964 	if (!mddev->events && super_init_validation(mddev, rdev))
965 		return -EINVAL;
966 
967 	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
968 	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
969 	if (!test_bit(FirstUse, &rdev->flags)) {
970 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
971 		if (rdev->recovery_offset != MaxSector)
972 			clear_bit(In_sync, &rdev->flags);
973 	}
974 
975 	/*
976 	 * If a device comes back, set it as not In_sync and no longer faulty.
977 	 */
978 	if (test_bit(Faulty, &rdev->flags)) {
979 		clear_bit(Faulty, &rdev->flags);
980 		clear_bit(In_sync, &rdev->flags);
981 		rdev->saved_raid_disk = rdev->raid_disk;
982 		rdev->recovery_offset = 0;
983 	}
984 
985 	clear_bit(FirstUse, &rdev->flags);
986 
987 	return 0;
988 }
989 
990 /*
991  * Analyse superblocks and select the freshest.
992  */
993 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
994 {
995 	int ret;
996 	unsigned redundancy = 0;
997 	struct raid_dev *dev;
998 	struct md_rdev *rdev, *tmp, *freshest;
999 	struct mddev *mddev = &rs->md;
1000 
1001 	switch (rs->raid_type->level) {
1002 	case 1:
1003 		redundancy = rs->md.raid_disks - 1;
1004 		break;
1005 	case 4:
1006 	case 5:
1007 	case 6:
1008 		redundancy = rs->raid_type->parity_devs;
1009 		break;
1010 	case 10:
1011 		redundancy = raid10_md_layout_to_copies(mddev->layout) - 1;
1012 		break;
1013 	default:
1014 		ti->error = "Unknown RAID type";
1015 		return -EINVAL;
1016 	}
1017 
1018 	freshest = NULL;
1019 	rdev_for_each_safe(rdev, tmp, mddev) {
1020 		/*
1021 		 * Skipping super_load due to DMPF_SYNC will cause
1022 		 * the array to undergo initialization again as
1023 		 * though it were new.  This is the intended effect
1024 		 * of the "sync" directive.
1025 		 *
1026 		 * When reshaping capability is added, we must ensure
1027 		 * that the "sync" directive is disallowed during the
1028 		 * reshape.
1029 		 */
1030 		if (rs->print_flags & DMPF_SYNC)
1031 			continue;
1032 
1033 		if (!rdev->meta_bdev)
1034 			continue;
1035 
1036 		ret = super_load(rdev, freshest);
1037 
1038 		switch (ret) {
1039 		case 1:
1040 			freshest = rdev;
1041 			break;
1042 		case 0:
1043 			break;
1044 		default:
1045 			dev = container_of(rdev, struct raid_dev, rdev);
1046 			if (redundancy--) {
1047 				if (dev->meta_dev)
1048 					dm_put_device(ti, dev->meta_dev);
1049 
1050 				dev->meta_dev = NULL;
1051 				rdev->meta_bdev = NULL;
1052 
1053 				if (rdev->sb_page)
1054 					put_page(rdev->sb_page);
1055 
1056 				rdev->sb_page = NULL;
1057 
1058 				rdev->sb_loaded = 0;
1059 
1060 				/*
1061 				 * We might be able to salvage the data device
1062 				 * even though the meta device has failed.  For
1063 				 * now, we behave as though '- -' had been
1064 				 * set for this device in the table.
1065 				 */
1066 				if (dev->data_dev)
1067 					dm_put_device(ti, dev->data_dev);
1068 
1069 				dev->data_dev = NULL;
1070 				rdev->bdev = NULL;
1071 
1072 				list_del(&rdev->same_set);
1073 
1074 				continue;
1075 			}
1076 			ti->error = "Failed to load superblock";
1077 			return ret;
1078 		}
1079 	}
1080 
1081 	if (!freshest)
1082 		return 0;
1083 
1084 	/*
1085 	 * Validation of the freshest device provides the source of
1086 	 * validation for the remaining devices.
