xref: /openbmc/linux/drivers/md/dm-mpath.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-path-selector.h"
11 #include "dm-uevent.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/workqueue.h>
21 #include <scsi/scsi_dh.h>
22 #include <asm/atomic.h>
23 
24 #define DM_MSG_PREFIX "multipath"
25 #define MESG_STR(x) x, sizeof(x)
26 #define DM_PG_INIT_DELAY_MSECS 2000
27 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
28 
29 /* Path properties */
30 struct pgpath {
31 	struct list_head list;
32 
33 	struct priority_group *pg;	/* Owning PG */
34 	unsigned is_active;		/* Path status */
35 	unsigned fail_count;		/* Cumulative failure count */
36 
37 	struct dm_path path;
38 	struct delayed_work activate_path;
39 };
40 
41 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
42 
43 /*
44  * Paths are grouped into Priority Groups and numbered from 1 upwards.
45  * Each has a path selector which controls which path gets used.
46  */
47 struct priority_group {
48 	struct list_head list;
49 
50 	struct multipath *m;		/* Owning multipath instance */
51 	struct path_selector ps;
52 
53 	unsigned pg_num;		/* Reference number */
54 	unsigned bypassed;		/* Temporarily bypass this PG? */
55 
56 	unsigned nr_pgpaths;		/* Number of paths in PG */
57 	struct list_head pgpaths;
58 };
59 
60 /* Multipath context */
61 struct multipath {
62 	struct list_head list;
63 	struct dm_target *ti;
64 
65 	spinlock_t lock;
66 
67 	const char *hw_handler_name;
68 	char *hw_handler_params;
69 
70 	unsigned nr_priority_groups;
71 	struct list_head priority_groups;
72 
73 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
74 
75 	unsigned pg_init_required;	/* pg_init needs calling? */
76 	unsigned pg_init_in_progress;	/* Only one pg_init allowed at once */
77 	unsigned pg_init_delay_retry;	/* Delay pg_init retry? */
78 
79 	unsigned nr_valid_paths;	/* Total number of usable paths */
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 	unsigned repeat_count;		/* I/Os left before calling PS again */
84 
85 	unsigned queue_io;		/* Must we queue all I/O? */
86 	unsigned queue_if_no_path;	/* Queue I/O if last path fails? */
87 	unsigned saved_queue_if_no_path;/* Saved state during suspension */
88 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
89 	unsigned pg_init_count;		/* Number of times pg_init called */
90 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
91 
92 	struct work_struct process_queued_ios;
93 	struct list_head queued_ios;
94 	unsigned queue_size;
95 
96 	struct work_struct trigger_event;
97 
98 	/*
99 	 * We must use a mempool of dm_mpath_io structs so that we
100 	 * can resubmit bios on error.
101 	 */
102 	mempool_t *mpio_pool;
103 
104 	struct mutex work_mutex;
105 };
106 
107 /*
108  * Context information attached to each bio we process.
109  */
110 struct dm_mpath_io {
111 	struct pgpath *pgpath;
112 	size_t nr_bytes;
113 };
114 
115 typedef int (*action_fn) (struct pgpath *pgpath);
116 
117 #define MIN_IOS 256	/* Mempool size */
118 
119 static struct kmem_cache *_mpio_cache;
120 
121 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
122 static void process_queued_ios(struct work_struct *work);
123 static void trigger_event(struct work_struct *work);
124 static void activate_path(struct work_struct *work);
125 
126 
127 /*-----------------------------------------------
128  * Allocation routines
129  *-----------------------------------------------*/
130 
131 static struct pgpath *alloc_pgpath(void)
132 {
133 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
134 
135 	if (pgpath) {
136 		pgpath->is_active = 1;
137 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path);
138 	}
139 
140 	return pgpath;
141 }
142 
143 static void free_pgpath(struct pgpath *pgpath)
144 {
145 	kfree(pgpath);
146 }
147 
148 static struct priority_group *alloc_priority_group(void)
149 {
150 	struct priority_group *pg;
151 
152 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
153 
154 	if (pg)
155 		INIT_LIST_HEAD(&pg->pgpaths);
156 
157 	return pg;
158 }
159 
160 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
161 {
162 	struct pgpath *pgpath, *tmp;
163 	struct multipath *m = ti->private;
164 
165 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
166 		list_del(&pgpath->list);
167 		if (m->hw_handler_name)
168 			scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		INIT_LIST_HEAD(&m->queued_ios);
196 		spin_lock_init(&m->lock);
197 		m->queue_io = 1;
198 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
199 		INIT_WORK(&m->process_queued_ios, process_queued_ios);
200 		INIT_WORK(&m->trigger_event, trigger_event);
201 		init_waitqueue_head(&m->pg_init_wait);
202 		mutex_init(&m->work_mutex);
203 		m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
204 		if (!m->mpio_pool) {
205 			kfree(m);
206 			return NULL;
207 		}
208 		m->ti = ti;
209 		ti->private = m;
210 	}
211 
212 	return m;
213 }
214 
215 static void free_multipath(struct multipath *m)
216 {
217 	struct priority_group *pg, *tmp;
218 
219 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
220 		list_del(&pg->list);
221 		free_priority_group(pg, m->ti);
222 	}
223 
224 	kfree(m->hw_handler_name);
225 	kfree(m->hw_handler_params);
226 	mempool_destroy(m->mpio_pool);
227 	kfree(m);
228 }
229 
230 
231 /*-----------------------------------------------
232  * Path selection
233  *-----------------------------------------------*/
234 
235 static void __pg_init_all_paths(struct multipath *m)
236 {
237 	struct pgpath *pgpath;
238 	unsigned long pg_init_delay = 0;
239 
240 	m->pg_init_count++;
241 	m->pg_init_required = 0;
242 	if (m->pg_init_delay_retry)
243 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
244 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
245 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
246 		/* Skip failed paths */
247 		if (!pgpath->is_active)
248 			continue;
249 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
250 				       pg_init_delay))
251 			m->pg_init_in_progress++;
252 	}
253 }
254 
255 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
256 {
257 	m->current_pg = pgpath->pg;
258 
259 	/* Must we initialise the PG first, and queue I/O till it's ready? */
260 	if (m->hw_handler_name) {
261 		m->pg_init_required = 1;
262 		m->queue_io = 1;
263 	} else {
264 		m->pg_init_required = 0;
265 		m->queue_io = 0;
266 	}
267 
268 	m->pg_init_count = 0;
269 }
270 
271 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
272 			       size_t nr_bytes)
273 {
274 	struct dm_path *path;
275 
276 	path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
277 	if (!path)
278 		return -ENXIO;
279 
280 	m->current_pgpath = path_to_pgpath(path);
281 
282 	if (m->current_pg != pg)
283 		__switch_pg(m, m->current_pgpath);
284 
285 	return 0;
286 }
287 
288 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
289 {
290 	struct priority_group *pg;
291 	unsigned bypassed = 1;
292 
293 	if (!m->nr_valid_paths)
294 		goto failed;
295 
296 	/* Were we instructed to switch PG? */
297 	if (m->next_pg) {
298 		pg = m->next_pg;
299 		m->next_pg = NULL;
300 		if (!__choose_path_in_pg(m, pg, nr_bytes))
301 			return;
302 	}
303 
304 	/* Don't change PG until it has no remaining paths */
305 	if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
306 		return;
307 
308 	/*
309 	 * Loop through priority groups until we find a valid path.
