1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/timer.h> 24 #include <linux/workqueue.h> 25 #include <linux/delay.h> 26 #include <scsi/scsi_dh.h> 27 #include <linux/atomic.h> 28 #include <linux/blk-mq.h> 29 30 #define DM_MSG_PREFIX "multipath" 31 #define DM_PG_INIT_DELAY_MSECS 2000 32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0 34 35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT; 36 37 /* Path properties */ 38 struct pgpath { 39 struct list_head list; 40 41 struct priority_group *pg; /* Owning PG */ 42 unsigned fail_count; /* Cumulative failure count */ 43 44 struct dm_path path; 45 struct delayed_work activate_path; 46 47 bool is_active:1; /* Path status */ 48 }; 49 50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 51 52 /* 53 * Paths are grouped into Priority Groups and numbered from 1 upwards. 54 * Each has a path selector which controls which path gets used. 55 */ 56 struct priority_group { 57 struct list_head list; 58 59 struct multipath *m; /* Owning multipath instance */ 60 struct path_selector ps; 61 62 unsigned pg_num; /* Reference number */ 63 unsigned nr_pgpaths; /* Number of paths in PG */ 64 struct list_head pgpaths; 65 66 bool bypassed:1; /* Temporarily bypass this PG? */ 67 }; 68 69 /* Multipath context */ 70 struct multipath { 71 unsigned long flags; /* Multipath state flags */ 72 73 spinlock_t lock; 74 enum dm_queue_mode queue_mode; 75 76 struct pgpath *current_pgpath; 77 struct priority_group *current_pg; 78 struct priority_group *next_pg; /* Switch to this PG if set */ 79 80 atomic_t nr_valid_paths; /* Total number of usable paths */ 81 unsigned nr_priority_groups; 82 struct list_head priority_groups; 83 84 const char *hw_handler_name; 85 char *hw_handler_params; 86 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 87 unsigned pg_init_retries; /* Number of times to retry pg_init */ 88 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 89 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 90 atomic_t pg_init_count; /* Number of times pg_init called */ 91 92 struct mutex work_mutex; 93 struct work_struct trigger_event; 94 struct dm_target *ti; 95 96 struct work_struct process_queued_bios; 97 struct bio_list queued_bios; 98 99 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */ 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 static void queue_if_no_path_timeout_work(struct timer_list *t); 118 119 /*----------------------------------------------- 120 * Multipath state flags. 121 *-----------------------------------------------*/ 122 123 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 124 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 127 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 128 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 129 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 130 131 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m) 132 { 133 bool r = test_bit(MPATHF_bit, &m->flags); 134 135 if (r) { 136 unsigned long flags; 137 spin_lock_irqsave(&m->lock, flags); 138 r = test_bit(MPATHF_bit, &m->flags); 139 spin_unlock_irqrestore(&m->lock, flags); 140 } 141 142 return r; 143 } 144 145 /*----------------------------------------------- 146 * Allocation routines 147 *-----------------------------------------------*/ 148 149 static struct pgpath *alloc_pgpath(void) 150 { 151 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 152 153 if (!pgpath) 154 return NULL; 155 156 pgpath->is_active = true; 157 158 return pgpath; 159 } 160 161 static void free_pgpath(struct pgpath *pgpath) 162 { 163 kfree(pgpath); 164 } 165 166 static struct priority_group *alloc_priority_group(void) 167 { 168 struct priority_group *pg; 169 170 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 171 172 if (pg) 173 INIT_LIST_HEAD(&pg->pgpaths); 174 175 return pg; 176 } 177 178 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 179 { 180 struct pgpath *pgpath, *tmp; 181 182 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 183 list_del(&pgpath->list); 184 dm_put_device(ti, pgpath->path.dev); 185 free_pgpath(pgpath); 186 } 187 } 188 189 static void free_priority_group(struct priority_group *pg, 190 struct dm_target *ti) 191 { 192 struct path_selector *ps = &pg->ps; 193 194 if (ps->type) { 195 ps->type->destroy(ps); 196 dm_put_path_selector(ps->type); 197 } 198 199 free_pgpaths(&pg->pgpaths, ti); 200 kfree(pg); 201 } 202 203 static struct multipath *alloc_multipath(struct dm_target *ti) 204 { 205 struct multipath *m; 206 207 m = kzalloc(sizeof(*m), GFP_KERNEL); 208 if (m) { 209 INIT_LIST_HEAD(&m->priority_groups); 210 spin_lock_init(&m->lock); 211 atomic_set(&m->nr_valid_paths, 0); 212 INIT_WORK(&m->trigger_event, trigger_event); 213 mutex_init(&m->work_mutex); 214 215 m->queue_mode = DM_TYPE_NONE; 216 217 m->ti = ti; 218 ti->private = m; 219 220 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0); 221 } 222 223 return m; 224 } 225 226 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 227 { 228 if (m->queue_mode == DM_TYPE_NONE) { 229 m->queue_mode = DM_TYPE_REQUEST_BASED; 230 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 231 INIT_WORK(&m->process_queued_bios, process_queued_bios); 232 /* 233 * bio-based doesn't support any direct scsi_dh management; 234 * it just discovers if a scsi_dh is attached. 235 */ 236 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 237 } 238 239 dm_table_set_type(ti->table, m->queue_mode); 240 241 /* 242 * Init fields that are only used when a scsi_dh is attached 243 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 244 */ 245 set_bit(MPATHF_QUEUE_IO, &m->flags); 246 atomic_set(&m->pg_init_in_progress, 0); 247 atomic_set(&m->pg_init_count, 0); 248 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 249 init_waitqueue_head(&m->pg_init_wait); 250 251 return 0; 252 } 253 254 static void free_multipath(struct multipath *m) 255 { 256 struct priority_group *pg, *tmp; 257 258 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 259 list_del(&pg->list); 260 free_priority_group(pg, m->ti); 261 } 262 263 kfree(m->hw_handler_name); 264 kfree(m->hw_handler_params); 265 mutex_destroy(&m->work_mutex); 266 kfree(m); 267 } 268 269 static struct dm_mpath_io *get_mpio(union map_info *info) 270 { 271 return info->ptr; 272 } 273 274 static size_t multipath_per_bio_data_size(void) 275 { 276 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 277 } 278 279 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 280 { 281 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 282 } 283 284 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 285 { 286 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 287 void *bio_details = mpio + 1; 288 return bio_details; 289 } 290 291 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 292 { 293 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 294 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 295 296 mpio->nr_bytes = bio->bi_iter.bi_size; 297 mpio->pgpath = NULL; 298 *mpio_p = mpio; 299 300 dm_bio_record(bio_details, bio); 301 } 302 303 /*----------------------------------------------- 304 * Path selection 305 *-----------------------------------------------*/ 306 307 static int __pg_init_all_paths(struct multipath *m) 308 { 309 struct pgpath *pgpath; 310 unsigned long pg_init_delay = 0; 311 312 lockdep_assert_held(&m->lock); 313 314 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 315 return 0; 316 317 atomic_inc(&m->pg_init_count); 318 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 319 320 /* Check here to reset pg_init_required */ 321 if (!m->current_pg) 322 return 0; 323 324 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 325 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 326 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 327 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 328 /* Skip failed paths */ 329 if (!pgpath->is_active) 330 continue; 331 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 332 pg_init_delay)) 333 atomic_inc(&m->pg_init_in_progress); 334 } 335 return atomic_read(&m->pg_init_in_progress); 336 } 337 338 static int pg_init_all_paths(struct multipath *m) 339 { 340 int ret; 341 unsigned long flags; 342 343 spin_lock_irqsave(&m->lock, flags); 344 ret = __pg_init_all_paths(m); 345 spin_unlock_irqrestore(&m->lock, flags); 346 347 return ret; 348 } 349 350 static void __switch_pg(struct multipath *m, struct priority_group *pg) 351 { 352 lockdep_assert_held(&m->lock); 353 354 m->current_pg = pg; 355 356 /* Must we initialise the PG first, and queue I/O till it's ready? */ 357 if (m->hw_handler_name) { 358 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 359 set_bit(MPATHF_QUEUE_IO, &m->flags); 360 } else { 361 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 362 clear_bit(MPATHF_QUEUE_IO, &m->flags); 363 } 364 365 atomic_set(&m->pg_init_count, 0); 366 } 367 368 static struct pgpath *choose_path_in_pg(struct multipath *m, 369 struct priority_group *pg, 370 size_t nr_bytes) 371 { 372 unsigned long flags; 373 struct dm_path *path; 374 struct pgpath *pgpath; 375 376 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 377 if (!path) 378 return ERR_PTR(-ENXIO); 379 380 pgpath = path_to_pgpath(path); 381 382 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 383 /* Only update current_pgpath if pg changed */ 384 spin_lock_irqsave(&m->lock, flags); 385 m->current_pgpath = pgpath; 386 __switch_pg(m, pg); 387 spin_unlock_irqrestore(&m->lock, flags); 388 } 389 390 return pgpath; 391 } 392 393 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 394 { 395 unsigned long flags; 396 struct priority_group *pg; 397 struct pgpath *pgpath; 398 unsigned bypassed = 1; 399 400 if (!atomic_read(&m->nr_valid_paths)) { 401 spin_lock_irqsave(&m->lock, flags); 402 clear_bit(MPATHF_QUEUE_IO, &m->flags); 403 spin_unlock_irqrestore(&m->lock, flags); 404 goto failed; 405 } 406 407 /* Were we instructed to switch PG? */ 408 if (READ_ONCE(m->next_pg)) { 409 spin_lock_irqsave(&m->lock, flags); 410 pg = m->next_pg; 411 if (!pg) { 412 spin_unlock_irqrestore(&m->lock, flags); 413 goto check_current_pg; 414 } 415 m->next_pg = NULL; 416 spin_unlock_irqrestore(&m->lock, flags); 417 pgpath = choose_path_in_pg(m, pg, nr_bytes); 418 if (!IS_ERR_OR_NULL(pgpath)) 419 return pgpath; 420 } 421 422 /* Don't change PG until it has no remaining paths */ 423 check_current_pg: 424 pg = READ_ONCE(m->current_pg); 425 if (pg) { 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) 428 return pgpath; 429 } 430 431 /* 432 * Loop through priority groups until we find a valid path. 433 * First time we skip PGs marked 'bypassed'. 434 * Second time we only try the ones we skipped, but set 435 * pg_init_delay_retry so we do not hammer controllers. 436 */ 437 do { 438 list_for_each_entry(pg, &m->priority_groups, list) { 439 if (pg->bypassed == !!bypassed) 440 continue; 441 pgpath = choose_path_in_pg(m, pg, nr_bytes); 442 if (!IS_ERR_OR_NULL(pgpath)) { 443 if (!bypassed) { 444 spin_lock_irqsave(&m->lock, flags); 445 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 446 spin_unlock_irqrestore(&m->lock, flags); 447 } 448 return pgpath; 449 } 450 } 451 } while (bypassed--); 452 453 failed: 454 spin_lock_irqsave(&m->lock, flags); 455 m->current_pgpath = NULL; 456 m->current_pg = NULL; 457 spin_unlock_irqrestore(&m->lock, flags); 458 459 return NULL; 460 } 461 462 /* 463 * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited() 464 * report the function name and line number of the function from which 465 * it has been invoked. 466 */ 467 #define dm_report_EIO(m) \ 468 do { \ 469 DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \ 470 dm_table_device_name((m)->ti->table), \ 471 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 472 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 473 dm_noflush_suspending((m)->ti)); \ 474 } while (0) 475 476 /* 477 * Check whether bios must be queued in the device-mapper core rather 478 * than here in the target. 479 */ 480 static bool __must_push_back(struct multipath *m) 481 { 482 return dm_noflush_suspending(m->ti); 483 } 484 485 static bool must_push_back_rq(struct multipath *m) 486 { 487 unsigned long flags; 488 bool ret; 489 490 spin_lock_irqsave(&m->lock, flags); 491 ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m)); 492 spin_unlock_irqrestore(&m->lock, flags); 493 494 return ret; 495 } 496 497 /* 498 * Map cloned requests (request-based multipath) 499 */ 500 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 501 union map_info *map_context, 502 struct request **__clone) 503 { 504 struct multipath *m = ti->private; 505 size_t nr_bytes = blk_rq_bytes(rq); 506 struct pgpath *pgpath; 507 struct block_device *bdev; 508 struct dm_mpath_io *mpio = get_mpio(map_context); 509 struct request_queue *q; 510 struct request *clone; 511 512 /* Do we need to select a new pgpath? */ 513 pgpath = READ_ONCE(m->current_pgpath); 514 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 515 pgpath = choose_pgpath(m, nr_bytes); 516 517 if (!pgpath) { 518 if (must_push_back_rq(m)) 519 return DM_MAPIO_DELAY_REQUEUE; 520 dm_report_EIO(m); /* Failed */ 521 return DM_MAPIO_KILL; 522 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 523 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 524 pg_init_all_paths(m); 525 return DM_MAPIO_DELAY_REQUEUE; 526 } 527 528 mpio->pgpath = pgpath; 529 mpio->nr_bytes = nr_bytes; 530 531 bdev = pgpath->path.dev->bdev; 532 q = bdev_get_queue(bdev); 533 clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE, 534 BLK_MQ_REQ_NOWAIT); 535 if (IS_ERR(clone)) { 536 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 537 if (blk_queue_dying(q)) { 538 atomic_inc(&m->pg_init_in_progress); 539 activate_or_offline_path(pgpath); 540 return DM_MAPIO_DELAY_REQUEUE; 541 } 542 543 /* 544 * blk-mq's SCHED_RESTART can cover this requeue, so we 545 * needn't deal with it by DELAY_REQUEUE. More importantly, 546 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 547 * get the queue busy feedback (via BLK_STS_RESOURCE), 548 * otherwise I/O merging can suffer. 