1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-path-selector.h" 11 #include "dm-uevent.h" 12 13 #include <linux/ctype.h> 14 #include <linux/init.h> 15 #include <linux/mempool.h> 16 #include <linux/module.h> 17 #include <linux/pagemap.h> 18 #include <linux/slab.h> 19 #include <linux/time.h> 20 #include <linux/workqueue.h> 21 #include <scsi/scsi_dh.h> 22 #include <asm/atomic.h> 23 24 #define DM_MSG_PREFIX "multipath" 25 #define MESG_STR(x) x, sizeof(x) 26 #define DM_PG_INIT_DELAY_MSECS 2000 27 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 28 29 /* Path properties */ 30 struct pgpath { 31 struct list_head list; 32 33 struct priority_group *pg; /* Owning PG */ 34 unsigned is_active; /* Path status */ 35 unsigned fail_count; /* Cumulative failure count */ 36 37 struct dm_path path; 38 struct delayed_work activate_path; 39 }; 40 41 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 42 43 /* 44 * Paths are grouped into Priority Groups and numbered from 1 upwards. 45 * Each has a path selector which controls which path gets used. 46 */ 47 struct priority_group { 48 struct list_head list; 49 50 struct multipath *m; /* Owning multipath instance */ 51 struct path_selector ps; 52 53 unsigned pg_num; /* Reference number */ 54 unsigned bypassed; /* Temporarily bypass this PG? */ 55 56 unsigned nr_pgpaths; /* Number of paths in PG */ 57 struct list_head pgpaths; 58 }; 59 60 /* Multipath context */ 61 struct multipath { 62 struct list_head list; 63 struct dm_target *ti; 64 65 spinlock_t lock; 66 67 const char *hw_handler_name; 68 char *hw_handler_params; 69 70 unsigned nr_priority_groups; 71 struct list_head priority_groups; 72 73 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 74 75 unsigned pg_init_required; /* pg_init needs calling? */ 76 unsigned pg_init_in_progress; /* Only one pg_init allowed at once */ 77 unsigned pg_init_delay_retry; /* Delay pg_init retry? */ 78 79 unsigned nr_valid_paths; /* Total number of usable paths */ 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 unsigned repeat_count; /* I/Os left before calling PS again */ 84 85 unsigned queue_io; /* Must we queue all I/O? */ 86 unsigned queue_if_no_path; /* Queue I/O if last path fails? */ 87 unsigned saved_queue_if_no_path;/* Saved state during suspension */ 88 unsigned pg_init_retries; /* Number of times to retry pg_init */ 89 unsigned pg_init_count; /* Number of times pg_init called */ 90 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 91 92 struct work_struct process_queued_ios; 93 struct list_head queued_ios; 94 unsigned queue_size; 95 96 struct work_struct trigger_event; 97 98 /* 99 * We must use a mempool of dm_mpath_io structs so that we 100 * can resubmit bios on error. 101 */ 102 mempool_t *mpio_pool; 103 104 struct mutex work_mutex; 105 }; 106 107 /* 108 * Context information attached to each bio we process. 109 */ 110 struct dm_mpath_io { 111 struct pgpath *pgpath; 112 size_t nr_bytes; 113 }; 114 115 typedef int (*action_fn) (struct pgpath *pgpath); 116 117 #define MIN_IOS 256 /* Mempool size */ 118 119 static struct kmem_cache *_mpio_cache; 120 121 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 122 static void process_queued_ios(struct work_struct *work); 123 static void trigger_event(struct work_struct *work); 124 static void activate_path(struct work_struct *work); 125 126 127 /*----------------------------------------------- 128 * Allocation routines 129 *-----------------------------------------------*/ 130 131 static struct pgpath *alloc_pgpath(void) 132 { 133 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 134 135 if (pgpath) { 136 pgpath->is_active = 1; 137 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path); 138 } 139 140 return pgpath; 141 } 142 143 static void free_pgpath(struct pgpath *pgpath) 144 { 145 kfree(pgpath); 146 } 147 148 static struct priority_group *alloc_priority_group(void) 149 { 150 struct priority_group *pg; 151 152 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 153 154 if (pg) 155 INIT_LIST_HEAD(&pg->pgpaths); 156 157 return pg; 158 } 