310 	 * First time we skip PGs marked 'bypassed'.
311 	 * Second time we only try the ones we skipped.
312 	 */
313 	do {
314 		list_for_each_entry(pg, &m->priority_groups, list) {
315 			if (pg->bypassed == bypassed)
316 				continue;
317 			if (!__choose_path_in_pg(m, pg, nr_bytes))
318 				return;
319 		}
320 	} while (bypassed--);
321 
322 failed:
323 	m->current_pgpath = NULL;
324 	m->current_pg = NULL;
325 }
326 
327 /*
328  * Check whether bios must be queued in the device-mapper core rather
329  * than here in the target.
330  *
331  * m->lock must be held on entry.
332  *
333  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
334  * same value then we are not between multipath_presuspend()
335  * and multipath_resume() calls and we have no need to check
336  * for the DMF_NOFLUSH_SUSPENDING flag.
337  */
338 static int __must_push_back(struct multipath *m)
339 {
340 	return (m->queue_if_no_path != m->saved_queue_if_no_path &&
341 		dm_noflush_suspending(m->ti));
342 }
343 
344 static int map_io(struct multipath *m, struct request *clone,
345 		  struct dm_mpath_io *mpio, unsigned was_queued)
346 {
347 	int r = DM_MAPIO_REMAPPED;
348 	size_t nr_bytes = blk_rq_bytes(clone);
349 	unsigned long flags;
350 	struct pgpath *pgpath;
351 	struct block_device *bdev;
352 
353 	spin_lock_irqsave(&m->lock, flags);
354 
355 	/* Do we need to select a new pgpath? */
356 	if (!m->current_pgpath ||
357 	    (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
358 		__choose_pgpath(m, nr_bytes);
359 
360 	pgpath = m->current_pgpath;
361 
362 	if (was_queued)
363 		m->queue_size--;
364 
365 	if ((pgpath && m->queue_io) ||
366 	    (!pgpath && m->queue_if_no_path)) {
367 		/* Queue for the daemon to resubmit */
368 		list_add_tail(&clone->queuelist, &m->queued_ios);
369 		m->queue_size++;
370 		if ((m->pg_init_required && !m->pg_init_in_progress) ||
371 		    !m->queue_io)
372 			queue_work(kmultipathd, &m->process_queued_ios);
373 		pgpath = NULL;
374 		r = DM_MAPIO_SUBMITTED;
375 	} else if (pgpath) {
376 		bdev = pgpath->path.dev->bdev;
377 		clone->q = bdev_get_queue(bdev);
378 		clone->rq_disk = bdev->bd_disk;
379 	} else if (__must_push_back(m))
380 		r = DM_MAPIO_REQUEUE;
381 	else
382 		r = -EIO;	/* Failed */
383 
384 	mpio->pgpath = pgpath;
385 	mpio->nr_bytes = nr_bytes;
386 
387 	if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
388 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
389 					      nr_bytes);
390 
391 	spin_unlock_irqrestore(&m->lock, flags);
392 
393 	return r;
394 }
395 
396 /*
397  * If we run out of usable paths, should we queue I/O or error it?
398  */
399 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
400 			    unsigned save_old_value)
401 {
402 	unsigned long flags;
403 
404 	spin_lock_irqsave(&m->lock, flags);
405 
406 	if (save_old_value)
407 		m->saved_queue_if_no_path = m->queue_if_no_path;
408 	else
409 		m->saved_queue_if_no_path = queue_if_no_path;
410 	m->queue_if_no_path = queue_if_no_path;
411 	if (!m->queue_if_no_path && m->queue_size)
412 		queue_work(kmultipathd, &m->process_queued_ios);
413 
414 	spin_unlock_irqrestore(&m->lock, flags);
415 
416 	return 0;
417 }
418 
419 /*-----------------------------------------------------------------
420  * The multipath daemon is responsible for resubmitting queued ios.
421  *---------------------------------------------------------------*/
422 
423 static void dispatch_queued_ios(struct multipath *m)
424 {
425 	int r;
426 	unsigned long flags;
427 	struct dm_mpath_io *mpio;
428 	union map_info *info;
429 	struct request *clone, *n;
430 	LIST_HEAD(cl);
431 
432 	spin_lock_irqsave(&m->lock, flags);
433 	list_splice_init(&m->queued_ios, &cl);
434 	spin_unlock_irqrestore(&m->lock, flags);
435 
436 	list_for_each_entry_safe(clone, n, &cl, queuelist) {
437 		list_del_init(&clone->queuelist);
438 
439 		info = dm_get_rq_mapinfo(clone);
440 		mpio = info->ptr;
441 
442 		r = map_io(m, clone, mpio, 1);
443 		if (r < 0) {
444 			mempool_free(mpio, m->mpio_pool);
445 			dm_kill_unmapped_request(clone, r);
446 		} else if (r == DM_MAPIO_REMAPPED)
447 			dm_dispatch_request(clone);
448 		else if (r == DM_MAPIO_REQUEUE) {
449 			mempool_free(mpio, m->mpio_pool);
450 			dm_requeue_unmapped_request(clone);
451 		}
452 	}
453 }
454 
455 static void process_queued_ios(struct work_struct *work)
456 {
457 	struct multipath *m =
458 		container_of(work, struct multipath, process_queued_ios);
459 	struct pgpath *pgpath = NULL;
460 	unsigned must_queue = 1;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&m->lock, flags);
464 
465 	if (!m->queue_size)
466 		goto out;
467 
468 	if (!m->current_pgpath)
469 		__choose_pgpath(m, 0);
470 
471 	pgpath = m->current_pgpath;
472 
473 	if ((pgpath && !m->queue_io) ||
474 	    (!pgpath && !m->queue_if_no_path))
475 		must_queue = 0;
476 
477 	if (m->pg_init_required && !m->pg_init_in_progress && pgpath)
478 		__pg_init_all_paths(m);
479 
480 out:
481 	spin_unlock_irqrestore(&m->lock, flags);
482 	if (!must_queue)
483 		dispatch_queued_ios(m);
484 }
485 
486 /*
487  * An event is triggered whenever a path is taken out of use.