549 */ 550 return DM_MAPIO_REQUEUE; 551 } 552 clone->bio = clone->biotail = NULL; 553 clone->rq_disk = bdev->bd_disk; 554 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 555 *__clone = clone; 556 557 if (pgpath->pg->ps.type->start_io) 558 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 559 &pgpath->path, 560 nr_bytes); 561 return DM_MAPIO_REMAPPED; 562 } 563 564 static void multipath_release_clone(struct request *clone, 565 union map_info *map_context) 566 { 567 if (unlikely(map_context)) { 568 /* 569 * non-NULL map_context means caller is still map 570 * method; must undo multipath_clone_and_map() 571 */ 572 struct dm_mpath_io *mpio = get_mpio(map_context); 573 struct pgpath *pgpath = mpio->pgpath; 574 575 if (pgpath && pgpath->pg->ps.type->end_io) 576 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 577 &pgpath->path, 578 mpio->nr_bytes, 579 clone->io_start_time_ns); 580 } 581 582 blk_mq_free_request(clone); 583 } 584 585 /* 586 * Map cloned bios (bio-based multipath) 587 */ 588 589 static void __multipath_queue_bio(struct multipath *m, struct bio *bio) 590 { 591 /* Queue for the daemon to resubmit */ 592 bio_list_add(&m->queued_bios, bio); 593 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 594 queue_work(kmultipathd, &m->process_queued_bios); 595 } 596 597 static void multipath_queue_bio(struct multipath *m, struct bio *bio) 598 { 599 unsigned long flags; 600 601 spin_lock_irqsave(&m->lock, flags); 602 __multipath_queue_bio(m, bio); 603 spin_unlock_irqrestore(&m->lock, flags); 604 } 605 606 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 607 { 608 struct pgpath *pgpath; 609 unsigned long flags; 610 611 /* Do we need to select a new pgpath? */ 612 pgpath = READ_ONCE(m->current_pgpath); 613 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 614 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 615 616 if (!pgpath) { 617 spin_lock_irqsave(&m->lock, flags); 618 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 619 __multipath_queue_bio(m, bio); 620 pgpath = ERR_PTR(-EAGAIN); 621 } 622 spin_unlock_irqrestore(&m->lock, flags); 623 624 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 625 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 626 multipath_queue_bio(m, bio); 627 pg_init_all_paths(m); 628 return ERR_PTR(-EAGAIN); 629 } 630 631 return pgpath; 632 } 633 634 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 635 struct dm_mpath_io *mpio) 636 { 637 struct pgpath *pgpath = __map_bio(m, bio); 638 639 if (IS_ERR(pgpath)) 640 return DM_MAPIO_SUBMITTED; 641 642 if (!pgpath) { 643 if (__must_push_back(m)) 644 return DM_MAPIO_REQUEUE; 645 dm_report_EIO(m); 646 return DM_MAPIO_KILL; 647 } 648 649 mpio->pgpath = pgpath; 650 651 bio->bi_status = 0; 652 bio_set_dev(bio, pgpath->path.dev->bdev); 653 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 654 655 if (pgpath->pg->ps.type->start_io) 656 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 657 &pgpath->path, 658 mpio->nr_bytes); 659 return DM_MAPIO_REMAPPED; 660 } 661 662 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 663 { 664 struct multipath *m = ti->private; 665 struct dm_mpath_io *mpio = NULL; 666 667 multipath_init_per_bio_data(bio, &mpio); 668 return __multipath_map_bio(m, bio, mpio); 669 } 670 671 static void process_queued_io_list(struct multipath *m) 672 { 673 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 674 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 675 else if (m->queue_mode == DM_TYPE_BIO_BASED) 676 queue_work(kmultipathd, &m->process_queued_bios); 677 } 678 679 static void process_queued_bios(struct work_struct *work) 680 { 681 int r; 682 unsigned long flags; 683 struct bio *bio; 684 struct bio_list bios; 685 struct blk_plug plug; 686 struct multipath *m = 687 container_of(work, struct multipath, process_queued_bios); 688 689 bio_list_init(&bios); 690 691 spin_lock_irqsave(&m->lock, flags); 692 693 if (bio_list_empty(&m->queued_bios)) { 694 spin_unlock_irqrestore(&m->lock, flags); 695 return; 696 } 697 698 bio_list_merge(&bios, &m->queued_bios); 699 bio_list_init(&m->queued_bios); 700 701 spin_unlock_irqrestore(&m->lock, flags); 702 703 blk_start_plug(&plug); 704 while ((bio = bio_list_pop(&bios))) { 705 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 706 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 707 r = __multipath_map_bio(m, bio, mpio); 708 switch (r) { 709 case DM_MAPIO_KILL: 710 bio->bi_status = BLK_STS_IOERR; 711 bio_endio(bio); 712 break; 713 case DM_MAPIO_REQUEUE: 714 bio->bi_status = BLK_STS_DM_REQUEUE; 715 bio_endio(bio); 716 break; 717 case DM_MAPIO_REMAPPED: 718 submit_bio_noacct(bio); 719 break; 720 case DM_MAPIO_SUBMITTED: 721 break; 722 default: 723 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 724 } 725 } 726 blk_finish_plug(&plug); 727 } 728 729 /* 730 * If we run out of usable paths, should we queue I/O or error it? 731 */ 732 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 733 bool save_old_value, const char *caller) 734 { 735 unsigned long flags; 736 bool queue_if_no_path_bit, saved_queue_if_no_path_bit; 737 const char *dm_dev_name = dm_table_device_name(m->ti->table); 738 739 DMDEBUG("%s: %s caller=%s queue_if_no_path=%d save_old_value=%d", 740 dm_dev_name, __func__, caller, queue_if_no_path, save_old_value); 741 742 spin_lock_irqsave(&m->lock, flags); 743 744 queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 745 saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 746 747 if (save_old_value) { 748 if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) { 749 DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!", 750 dm_dev_name); 751 } else 752 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit); 753 } else if (!queue_if_no_path && saved_queue_if_no_path_bit) { 754 /* due to "fail_if_no_path" message, need to honor it. */ 755 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 756 } 757 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 758 759 DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d", 760 dm_dev_name, __func__, 761 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 762 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 763 dm_noflush_suspending(m->ti)); 764 765 spin_unlock_irqrestore(&m->lock, flags); 766 767 if (!queue_if_no_path) { 768 dm_table_run_md_queue_async(m->ti->table); 769 process_queued_io_list(m); 770 } 771 772 return 0; 773 } 774 775 /* 776 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and 777 * process any queued I/O. 778 */ 779 static void queue_if_no_path_timeout_work(struct timer_list *t) 780 { 781 struct multipath *m = from_timer(m, t, nopath_timer); 782 783 DMWARN("queue_if_no_path timeout on %s, failing queued IO", 784 dm_table_device_name(m->ti->table)); 785 queue_if_no_path(m, false, false, __func__); 786 } 787 788 /* 789 * Enable the queue_if_no_path timeout if necessary. 790 * Called with m->lock held. 791 */ 792 static void enable_nopath_timeout(struct multipath *m) 793 { 794 unsigned long queue_if_no_path_timeout = 795 READ_ONCE(queue_if_no_path_timeout_secs) * HZ; 796 797 lockdep_assert_held(&m->lock); 798 799 if (queue_if_no_path_timeout > 0 && 800 atomic_read(&m->nr_valid_paths) == 0 && 801 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 802 mod_timer(&m->nopath_timer, 803 jiffies + queue_if_no_path_timeout); 804 } 805 } 806 807 static void disable_nopath_timeout(struct multipath *m) 808 { 809 del_timer_sync(&m->nopath_timer); 810 } 811 812 /* 813 * An event is triggered whenever a path is taken out of use. 814 * Includes path failure and PG bypass. 815 */ 816 static void trigger_event(struct work_struct *work) 817 { 818 struct multipath *m = 819 container_of(work, struct multipath, trigger_event); 820 821 dm_table_event(m->ti->table); 822 } 823 824 /*----------------------------------------------------------------- 825 * Constructor/argument parsing: 826 * <#multipath feature args> [<arg>]* 827 * <#hw_handler args> [hw_handler [<arg>]*] 828 * <#priority groups> 829 * <initial priority group> 830 * [<selector> <#selector args> [<arg>]* 831 * <#paths> <#per-path selector args> 832 * [<path> [<arg>]* ]+ ]+ 833 *---------------------------------------------------------------*/ 834 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 835 struct dm_target *ti) 836 { 837 int r; 838 struct path_selector_type *pst; 839 unsigned ps_argc; 840 841 static const struct dm_arg _args[] = { 842 {0, 1024, "invalid number of path selector args"}, 843 }; 844 845 pst = dm_get_path_selector(dm_shift_arg(as)); 846 if (!pst) { 847 ti->error = "unknown path selector type"; 848 return -EINVAL; 849 } 850 851 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 852 if (r) { 853 dm_put_path_selector(pst); 854 return -EINVAL; 855 } 856 857 r = pst->create(&pg->ps, ps_argc, as->argv); 858 if (r) { 859 dm_put_path_selector(pst); 860 ti->error = "path selector constructor failed"; 861 return r; 862 } 863 864 pg->ps.type = pst; 865 dm_consume_args(as, ps_argc); 866 867 return 0; 868 } 869 870 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 871 const char **attached_handler_name, char **error) 872 { 873 struct request_queue *q = bdev_get_queue(bdev); 874 int r; 875 876 if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) { 877 retain: 878 if (*attached_handler_name) { 879 /* 880 * Clear any hw_handler_params associated with a 881 * handler that isn't already attached. 