xref: /openbmc/linux/drivers/md/dm-mpath.c (revision e8e0929d)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-path-selector.h"
11 #include "dm-uevent.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/workqueue.h>
21 #include <scsi/scsi_dh.h>
22 #include <asm/atomic.h>
23 
24 #define DM_MSG_PREFIX "multipath"
25 #define MESG_STR(x) x, sizeof(x)
26 
27 /* Path properties */
28 struct pgpath {
29 	struct list_head list;
30 
31 	struct priority_group *pg;	/* Owning PG */
32 	unsigned is_active;		/* Path status */
33 	unsigned fail_count;		/* Cumulative failure count */
34 
35 	struct dm_path path;
36 	struct work_struct deactivate_path;
37 	struct work_struct activate_path;
38 };
39 
40 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
41 
42 /*
43  * Paths are grouped into Priority Groups and numbered from 1 upwards.
44  * Each has a path selector which controls which path gets used.
45  */
46 struct priority_group {
47 	struct list_head list;
48 
49 	struct multipath *m;		/* Owning multipath instance */
50 	struct path_selector ps;
51 
52 	unsigned pg_num;		/* Reference number */
53 	unsigned bypassed;		/* Temporarily bypass this PG? */
54 
55 	unsigned nr_pgpaths;		/* Number of paths in PG */
56 	struct list_head pgpaths;
57 };
58 
59 /* Multipath context */
60 struct multipath {
61 	struct list_head list;
62 	struct dm_target *ti;
63 
64 	spinlock_t lock;
65 
66 	const char *hw_handler_name;
67 	char *hw_handler_params;
68 	unsigned nr_priority_groups;
69 	struct list_head priority_groups;
70 	unsigned pg_init_required;	/* pg_init needs calling? */
71 	unsigned pg_init_in_progress;	/* Only one pg_init allowed at once */
72 
73 	unsigned nr_valid_paths;	/* Total number of usable paths */
74 	struct pgpath *current_pgpath;
75 	struct priority_group *current_pg;
76 	struct priority_group *next_pg;	/* Switch to this PG if set */
77 	unsigned repeat_count;		/* I/Os left before calling PS again */
78 
79 	unsigned queue_io;		/* Must we queue all I/O? */
80 	unsigned queue_if_no_path;	/* Queue I/O if last path fails? */
81 	unsigned saved_queue_if_no_path;/* Saved state during suspension */
82 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
83 	unsigned pg_init_count;		/* Number of times pg_init called */
84 
85 	struct work_struct process_queued_ios;
86 	struct list_head queued_ios;
87 	unsigned queue_size;
88 
89 	struct work_struct trigger_event;
90 
91 	/*
92 	 * We must use a mempool of dm_mpath_io structs so that we
93 	 * can resubmit bios on error.
94 	 */
95 	mempool_t *mpio_pool;
96 };
97 
98 /*
99  * Context information attached to each bio we process.
100  */
101 struct dm_mpath_io {
102 	struct pgpath *pgpath;
103 	size_t nr_bytes;
104 };
105 
106 typedef int (*action_fn) (struct pgpath *pgpath);
107 
108 #define MIN_IOS 256	/* Mempool size */
109 
110 static struct kmem_cache *_mpio_cache;
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void process_queued_ios(struct work_struct *work);
114 static void trigger_event(struct work_struct *work);
115 static void activate_path(struct work_struct *work);
116 static void deactivate_path(struct work_struct *work);
117 
118 
119 /*-----------------------------------------------
120  * Allocation routines
121  *-----------------------------------------------*/
122 
123 static struct pgpath *alloc_pgpath(void)
124 {
125 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
126 
127 	if (pgpath) {
128 		pgpath->is_active = 1;
129 		INIT_WORK(&pgpath->deactivate_path, deactivate_path);
130 		INIT_WORK(&pgpath->activate_path, activate_path);
131 	}
132 
133 	return pgpath;
134 }
135 
136 static void free_pgpath(struct pgpath *pgpath)
137 {
138 	kfree(pgpath);
139 }
140 
141 static void deactivate_path(struct work_struct *work)
142 {
143 	struct pgpath *pgpath =
144 		container_of(work, struct pgpath, deactivate_path);
145 
146 	blk_abort_queue(pgpath->path.dev->bdev->bd_disk->queue);
147 }
148 
149 static struct priority_group *alloc_priority_group(void)
150 {
151 	struct priority_group *pg;
152 
153 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
154 
155 	if (pg)
156 		INIT_LIST_HEAD(&pg->pgpaths);
157 
158 	return pg;
159 }
160 
161 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
162 {
163 	struct pgpath *pgpath, *tmp;
164 	struct multipath *m = ti->private;
165 
166 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
167 		list_del(&pgpath->list);
168 		if (m->hw_handler_name)
169 			scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
170 		dm_put_device(ti, pgpath->path.dev);
171 		free_pgpath(pgpath);
172 	}
173 }
174 
175 static void free_priority_group(struct priority_group *pg,
176 				struct dm_target *ti)
177 {
178 	struct path_selector *ps = &pg->ps;
179 
180 	if (ps->type) {
181 		ps->type->destroy(ps);
182 		dm_put_path_selector(ps->type);
183 	}
184 
185 	free_pgpaths(&pg->pgpaths, ti);
186 	kfree(pg);
187 }
188 
189 static struct multipath *alloc_multipath(struct dm_target *ti)
190 {
191 	struct multipath *m;
192 
193 	m = kzalloc(sizeof(*m), GFP_KERNEL);
194 	if (m) {
195 		INIT_LIST_HEAD(&m->priority_groups);
196 		INIT_LIST_HEAD(&m->queued_ios);
197 		spin_lock_init(&m->lock);
198 		m->queue_io = 1;
199 		INIT_WORK(&m->process_queued_ios, process_queued_ios);
200 		INIT_WORK(&m->trigger_event, trigger_event);
201 		m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
202 		if (!m->mpio_pool) {
203 			kfree(m);
204 			return NULL;
205 		}
206 		m->ti = ti;
207 		ti->private = m;
208 	}
209 
210 	return m;
211 }
212 
213 static void free_multipath(struct multipath *m)
214 {
215 	struct priority_group *pg, *tmp;
216 
217 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
218 		list_del(&pg->list);
219 		free_priority_group(pg, m->ti);
220 	}
221 
222 	kfree(m->hw_handler_name);
223 	kfree(m->hw_handler_params);
224 	mempool_destroy(m->mpio_pool);
225 	kfree(m);
226 }
227 
228 
229 /*-----------------------------------------------
230  * Path selection
231  *-----------------------------------------------*/
232 
233 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
234 {
235 	m->current_pg = pgpath->pg;
236 
237 	/* Must we initialise the PG first, and queue I/O till it's ready? */
238 	if (m->hw_handler_name) {
239 		m->pg_init_required = 1;
240 		m->queue_io = 1;
241 	} else {
242 		m->pg_init_required = 0;
243 		m->queue_io = 0;
244 	}
245 
246 	m->pg_init_count = 0;
247 }
248 
249 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
250 			       size_t nr_bytes)
251 {
252 	struct dm_path *path;
253 
254 	path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
255 	if (!path)
256 		return -ENXIO;
257 
258 	m->current_pgpath = path_to_pgpath(path);
259 
260 	if (m->current_pg != pg)
261 		__switch_pg(m, m->current_pgpath);
262 
263 	return 0;
264 }
265 
266 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
267 {
268 	struct priority_group *pg;
269 	unsigned bypassed = 1;
270 
271 	if (!m->nr_valid_paths)
272 		goto failed;
273 
274 	/* Were we instructed to switch PG? */
275 	if (m->next_pg) {
276 		pg = m->next_pg;
277 		m->next_pg = NULL;
278 		if (!__choose_path_in_pg(m, pg, nr_bytes))
279 			return;
280 	}
281 
282 	/* Don't change PG until it has no remaining paths */
283 	if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
284 		return;
285 
286 	/*
287 	 * Loop through priority groups until we find a valid path.