488  * Includes path failure and PG bypass.
489  */
490 static void trigger_event(struct work_struct *work)
491 {
492 	struct multipath *m =
493 		container_of(work, struct multipath, trigger_event);
494 
495 	dm_table_event(m->ti->table);
496 }
497 
498 /*-----------------------------------------------------------------
499  * Constructor/argument parsing:
500  * <#multipath feature args> [<arg>]*
501  * <#hw_handler args> [hw_handler [<arg>]*]
502  * <#priority groups>
503  * <initial priority group>
504  *     [<selector> <#selector args> [<arg>]*
505  *      <#paths> <#per-path selector args>
506  *         [<path> [<arg>]* ]+ ]+
507  *---------------------------------------------------------------*/
508 struct param {
509 	unsigned min;
510 	unsigned max;
511 	char *error;
512 };
513 
514 static int read_param(struct param *param, char *str, unsigned *v, char **error)
515 {
516 	if (!str ||
517 	    (sscanf(str, "%u", v) != 1) ||
518 	    (*v < param->min) ||
519 	    (*v > param->max)) {
520 		*error = param->error;
521 		return -EINVAL;
522 	}
523 
524 	return 0;
525 }
526 
527 struct arg_set {
528 	unsigned argc;
529 	char **argv;
530 };
531 
532 static char *shift(struct arg_set *as)
533 {
534 	char *r;
535 
536 	if (as->argc) {
537 		as->argc--;
538 		r = *as->argv;
539 		as->argv++;
540 		return r;
541 	}
542 
543 	return NULL;
544 }
545 
546 static void consume(struct arg_set *as, unsigned n)
547 {
548 	BUG_ON (as->argc < n);
549 	as->argc -= n;
550 	as->argv += n;
551 }
552 
553 static int parse_path_selector(struct arg_set *as, struct priority_group *pg,
554 			       struct dm_target *ti)
555 {
556 	int r;
557 	struct path_selector_type *pst;
558 	unsigned ps_argc;
559 
560 	static struct param _params[] = {
561 		{0, 1024, "invalid number of path selector args"},
562 	};
563 
564 	pst = dm_get_path_selector(shift(as));
565 	if (!pst) {
566 		ti->error = "unknown path selector type";
567 		return -EINVAL;
568 	}
569 
570 	r = read_param(_params, shift(as), &ps_argc, &ti->error);
571 	if (r) {
572 		dm_put_path_selector(pst);
573 		return -EINVAL;
574 	}
575 
576 	if (ps_argc > as->argc) {
577 		dm_put_path_selector(pst);
578 		ti->error = "not enough arguments for path selector";
579 		return -EINVAL;
580 	}
581 
582 	r = pst->create(&pg->ps, ps_argc, as->argv);
583 	if (r) {
584 		dm_put_path_selector(pst);
585 		ti->error = "path selector constructor failed";
586 		return r;
587 	}
588 
589 	pg->ps.type = pst;
590 	consume(as, ps_argc);
591 
592 	return 0;
593 }
594 
595 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps,
596 			       struct dm_target *ti)
597 {
598 	int r;
599 	struct pgpath *p;
600 	struct multipath *m = ti->private;
601 
602 	/* we need at least a path arg */
603 	if (as->argc < 1) {
604 		ti->error = "no device given";
605 		return ERR_PTR(-EINVAL);
606 	}
607 
608 	p = alloc_pgpath();
609 	if (!p)
610 		return ERR_PTR(-ENOMEM);
611 
612 	r = dm_get_device(ti, shift(as), dm_table_get_mode(ti->table),
613 			  &p->path.dev);
614 	if (r) {
615 		ti->error = "error getting device";
616 		goto bad;
617 	}
618 
619 	if (m->hw_handler_name) {
620 		struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
621 
622 		r = scsi_dh_attach(q, m->hw_handler_name);
623 		if (r == -EBUSY) {
624 			/*
625 			 * Already attached to different hw_handler,
626 			 * try to reattach with correct one.
627 			 */
628 			scsi_dh_detach(q);
629 			r = scsi_dh_attach(q, m->hw_handler_name);
630 		}
631 
632 		if (r < 0) {
633 			ti->error = "error attaching hardware handler";
634 			dm_put_device(ti, p->path.dev);
635 			goto bad;
636 		}
637 
638 		if (m->hw_handler_params) {
639 			r = scsi_dh_set_params(q, m->hw_handler_params);
640 			if (r < 0) {
641 				ti->error = "unable to set hardware "
642 							"handler parameters";
643 				scsi_dh_detach(q);
644 				dm_put_device(ti, p->path.dev);
645 				goto bad;
646 			}
647 		}
648 	}
649 
650 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
651 	if (r) {
652 		dm_put_device(ti, p->path.dev);
653 		goto bad;
654 	}
655 
656 	return p;
657 
658  bad:
659 	free_pgpath(p);
660 	return ERR_PTR(r);
661 }
662 
663 static struct priority_group *parse_priority_group(struct arg_set *as,
664 						   struct multipath *m)
665 {
666 	static struct param _params[] = {
667 		{1, 1024, "invalid number of paths"},
668 		{0, 1024, "invalid number of selector args"}
669 	};
670 
671 	int r;
672 	unsigned i, nr_selector_args, nr_params;
673 	struct priority_group *pg;
674 	struct dm_target *ti = m->ti;
675 
676 	if (as->argc < 2) {
677 		as->argc = 0;
678 		ti->error = "not enough priority group arguments";
679 		return ERR_PTR(-EINVAL);
680 	}
681 
682 	pg = alloc_priority_group();
683 	if (!pg) {
684 		ti->error = "couldn't allocate priority group";
685 		return ERR_PTR(-ENOMEM);
686 	}
687 	pg->m = m;
688 
689 	r = parse_path_selector(as, pg, ti);
690 	if (r)
691 		goto bad;
692 
693 	/*
694 	 * read the paths
695 	 */
696 	r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error);
697 	if (r)
698 		goto bad;
699 
700 	r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error);
701 	if (r)
702 		goto bad;
703 
704 	nr_params = 1 + nr_selector_args;
705 	for (i = 0; i < pg->nr_pgpaths; i++) {
706 		struct pgpath *pgpath;
707 		struct arg_set path_args;
708 
709 		if (as->argc < nr_params) {
710 			ti->error = "not enough path parameters";
711 			r = -EINVAL;
712 			goto bad;
713 		}
714 
715 		path_args.argc = nr_params;
716 		path_args.argv = as->argv;
717 
718 		pgpath = parse_path(&path_args, &pg->ps, ti);
719 		if (IS_ERR(pgpath)) {
720 			r = PTR_ERR(pgpath);
721 			goto bad;
722 		}
723 
724 		pgpath->pg = pg;
725 		list_add_tail(&pgpath->list, &pg->pgpaths);
726 		consume(as, nr_params);
727 	}
728 
729 	return pg;
730 
731  bad:
732 	free_priority_group(pg, ti);
733 	return ERR_PTR(r);
734 }
735 
736 static int parse_hw_handler(struct arg_set *as, struct multipath *m)
737 {
738 	unsigned hw_argc;
739 	int ret;