882 */ 883 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 884 kfree(m->hw_handler_params); 885 m->hw_handler_params = NULL; 886 } 887 888 /* 889 * Reset hw_handler_name to match the attached handler 890 * 891 * NB. This modifies the table line to show the actual 892 * handler instead of the original table passed in. 893 */ 894 kfree(m->hw_handler_name); 895 m->hw_handler_name = *attached_handler_name; 896 *attached_handler_name = NULL; 897 } 898 } 899 900 if (m->hw_handler_name) { 901 r = scsi_dh_attach(q, m->hw_handler_name); 902 if (r == -EBUSY) { 903 char b[BDEVNAME_SIZE]; 904 905 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 906 bdevname(bdev, b)); 907 goto retain; 908 } 909 if (r < 0) { 910 *error = "error attaching hardware handler"; 911 return r; 912 } 913 914 if (m->hw_handler_params) { 915 r = scsi_dh_set_params(q, m->hw_handler_params); 916 if (r < 0) { 917 *error = "unable to set hardware handler parameters"; 918 return r; 919 } 920 } 921 } 922 923 return 0; 924 } 925 926 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 927 struct dm_target *ti) 928 { 929 int r; 930 struct pgpath *p; 931 struct multipath *m = ti->private; 932 struct request_queue *q; 933 const char *attached_handler_name = NULL; 934 935 /* we need at least a path arg */ 936 if (as->argc < 1) { 937 ti->error = "no device given"; 938 return ERR_PTR(-EINVAL); 939 } 940 941 p = alloc_pgpath(); 942 if (!p) 943 return ERR_PTR(-ENOMEM); 944 945 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 946 &p->path.dev); 947 if (r) { 948 ti->error = "error getting device"; 949 goto bad; 950 } 951 952 q = bdev_get_queue(p->path.dev->bdev); 953 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 954 if (attached_handler_name || m->hw_handler_name) { 955 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 956 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 957 kfree(attached_handler_name); 958 if (r) { 959 dm_put_device(ti, p->path.dev); 960 goto bad; 961 } 962 } 963 964 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 965 if (r) { 966 dm_put_device(ti, p->path.dev); 967 goto bad; 968 } 969 970 return p; 971 bad: 972 free_pgpath(p); 973 return ERR_PTR(r); 974 } 975 976 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 977 struct multipath *m) 978 { 979 static const struct dm_arg _args[] = { 980 {1, 1024, "invalid number of paths"}, 981 {0, 1024, "invalid number of selector args"} 982 }; 983 984 int r; 985 unsigned i, nr_selector_args, nr_args; 986 struct priority_group *pg; 987 struct dm_target *ti = m->ti; 988 989 if (as->argc < 2) { 990 as->argc = 0; 991 ti->error = "not enough priority group arguments"; 992 return ERR_PTR(-EINVAL); 993 } 994 995 pg = alloc_priority_group(); 996 if (!pg) { 997 ti->error = "couldn't allocate priority group"; 998 return ERR_PTR(-ENOMEM); 999 } 1000 pg->m = m; 1001 1002 r = parse_path_selector(as, pg, ti); 1003 if (r) 1004 goto bad; 1005 1006 /* 1007 * read the paths 1008 */ 1009 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 1010 if (r) 1011 goto bad; 1012 1013 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 1014 if (r) 1015 goto bad; 1016 1017 nr_args = 1 + nr_selector_args; 1018 for (i = 0; i < pg->nr_pgpaths; i++) { 1019 struct pgpath *pgpath; 1020 struct dm_arg_set path_args; 1021 1022 if (as->argc < nr_args) { 1023 ti->error = "not enough path parameters"; 1024 r = -EINVAL; 1025 goto bad; 1026 } 1027 1028 path_args.argc = nr_args; 1029 path_args.argv = as->argv; 1030 1031 pgpath = parse_path(&path_args, &pg->ps, ti); 1032 if (IS_ERR(pgpath)) { 1033 r = PTR_ERR(pgpath); 1034 goto bad; 1035 } 1036 1037 pgpath->pg = pg; 1038 list_add_tail(&pgpath->list, &pg->pgpaths); 1039 dm_consume_args(as, nr_args); 1040 } 1041 1042 return pg; 1043 1044 bad: 1045 free_priority_group(pg, ti); 1046 return ERR_PTR(r); 1047 } 1048 1049 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 1050 { 1051 unsigned hw_argc; 1052 int ret; 1053 struct dm_target *ti = m->ti; 1054 1055 static const struct dm_arg _args[] = { 1056 {0, 1024, "invalid number of hardware handler args"}, 1057 }; 1058 1059 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 1060 return -EINVAL; 1061 1062 if (!hw_argc) 1063 return 0; 1064 1065 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1066 dm_consume_args(as, hw_argc); 1067 DMERR("bio-based multipath doesn't allow hardware handler args"); 1068 return 0; 1069 } 1070 1071 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1072 if (!m->hw_handler_name) 1073 return -EINVAL; 1074 1075 if (hw_argc > 1) { 1076 char *p; 1077 int i, j, len = 4; 1078 1079 for (i = 0; i <= hw_argc - 2; i++) 1080 len += strlen(as->argv[i]) + 1; 1081 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1082 if (!p) { 1083 ti->error = "memory allocation failed"; 1084 ret = -ENOMEM; 1085 goto fail; 1086 } 1087 j = sprintf(p, "%d", hw_argc - 1); 1088 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1089 j = sprintf(p, "%s", as->argv[i]); 1090 } 1091 dm_consume_args(as, hw_argc - 1); 1092 1093 return 0; 1094 fail: 1095 kfree(m->hw_handler_name); 1096 m->hw_handler_name = NULL; 1097 return ret; 1098 } 1099 1100 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1101 { 1102 int r; 1103 unsigned argc; 1104 struct dm_target *ti = m->ti; 1105 const char *arg_name; 1106 1107 static const struct dm_arg _args[] = { 1108 {0, 8, "invalid number of feature args"}, 1109 {1, 50, "pg_init_retries must be between 1 and 50"}, 1110 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1111 }; 1112 1113 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1114 if (r) 1115 return -EINVAL; 1116 1117 if (!argc) 1118 return 0; 1119 1120 do { 1121 arg_name = dm_shift_arg(as); 1122 argc--; 1123 1124 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1125 r = queue_if_no_path(m, true, false, __func__); 1126 continue; 1127 } 1128 1129 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1130 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1131 continue; 1132 } 1133 1134 if (!strcasecmp(arg_name, "pg_init_retries") && 1135 (argc >= 1)) { 1136 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1137 argc--; 1138 continue; 1139 } 1140 1141 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1142 (argc >= 1)) { 1143 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1144 argc--; 1145 continue; 1146 } 1147 1148 if (!strcasecmp(arg_name, "queue_mode") && 1149 (argc >= 1)) { 1150 const char *queue_mode_name = dm_shift_arg(as); 1151 1152 if (!strcasecmp(queue_mode_name, "bio")) 1153 m->queue_mode = DM_TYPE_BIO_BASED; 1154 else if (!strcasecmp(queue_mode_name, "rq") || 1155 !strcasecmp(queue_mode_name, "mq")) 1156 m->queue_mode = DM_TYPE_REQUEST_BASED; 1157 else { 1158 ti->error = "Unknown 'queue_mode' requested"; 1159 r = -EINVAL; 1160 } 1161 argc--; 1162 continue; 1163 } 1164 1165 ti->error = "Unrecognised multipath feature request"; 1166 r = -EINVAL; 1167 } while (argc && !r); 1168 1169 return r; 1170 } 1171 1172 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1173 { 1174 /* target arguments */ 1175 static const struct dm_arg _args[] = { 1176 {0, 1024, "invalid number of priority groups"}, 1177 {0, 1024, "invalid initial priority group number"}, 1178 }; 1179 1180 int r; 1181 struct multipath *m; 1182 struct dm_arg_set as; 1183 unsigned pg_count = 0; 1184 unsigned next_pg_num; 1185 unsigned long flags; 1186 1187 as.argc = argc; 1188 as.argv = argv; 1189 1190 m = alloc_multipath(ti); 1191 if (!m) { 1192 ti->error = "can't allocate multipath"; 1193 return -EINVAL; 1194 } 1195 1196 r = parse_features(&as, m); 1197 if (r) 1198 goto bad; 1199 1200 r = alloc_multipath_stage2(ti, m); 1201 if (r) 1202 goto bad; 1203 1204 r = parse_hw_handler(&as, m); 1205 if (r) 1206 goto bad; 1207 1208 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1209 if (r) 1210 goto bad; 1211 1212 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1213 if (r) 1214 goto bad; 1215 1216 if ((!m->nr_priority_groups && next_pg_num) || 1217 (m->nr_priority_groups && !next_pg_num)) { 1218 ti->error = "invalid initial priority group"; 1219 r = -EINVAL; 1220 goto bad; 1221 } 1222 1223 /* parse the priority groups */ 1224 while (as.argc) { 1225 struct priority_group *pg; 1226 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1227 1228 pg = parse_priority_group(&as, m); 1229 if (IS_ERR(pg)) { 1230 r = PTR_ERR(pg); 1231 goto bad; 1232 } 1233 1234 nr_valid_paths += pg->nr_pgpaths; 1235 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1236 1237 list_add_tail(&pg->list, &m->priority_groups); 1238 pg_count++; 1239 pg->pg_num = pg_count; 1240 if (!--next_pg_num) 1241 m->next_pg = pg; 1242 } 1243 1244 if (pg_count != m->nr_priority_groups) { 1245 ti->error = "priority group count mismatch"; 1246 r = -EINVAL; 1247 goto bad; 1248 } 1249 1250 spin_lock_irqsave(&m->lock, flags); 1251 enable_nopath_timeout(m); 1252 spin_unlock_irqrestore(&m->lock, flags); 1253 1254 ti->num_flush_bios = 1; 1255 ti->num_discard_bios = 1; 1256 ti->num_write_same_bios = 1; 1257 ti->num_write_zeroes_bios = 1; 1258 if (m->queue_mode == DM_TYPE_BIO_BASED) 1259 ti->per_io_data_size = multipath_per_bio_data_size(); 1260 else 1261 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1262 1263 return 0; 1264 1265 bad: 1266 free_multipath(m); 1267 return r; 1268 } 1269 1270 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1271 { 1272 DEFINE_WAIT(wait); 1273 1274 while (1) { 1275 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1276 1277 if (!atomic_read(&m->pg_init_in_progress)) 1278 break; 1279 1280 io_schedule(); 1281 } 1282 finish_wait(&m->pg_init_wait, &wait); 1283 } 1284 1285 static void flush_multipath_work(struct multipath *m) 1286 { 1287 if (m->hw_handler_name) { 1288 unsigned long flags; 1289 1290 if (!atomic_read(&m->pg_init_in_progress)) 1291 goto skip; 1292 1293 spin_lock_irqsave(&m->lock, flags); 1294 if (atomic_read(&m->pg_init_in_progress) && 1295 !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) { 1296 spin_unlock_irqrestore(&m->lock, flags); 1297 1298 flush_workqueue(kmpath_handlerd); 1299 multipath_wait_for_pg_init_completion(m); 1300 1301 spin_lock_irqsave(&m->lock, flags); 1302 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1303 } 1304 spin_unlock_irqrestore(&m->lock, flags); 1305 } 1306 skip: 1307 if (m->queue_mode == DM_TYPE_BIO_BASED) 1308 flush_work(&m->process_queued_bios); 1309 flush_work(&m->trigger_event); 1310 } 1311 1312 static void multipath_dtr(struct dm_target *ti) 1313 { 1314 struct multipath *m = ti->private; 1315 1316 disable_nopath_timeout(m); 1317 flush_multipath_work(m); 1318 free_multipath(m); 1319 } 1320 1321 /* 1322 * Take a path out of use. 1323 */ 1324 static int fail_path(struct pgpath *pgpath) 1325 { 1326 unsigned long flags; 1327 struct multipath *m = pgpath->pg->m; 1328 1329 spin_lock_irqsave(&m->lock, flags); 1330 1331 if (!pgpath->is_active) 1332 goto out; 1333 1334 DMWARN("%s: Failing path %s.", 1335 dm_table_device_name(m->ti->table), 1336 pgpath->path.dev->name); 1337 1338 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1339 pgpath->is_active = false; 1340 pgpath->fail_count++; 1341 1342 atomic_dec(&m->nr_valid_paths); 1343 1344 if (pgpath == m->current_pgpath) 1345 m->current_pgpath = NULL; 1346 1347 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1348 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1349 1350 schedule_work(&m->trigger_event); 1351 1352 enable_nopath_timeout(m); 1353 1354 out: 1355 spin_unlock_irqrestore(&m->lock, flags); 1356 1357 return 0; 1358 } 1359 1360 /* 1361 * Reinstate a previously-failed path 1362 */ 1363 static int reinstate_path(struct pgpath *pgpath) 1364 { 1365 int r = 0, run_queue = 0; 1366 unsigned long flags; 1367 struct multipath *m = pgpath->pg->m; 1368 unsigned nr_valid_paths; 1369 1370 spin_lock_irqsave(&m->lock, flags); 1371 1372 if (pgpath->is_active) 1373 goto out; 1374 1375 DMWARN("%s: Reinstating path %s.", 1376 dm_table_device_name(m->ti->table), 1377 pgpath->path.dev->name); 1378 1379 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1380 if (r) 1381 goto out; 1382 1383 pgpath->is_active = true; 1384 1385 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1386 if (nr_valid_paths == 1) { 1387 m->current_pgpath = NULL; 1388 run_queue = 1; 1389 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1390 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1391 atomic_inc(&m->pg_init_in_progress); 1392 } 1393 1394 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1395 pgpath->path.dev->name, nr_valid_paths); 1396 1397 schedule_work(&m->trigger_event); 1398 1399 out: 1400 spin_unlock_irqrestore(&m->lock, flags); 1401 if (run_queue) { 1402 dm_table_run_md_queue_async(m->ti->table); 1403 process_queued_io_list(m); 1404 } 1405 1406 if (pgpath->is_active) 1407 disable_nopath_timeout(m); 1408 1409 return r; 1410 } 1411 1412 /* 1413 * Fail or reinstate all paths that match the provided struct dm_dev. 1414 */ 1415 static int action_dev(struct multipath *m, struct dm_dev *dev, 1416 action_fn action) 1417 { 1418 int r = -EINVAL; 1419 struct pgpath *pgpath; 1420 struct priority_group *pg; 1421 1422 list_for_each_entry(pg, &m->priority_groups, list) { 1423 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1424 if (pgpath->path.dev == dev) 1425 r = action(pgpath); 1426 } 1427 } 1428 1429 return r; 1430 } 1431 1432 /* 1433 * Temporarily try to avoid having to use the specified PG 1434 */ 1435 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1436 bool bypassed) 1437 { 1438 unsigned long flags; 1439 1440 spin_lock_irqsave(&m->lock, flags); 1441 1442 pg->bypassed = bypassed; 1443 m->current_pgpath = NULL; 1444 m->current_pg = NULL; 1445 1446 spin_unlock_irqrestore(&m->lock, flags); 1447 1448 schedule_work(&m->trigger_event); 1449 } 1450 1451 /* 1452 * Switch to using the specified PG from the next I/O that gets mapped 1453 */ 1454 static int switch_pg_num(struct multipath *m, const char *pgstr) 1455 { 1456 struct priority_group *pg; 1457 unsigned pgnum; 1458 unsigned long flags; 1459 char dummy; 1460 1461 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1462 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1463 DMWARN("invalid PG number supplied to switch_pg_num"); 1464 return -EINVAL; 1465 } 1466 1467 spin_lock_irqsave(&m->lock, flags); 1468 list_for_each_entry(pg, &m->priority_groups, list) { 1469 pg->bypassed = false; 1470 if (--pgnum) 1471 continue; 1472 1473 m->current_pgpath = NULL; 1474 m->current_pg = NULL; 1475 m->next_pg = pg; 1476 } 1477 spin_unlock_irqrestore(&m->lock, flags); 1478 1479 schedule_work(&m->trigger_event); 1480 return 0; 1481 } 1482 1483 /* 1484 * Set/clear bypassed status of a PG. 1485 * PGs are numbered upwards from 1 in the order they were declared. 