288 	 * First time we skip PGs marked 'bypassed'.
289 	 * Second time we only try the ones we skipped.
290 	 */
291 	do {
292 		list_for_each_entry(pg, &m->priority_groups, list) {
293 			if (pg->bypassed == bypassed)
294 				continue;
295 			if (!__choose_path_in_pg(m, pg, nr_bytes))
296 				return;
297 		}
298 	} while (bypassed--);
299 
300 failed:
301 	m->current_pgpath = NULL;
302 	m->current_pg = NULL;
303 }
304 
305 /*
306  * Check whether bios must be queued in the device-mapper core rather
307  * than here in the target.
308  *
309  * m->lock must be held on entry.
310  *
311  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
312  * same value then we are not between multipath_presuspend()
313  * and multipath_resume() calls and we have no need to check
314  * for the DMF_NOFLUSH_SUSPENDING flag.
315  */
316 static int __must_push_back(struct multipath *m)
317 {
318 	return (m->queue_if_no_path != m->saved_queue_if_no_path &&
319 		dm_noflush_suspending(m->ti));
320 }
321 
322 static int map_io(struct multipath *m, struct request *clone,
323 		  struct dm_mpath_io *mpio, unsigned was_queued)
324 {
325 	int r = DM_MAPIO_REMAPPED;
326 	size_t nr_bytes = blk_rq_bytes(clone);
327 	unsigned long flags;
328 	struct pgpath *pgpath;
329 	struct block_device *bdev;
330 
331 	spin_lock_irqsave(&m->lock, flags);
332 
333 	/* Do we need to select a new pgpath? */
334 	if (!m->current_pgpath ||
335 	    (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
336 		__choose_pgpath(m, nr_bytes);
337 
338 	pgpath = m->current_pgpath;
339 
340 	if (was_queued)
341 		m->queue_size--;
342 
343 	if ((pgpath && m->queue_io) ||
344 	    (!pgpath && m->queue_if_no_path)) {
345 		/* Queue for the daemon to resubmit */
346 		list_add_tail(&clone->queuelist, &m->queued_ios);
347 		m->queue_size++;
348 		if ((m->pg_init_required && !m->pg_init_in_progress) ||
349 		    !m->queue_io)
350 			queue_work(kmultipathd, &m->process_queued_ios);
351 		pgpath = NULL;
352 		r = DM_MAPIO_SUBMITTED;
353 	} else if (pgpath) {
354 		bdev = pgpath->path.dev->bdev;
355 		clone->q = bdev_get_queue(bdev);
356 		clone->rq_disk = bdev->bd_disk;
357 	} else if (__must_push_back(m))
358 		r = DM_MAPIO_REQUEUE;
359 	else
360 		r = -EIO;	/* Failed */
361 
362 	mpio->pgpath = pgpath;
363 	mpio->nr_bytes = nr_bytes;
364 
365 	if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
366 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
367 					      nr_bytes);
368 
369 	spin_unlock_irqrestore(&m->lock, flags);
370 
371 	return r;
372 }
373 
374 /*
375  * If we run out of usable paths, should we queue I/O or error it?
376  */
377 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
378 			    unsigned save_old_value)
379 {
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&m->lock, flags);
383 
384 	if (save_old_value)
385 		m->saved_queue_if_no_path = m->queue_if_no_path;
386 	else
387 		m->saved_queue_if_no_path = queue_if_no_path;
388 	m->queue_if_no_path = queue_if_no_path;
389 	if (!m->queue_if_no_path && m->queue_size)
390 		queue_work(kmultipathd, &m->process_queued_ios);
391 
392 	spin_unlock_irqrestore(&m->lock, flags);
393 
394 	return 0;
395 }
396 
397 /*-----------------------------------------------------------------
398  * The multipath daemon is responsible for resubmitting queued ios.