740 	struct dm_target *ti = m->ti;
741 
742 	static struct param _params[] = {
743 		{0, 1024, "invalid number of hardware handler args"},
744 	};
745 
746 	if (read_param(_params, shift(as), &hw_argc, &ti->error))
747 		return -EINVAL;
748 
749 	if (!hw_argc)
750 		return 0;
751 
752 	if (hw_argc > as->argc) {
753 		ti->error = "not enough arguments for hardware handler";
754 		return -EINVAL;
755 	}
756 
757 	m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL);
758 	request_module("scsi_dh_%s", m->hw_handler_name);
759 	if (scsi_dh_handler_exist(m->hw_handler_name) == 0) {
760 		ti->error = "unknown hardware handler type";
761 		ret = -EINVAL;
762 		goto fail;
763 	}
764 
765 	if (hw_argc > 1) {
766 		char *p;
767 		int i, j, len = 4;
768 
769 		for (i = 0; i <= hw_argc - 2; i++)
770 			len += strlen(as->argv[i]) + 1;
771 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
772 		if (!p) {
773 			ti->error = "memory allocation failed";
774 			ret = -ENOMEM;
775 			goto fail;
776 		}
777 		j = sprintf(p, "%d", hw_argc - 1);
778 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
779 			j = sprintf(p, "%s", as->argv[i]);
780 	}
781 	consume(as, hw_argc - 1);
782 
783 	return 0;
784 fail:
785 	kfree(m->hw_handler_name);
786 	m->hw_handler_name = NULL;
787 	return ret;
788 }
789 
790 static int parse_features(struct arg_set *as, struct multipath *m)
791 {
792 	int r;
793 	unsigned argc;
794 	struct dm_target *ti = m->ti;
795 	const char *param_name;
796 
797 	static struct param _params[] = {
798 		{0, 5, "invalid number of feature args"},
799 		{1, 50, "pg_init_retries must be between 1 and 50"},
800 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
801 	};
802 
803 	r = read_param(_params, shift(as), &argc, &ti->error);
804 	if (r)
805 		return -EINVAL;
806 
807 	if (!argc)
808 		return 0;
809 
810 	do {
811 		param_name = shift(as);
812 		argc--;
813 
814 		if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) {
815 			r = queue_if_no_path(m, 1, 0);
816 			continue;
817 		}
818 
819 		if (!strnicmp(param_name, MESG_STR("pg_init_retries")) &&
820 		    (argc >= 1)) {
821 			r = read_param(_params + 1, shift(as),
822 				       &m->pg_init_retries, &ti->error);
823 			argc--;
824 			continue;
825 		}
826 
827 		if (!strnicmp(param_name, MESG_STR("pg_init_delay_msecs")) &&
828 		    (argc >= 1)) {
829 			r = read_param(_params + 2, shift(as),
830 				       &m->pg_init_delay_msecs, &ti->error);
831 			argc--;
832 			continue;
833 		}
834 
835 		ti->error = "Unrecognised multipath feature request";
836 		r = -EINVAL;
837 	} while (argc && !r);
838 
839 	return r;
840 }
841 
842 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
843 			 char **argv)
844 {
845 	/* target parameters */
846 	static struct param _params[] = {
847 		{1, 1024, "invalid number of priority groups"},
848 		{1, 1024, "invalid initial priority group number"},
849 	};
850 
851 	int r;
852 	struct multipath *m;
853 	struct arg_set as;
854 	unsigned pg_count = 0;
855 	unsigned next_pg_num;
856 
857 	as.argc = argc;
858 	as.argv = argv;
859 
860 	m = alloc_multipath(ti);
861 	if (!m) {
862 		ti->error = "can't allocate multipath";
863 		return -EINVAL;
864 	}
865 
866 	r = parse_features(&as, m);
867 	if (r)
868 		goto bad;
869 
870 	r = parse_hw_handler(&as, m);
871 	if (r)
872 		goto bad;
873 
874 	r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error);
875 	if (r)
876 		goto bad;
877 
878 	r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error);
879 	if (r)
880 		goto bad;
881 
882 	/* parse the priority groups */
883 	while (as.argc) {
884 		struct priority_group *pg;
885 
886 		pg = parse_priority_group(&as, m);
887 		if (IS_ERR(pg)) {
888 			r = PTR_ERR(pg);
889 			goto bad;
890 		}
891 
892 		m->nr_valid_paths += pg->nr_pgpaths;
893 		list_add_tail(&pg->list, &m->priority_groups);
894 		pg_count++;
895 		pg->pg_num = pg_count;
896 		if (!--next_pg_num)
897 			m->next_pg = pg;
898 	}
899 
900 	if (pg_count != m->nr_priority_groups) {
901 		ti->error = "priority group count mismatch";
902 		r = -EINVAL;
903 		goto bad;
904 	}
905 
906 	ti->num_flush_requests = 1;
907 	ti->num_discard_requests = 1;
908 
909 	return 0;
910 
911  bad:
912 	free_multipath(m);
913 	return r;
914 }
915 
916 static void multipath_wait_for_pg_init_completion(struct multipath *m)
917 {
918 	DECLARE_WAITQUEUE(wait, current);
919 	unsigned long flags;
920 
921 	add_wait_queue(&m->pg_init_wait, &wait);
922 
923 	while (1) {
924 		set_current_state(TASK_UNINTERRUPTIBLE);
925 
926 		spin_lock_irqsave(&m->lock, flags);
927 		if (!m->pg_init_in_progress) {
928 			spin_unlock_irqrestore(&m->lock, flags);
929 			break;
930 		}
931 		spin_unlock_irqrestore(&m->lock, flags);
932 
933 		io_schedule();
934 	}
935 	set_current_state(TASK_RUNNING);
936 
937 	remove_wait_queue(&m->pg_init_wait, &wait);
938 }
939 
940 static void flush_multipath_work(struct multipath *m)
941 {
942 	flush_workqueue(kmpath_handlerd);
943 	multipath_wait_for_pg_init_completion(m);
944 	flush_workqueue(kmultipathd);
945 	flush_work_sync(&m->trigger_event);
946 }
947 
948 static void multipath_dtr(struct dm_target *ti)
949 {
950 	struct multipath *m = ti->private;
951 
952 	flush_multipath_work(m);
953 	free_multipath(m);
954 }
955 
956 /*
957  * Map cloned requests
958  */
959 static int multipath_map(struct dm_target *ti, struct request *clone,
960 			 union map_info *map_context)
961 {
962 	int r;
963 	struct dm_mpath_io *mpio;
964 	struct multipath *m = (struct multipath *) ti->private;
965 
966 	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
967 	if (!mpio)
968 		/* ENOMEM, requeue */
969 		return DM_MAPIO_REQUEUE;
970 	memset(mpio, 0, sizeof(*mpio));
971 
972 	map_context->ptr = mpio;
973 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
974 	r = map_io(m, clone, mpio, 0);
975 	if (r < 0 || r == DM_MAPIO_REQUEUE)
976 		mempool_free(mpio, m->mpio_pool);
977 
978 	return r;
979 }
980 
981 /*
982  * Take a path out of use.