1486 */ 1487 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1488 { 1489 struct priority_group *pg; 1490 unsigned pgnum; 1491 char dummy; 1492 1493 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1494 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1495 DMWARN("invalid PG number supplied to bypass_pg"); 1496 return -EINVAL; 1497 } 1498 1499 list_for_each_entry(pg, &m->priority_groups, list) { 1500 if (!--pgnum) 1501 break; 1502 } 1503 1504 bypass_pg(m, pg, bypassed); 1505 return 0; 1506 } 1507 1508 /* 1509 * Should we retry pg_init immediately? 1510 */ 1511 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1512 { 1513 unsigned long flags; 1514 bool limit_reached = false; 1515 1516 spin_lock_irqsave(&m->lock, flags); 1517 1518 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1519 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1520 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1521 else 1522 limit_reached = true; 1523 1524 spin_unlock_irqrestore(&m->lock, flags); 1525 1526 return limit_reached; 1527 } 1528 1529 static void pg_init_done(void *data, int errors) 1530 { 1531 struct pgpath *pgpath = data; 1532 struct priority_group *pg = pgpath->pg; 1533 struct multipath *m = pg->m; 1534 unsigned long flags; 1535 bool delay_retry = false; 1536 1537 /* device or driver problems */ 1538 switch (errors) { 1539 case SCSI_DH_OK: 1540 break; 1541 case SCSI_DH_NOSYS: 1542 if (!m->hw_handler_name) { 1543 errors = 0; 1544 break; 1545 } 1546 DMERR("Could not failover the device: Handler scsi_dh_%s " 1547 "Error %d.", m->hw_handler_name, errors); 1548 /* 1549 * Fail path for now, so we do not ping pong 1550 */ 1551 fail_path(pgpath); 1552 break; 1553 case SCSI_DH_DEV_TEMP_BUSY: 1554 /* 1555 * Probably doing something like FW upgrade on the 1556 * controller so try the other pg. 1557 */ 1558 bypass_pg(m, pg, true); 1559 break; 1560 case SCSI_DH_RETRY: 1561 /* Wait before retrying. */ 1562 delay_retry = true; 1563 fallthrough; 1564 case SCSI_DH_IMM_RETRY: 1565 case SCSI_DH_RES_TEMP_UNAVAIL: 1566 if (pg_init_limit_reached(m, pgpath)) 1567 fail_path(pgpath); 1568 errors = 0; 1569 break; 1570 case SCSI_DH_DEV_OFFLINED: 1571 default: 1572 /* 1573 * We probably do not want to fail the path for a device 1574 * error, but this is what the old dm did. In future 1575 * patches we can do more advanced handling. 1576 */ 1577 fail_path(pgpath); 1578 } 1579 1580 spin_lock_irqsave(&m->lock, flags); 1581 if (errors) { 1582 if (pgpath == m->current_pgpath) { 1583 DMERR("Could not failover device. Error %d.", errors); 1584 m->current_pgpath = NULL; 1585 m->current_pg = NULL; 1586 } 1587 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1588 pg->bypassed = false; 1589 1590 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1591 /* Activations of other paths are still on going */ 1592 goto out; 1593 1594 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1595 if (delay_retry) 1596 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1597 else 1598 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1599 1600 if (__pg_init_all_paths(m)) 1601 goto out; 1602 } 1603 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1604 1605 process_queued_io_list(m); 1606 1607 /* 1608 * Wake up any thread waiting to suspend. 1609 */ 1610 wake_up(&m->pg_init_wait); 1611 1612 out: 1613 spin_unlock_irqrestore(&m->lock, flags); 1614 } 1615 1616 static void activate_or_offline_path(struct pgpath *pgpath) 1617 { 1618 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1619 1620 if (pgpath->is_active && !blk_queue_dying(q)) 1621 scsi_dh_activate(q, pg_init_done, pgpath); 1622 else 1623 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1624 } 1625 1626 static void activate_path_work(struct work_struct *work) 1627 { 1628 struct pgpath *pgpath = 1629 container_of(work, struct pgpath, activate_path.work); 1630 1631 activate_or_offline_path(pgpath); 1632 } 1633 1634 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1635 blk_status_t error, union map_info *map_context) 1636 { 1637 struct dm_mpath_io *mpio = get_mpio(map_context); 1638 struct pgpath *pgpath = mpio->pgpath; 1639 int r = DM_ENDIO_DONE; 1640 1641 /* 1642 * We don't queue any clone request inside the multipath target 1643 * during end I/O handling, since those clone requests don't have 1644 * bio clones. If we queue them inside the multipath target, 1645 * we need to make bio clones, that requires memory allocation. 1646 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1647 * don't have bio clones.) 1648 * Instead of queueing the clone request here, we queue the original 1649 * request into dm core, which will remake a clone request and 1650 * clone bios for it and resubmit it later. 1651 */ 1652 if (error && blk_path_error(error)) { 1653 struct multipath *m = ti->private; 1654 1655 if (error == BLK_STS_RESOURCE) 1656 r = DM_ENDIO_DELAY_REQUEUE; 1657 else 1658 r = DM_ENDIO_REQUEUE; 1659 1660 if (pgpath) 1661 fail_path(pgpath); 1662 1663 if (!atomic_read(&m->nr_valid_paths) && 1664 !must_push_back_rq(m)) { 1665 if (error == BLK_STS_IOERR) 1666 dm_report_EIO(m); 1667 /* complete with the original error */ 1668 r = DM_ENDIO_DONE; 1669 } 1670 } 1671 1672 if (pgpath) { 1673 struct path_selector *ps = &pgpath->pg->ps; 1674 1675 if (ps->type->end_io) 1676 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1677 clone->io_start_time_ns); 1678 } 1679 1680 return r; 1681 } 1682 1683 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1684 blk_status_t *error) 1685 { 1686 struct multipath *m = ti->private; 1687 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1688 struct pgpath *pgpath = mpio->pgpath; 1689 unsigned long flags; 1690 int r = DM_ENDIO_DONE; 1691 1692 if (!*error || !blk_path_error(*error)) 1693 goto done; 1694 1695 if (pgpath) 1696 fail_path(pgpath); 1697 1698 if (!atomic_read(&m->nr_valid_paths)) { 1699 spin_lock_irqsave(&m->lock, flags); 1700 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1701 if (__must_push_back(m)) { 1702 r = DM_ENDIO_REQUEUE; 1703 } else { 1704 dm_report_EIO(m); 1705 *error = BLK_STS_IOERR; 1706 } 1707 spin_unlock_irqrestore(&m->lock, flags); 1708 goto done; 1709 } 1710 spin_unlock_irqrestore(&m->lock, flags); 1711 } 1712 1713 multipath_queue_bio(m, clone); 1714 r = DM_ENDIO_INCOMPLETE; 1715 done: 1716 if (pgpath) { 1717 struct path_selector *ps = &pgpath->pg->ps; 1718 1719 if (ps->type->end_io) 1720 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1721 dm_start_time_ns_from_clone(clone)); 1722 } 1723 1724 return r; 1725 } 1726 1727 /* 1728 * Suspend with flush can't complete until all the I/O is processed 1729 * so if the last path fails we must error any remaining I/O. 1730 * - Note that if the freeze_bdev fails while suspending, the 1731 * queue_if_no_path state is lost - userspace should reset it. 1732 * Otherwise, during noflush suspend, queue_if_no_path will not change. 1733 */ 1734 static void multipath_presuspend(struct dm_target *ti) 1735 { 1736 struct multipath *m = ti->private; 1737 1738 /* FIXME: bio-based shouldn't need to always disable queue_if_no_path */ 1739 if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti)) 1740 queue_if_no_path(m, false, true, __func__); 1741 } 1742 1743 static void multipath_postsuspend(struct dm_target *ti) 1744 { 1745 struct multipath *m = ti->private; 1746 1747 mutex_lock(&m->work_mutex); 1748 flush_multipath_work(m); 1749 mutex_unlock(&m->work_mutex); 1750 } 1751 1752 /* 1753 * Restore the queue_if_no_path setting. 