399  *---------------------------------------------------------------*/
400 
401 static void dispatch_queued_ios(struct multipath *m)
402 {
403 	int r;
404 	unsigned long flags;
405 	struct dm_mpath_io *mpio;
406 	union map_info *info;
407 	struct request *clone, *n;
408 	LIST_HEAD(cl);
409 
410 	spin_lock_irqsave(&m->lock, flags);
411 	list_splice_init(&m->queued_ios, &cl);
412 	spin_unlock_irqrestore(&m->lock, flags);
413 
414 	list_for_each_entry_safe(clone, n, &cl, queuelist) {
415 		list_del_init(&clone->queuelist);
416 
417 		info = dm_get_rq_mapinfo(clone);
418 		mpio = info->ptr;
419 
420 		r = map_io(m, clone, mpio, 1);
421 		if (r < 0) {
422 			mempool_free(mpio, m->mpio_pool);
423 			dm_kill_unmapped_request(clone, r);
424 		} else if (r == DM_MAPIO_REMAPPED)
425 			dm_dispatch_request(clone);
426 		else if (r == DM_MAPIO_REQUEUE) {
427 			mempool_free(mpio, m->mpio_pool);
428 			dm_requeue_unmapped_request(clone);
429 		}
430 	}
431 }
432 
433 static void process_queued_ios(struct work_struct *work)
434 {
435 	struct multipath *m =
436 		container_of(work, struct multipath, process_queued_ios);
437 	struct pgpath *pgpath = NULL, *tmp;
438 	unsigned must_queue = 1;
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&m->lock, flags);
442 
443 	if (!m->queue_size)
444 		goto out;
445 
446 	if (!m->current_pgpath)
447 		__choose_pgpath(m, 0);
448 
449 	pgpath = m->current_pgpath;
450 
451 	if ((pgpath && !m->queue_io) ||
452 	    (!pgpath && !m->queue_if_no_path))
453 		must_queue = 0;
454 
455 	if (m->pg_init_required && !m->pg_init_in_progress && pgpath) {
456 		m->pg_init_count++;
457 		m->pg_init_required = 0;
458 		list_for_each_entry(tmp, &pgpath->pg->pgpaths, list) {
459 			if (queue_work(kmpath_handlerd, &tmp->activate_path))
460 				m->pg_init_in_progress++;
461 		}
462 	}
463 out:
464 	spin_unlock_irqrestore(&m->lock, flags);
465 	if (!must_queue)
466 		dispatch_queued_ios(m);
467 }
468 
469 /*
470  * An event is triggered whenever a path is taken out of use.
471  * Includes path failure and PG bypass.
472  */
473 static void trigger_event(struct work_struct *work)
474 {
475 	struct multipath *m =
476 		container_of(work, struct multipath, trigger_event);
477 
478 	dm_table_event(m->ti->table);
479 }
480 
481 /*-----------------------------------------------------------------
482  * Constructor/argument parsing:
483  * <#multipath feature args> [<arg>]*
484  * <#hw_handler args> [hw_handler [<arg>]*]
485  * <#priority groups>
486  * <initial priority group>
487  *     [<selector> <#selector args> [<arg>]*
488  *      <#paths> <#per-path selector args>
489  *         [<path> [<arg>]* ]+ ]+
490  *---------------------------------------------------------------*/
491 struct param {
492 	unsigned min;
493 	unsigned max;
494 	char *error;
495 };
496 
497 static int read_param(struct param *param, char *str, unsigned *v, char **error)
498 {
499 	if (!str ||
500 	    (sscanf(str, "%u", v) != 1) ||
501 	    (*v < param->min) ||
502 	    (*v > param->max)) {
503 		*error = param->error;
504 		return -EINVAL;
505 	}
506 
507 	return 0;
508 }
509 
510 struct arg_set {
511 	unsigned argc;
512 	char **argv;
513 };
514 
515 static char *shift(struct arg_set *as)
516 {
517 	char *r;
518 
519 	if (as->argc) {
520 		as->argc--;
521 		r = *as->argv;
522 		as->argv++;
523 		return r;
524 	}
525 
526 	return NULL;
527 }
528 
529 static void consume(struct arg_set *as, unsigned n)
530 {
531 	BUG_ON (as->argc < n);
532 	as->argc -= n;
533 	as->argv += n;
534 }
535 
536 static int parse_path_selector(struct arg_set *as, struct priority_group *pg,
537 			       struct dm_target *ti)
538 {
539 	int r;
540 	struct path_selector_type *pst;
541 	unsigned ps_argc;
542 
543 	static struct param _params[] = {
544 		{0, 1024, "invalid number of path selector args"},
545 	};
546 
547 	pst = dm_get_path_selector(shift(as));
548 	if (!pst) {
549 		ti->error = "unknown path selector type";
550 		return -EINVAL;
551 	}
552 
553 	r = read_param(_params, shift(as), &ps_argc, &ti->error);
554 	if (r) {
555 		dm_put_path_selector(pst);
556 		return -EINVAL;
557 	}
558 
559 	if (ps_argc > as->argc) {
560 		dm_put_path_selector(pst);
561 		ti->error = "not enough arguments for path selector";
562 		return -EINVAL;
563 	}
564 
565 	r = pst->create(&pg->ps, ps_argc, as->argv);
566 	if (r) {
567 		dm_put_path_selector(pst);
568 		ti->error = "path selector constructor failed";
569 		return r;
570 	}
571 
572 	pg->ps.type = pst;
573 	consume(as, ps_argc);
574 
575 	return 0;
576 }
577 
578 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps,
579 			       struct dm_target *ti)
580 {
581 	int r;
582 	struct pgpath *p;
583 	struct multipath *m = ti->private;
584 
585 	/* we need at least a path arg */
586 	if (as->argc < 1) {
587 		ti->error = "no device given";
588 		return ERR_PTR(-EINVAL);
589 	}
590 
591 	p = alloc_pgpath();
592 	if (!p)
593 		return ERR_PTR(-ENOMEM);
594 
595 	r = dm_get_device(ti, shift(as), ti->begin, ti->len,
596 			  dm_table_get_mode(ti->table), &p->path.dev);
597 	if (r) {
598 		ti->error = "error getting device";
599 		goto bad;
600 	}
601 
602 	if (m->hw_handler_name) {
603 		struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
604 
605 		r = scsi_dh_attach(q, m->hw_handler_name);
606 		if (r == -EBUSY) {
607 			/*
608 			 * Already attached to different hw_handler,
609 			 * try to reattach with correct one.