983  */
984 static int fail_path(struct pgpath *pgpath)
985 {
986 	unsigned long flags;
987 	struct multipath *m = pgpath->pg->m;
988 
989 	spin_lock_irqsave(&m->lock, flags);
990 
991 	if (!pgpath->is_active)
992 		goto out;
993 
994 	DMWARN("Failing path %s.", pgpath->path.dev->name);
995 
996 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
997 	pgpath->is_active = 0;
998 	pgpath->fail_count++;
999 
1000 	m->nr_valid_paths--;
1001 
1002 	if (pgpath == m->current_pgpath)
1003 		m->current_pgpath = NULL;
1004 
1005 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1006 		      pgpath->path.dev->name, m->nr_valid_paths);
1007 
1008 	schedule_work(&m->trigger_event);
1009 
1010 out:
1011 	spin_unlock_irqrestore(&m->lock, flags);
1012 
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Reinstate a previously-failed path
1018  */
1019 static int reinstate_path(struct pgpath *pgpath)
1020 {
1021 	int r = 0;
1022 	unsigned long flags;
1023 	struct multipath *m = pgpath->pg->m;
1024 
1025 	spin_lock_irqsave(&m->lock, flags);
1026 
1027 	if (pgpath->is_active)
1028 		goto out;
1029 
1030 	if (!pgpath->pg->ps.type->reinstate_path) {
1031 		DMWARN("Reinstate path not supported by path selector %s",
1032 		       pgpath->pg->ps.type->name);
1033 		r = -EINVAL;
1034 		goto out;
1035 	}
1036 
1037 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1038 	if (r)
1039 		goto out;
1040 
1041 	pgpath->is_active = 1;
1042 
1043 	if (!m->nr_valid_paths++ && m->queue_size) {
1044 		m->current_pgpath = NULL;
1045 		queue_work(kmultipathd, &m->process_queued_ios);
1046 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1047 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1048 			m->pg_init_in_progress++;
1049 	}
1050 
1051 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1052 		      pgpath->path.dev->name, m->nr_valid_paths);
1053 
1054 	schedule_work(&m->trigger_event);
1055 
1056 out:
1057 	spin_unlock_irqrestore(&m->lock, flags);
1058 
1059 	return r;
1060 }
1061 
1062 /*
1063  * Fail or reinstate all paths that match the provided struct dm_dev.
1064  */
1065 static int action_dev(struct multipath *m, struct dm_dev *dev,
1066 		      action_fn action)
1067 {
1068 	int r = 0;
1069 	struct pgpath *pgpath;
1070 	struct priority_group *pg;
1071 
1072 	list_for_each_entry(pg, &m->priority_groups, list) {
1073 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1074 			if (pgpath->path.dev == dev)
1075 				r = action(pgpath);
1076 		}
1077 	}
1078 
1079 	return r;
1080 }
1081 
1082 /*
1083  * Temporarily try to avoid having to use the specified PG
1084  */
1085 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1086 		      int bypassed)
1087 {
1088 	unsigned long flags;
1089 
1090 	spin_lock_irqsave(&m->lock, flags);
1091 
1092 	pg->bypassed = bypassed;
1093 	m->current_pgpath = NULL;
1094 	m->current_pg = NULL;
1095 
1096 	spin_unlock_irqrestore(&m->lock, flags);
1097 
1098 	schedule_work(&m->trigger_event);
1099 }
1100 
1101 /*
1102  * Switch to using the specified PG from the next I/O that gets mapped
1103  */
1104 static int switch_pg_num(struct multipath *m, const char *pgstr)
1105 {
1106 	struct priority_group *pg;
1107 	unsigned pgnum;
1108 	unsigned long flags;
1109 
1110 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1111 	    (pgnum > m->nr_priority_groups)) {
1112 		DMWARN("invalid PG number supplied to switch_pg_num");
1113 		return -EINVAL;
1114 	}
1115 
1116 	spin_lock_irqsave(&m->lock, flags);
1117 	list_for_each_entry(pg, &m->priority_groups, list) {
1118 		pg->bypassed = 0;
1119 		if (--pgnum)
1120 			continue;
1121 
1122 		m->current_pgpath = NULL;
1123 		m->current_pg = NULL;
1124 		m->next_pg = pg;
1125 	}
1126 	spin_unlock_irqrestore(&m->lock, flags);
1127 
1128 	schedule_work(&m->trigger_event);
1129 	return 0;
1130 }
1131 
1132 /*
1133  * Set/clear bypassed status of a PG.
1134  * PGs are numbered upwards from 1 in the order they were declared.
1135  */
1136 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1137 {
1138 	struct priority_group *pg;
1139 	unsigned pgnum;
1140 
1141 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1142 	    (pgnum > m->nr_priority_groups)) {
1143 		DMWARN("invalid PG number supplied to bypass_pg");
1144 		return -EINVAL;
1145 	}
1146 
1147 	list_for_each_entry(pg, &m->priority_groups, list) {
1148 		if (!--pgnum)
1149 			break;
1150 	}
1151 
1152 	bypass_pg(m, pg, bypassed);
1153 	return 0;
1154 }
1155 
1156 /*
1157  * Should we retry pg_init immediately?