1754 */ 1755 static void multipath_resume(struct dm_target *ti) 1756 { 1757 struct multipath *m = ti->private; 1758 unsigned long flags; 1759 1760 spin_lock_irqsave(&m->lock, flags); 1761 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) { 1762 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1763 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 1764 } 1765 1766 DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d", 1767 dm_table_device_name(m->ti->table), __func__, 1768 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 1769 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1770 1771 spin_unlock_irqrestore(&m->lock, flags); 1772 } 1773 1774 /* 1775 * Info output has the following format: 1776 * num_multipath_feature_args [multipath_feature_args]* 1777 * num_handler_status_args [handler_status_args]* 1778 * num_groups init_group_number 1779 * [A|D|E num_ps_status_args [ps_status_args]* 1780 * num_paths num_selector_args 1781 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1782 * 1783 * Table output has the following format (identical to the constructor string): 1784 * num_feature_args [features_args]* 1785 * num_handler_args hw_handler [hw_handler_args]* 1786 * num_groups init_group_number 1787 * [priority selector-name num_ps_args [ps_args]* 1788 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1789 */ 1790 static void multipath_status(struct dm_target *ti, status_type_t type, 1791 unsigned status_flags, char *result, unsigned maxlen) 1792 { 1793 int sz = 0, pg_counter, pgpath_counter; 1794 unsigned long flags; 1795 struct multipath *m = ti->private; 1796 struct priority_group *pg; 1797 struct pgpath *p; 1798 unsigned pg_num; 1799 char state; 1800 1801 spin_lock_irqsave(&m->lock, flags); 1802 1803 /* Features */ 1804 if (type == STATUSTYPE_INFO) 1805 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1806 atomic_read(&m->pg_init_count)); 1807 else { 1808 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1809 (m->pg_init_retries > 0) * 2 + 1810 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1811 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1812 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1813 1814 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1815 DMEMIT("queue_if_no_path "); 1816 if (m->pg_init_retries) 1817 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1818 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1819 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1820 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1821 DMEMIT("retain_attached_hw_handler "); 1822 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1823 switch(m->queue_mode) { 1824 case DM_TYPE_BIO_BASED: 1825 DMEMIT("queue_mode bio "); 1826 break; 1827 default: 1828 WARN_ON_ONCE(true); 1829 break; 1830 } 1831 } 1832 } 1833 1834 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1835 DMEMIT("0 "); 1836 else 1837 DMEMIT("1 %s ", m->hw_handler_name); 1838 1839 DMEMIT("%u ", m->nr_priority_groups); 1840 1841 if (m->next_pg) 1842 pg_num = m->next_pg->pg_num; 1843 else if (m->current_pg) 1844 pg_num = m->current_pg->pg_num; 1845 else 1846 pg_num = (m->nr_priority_groups ? 1 : 0); 1847 1848 DMEMIT("%u ", pg_num); 1849 1850 switch (type) { 1851 case STATUSTYPE_INFO: 1852 list_for_each_entry(pg, &m->priority_groups, list) { 1853 if (pg->bypassed) 1854 state = 'D'; /* Disabled */ 1855 else if (pg == m->current_pg) 1856 state = 'A'; /* Currently Active */ 1857 else 1858 state = 'E'; /* Enabled */ 1859 1860 DMEMIT("%c ", state); 1861 1862 if (pg->ps.type->status) 1863 sz += pg->ps.type->status(&pg->ps, NULL, type, 1864 result + sz, 1865 maxlen - sz); 1866 else 1867 DMEMIT("0 "); 1868 1869 DMEMIT("%u %u ", pg->nr_pgpaths, 1870 pg->ps.type->info_args); 1871 1872 list_for_each_entry(p, &pg->pgpaths, list) { 1873 DMEMIT("%s %s %u ", p->path.dev->name, 1874 p->is_active ? "A" : "F", 1875 p->fail_count); 1876 if (pg->ps.type->status) 1877 sz += pg->ps.type->status(&pg->ps, 1878 &p->path, type, result + sz, 1879 maxlen - sz); 1880 } 1881 } 1882 break; 1883 1884 case STATUSTYPE_TABLE: 1885 list_for_each_entry(pg, &m->priority_groups, list) { 1886 DMEMIT("%s ", pg->ps.type->name); 1887 1888 if (pg->ps.type->status) 1889 sz += pg->ps.type->status(&pg->ps, NULL, type, 1890 result + sz, 1891 maxlen - sz); 1892 else 1893 DMEMIT("0 "); 1894 1895 DMEMIT("%u %u ", pg->nr_pgpaths, 1896 pg->ps.type->table_args); 1897 1898 list_for_each_entry(p, &pg->pgpaths, list) { 1899 DMEMIT("%s ", p->path.dev->name); 1900 if (pg->ps.type->status) 1901 sz += pg->ps.type->status(&pg->ps, 1902 &p->path, type, result + sz, 1903 maxlen - sz); 1904 } 1905 } 1906 break; 1907 1908 case STATUSTYPE_IMA: 1909 sz = 0; /*reset the result pointer*/ 1910 1911 DMEMIT_TARGET_NAME_VERSION(ti->type); 1912 DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups); 1913 1914 pg_counter = 0; 1915 list_for_each_entry(pg, &m->priority_groups, list) { 1916 if (pg->bypassed) 1917 state = 'D'; /* Disabled */ 1918 else if (pg == m->current_pg) 1919 state = 'A'; /* Currently Active */ 1920 else 1921 state = 'E'; /* Enabled */ 1922 DMEMIT(",pg_state_%d=%c", pg_counter, state); 1923 DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths); 1924 DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name); 1925 1926 pgpath_counter = 0; 1927 list_for_each_entry(p, &pg->pgpaths, list) { 1928 DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u", 1929 pg_counter, pgpath_counter, p->path.dev->name, 1930 pg_counter, pgpath_counter, p->is_active ? 'A' : 'F', 1931 pg_counter, pgpath_counter, p->fail_count); 1932 if (pg->ps.type->status) { 1933 DMEMIT(",path_selector_status_%d_%d=", 1934 pg_counter, pgpath_counter); 1935 sz += pg->ps.type->status(&pg->ps, &p->path, 1936 type, result + sz, 1937 maxlen - sz); 1938 } 1939 pgpath_counter++; 1940 } 1941 pg_counter++; 1942 } 1943 DMEMIT(";"); 1944 break; 1945 } 1946 1947 spin_unlock_irqrestore(&m->lock, flags); 1948 } 1949 1950 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1951 char *result, unsigned maxlen) 1952 { 1953 int r = -EINVAL; 1954 struct dm_dev *dev; 1955 struct multipath *m = ti->private; 1956 action_fn action; 1957 unsigned long flags; 1958 1959 mutex_lock(&m->work_mutex); 1960 1961 if (dm_suspended(ti)) { 1962 r = -EBUSY; 1963 goto out; 1964 } 1965 1966 if (argc == 1) { 1967 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1968 r = queue_if_no_path(m, true, false, __func__); 1969 spin_lock_irqsave(&m->lock, flags); 1970 enable_nopath_timeout(m); 1971 spin_unlock_irqrestore(&m->lock, flags); 1972 goto out; 1973 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1974 r = queue_if_no_path(m, false, false, __func__); 1975 disable_nopath_timeout(m); 1976 goto out; 1977 } 1978 } 1979 1980 if (argc != 2) { 1981 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1982 goto out; 1983 } 1984 1985 if (!strcasecmp(argv[0], "disable_group")) { 1986 r = bypass_pg_num(m, argv[1], true); 1987 goto out; 1988 } else if (!strcasecmp(argv[0], "enable_group")) { 1989 r = bypass_pg_num(m, argv[1], false); 1990 goto out; 1991 } else if (!strcasecmp(argv[0], "switch_group")) { 1992 r = switch_pg_num(m, argv[1]); 1993 goto out; 1994 } else if (!strcasecmp(argv[0], "reinstate_path")) 1995 action = reinstate_path; 1996 else if (!strcasecmp(argv[0], "fail_path")) 1997 action = fail_path; 