1087 	 */
1088 	ti->error = "Unable to assemble array: Invalid superblocks";
1089 	if (super_validate(mddev, freshest))
1090 		return -EINVAL;
1091 
1092 	rdev_for_each(rdev, mddev)
1093 		if ((rdev != freshest) && super_validate(mddev, rdev))
1094 			return -EINVAL;
1095 
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Construct a RAID4/5/6 mapping:
1101  * Args:
1102  *	<raid_type> <#raid_params> <raid_params>		\
1103  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1104  *
1105  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1106  * details on possible <raid_params>.
1107  */
1108 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1109 {
1110 	int ret;
1111 	struct raid_type *rt;
1112 	unsigned long num_raid_params, num_raid_devs;
1113 	struct raid_set *rs = NULL;
1114 
1115 	/* Must have at least <raid_type> <#raid_params> */
1116 	if (argc < 2) {
1117 		ti->error = "Too few arguments";
1118 		return -EINVAL;
1119 	}
1120 
1121 	/* raid type */
1122 	rt = get_raid_type(argv[0]);
1123 	if (!rt) {
1124 		ti->error = "Unrecognised raid_type";
1125 		return -EINVAL;
1126 	}
1127 	argc--;
1128 	argv++;
1129 
1130 	/* number of RAID parameters */
1131 	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
1132 		ti->error = "Cannot understand number of RAID parameters";
1133 		return -EINVAL;
1134 	}
1135 	argc--;
1136 	argv++;
1137 
1138 	/* Skip over RAID params for now and find out # of devices */
1139 	if (num_raid_params + 1 > argc) {
1140 		ti->error = "Arguments do not agree with counts given";
1141 		return -EINVAL;
1142 	}
1143 
1144 	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1145 	    (num_raid_devs >= INT_MAX)) {
1146 		ti->error = "Cannot understand number of raid devices";
1147 		return -EINVAL;
1148 	}
1149 
1150 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1151 	if (IS_ERR(rs))
1152 		return PTR_ERR(rs);
1153 
1154 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1155 	if (ret)
1156 		goto bad;
1157 
1158 	ret = -EINVAL;
1159 
1160 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1161 	argv += num_raid_params + 1;
1162 
1163 	if (argc != (num_raid_devs * 2)) {
1164 		ti->error = "Supplied RAID devices does not match the count given";
1165 		goto bad;
1166 	}
1167 
1168 	ret = dev_parms(rs, argv);
1169 	if (ret)
1170 		goto bad;
1171 
1172 	rs->md.sync_super = super_sync;
1173 	ret = analyse_superblocks(ti, rs);
1174 	if (ret)
1175 		goto bad;
1176 
1177 	INIT_WORK(&rs->md.event_work, do_table_event);
1178 	ti->private = rs;
1179 	ti->num_flush_requests = 1;
1180 
1181 	mutex_lock(&rs->md.reconfig_mutex);
1182 	ret = md_run(&rs->md);
1183 	rs->md.in_sync = 0; /* Assume already marked dirty */
1184 	mutex_unlock(&rs->md.reconfig_mutex);
1185 
1186 	if (ret) {
1187 		ti->error = "Fail to run raid array";
1188 		goto bad;
1189 	}
1190 
1191 	if (ti->len != rs->md.array_sectors) {
1192 		ti->error = "Array size does not match requested target length";
1193 		ret = -EINVAL;
1194 		goto size_mismatch;
1195 	}
1196 	rs->callbacks.congested_fn = raid_is_congested;
1197 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1198 
1199 	mddev_suspend(&rs->md);
1200 	return 0;
1201 
1202 size_mismatch:
1203 	md_stop(&rs->md);
1204 bad:
1205 	context_free(rs);
1206 
1207 	return ret;
1208 }
1209 
1210 static void raid_dtr(struct dm_target *ti)
1211 {
1212 	struct raid_set *rs = ti->private;
1213 
1214 	list_del_init(&rs->callbacks.list);
1215 	md_stop(&rs->md);
1216 	context_free(rs);
1217 }
1218 
1219 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1220 {
1221 	struct raid_set *rs = ti->private;
1222 	struct mddev *mddev = &rs->md;
1223 
1224 	mddev->pers->make_request(mddev, bio);
1225 
1226 	return DM_MAPIO_SUBMITTED;
1227 }
1228 
1229 static int raid_status(struct dm_target *ti, status_type_t type,
1230 		       unsigned status_flags, char *result, unsigned maxlen)
1231 {
1232 	struct raid_set *rs = ti->private;
1233 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1234 	unsigned sz = 0;
1235 	int i, array_in_sync = 0;
1236 	sector_t sync;
1237 
1238 	switch (type) {
1239 	case STATUSTYPE_INFO:
1240 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1241 
1242 		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1243 			sync = rs->md.curr_resync_completed;
1244 		else
1245 			sync = rs->md.recovery_cp;
1246 
1247 		if (sync >= rs->md.resync_max_sectors) {
1248 			array_in_sync = 1;
1249 			sync = rs->md.resync_max_sectors;
1250 		} else {
1251 			/*
1252 			 * The array may be doing an initial sync, or it may
1253 			 * be rebuilding individual components.  If all the
1254 			 * devices are In_sync, then it is the array that is
1255 			 * being initialized.