1158  */
1159 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1160 {
1161 	unsigned long flags;
1162 	int limit_reached = 0;
1163 
1164 	spin_lock_irqsave(&m->lock, flags);
1165 
1166 	if (m->pg_init_count <= m->pg_init_retries)
1167 		m->pg_init_required = 1;
1168 	else
1169 		limit_reached = 1;
1170 
1171 	spin_unlock_irqrestore(&m->lock, flags);
1172 
1173 	return limit_reached;
1174 }
1175 
1176 static void pg_init_done(void *data, int errors)
1177 {
1178 	struct pgpath *pgpath = data;
1179 	struct priority_group *pg = pgpath->pg;
1180 	struct multipath *m = pg->m;
1181 	unsigned long flags;
1182 	unsigned delay_retry = 0;
1183 
1184 	/* device or driver problems */
1185 	switch (errors) {
1186 	case SCSI_DH_OK:
1187 		break;
1188 	case SCSI_DH_NOSYS:
1189 		if (!m->hw_handler_name) {
1190 			errors = 0;
1191 			break;
1192 		}
1193 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1194 		      "Error %d.", m->hw_handler_name, errors);
1195 		/*
1196 		 * Fail path for now, so we do not ping pong
1197 		 */
1198 		fail_path(pgpath);
1199 		break;
1200 	case SCSI_DH_DEV_TEMP_BUSY:
1201 		/*
1202 		 * Probably doing something like FW upgrade on the
1203 		 * controller so try the other pg.
1204 		 */
1205 		bypass_pg(m, pg, 1);
1206 		break;
1207 	case SCSI_DH_RETRY:
1208 		/* Wait before retrying. */
1209 		delay_retry = 1;
1210 	case SCSI_DH_IMM_RETRY:
1211 	case SCSI_DH_RES_TEMP_UNAVAIL:
1212 		if (pg_init_limit_reached(m, pgpath))
1213 			fail_path(pgpath);
1214 		errors = 0;
1215 		break;
1216 	default:
1217 		/*
1218 		 * We probably do not want to fail the path for a device
1219 		 * error, but this is what the old dm did. In future
1220 		 * patches we can do more advanced handling.
1221 		 */
1222 		fail_path(pgpath);
1223 	}
1224 
1225 	spin_lock_irqsave(&m->lock, flags);
1226 	if (errors) {
1227 		if (pgpath == m->current_pgpath) {
1228 			DMERR("Could not failover device. Error %d.", errors);
1229 			m->current_pgpath = NULL;
1230 			m->current_pg = NULL;
1231 		}
1232 	} else if (!m->pg_init_required)
1233 		pg->bypassed = 0;
1234 
1235 	if (--m->pg_init_in_progress)
1236 		/* Activations of other paths are still on going */
1237 		goto out;
1238 
1239 	if (!m->pg_init_required)
1240 		m->queue_io = 0;
1241 
1242 	m->pg_init_delay_retry = delay_retry;
1243 	queue_work(kmultipathd, &m->process_queued_ios);
1244 
1245 	/*
1246 	 * Wake up any thread waiting to suspend.
1247 	 */
1248 	wake_up(&m->pg_init_wait);
1249 
1250 out:
1251 	spin_unlock_irqrestore(&m->lock, flags);
1252 }
1253 
1254 static void activate_path(struct work_struct *work)
1255 {
1256 	struct pgpath *pgpath =
1257 		container_of(work, struct pgpath, activate_path.work);
1258 
1259 	scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
1260 				pg_init_done, pgpath);
1261 }
1262 
1263 /*
1264  * end_io handling
1265  */
1266 static int do_end_io(struct multipath *m, struct request *clone,
1267 		     int error, struct dm_mpath_io *mpio)
1268 {
1269 	/*
1270 	 * We don't queue any clone request inside the multipath target
1271 	 * during end I/O handling, since those clone requests don't have
1272 	 * bio clones.  If we queue them inside the multipath target,
1273 	 * we need to make bio clones, that requires memory allocation.
1274 	 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1275 	 *  don't have bio clones.)
1276 	 * Instead of queueing the clone request here, we queue the original
1277 	 * request into dm core, which will remake a clone request and
1278 	 * clone bios for it and resubmit it later.
1279 	 */
1280 	int r = DM_ENDIO_REQUEUE;
1281 	unsigned long flags;
1282 
1283 	if (!error && !clone->errors)
1284 		return 0;	/* I/O complete */
1285 
1286 	if (error == -EOPNOTSUPP)
1287 		return error;
1288 
1289 	if (clone->cmd_flags & REQ_DISCARD)
1290 		/*
1291 		 * Pass all discard request failures up.
1292 		 * FIXME: only fail_path if the discard failed due to a
1293 		 * transport problem.  This requires precise understanding
1294 		 * of the underlying failure (e.g. the SCSI sense).
1295 		 */
1296 		return error;
1297 
1298 	if (mpio->pgpath)
1299 		fail_path(mpio->pgpath);
1300 
1301 	spin_lock_irqsave(&m->lock, flags);
1302 	if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m))
1303 		r = -EIO;
1304 	spin_unlock_irqrestore(&m->lock, flags);
1305 
1306 	return r;
1307 }
1308 
1309 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1310 			    int error, union map_info *map_context)
1311 {
1312 	struct multipath *m = ti->private;
1313 	struct dm_mpath_io *mpio = map_context->ptr;
1314 	struct pgpath *pgpath = mpio->pgpath;
1315 	struct path_selector *ps;
1316 	int r;
1317 
1318 	r  = do_end_io(m, clone, error, mpio);
1319 	if (pgpath) {
1320 		ps = &pgpath->pg->ps;
1321 		if (ps->type->end_io)
1322 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1323 	}
1324 	mempool_free(mpio, m->mpio_pool);
1325 
1326 	return r;
1327 }
1328 
1329 /*
1330  * Suspend can't complete until all the I/O is processed so if
1331  * the last path fails we must error any remaining I/O.
1332  * Note that if the freeze_bdev fails while suspending, the
1333  * queue_if_no_path state is lost - userspace should reset it.
1334  */
1335 static void multipath_presuspend(struct dm_target *ti)
1336 {
1337 	struct multipath *m = (struct multipath *) ti->private;
1338 
1339 	queue_if_no_path(m, 0, 1);
1340 }
1341 
1342 static void multipath_postsuspend(struct dm_target *ti)
1343 {
1344 	struct multipath *m = ti->private;
1345 
1346 	mutex_lock(&m->work_mutex);
1347 	flush_multipath_work(m);
1348 	mutex_unlock(&m->work_mutex);
1349 }
1350 
1351 /*
1352  * Restore the queue_if_no_path setting.