610 			 */
611 			scsi_dh_detach(q);
612 			r = scsi_dh_attach(q, m->hw_handler_name);
613 		}
614 
615 		if (r < 0) {
616 			ti->error = "error attaching hardware handler";
617 			dm_put_device(ti, p->path.dev);
618 			goto bad;
619 		}
620 
621 		if (m->hw_handler_params) {
622 			r = scsi_dh_set_params(q, m->hw_handler_params);
623 			if (r < 0) {
624 				ti->error = "unable to set hardware "
625 							"handler parameters";
626 				scsi_dh_detach(q);
627 				dm_put_device(ti, p->path.dev);
628 				goto bad;
629 			}
630 		}
631 	}
632 
633 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
634 	if (r) {
635 		dm_put_device(ti, p->path.dev);
636 		goto bad;
637 	}
638 
639 	return p;
640 
641  bad:
642 	free_pgpath(p);
643 	return ERR_PTR(r);
644 }
645 
646 static struct priority_group *parse_priority_group(struct arg_set *as,
647 						   struct multipath *m)
648 {
649 	static struct param _params[] = {
650 		{1, 1024, "invalid number of paths"},
651 		{0, 1024, "invalid number of selector args"}
652 	};
653 
654 	int r;
655 	unsigned i, nr_selector_args, nr_params;
656 	struct priority_group *pg;
657 	struct dm_target *ti = m->ti;
658 
659 	if (as->argc < 2) {
660 		as->argc = 0;
661 		ti->error = "not enough priority group arguments";
662 		return ERR_PTR(-EINVAL);
663 	}
664 
665 	pg = alloc_priority_group();
666 	if (!pg) {
667 		ti->error = "couldn't allocate priority group";
668 		return ERR_PTR(-ENOMEM);
669 	}
670 	pg->m = m;
671 
672 	r = parse_path_selector(as, pg, ti);
673 	if (r)
674 		goto bad;
675 
676 	/*
677 	 * read the paths
678 	 */
679 	r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error);
680 	if (r)
681 		goto bad;
682 
683 	r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error);
684 	if (r)
685 		goto bad;
686 
687 	nr_params = 1 + nr_selector_args;
688 	for (i = 0; i < pg->nr_pgpaths; i++) {
689 		struct pgpath *pgpath;
690 		struct arg_set path_args;
691 
692 		if (as->argc < nr_params) {
693 			ti->error = "not enough path parameters";
694 			goto bad;
695 		}
696 
697 		path_args.argc = nr_params;
698 		path_args.argv = as->argv;
699 
700 		pgpath = parse_path(&path_args, &pg->ps, ti);
701 		if (IS_ERR(pgpath)) {
702 			r = PTR_ERR(pgpath);
703 			goto bad;
704 		}
705 
706 		pgpath->pg = pg;
707 		list_add_tail(&pgpath->list, &pg->pgpaths);
708 		consume(as, nr_params);
709 	}
710 
711 	return pg;
712 
713  bad:
714 	free_priority_group(pg, ti);
715 	return ERR_PTR(r);
716 }
717 
718 static int parse_hw_handler(struct arg_set *as, struct multipath *m)
719 {
720 	unsigned hw_argc;
721 	int ret;
722 	struct dm_target *ti = m->ti;
723 
724 	static struct param _params[] = {
725 		{0, 1024, "invalid number of hardware handler args"},
726 	};
727 
728 	if (read_param(_params, shift(as), &hw_argc, &ti->error))
729 		return -EINVAL;
730 
731 	if (!hw_argc)
732 		return 0;
733 
734 	if (hw_argc > as->argc) {
735 		ti->error = "not enough arguments for hardware handler";
736 		return -EINVAL;
737 	}
738 
739 	m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL);
740 	request_module("scsi_dh_%s", m->hw_handler_name);
741 	if (scsi_dh_handler_exist(m->hw_handler_name) == 0) {
742 		ti->error = "unknown hardware handler type";
743 		ret = -EINVAL;
744 		goto fail;
745 	}
746 
747 	if (hw_argc > 1) {
748 		char *p;
749 		int i, j, len = 4;
750 
751 		for (i = 0; i <= hw_argc - 2; i++)
752 			len += strlen(as->argv[i]) + 1;
753 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
754 		if (!p) {
755 			ti->error = "memory allocation failed";
756 			ret = -ENOMEM;
757 			goto fail;
758 		}
759 		j = sprintf(p, "%d", hw_argc - 1);
760 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
761 			j = sprintf(p, "%s", as->argv[i]);
762 	}
763 	consume(as, hw_argc - 1);
764 
765 	return 0;
766 fail:
767 	kfree(m->hw_handler_name);
768 	m->hw_handler_name = NULL;
769 	return ret;
770 }
771 
772 static int parse_features(struct arg_set *as, struct multipath *m)
773 {
774 	int r;
775 	unsigned argc;
776 	struct dm_target *ti = m->ti;
777 	const char *param_name;
778 
779 	static struct param _params[] = {
780 		{0, 3, "invalid number of feature args"},
781 		{1, 50, "pg_init_retries must be between 1 and 50"},
782 	};
783 
784 	r = read_param(_params, shift(as), &argc, &ti->error);
785 	if (r)
786 		return -EINVAL;
787 
788 	if (!argc)
789 		return 0;
790 
791 	do {
792 		param_name = shift(as);
793 		argc--;
794 
795 		if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) {
796 			r = queue_if_no_path(m, 1, 0);
797 			continue;
798 		}
799 
800 		if (!strnicmp(param_name, MESG_STR("pg_init_retries")) &&
801 		    (argc >= 1)) {
802 			r = read_param(_params + 1, shift(as),
803 				       &m->pg_init_retries, &ti->error);
804 			argc--;
805 			continue;
806 		}
807 
808 		ti->error = "Unrecognised multipath feature request";
809 		r = -EINVAL;
810 	} while (argc && !r);
811 
812 	return r;
813 }
814 
815 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
816 			 char **argv)
817 {
818 	/* target parameters */
819 	static struct param _params[] = {
820 		{1, 1024, "invalid number of priority groups"},
821 		{1, 1024, "invalid initial priority group number"},
822 	};
823 
824 	int r;
825 	struct multipath *m;
826 	struct arg_set as;
827 	unsigned pg_count = 0;
828 	unsigned next_pg_num;
829 
830 	as.argc = argc;
831 	as.argv = argv;
832 
833 	m = alloc_multipath(ti);
834 	if (!m) {
835 		ti->error = "can't allocate multipath";
836 		return -EINVAL;
837 	}
838 
839 	r = parse_features(&as, m);
840 	if (r)
841 		goto bad;
842 
843 	r = parse_hw_handler(&as, m);
844 	if (r)
845 		goto bad;
846 
847 	r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error);
848 	if (r)
849 		goto bad;
850 
851 	r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error);
852 	if (r)
853 		goto bad;
854 
855 	/* parse the priority groups */
856 	while (as.argc) {
857 		struct priority_group *pg;
858 
859 		pg = parse_priority_group(&as, m);
860 		if (IS_ERR(pg)) {
861 			r = PTR_ERR(pg);
862 			goto bad;
863 		}
864 
865 		m->nr_valid_paths += pg->nr_pgpaths;
866 		list_add_tail(&pg->list, &m->priority_groups);
867 		pg_count++;
868 		pg->pg_num = pg_count;
869 		if (!--next_pg_num)
870 			m->next_pg = pg;
871 	}
872 
873 	if (pg_count != m->nr_priority_groups) {
874 		ti->error = "priority group count mismatch";
875 		r = -EINVAL;
876 		goto bad;
877 	}
878 
879 	ti->num_flush_requests = 1;
880 
881 	return 0;
882 
883  bad:
884 	free_multipath(m);
885 	return r;
886 }
887 
888 static void multipath_dtr(struct dm_target *ti)
889 {
890 	struct multipath *m = (struct multipath *) ti->private;
891 
892 	flush_workqueue(kmpath_handlerd);
893 	flush_workqueue(kmultipathd);
894 	flush_scheduled_work();
895 	free_multipath(m);
896 }
897 
898 /*
899  * Map cloned requests
900  */
901 static int multipath_map(struct dm_target *ti, struct request *clone,
902 			 union map_info *map_context)
903 {
904 	int r;
905 	struct dm_mpath_io *mpio;
906 	struct multipath *m = (struct multipath *) ti->private;
907 
908 	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
909 	if (!mpio)
910 		/* ENOMEM, requeue */
911 		return DM_MAPIO_REQUEUE;
912 	memset(mpio, 0, sizeof(*mpio));
913 
914 	map_context->ptr = mpio;
915 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
916 	r = map_io(m, clone, mpio, 0);
917 	if (r < 0 || r == DM_MAPIO_REQUEUE)
918 		mempool_free(mpio, m->mpio_pool);
919 
920 	return r;
921 }
922 
923 /*
924  * Take a path out of use.