1256 			 */
1257 			for (i = 0; i < rs->md.raid_disks; i++)
1258 				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1259 					array_in_sync = 1;
1260 		}
1261 		/*
1262 		 * Status characters:
1263 		 *  'D' = Dead/Failed device
1264 		 *  'a' = Alive but not in-sync
1265 		 *  'A' = Alive and in-sync
1266 		 */
1267 		for (i = 0; i < rs->md.raid_disks; i++) {
1268 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1269 				DMEMIT("D");
1270 			else if (!array_in_sync ||
1271 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1272 				DMEMIT("a");
1273 			else
1274 				DMEMIT("A");
1275 		}
1276 
1277 		/*
1278 		 * In-sync ratio:
1279 		 *  The in-sync ratio shows the progress of:
1280 		 *   - Initializing the array
1281 		 *   - Rebuilding a subset of devices of the array
1282 		 *  The user can distinguish between the two by referring
1283 		 *  to the status characters.
1284 		 */
1285 		DMEMIT(" %llu/%llu",
1286 		       (unsigned long long) sync,
1287 		       (unsigned long long) rs->md.resync_max_sectors);
1288 
1289 		break;
1290 	case STATUSTYPE_TABLE:
1291 		/* The string you would use to construct this array */
1292 		for (i = 0; i < rs->md.raid_disks; i++) {
1293 			if ((rs->print_flags & DMPF_REBUILD) &&
1294 			    rs->dev[i].data_dev &&
1295 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1296 				raid_param_cnt += 2; /* for rebuilds */
1297 			if (rs->dev[i].data_dev &&
1298 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1299 				raid_param_cnt += 2;
1300 		}
1301 
1302 		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1303 		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1304 			raid_param_cnt--;
1305 
1306 		DMEMIT("%s %u %u", rs->raid_type->name,
1307 		       raid_param_cnt, rs->md.chunk_sectors);
1308 
1309 		if ((rs->print_flags & DMPF_SYNC) &&
1310 		    (rs->md.recovery_cp == MaxSector))
1311 			DMEMIT(" sync");
1312 		if (rs->print_flags & DMPF_NOSYNC)
1313 			DMEMIT(" nosync");
1314 
1315 		for (i = 0; i < rs->md.raid_disks; i++)
1316 			if ((rs->print_flags & DMPF_REBUILD) &&
1317 			    rs->dev[i].data_dev &&
1318 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1319 				DMEMIT(" rebuild %u", i);
1320 
1321 		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1322 			DMEMIT(" daemon_sleep %lu",
1323 			       rs->md.bitmap_info.daemon_sleep);
1324 
1325 		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1326 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1327 
1328 		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1329 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1330 
1331 		for (i = 0; i < rs->md.raid_disks; i++)
1332 			if (rs->dev[i].data_dev &&
1333 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1334 				DMEMIT(" write_mostly %u", i);
1335 
1336 		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1337 			DMEMIT(" max_write_behind %lu",
1338 			       rs->md.bitmap_info.max_write_behind);
1339 
1340 		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1341 			struct r5conf *conf = rs->md.private;
1342 
1343 			/* convert from kiB to sectors */
1344 			DMEMIT(" stripe_cache %d",
1345 			       conf ? conf->max_nr_stripes * 2 : 0);