1353  */
1354 static void multipath_resume(struct dm_target *ti)
1355 {
1356 	struct multipath *m = (struct multipath *) ti->private;
1357 	unsigned long flags;
1358 
1359 	spin_lock_irqsave(&m->lock, flags);
1360 	m->queue_if_no_path = m->saved_queue_if_no_path;
1361 	spin_unlock_irqrestore(&m->lock, flags);
1362 }
1363 
1364 /*
1365  * Info output has the following format:
1366  * num_multipath_feature_args [multipath_feature_args]*
1367  * num_handler_status_args [handler_status_args]*
1368  * num_groups init_group_number
1369  *            [A|D|E num_ps_status_args [ps_status_args]*
1370  *             num_paths num_selector_args
1371  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1372  *
1373  * Table output has the following format (identical to the constructor string):
1374  * num_feature_args [features_args]*
1375  * num_handler_args hw_handler [hw_handler_args]*
1376  * num_groups init_group_number
1377  *     [priority selector-name num_ps_args [ps_args]*
1378  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1379  */
1380 static int multipath_status(struct dm_target *ti, status_type_t type,
1381 			    char *result, unsigned int maxlen)
1382 {
1383 	int sz = 0;
1384 	unsigned long flags;
1385 	struct multipath *m = (struct multipath *) ti->private;
1386 	struct priority_group *pg;
1387 	struct pgpath *p;
1388 	unsigned pg_num;
1389 	char state;
1390 
1391 	spin_lock_irqsave(&m->lock, flags);
1392 
1393 	/* Features */
1394 	if (type == STATUSTYPE_INFO)
1395 		DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1396 	else {
1397 		DMEMIT("%u ", m->queue_if_no_path +
1398 			      (m->pg_init_retries > 0) * 2 +
1399 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2);
1400 		if (m->queue_if_no_path)
1401 			DMEMIT("queue_if_no_path ");
1402 		if (m->pg_init_retries)
1403 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1404 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1405 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1406 	}
1407 
1408 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1409 		DMEMIT("0 ");
1410 	else
1411 		DMEMIT("1 %s ", m->hw_handler_name);
1412 
1413 	DMEMIT("%u ", m->nr_priority_groups);
1414 
1415 	if (m->next_pg)
1416 		pg_num = m->next_pg->pg_num;
1417 	else if (m->current_pg)
1418 		pg_num = m->current_pg->pg_num;
1419 	else
1420 			pg_num = 1;
1421 
1422 	DMEMIT("%u ", pg_num);
1423 
1424 	switch (type) {
1425 	case STATUSTYPE_INFO:
1426 		list_for_each_entry(pg, &m->priority_groups, list) {
1427 			if (pg->bypassed)
1428 				state = 'D';	/* Disabled */
1429 			else if (pg == m->current_pg)
1430 				state = 'A';	/* Currently Active */
1431 			else
1432 				state = 'E';	/* Enabled */
1433 
1434 			DMEMIT("%c ", state);
1435 
1436 			if (pg->ps.type->status)
1437 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1438 							  result + sz,
1439 							  maxlen - sz);
1440 			else
1441 				DMEMIT("0 ");
1442 
1443 			DMEMIT("%u %u ", pg->nr_pgpaths,
1444 			       pg->ps.type->info_args);
1445 
1446 			list_for_each_entry(p, &pg->pgpaths, list) {
1447 				DMEMIT("%s %s %u ", p->path.dev->name,
1448 				       p->is_active ? "A" : "F",
1449 				       p->fail_count);
1450 				if (pg->ps.type->status)
1451 					sz += pg->ps.type->status(&pg->ps,
1452 					      &p->path, type, result + sz,
1453 					      maxlen - sz);
1454 			}
1455 		}
1456 		break;
1457 
1458 	case STATUSTYPE_TABLE:
1459 		list_for_each_entry(pg, &m->priority_groups, list) {
1460 			DMEMIT("%s ", pg->ps.type->name);
1461 
1462 			if (pg->ps.type->status)
1463 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1464 							  result + sz,
1465 							  maxlen - sz);
1466 			else
1467 				DMEMIT("0 ");
1468 
1469 			DMEMIT("%u %u ", pg->nr_pgpaths,
1470 			       pg->ps.type->table_args);
1471 
1472 			list_for_each_entry(p, &pg->pgpaths, list) {
1473 				DMEMIT("%s ", p->path.dev->name);
1474 				if (pg->ps.type->status)
1475 					sz += pg->ps.type->status(&pg->ps,
1476 					      &p->path, type, result + sz,
1477 					      maxlen - sz);
1478 			}
1479 		}
1480 		break;
1481 	}
1482 
1483 	spin_unlock_irqrestore(&m->lock, flags);
1484 
1485 	return 0;
1486 }
1487 
1488 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1489 {
1490 	int r = -EINVAL;
1491 	struct dm_dev *dev;
1492 	struct multipath *m = (struct multipath *) ti->private;
1493 	action_fn action;
1494 
1495 	mutex_lock(&m->work_mutex);
1496 
1497 	if (dm_suspended(ti)) {
1498 		r = -EBUSY;
1499 		goto out;
1500 	}
1501 
1502 	if (argc == 1) {
1503 		if (!strnicmp(argv[0], MESG_STR("queue_if_no_path"))) {
1504 			r = queue_if_no_path(m, 1, 0);
1505 			goto out;
1506 		} else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path"))) {
1507 			r = queue_if_no_path(m, 0, 0);
1508 			goto out;
1509 		}
1510 	}
1511 
1512 	if (argc != 2) {
1513 		DMWARN("Unrecognised multipath message received.");
1514 		goto out;
1515 	}
1516 
1517 	if (!strnicmp(argv[0], MESG_STR("disable_group"))) {
1518 		r = bypass_pg_num(m, argv[1], 1);
1519 		goto out;
1520 	} else if (!strnicmp(argv[0], MESG_STR("enable_group"))) {
1521 		r = bypass_pg_num(m, argv[1], 0);
1522 		goto out;
1523 	} else if (!strnicmp(argv[0], MESG_STR("switch_group"))) {
1524 		r = switch_pg_num(m, argv[1]);
1525 		goto out;
1526 	} else if (!strnicmp(argv[0], MESG_STR("reinstate_path")))
1527 		action = reinstate_path;
1528 	else if (!strnicmp(argv[0], MESG_STR("fail_path")))
1529 		action = fail_path;
1530 	else {
1531 		DMWARN("Unrecognised multipath message received.");
1532 		goto out;
1533 	}
1534 
1535 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1536 	if (r) {
1537 		DMWARN("message: error getting device %s",
1538 		       argv[1]);
1539 		goto out;
1540 	}
1541 
1542 	r = action_dev(m, dev, action);
1543 
1544 	dm_put_device(ti, dev);
1545 
1546 out:
1547 	mutex_unlock(&m->work_mutex);
1548 	return r;
1549 }
1550 
1551 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1552 			   unsigned long arg)
1553 {
1554 	struct multipath *m = (struct multipath *) ti->private;
1555 	struct block_device *bdev = NULL;
1556 	fmode_t mode = 0;
1557 	unsigned long flags;
1558 	int r = 0;
1559 
1560 	spin_lock_irqsave(&m->lock, flags);
1561 
1562 	if (!m->current_pgpath)
1563 		__choose_pgpath(m, 0);
1564 
1565 	if (m->current_pgpath) {
1566 		bdev = m->current_pgpath->path.dev->bdev;
1567 		mode = m->current_pgpath->path.dev->mode;
1568 	}
1569 
1570 	if (m->queue_io)
1571 		r = -EAGAIN;
1572 	else if (!bdev)
1573 		r = -EIO;
1574 
1575 	spin_unlock_irqrestore(&m->lock, flags);
1576 
1577 	return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1578 }
1579 
1580 static int multipath_iterate_devices(struct dm_target *ti,
1581 				     iterate_devices_callout_fn fn, void *data)
1582 {
1583 	struct multipath *m = ti->private;
1584 	struct priority_group *pg;
1585 	struct pgpath *p;
1586 	int ret = 0;
1587 
1588 	list_for_each_entry(pg, &m->priority_groups, list) {
1589 		list_for_each_entry(p, &pg->pgpaths, list) {
1590 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1591 			if (ret)
1592 				goto out;
1593 		}
1594 	}
1595 
1596 out:
1597 	return ret;
1598 }
1599 
1600 static int __pgpath_busy(struct pgpath *pgpath)
1601 {
1602 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1603 
1604 	return dm_underlying_device_busy(q);
1605 }
1606 
1607 /*
1608  * We return "busy", only when we can map I/Os but underlying devices
1609  * are busy (so even if we map I/Os now, the I/Os will wait on
1610  * the underlying queue).