925  */
926 static int fail_path(struct pgpath *pgpath)
927 {
928 	unsigned long flags;
929 	struct multipath *m = pgpath->pg->m;
930 
931 	spin_lock_irqsave(&m->lock, flags);
932 
933 	if (!pgpath->is_active)
934 		goto out;
935 
936 	DMWARN("Failing path %s.", pgpath->path.dev->name);
937 
938 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
939 	pgpath->is_active = 0;
940 	pgpath->fail_count++;
941 
942 	m->nr_valid_paths--;
943 
944 	if (pgpath == m->current_pgpath)
945 		m->current_pgpath = NULL;
946 
947 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
948 		      pgpath->path.dev->name, m->nr_valid_paths);
949 
950 	schedule_work(&m->trigger_event);
951 	queue_work(kmultipathd, &pgpath->deactivate_path);
952 
953 out:
954 	spin_unlock_irqrestore(&m->lock, flags);
955 
956 	return 0;
957 }
958 
959 /*
960  * Reinstate a previously-failed path
961  */
962 static int reinstate_path(struct pgpath *pgpath)
963 {
964 	int r = 0;
965 	unsigned long flags;
966 	struct multipath *m = pgpath->pg->m;
967 
968 	spin_lock_irqsave(&m->lock, flags);
969 
970 	if (pgpath->is_active)
971 		goto out;
972 
973 	if (!pgpath->pg->ps.type->reinstate_path) {
974 		DMWARN("Reinstate path not supported by path selector %s",
975 		       pgpath->pg->ps.type->name);
976 		r = -EINVAL;
977 		goto out;
978 	}
979 
980 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
981 	if (r)
982 		goto out;
983 
984 	pgpath->is_active = 1;
985 
986 	if (!m->nr_valid_paths++ && m->queue_size) {
987 		m->current_pgpath = NULL;
988 		queue_work(kmultipathd, &m->process_queued_ios);
989 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
990 		if (queue_work(kmpath_handlerd, &pgpath->activate_path))
991 			m->pg_init_in_progress++;
992 	}
993 
994 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
995 		      pgpath->path.dev->name, m->nr_valid_paths);
996 
997 	schedule_work(&m->trigger_event);
998 
999 out:
1000 	spin_unlock_irqrestore(&m->lock, flags);
1001 
1002 	return r;
1003 }
1004 
1005 /*
1006  * Fail or reinstate all paths that match the provided struct dm_dev.
1007  */
1008 static int action_dev(struct multipath *m, struct dm_dev *dev,
1009 		      action_fn action)
1010 {
1011 	int r = 0;
1012 	struct pgpath *pgpath;
1013 	struct priority_group *pg;
1014 
1015 	list_for_each_entry(pg, &m->priority_groups, list) {
1016 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1017 			if (pgpath->path.dev == dev)
1018 				r = action(pgpath);
1019 		}
1020 	}
1021 
1022 	return r;
1023 }
1024 
1025 /*
1026  * Temporarily try to avoid having to use the specified PG
1027  */
1028 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1029 		      int bypassed)
1030 {
1031 	unsigned long flags;
1032 
1033 	spin_lock_irqsave(&m->lock, flags);
1034 
1035 	pg->bypassed = bypassed;
1036 	m->current_pgpath = NULL;
1037 	m->current_pg = NULL;
1038 
1039 	spin_unlock_irqrestore(&m->lock, flags);
1040 
1041 	schedule_work(&m->trigger_event);
1042 }
1043 
1044 /*
1045  * Switch to using the specified PG from the next I/O that gets mapped
1046  */
1047 static int switch_pg_num(struct multipath *m, const char *pgstr)
1048 {
1049 	struct priority_group *pg;
1050 	unsigned pgnum;
1051 	unsigned long flags;
1052 
1053 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1054 	    (pgnum > m->nr_priority_groups)) {
1055 		DMWARN("invalid PG number supplied to switch_pg_num");
1056 		return -EINVAL;
1057 	}
1058 
1059 	spin_lock_irqsave(&m->lock, flags);
1060 	list_for_each_entry(pg, &m->priority_groups, list) {
1061 		pg->bypassed = 0;
1062 		if (--pgnum)
1063 			continue;
1064 
1065 		m->current_pgpath = NULL;
1066 		m->current_pg = NULL;
1067 		m->next_pg = pg;
1068 	}
1069 	spin_unlock_irqrestore(&m->lock, flags);
1070 
1071 	schedule_work(&m->trigger_event);
1072 	return 0;
1073 }
1074 
1075 /*
1076  * Set/clear bypassed status of a PG.
1077  * PGs are numbered upwards from 1 in the order they were declared.
1078  */
1079 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1080 {
1081 	struct priority_group *pg;
1082 	unsigned pgnum;
1083 
1084 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1085 	    (pgnum > m->nr_priority_groups)) {
1086 		DMWARN("invalid PG number supplied to bypass_pg");
1087 		return -EINVAL;
1088 	}
1089 
1090 	list_for_each_entry(pg, &m->priority_groups, list) {
1091 		if (!--pgnum)
1092 			break;
1093 	}
1094 
1095 	bypass_pg(m, pg, bypassed);
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Should we retry pg_init immediately?