1346 		}
1347 
1348 		if (rs->print_flags & DMPF_REGION_SIZE)
1349 			DMEMIT(" region_size %lu",
1350 			       rs->md.bitmap_info.chunksize >> 9);
1351 
1352 		if (rs->print_flags & DMPF_RAID10_COPIES)
1353 			DMEMIT(" raid10_copies %u",
1354 			       raid10_md_layout_to_copies(rs->md.layout));
1355 
1356 		if (rs->print_flags & DMPF_RAID10_FORMAT)
1357 			DMEMIT(" raid10_format near");
1358 
1359 		DMEMIT(" %d", rs->md.raid_disks);
1360 		for (i = 0; i < rs->md.raid_disks; i++) {
1361 			if (rs->dev[i].meta_dev)
1362 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1363 			else
1364 				DMEMIT(" -");
1365 
1366 			if (rs->dev[i].data_dev)
1367 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1368 			else
1369 				DMEMIT(" -");
1370 		}
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1377 {
1378 	struct raid_set *rs = ti->private;
1379 	unsigned i;
1380 	int ret = 0;
1381 
1382 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1383 		if (rs->dev[i].data_dev)
1384 			ret = fn(ti,
1385 				 rs->dev[i].data_dev,
1386 				 0, /* No offset on data devs */
1387 				 rs->md.dev_sectors,
1388 				 data);
1389 
1390 	return ret;
1391 }
1392 
1393 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1394 {
1395 	struct raid_set *rs = ti->private;
1396 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1397 	struct r5conf *conf = rs->md.private;
1398 
1399 	blk_limits_io_min(limits, chunk_size);
1400 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1401 }
1402 
1403 static void raid_presuspend(struct dm_target *ti)
1404 {
1405 	struct raid_set *rs = ti->private;
1406 
1407 	md_stop_writes(&rs->md);
1408 }
1409 
1410 static void raid_postsuspend(struct dm_target *ti)
1411 {
1412 	struct raid_set *rs = ti->private;
1413 
1414 	mddev_suspend(&rs->md);
1415 }
1416 
1417 static void raid_resume(struct dm_target *ti)
1418 {
1419 	struct raid_set *rs = ti->private;
1420 
1421 	set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1422 	if (!rs->bitmap_loaded) {
1423 		bitmap_load(&rs->md);
1424 		rs->bitmap_loaded = 1;
1425 	}
1426 
1427 	clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1428 	mddev_resume(&rs->md);
1429 }
1430 
1431 static struct target_type raid_target = {
1432 	.name = "raid",
1433 	.version = {1, 3, 1},
1434 	.module = THIS_MODULE,
1435 	.ctr = raid_ctr,
1436 	.dtr = raid_dtr,
1437 	.map = raid_map,
1438 	.status = raid_status,
1439 	.iterate_devices = raid_iterate_devices,
1440 	.io_hints = raid_io_hints,
1441 	.presuspend = raid_presuspend,
1442 	.postsuspend = raid_postsuspend,
1443 	.resume = raid_resume,
1444 };
1445 
1446 static int __init dm_raid_init(void)
1447 {
1448 	return dm_register_target(&raid_target);
1449 }
1450 
1451 static void __exit dm_raid_exit(void)
1452 {
1453 	dm_unregister_target(&raid_target);
1454 }
1455 
1456 module_init(dm_raid_init);
1457 module_exit(dm_raid_exit);
1458 
1459 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1460 MODULE_ALIAS("dm-raid1");
1461 MODULE_ALIAS("dm-raid10");
1462 MODULE_ALIAS("dm-raid4");
1463 MODULE_ALIAS("dm-raid5");
1464 MODULE_ALIAS("dm-raid6");
1465 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1466 MODULE_LICENSE("GPL");
1467