1611  * In other words, if we want to kill I/Os or queue them inside us
1612  * due to map unavailability, we don't return "busy".  Otherwise,
1613  * dm core won't give us the I/Os and we can't do what we want.
1614  */
1615 static int multipath_busy(struct dm_target *ti)
1616 {
1617 	int busy = 0, has_active = 0;
1618 	struct multipath *m = ti->private;
1619 	struct priority_group *pg;
1620 	struct pgpath *pgpath;
1621 	unsigned long flags;
1622 
1623 	spin_lock_irqsave(&m->lock, flags);
1624 
1625 	/* Guess which priority_group will be used at next mapping time */
1626 	if (unlikely(!m->current_pgpath && m->next_pg))
1627 		pg = m->next_pg;
1628 	else if (likely(m->current_pg))
1629 		pg = m->current_pg;
1630 	else
1631 		/*
1632 		 * We don't know which pg will be used at next mapping time.
1633 		 * We don't call __choose_pgpath() here to avoid to trigger
1634 		 * pg_init just by busy checking.
1635 		 * So we don't know whether underlying devices we will be using
1636 		 * at next mapping time are busy or not. Just try mapping.
1637 		 */
1638 		goto out;
1639 
1640 	/*
1641 	 * If there is one non-busy active path at least, the path selector
1642 	 * will be able to select it. So we consider such a pg as not busy.
1643 	 */
1644 	busy = 1;
1645 	list_for_each_entry(pgpath, &pg->pgpaths, list)
1646 		if (pgpath->is_active) {
1647 			has_active = 1;
1648 
1649 			if (!__pgpath_busy(pgpath)) {
1650 				busy = 0;
1651 				break;
1652 			}
1653 		}
1654 
1655 	if (!has_active)
1656 		/*
1657 		 * No active path in this pg, so this pg won't be used and
1658 		 * the current_pg will be changed at next mapping time.
1659 		 * We need to try mapping to determine it.
1660 		 */
1661 		busy = 0;
1662 
1663 out:
1664 	spin_unlock_irqrestore(&m->lock, flags);
1665 
1666 	return busy;
1667 }
1668 
1669 /*-----------------------------------------------------------------
1670  * Module setup
1671  *---------------------------------------------------------------*/
1672 static struct target_type multipath_target = {
1673 	.name = "multipath",
1674 	.version = {1, 2, 0},
1675 	.module = THIS_MODULE,
1676 	.ctr = multipath_ctr,
1677 	.dtr = multipath_dtr,
1678 	.map_rq = multipath_map,
1679 	.rq_end_io = multipath_end_io,
1680 	.presuspend = multipath_presuspend,
1681 	.postsuspend = multipath_postsuspend,
1682 	.resume = multipath_resume,
1683 	.status = multipath_status,
1684 	.message = multipath_message,
1685 	.ioctl  = multipath_ioctl,
1686 	.iterate_devices = multipath_iterate_devices,
1687 	.busy = multipath_busy,
1688 };
1689 
1690 static int __init dm_multipath_init(void)
1691 {
1692 	int r;
1693 
1694 	/* allocate a slab for the dm_ios */
1695 	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1696 	if (!_mpio_cache)
1697 		return -ENOMEM;
1698 
1699 	r = dm_register_target(&multipath_target);
1700 	if (r < 0) {
1701 		DMERR("register failed %d", r);
1702 		kmem_cache_destroy(_mpio_cache);
1703 		return -EINVAL;
1704 	}
1705 
1706 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1707 	if (!kmultipathd) {
1708 		DMERR("failed to create workqueue kmpathd");
1709 		dm_unregister_target(&multipath_target);
1710 		kmem_cache_destroy(_mpio_cache);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	/*
1715 	 * A separate workqueue is used to handle the device handlers
1716 	 * to avoid overloading existing workqueue. Overloading the
1717 	 * old workqueue would also create a bottleneck in the
1718 	 * path of the storage hardware device activation.
1719 	 */
1720 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1721 						  WQ_MEM_RECLAIM);
1722 	if (!kmpath_handlerd) {
1723 		DMERR("failed to create workqueue kmpath_handlerd");
1724 		destroy_workqueue(kmultipathd);
1725 		dm_unregister_target(&multipath_target);
1726 		kmem_cache_destroy(_mpio_cache);
1727 		return -ENOMEM;
1728 	}
1729 
1730 	DMINFO("version %u.%u.%u loaded",
1731 	       multipath_target.version[0], multipath_target.version[1],
1732 	       multipath_target.version[2]);
1733 
1734 	return r;
1735 }
1736 
1737 static void __exit dm_multipath_exit(void)
1738 {
1739 	destroy_workqueue(kmpath_handlerd);
1740 	destroy_workqueue(kmultipathd);
1741 
1742 	dm_unregister_target(&multipath_target);
1743 	kmem_cache_destroy(_mpio_cache);
1744 }
1745 
1746 module_init(dm_multipath_init);
1747 module_exit(dm_multipath_exit);
1748 
1749 MODULE_DESCRIPTION(DM_NAME " multipath target");
1750 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
1751 MODULE_LICENSE("GPL");
1752