1101  */
1102 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1103 {
1104 	unsigned long flags;
1105 	int limit_reached = 0;
1106 
1107 	spin_lock_irqsave(&m->lock, flags);
1108 
1109 	if (m->pg_init_count <= m->pg_init_retries)
1110 		m->pg_init_required = 1;
1111 	else
1112 		limit_reached = 1;
1113 
1114 	spin_unlock_irqrestore(&m->lock, flags);
1115 
1116 	return limit_reached;
1117 }
1118 
1119 static void pg_init_done(struct dm_path *path, int errors)
1120 {
1121 	struct pgpath *pgpath = path_to_pgpath(path);
1122 	struct priority_group *pg = pgpath->pg;
1123 	struct multipath *m = pg->m;
1124 	unsigned long flags;
1125 
1126 	/* device or driver problems */
1127 	switch (errors) {
1128 	case SCSI_DH_OK:
1129 		break;
1130 	case SCSI_DH_NOSYS:
1131 		if (!m->hw_handler_name) {
1132 			errors = 0;
1133 			break;
1134 		}
1135 		DMERR("Cannot failover device because scsi_dh_%s was not "
1136 		      "loaded.", m->hw_handler_name);
1137 		/*
1138 		 * Fail path for now, so we do not ping pong
1139 		 */
1140 		fail_path(pgpath);
1141 		break;
1142 	case SCSI_DH_DEV_TEMP_BUSY:
1143 		/*
1144 		 * Probably doing something like FW upgrade on the
1145 		 * controller so try the other pg.
1146 		 */
1147 		bypass_pg(m, pg, 1);
1148 		break;
1149 	/* TODO: For SCSI_DH_RETRY we should wait a couple seconds */
1150 	case SCSI_DH_RETRY:
1151 	case SCSI_DH_IMM_RETRY:
1152 	case SCSI_DH_RES_TEMP_UNAVAIL:
1153 		if (pg_init_limit_reached(m, pgpath))
1154 			fail_path(pgpath);
1155 		errors = 0;
1156 		break;
1157 	default:
1158 		/*
1159 		 * We probably do not want to fail the path for a device
1160 		 * error, but this is what the old dm did. In future
1161 		 * patches we can do more advanced handling.
1162 		 */
1163 		fail_path(pgpath);
1164 	}
1165 
1166 	spin_lock_irqsave(&m->lock, flags);
1167 	if (errors) {
1168 		if (pgpath == m->current_pgpath) {
1169 			DMERR("Could not failover device. Error %d.", errors);
1170 			m->current_pgpath = NULL;
1171 			m->current_pg = NULL;
1172 		}
1173 	} else if (!m->pg_init_required) {
1174 		m->queue_io = 0;
1175 		pg->bypassed = 0;
1176 	}
1177 
1178 	m->pg_init_in_progress--;
1179 	if (!m->pg_init_in_progress)
1180 		queue_work(kmultipathd, &m->process_queued_ios);
1181 	spin_unlock_irqrestore(&m->lock, flags);
1182 }
1183 
1184 static void activate_path(struct work_struct *work)
1185 {
1186 	int ret;
1187 	struct pgpath *pgpath =
1188 		container_of(work, struct pgpath, activate_path);
1189 
1190 	ret = scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev));
1191 	pg_init_done(&pgpath->path, ret);
1192 }
1193 
1194 /*
1195  * end_io handling
1196  */
1197 static int do_end_io(struct multipath *m, struct request *clone,
1198 		     int error, struct dm_mpath_io *mpio)
1199 {
1200 	/*
1201 	 * We don't queue any clone request inside the multipath target
1202 	 * during end I/O handling, since those clone requests don't have
1203 	 * bio clones.  If we queue them inside the multipath target,
1204 	 * we need to make bio clones, that requires memory allocation.
1205 	 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1206 	 *  don't have bio clones.)
1207 	 * Instead of queueing the clone request here, we queue the original
1208 	 * request into dm core, which will remake a clone request and
1209 	 * clone bios for it and resubmit it later.
1210 	 */
1211 	int r = DM_ENDIO_REQUEUE;
1212 	unsigned long flags;
1213 
1214 	if (!error && !clone->errors)
1215 		return 0;	/* I/O complete */
1216 
1217 	if (error == -EOPNOTSUPP)
1218 		return error;
1219 
1220 	if (mpio->pgpath)
1221 		fail_path(mpio->pgpath);
1222 
1223 	spin_lock_irqsave(&m->lock, flags);
1224 	if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m))
1225 		r = -EIO;
1226 	spin_unlock_irqrestore(&m->lock, flags);
1227 
1228 	return r;
1229 }
1230 
1231 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1232 			    int error, union map_info *map_context)
1233 {
1234 	struct multipath *m = ti->private;
1235 	struct dm_mpath_io *mpio = map_context->ptr;
1236 	struct pgpath *pgpath = mpio->pgpath;
1237 	struct path_selector *ps;
1238 	int r;
1239 
1240 	r  = do_end_io(m, clone, error, mpio);
1241 	if (pgpath) {
1242 		ps = &pgpath->pg->ps;
1243 		if (ps->type->end_io)
1244 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1245 	}
1246 	mempool_free(mpio, m->mpio_pool);
1247 
1248 	return r;
1249 }
1250 
1251 /*
1252  * Suspend can't complete until all the I/O is processed so if
1253  * the last path fails we must error any remaining I/O.
1254  * Note that if the freeze_bdev fails while suspending, the
1255  * queue_if_no_path state is lost - userspace should reset it.
1256  */
1257 static void multipath_presuspend(struct dm_target *ti)
1258 {
1259 	struct multipath *m = (struct multipath *) ti->private;
1260 
1261 	queue_if_no_path(m, 0, 1);
1262 }
1263 
1264 /*
1265  * Restore the queue_if_no_path setting.