1998 else { 1999 DMWARN("Unrecognised multipath message received: %s", argv[0]); 2000 goto out; 2001 } 2002 2003 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 2004 if (r) { 2005 DMWARN("message: error getting device %s", 2006 argv[1]); 2007 goto out; 2008 } 2009 2010 r = action_dev(m, dev, action); 2011 2012 dm_put_device(ti, dev); 2013 2014 out: 2015 mutex_unlock(&m->work_mutex); 2016 return r; 2017 } 2018 2019 static int multipath_prepare_ioctl(struct dm_target *ti, 2020 struct block_device **bdev) 2021 { 2022 struct multipath *m = ti->private; 2023 struct pgpath *pgpath; 2024 unsigned long flags; 2025 int r; 2026 2027 pgpath = READ_ONCE(m->current_pgpath); 2028 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 2029 pgpath = choose_pgpath(m, 0); 2030 2031 if (pgpath) { 2032 if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) { 2033 *bdev = pgpath->path.dev->bdev; 2034 r = 0; 2035 } else { 2036 /* pg_init has not started or completed */ 2037 r = -ENOTCONN; 2038 } 2039 } else { 2040 /* No path is available */ 2041 r = -EIO; 2042 spin_lock_irqsave(&m->lock, flags); 2043 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2044 r = -ENOTCONN; 2045 spin_unlock_irqrestore(&m->lock, flags); 2046 } 2047 2048 if (r == -ENOTCONN) { 2049 if (!READ_ONCE(m->current_pg)) { 2050 /* Path status changed, redo selection */ 2051 (void) choose_pgpath(m, 0); 2052 } 2053 spin_lock_irqsave(&m->lock, flags); 2054 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 2055 (void) __pg_init_all_paths(m); 2056 spin_unlock_irqrestore(&m->lock, flags); 2057 dm_table_run_md_queue_async(m->ti->table); 2058 process_queued_io_list(m); 2059 } 2060 2061 /* 2062 * Only pass ioctls through if the device sizes match exactly. 2063 */ 2064 if (!r && ti->len != bdev_nr_sectors((*bdev))) 2065 return 1; 2066 return r; 2067 } 2068 2069 static int multipath_iterate_devices(struct dm_target *ti, 2070 iterate_devices_callout_fn fn, void *data) 2071 { 2072 struct multipath *m = ti->private; 2073 struct priority_group *pg; 2074 struct pgpath *p; 2075 int ret = 0; 2076 2077 list_for_each_entry(pg, &m->priority_groups, list) { 2078 list_for_each_entry(p, &pg->pgpaths, list) { 2079 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 2080 if (ret) 2081 goto out; 2082 } 2083 } 2084 2085 out: 2086 return ret; 2087 } 2088 2089 static int pgpath_busy(struct pgpath *pgpath) 2090 { 2091 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 2092 2093 return blk_lld_busy(q); 2094 } 2095 2096 /* 2097 * We return "busy", only when we can map I/Os but underlying devices 2098 * are busy (so even if we map I/Os now, the I/Os will wait on 2099 * the underlying queue). 2100 * In other words, if we want to kill I/Os or queue them inside us 2101 * due to map unavailability, we don't return "busy". Otherwise, 2102 * dm core won't give us the I/Os and we can't do what we want. 2103 */ 2104 static int multipath_busy(struct dm_target *ti) 2105 { 2106 bool busy = false, has_active = false; 2107 struct multipath *m = ti->private; 2108 struct priority_group *pg, *next_pg; 2109 struct pgpath *pgpath; 2110 2111 /* pg_init in progress */ 2112 if (atomic_read(&m->pg_init_in_progress)) 2113 return true; 2114 2115 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2116 if (!atomic_read(&m->nr_valid_paths)) { 2117 unsigned long flags; 2118 spin_lock_irqsave(&m->lock, flags); 2119 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 2120 spin_unlock_irqrestore(&m->lock, flags); 2121 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 2122 } 2123 spin_unlock_irqrestore(&m->lock, flags); 2124 } 2125 2126 /* Guess which priority_group will be used at next mapping time */ 2127 pg = READ_ONCE(m->current_pg); 2128 next_pg = READ_ONCE(m->next_pg); 2129 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 2130 pg = next_pg; 2131 2132 if (!pg) { 2133 /* 2134 * We don't know which pg will be used at next mapping time. 2135 * We don't call choose_pgpath() here to avoid to trigger 2136 * pg_init just by busy checking. 2137 * So we don't know whether underlying devices we will be using 2138 * at next mapping time are busy or not. Just try mapping. 2139 */ 2140 return busy; 2141 } 2142 2143 /* 2144 * If there is one non-busy active path at least, the path selector 2145 * will be able to select it. So we consider such a pg as not busy. 2146 */ 2147 busy = true; 2148 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2149 if (pgpath->is_active) { 2150 has_active = true; 2151 if (!pgpath_busy(pgpath)) { 2152 busy = false; 2153 break; 2154 } 2155 } 2156 } 2157 2158 if (!has_active) { 2159 /* 2160 * No active path in this pg, so this pg won't be used and 2161 * the current_pg will be changed at next mapping time. 2162 * We need to try mapping to determine it. 2163 */ 2164 busy = false; 2165 } 2166 2167 return busy; 2168 } 2169 2170 /*----------------------------------------------------------------- 2171 * Module setup 2172 *---------------------------------------------------------------*/ 2173 static struct target_type multipath_target = { 2174 .name = "multipath", 2175 .version = {1, 14, 0}, 2176 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2177 DM_TARGET_PASSES_INTEGRITY, 2178 .module = THIS_MODULE, 2179 .ctr = multipath_ctr, 2180 .dtr = multipath_dtr, 2181 .clone_and_map_rq = multipath_clone_and_map, 2182 .release_clone_rq = multipath_release_clone, 2183 .rq_end_io = multipath_end_io, 2184 .map = multipath_map_bio, 2185 .end_io = multipath_end_io_bio, 2186 .presuspend = multipath_presuspend, 2187 .postsuspend = multipath_postsuspend, 2188 .resume = multipath_resume, 2189 .status = multipath_status, 2190 .message = multipath_message, 2191 .prepare_ioctl = multipath_prepare_ioctl, 2192 .iterate_devices = multipath_iterate_devices, 2193 .busy = multipath_busy, 2194 }; 2195 2196 static int __init dm_multipath_init(void) 2197 { 2198 int r; 2199 2200 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2201 if (!kmultipathd) { 2202 DMERR("failed to create workqueue kmpathd"); 2203 r = -ENOMEM; 2204 goto bad_alloc_kmultipathd; 2205 } 2206 2207 /* 2208 * A separate workqueue is used to handle the device handlers 2209 * to avoid overloading existing workqueue. Overloading the 2210 * old workqueue would also create a bottleneck in the 2211 * path of the storage hardware device activation. 2212 */ 2213 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2214 WQ_MEM_RECLAIM); 2215 if (!kmpath_handlerd) { 2216 DMERR("failed to create workqueue kmpath_handlerd"); 2217 r = -ENOMEM; 2218 goto bad_alloc_kmpath_handlerd; 2219 } 2220 2221 r = dm_register_target(&multipath_target); 2222 if (r < 0) { 2223 DMERR("request-based register failed %d", r); 2224 r = -EINVAL; 2225 goto bad_register_target; 2226 } 2227 2228 return 0; 2229 2230 bad_register_target: 2231 destroy_workqueue(kmpath_handlerd); 2232 bad_alloc_kmpath_handlerd: 2233 destroy_workqueue(kmultipathd); 2234 bad_alloc_kmultipathd: 2235 return r; 2236 } 2237 2238 static void __exit dm_multipath_exit(void) 2239 { 2240 destroy_workqueue(kmpath_handlerd); 2241 destroy_workqueue(kmultipathd); 2242 2243 dm_unregister_target(&multipath_target); 2244 } 2245 2246 module_init(dm_multipath_init); 2247 module_exit(dm_multipath_exit); 2248 2249 module_param_named(queue_if_no_path_timeout_secs, 2250 queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR); 2251 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds"); 2252 2253 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2254 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2255 MODULE_LICENSE("GPL"); 2256