1266  */
1267 static void multipath_resume(struct dm_target *ti)
1268 {
1269 	struct multipath *m = (struct multipath *) ti->private;
1270 	unsigned long flags;
1271 
1272 	spin_lock_irqsave(&m->lock, flags);
1273 	m->queue_if_no_path = m->saved_queue_if_no_path;
1274 	spin_unlock_irqrestore(&m->lock, flags);
1275 }
1276 
1277 /*
1278  * Info output has the following format:
1279  * num_multipath_feature_args [multipath_feature_args]*
1280  * num_handler_status_args [handler_status_args]*
1281  * num_groups init_group_number
1282  *            [A|D|E num_ps_status_args [ps_status_args]*
1283  *             num_paths num_selector_args
1284  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1285  *
1286  * Table output has the following format (identical to the constructor string):
1287  * num_feature_args [features_args]*
1288  * num_handler_args hw_handler [hw_handler_args]*
1289  * num_groups init_group_number
1290  *     [priority selector-name num_ps_args [ps_args]*
1291  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1292  */
1293 static int multipath_status(struct dm_target *ti, status_type_t type,
1294 			    char *result, unsigned int maxlen)
1295 {
1296 	int sz = 0;
1297 	unsigned long flags;
1298 	struct multipath *m = (struct multipath *) ti->private;
1299 	struct priority_group *pg;
1300 	struct pgpath *p;
1301 	unsigned pg_num;
1302 	char state;
1303 
1304 	spin_lock_irqsave(&m->lock, flags);
1305 
1306 	/* Features */
1307 	if (type == STATUSTYPE_INFO)
1308 		DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1309 	else {
1310 		DMEMIT("%u ", m->queue_if_no_path +
1311 			      (m->pg_init_retries > 0) * 2);
1312 		if (m->queue_if_no_path)
1313 			DMEMIT("queue_if_no_path ");
1314 		if (m->pg_init_retries)
1315 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1316 	}
1317 
1318 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1319 		DMEMIT("0 ");
1320 	else
1321 		DMEMIT("1 %s ", m->hw_handler_name);
1322 
1323 	DMEMIT("%u ", m->nr_priority_groups);
1324 
1325 	if (m->next_pg)
1326 		pg_num = m->next_pg->pg_num;
1327 	else if (m->current_pg)
1328 		pg_num = m->current_pg->pg_num;
1329 	else
1330 			pg_num = 1;
1331 
1332 	DMEMIT("%u ", pg_num);
1333 
1334 	switch (type) {
1335 	case STATUSTYPE_INFO:
1336 		list_for_each_entry(pg, &m->priority_groups, list) {
1337 			if (pg->bypassed)
1338 				state = 'D';	/* Disabled */
1339 			else if (pg == m->current_pg)
1340 				state = 'A';	/* Currently Active */
1341 			else
1342 				state = 'E';	/* Enabled */
1343 
1344 			DMEMIT("%c ", state);
1345 
1346 			if (pg->ps.type->status)
1347 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1348 							  result + sz,
1349 							  maxlen - sz);
1350 			else
1351 				DMEMIT("0 ");
1352 
1353 			DMEMIT("%u %u ", pg->nr_pgpaths,
1354 			       pg->ps.type->info_args);
1355 
1356 			list_for_each_entry(p, &pg->pgpaths, list) {
1357 				DMEMIT("%s %s %u ", p->path.dev->name,
1358 				       p->is_active ? "A" : "F",
1359 				       p->fail_count);
1360 				if (pg->ps.type->status)
1361 					sz += pg->ps.type->status(&pg->ps,
1362 					      &p->path, type, result + sz,
1363 					      maxlen - sz);
1364 			}
1365 		}
1366 		break;
1367 
1368 	case STATUSTYPE_TABLE:
1369 		list_for_each_entry(pg, &m->priority_groups, list) {
1370 			DMEMIT("%s ", pg->ps.type->name);
1371 
1372 			if (pg->ps.type->status)
1373 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1374 							  result + sz,
1375 							  maxlen - sz);
1376 			else
1377 				DMEMIT("0 ");
1378 
1379 			DMEMIT("%u %u ", pg->nr_pgpaths,
1380 			       pg->ps.type->table_args);
1381 
1382 			list_for_each_entry(p, &pg->pgpaths, list) {
1383 				DMEMIT("%s ", p->path.dev->name);
1384 				if (pg->ps.type->status)
1385 					sz += pg->ps.type->status(&pg->ps,
1386 					      &p->path, type, result + sz,
1387 					      maxlen - sz);
1388 			}
1389 		}
1390 		break;
1391 	}
1392 
1393 	spin_unlock_irqrestore(&m->lock, flags);
1394 
1395 	return 0;
1396 }
1397 
1398 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1399 {
1400 	int r;
1401 	struct dm_dev *dev;
1402 	struct multipath *m = (struct multipath *) ti->private;
1403 	action_fn action;
1404 
1405 	if (argc == 1) {
1406 		if (!strnicmp(argv[0], MESG_STR("queue_if_no_path")))
1407 			return queue_if_no_path(m, 1, 0);
1408 		else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path")))
1409 			return queue_if_no_path(m, 0, 0);
1410 	}
1411 
1412 	if (argc != 2)
1413 		goto error;
1414 
1415 	if (!strnicmp(argv[0], MESG_STR("disable_group")))
1416 		return bypass_pg_num(m, argv[1], 1);
1417 	else if (!strnicmp(argv[0], MESG_STR("enable_group")))
1418 		return bypass_pg_num(m, argv[1], 0);
1419 	else if (!strnicmp(argv[0], MESG_STR("switch_group")))
1420 		return switch_pg_num(m, argv[1]);
1421 	else if (!strnicmp(argv[0], MESG_STR("reinstate_path")))
1422 		action = reinstate_path;
1423 	else if (!strnicmp(argv[0], MESG_STR("fail_path")))
1424 		action = fail_path;
1425 	else
1426 		goto error;
1427 
1428 	r = dm_get_device(ti, argv[1], ti->begin, ti->len,
1429 			  dm_table_get_mode(ti->table), &dev);
1430 	if (r) {
1431 		DMWARN("message: error getting device %s",
1432 		       argv[1]);
1433 		return -EINVAL;
1434 	}
1435 
1436 	r = action_dev(m, dev, action);
1437 
1438 	dm_put_device(ti, dev);
1439 
1440 	return r;
1441 
1442 error:
1443 	DMWARN("Unrecognised multipath message received.");
1444 	return -EINVAL;
1445 }
1446 
1447 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1448 			   unsigned long arg)
1449 {
1450 	struct multipath *m = (struct multipath *) ti->private;
1451 	struct block_device *bdev = NULL;
1452 	fmode_t mode = 0;
1453 	unsigned long flags;
1454 	int r = 0;
1455 
1456 	spin_lock_irqsave(&m->lock, flags);
1457 
1458 	if (!m->current_pgpath)
1459 		__choose_pgpath(m, 0);
1460 
1461 	if (m->current_pgpath) {
1462 		bdev = m->current_pgpath->path.dev->bdev;
1463 		mode = m->current_pgpath->path.dev->mode;
1464 	}
1465 
1466 	if (m->queue_io)
1467 		r = -EAGAIN;
1468 	else if (!bdev)
1469 		r = -EIO;
1470 
1471 	spin_unlock_irqrestore(&m->lock, flags);
1472 
1473 	return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1474 }
1475 
1476 static int multipath_iterate_devices(struct dm_target *ti,
1477 				     iterate_devices_callout_fn fn, void *data)
1478 {
1479 	struct multipath *m = ti->private;
1480 	struct priority_group *pg;
1481 	struct pgpath *p;
1482 	int ret = 0;
1483 
1484 	list_for_each_entry(pg, &m->priority_groups, list) {
1485 		list_for_each_entry(p, &pg->pgpaths, list) {
1486 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1487 			if (ret)
1488 				goto out;
1489 		}
1490 	}
1491 
1492 out:
1493 	return ret;
1494 }
1495 
1496 static int __pgpath_busy(struct pgpath *pgpath)
1497 {
1498 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1499 
1500 	return dm_underlying_device_busy(q);
1501 }
1502 
1503 /*
1504  * We return "busy", only when we can map I/Os but underlying devices
1505  * are busy (so even if we map I/Os now, the I/Os will wait on
1506  * the underlying queue).
1507  * In other words, if we want to kill I/Os or queue them inside us
1508  * due to map unavailability, we don't return "busy".  Otherwise,
1509  * dm core won't give us the I/Os and we can't do what we want.
1510  */
1511 static int multipath_busy(struct dm_target *ti)
1512 {
1513 	int busy = 0, has_active = 0;
1514 	struct multipath *m = ti->private;
1515 	struct priority_group *pg;
1516 	struct pgpath *pgpath;
1517 	unsigned long flags;
1518 
1519 	spin_lock_irqsave(&m->lock, flags);
1520 
1521 	/* Guess which priority_group will be used at next mapping time */
1522 	if (unlikely(!m->current_pgpath && m->next_pg))
1523 		pg = m->next_pg;
1524 	else if (likely(m->current_pg))
1525 		pg = m->current_pg;
1526 	else
1527 		/*
1528 		 * We don't know which pg will be used at next mapping time.
1529 		 * We don't call __choose_pgpath() here to avoid to trigger
1530 		 * pg_init just by busy checking.
1531 		 * So we don't know whether underlying devices we will be using
1532 		 * at next mapping time are busy or not. Just try mapping.
1533 		 */
1534 		goto out;
1535 
1536 	/*
1537 	 * If there is one non-busy active path at least, the path selector
1538 	 * will be able to select it. So we consider such a pg as not busy.
1539 	 */
1540 	busy = 1;
1541 	list_for_each_entry(pgpath, &pg->pgpaths, list)
1542 		if (pgpath->is_active) {
1543 			has_active = 1;
1544 
1545 			if (!__pgpath_busy(pgpath)) {
1546 				busy = 0;
1547 				break;
1548 			}
1549 		}
1550 
1551 	if (!has_active)
1552 		/*
1553 		 * No active path in this pg, so this pg won't be used and
1554 		 * the current_pg will be changed at next mapping time.
1555 		 * We need to try mapping to determine it.
1556 		 */
1557 		busy = 0;
1558 
1559 out:
1560 	spin_unlock_irqrestore(&m->lock, flags);
1561 
1562 	return busy;
1563 }
1564 
1565 /*-----------------------------------------------------------------
1566  * Module setup
1567  *---------------------------------------------------------------*/
1568 static struct target_type multipath_target = {
1569 	.name = "multipath",
1570 	.version = {1, 1, 0},
1571 	.module = THIS_MODULE,
1572 	.ctr = multipath_ctr,
1573 	.dtr = multipath_dtr,
1574 	.map_rq = multipath_map,
1575 	.rq_end_io = multipath_end_io,
1576 	.presuspend = multipath_presuspend,
1577 	.resume = multipath_resume,
1578 	.status = multipath_status,
1579 	.message = multipath_message,
1580 	.ioctl  = multipath_ioctl,
1581 	.iterate_devices = multipath_iterate_devices,
1582 	.busy = multipath_busy,
1583 };
1584 
1585 static int __init dm_multipath_init(void)
1586 {
1587 	int r;
1588 
1589 	/* allocate a slab for the dm_ios */
1590 	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1591 	if (!_mpio_cache)
1592 		return -ENOMEM;
1593 
1594 	r = dm_register_target(&multipath_target);
1595 	if (r < 0) {
1596 		DMERR("register failed %d", r);
1597 		kmem_cache_destroy(_mpio_cache);
1598 		return -EINVAL;
1599 	}
1600 
1601 	kmultipathd = create_workqueue("kmpathd");
1602 	if (!kmultipathd) {
1603 		DMERR("failed to create workqueue kmpathd");
1604 		dm_unregister_target(&multipath_target);
1605 		kmem_cache_destroy(_mpio_cache);
1606 		return -ENOMEM;
1607 	}
1608 
1609 	/*
1610 	 * A separate workqueue is used to handle the device handlers
1611 	 * to avoid overloading existing workqueue. Overloading the
1612 	 * old workqueue would also create a bottleneck in the
1613 	 * path of the storage hardware device activation.
1614 	 */
1615 	kmpath_handlerd = create_singlethread_workqueue("kmpath_handlerd");
1616 	if (!kmpath_handlerd) {
1617 		DMERR("failed to create workqueue kmpath_handlerd");
1618 		destroy_workqueue(kmultipathd);
1619 		dm_unregister_target(&multipath_target);
1620 		kmem_cache_destroy(_mpio_cache);
1621 		return -ENOMEM;
1622 	}
1623 
1624 	DMINFO("version %u.%u.%u loaded",
1625 	       multipath_target.version[0], multipath_target.version[1],
1626 	       multipath_target.version[2]);
1627 
1628 	return r;
1629 }
1630 
1631 static void __exit dm_multipath_exit(void)
1632 {
1633 	destroy_workqueue(kmpath_handlerd);
1634 	destroy_workqueue(kmultipathd);
1635 
1636 	dm_unregister_target(&multipath_target);
1637 	kmem_cache_destroy(_mpio_cache);
1638 }
1639 
1640 module_init(dm_multipath_init);
1641 module_exit(dm_multipath_exit);
1642 
1643 MODULE_DESCRIPTION(DM_NAME " multipath target");
1644 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
1645 MODULE_LICENSE("GPL");
1646