159 160 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 161 { 162 struct pgpath *pgpath, *tmp; 163 struct multipath *m = ti->private; 164 165 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 166 list_del(&pgpath->list); 167 if (m->hw_handler_name) 168 scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev)); 169 dm_put_device(ti, pgpath->path.dev); 170 free_pgpath(pgpath); 171 } 172 } 173 174 static void free_priority_group(struct priority_group *pg, 175 struct dm_target *ti) 176 { 177 struct path_selector *ps = &pg->ps; 178 179 if (ps->type) { 180 ps->type->destroy(ps); 181 dm_put_path_selector(ps->type); 182 } 183 184 free_pgpaths(&pg->pgpaths, ti); 185 kfree(pg); 186 } 187 188 static struct multipath *alloc_multipath(struct dm_target *ti) 189 { 190 struct multipath *m; 191 192 m = kzalloc(sizeof(*m), GFP_KERNEL); 193 if (m) { 194 INIT_LIST_HEAD(&m->priority_groups); 195 INIT_LIST_HEAD(&m->queued_ios); 196 spin_lock_init(&m->lock); 197 m->queue_io = 1; 198 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 199 INIT_WORK(&m->process_queued_ios, process_queued_ios); 200 INIT_WORK(&m->trigger_event, trigger_event); 201 init_waitqueue_head(&m->pg_init_wait); 202 mutex_init(&m->work_mutex); 203 m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache); 204 if (!m->mpio_pool) { 205 kfree(m); 206 return NULL; 207 } 208 m->ti = ti; 209 ti->private = m; 210 } 211 212 return m; 213 } 214 215 static void free_multipath(struct multipath *m) 216 { 217 struct priority_group *pg, *tmp; 218 219 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 220 list_del(&pg->list); 221 free_priority_group(pg, m->ti); 222 } 223 224 kfree(m->hw_handler_name); 225 kfree(m->hw_handler_params); 226 mempool_destroy(m->mpio_pool); 227 kfree(m); 228 } 229 230 231 /*----------------------------------------------- 232 * Path selection 233 *-----------------------------------------------*/ 234 235 static void __pg_init_all_paths(struct multipath *m) 236 { 237 struct pgpath *pgpath; 238 unsigned long pg_init_delay = 0; 239 240 m->pg_init_count++; 241 m->pg_init_required = 0; 242 if (m->pg_init_delay_retry) 243 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 244 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 245 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 246 /* Skip failed paths */ 247 if (!pgpath->is_active) 248 continue; 249 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 250 pg_init_delay)) 251 m->pg_init_in_progress++; 252 } 253 } 254 255 static void __switch_pg(struct multipath *m, struct pgpath *pgpath) 256 { 257 m->current_pg = pgpath->pg; 258 259 /* Must we initialise the PG first, and queue I/O till it's ready? */ 260 if (m->hw_handler_name) { 261 m->pg_init_required = 1; 262 m->queue_io = 1; 263 } else { 264 m->pg_init_required = 0; 265 m->queue_io = 0; 266 } 267 268 m->pg_init_count = 0; 269 } 270 271 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg, 272 size_t nr_bytes) 273 { 274 struct dm_path *path; 275 276 path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes); 277 if (!path) 278 return -ENXIO; 279 280 m->current_pgpath = path_to_pgpath(path); 281 282 if (m->current_pg != pg) 283 __switch_pg(m, m->current_pgpath); 284 285 return 0; 286 } 287 288 static void __choose_pgpath(struct multipath *m, size_t nr_bytes) 289 { 290 struct priority_group *pg; 291 unsigned bypassed = 1; 292 293 if (!m->nr_valid_paths) 294 goto failed; 295 296 /* Were we instructed to switch PG? */ 297 if (m->next_pg) { 298 pg = m->next_pg; 299 m->next_pg = NULL; 300 if (!__choose_path_in_pg(m, pg, nr_bytes)) 301 return; 302 } 303 304 /* Don't change PG until it has no remaining paths */ 305 if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes)) 306 return; 307 308 /* 309 * Loop through priority groups until we find a valid path. 310 * First time we skip PGs marked 'bypassed'. 311 * Second time we only try the ones we skipped. 312 */ 313 do { 314 list_for_each_entry(pg, &m->priority_groups, list) { 315 if (pg->bypassed == bypassed) 316 continue; 317 if (!__choose_path_in_pg(m, pg, nr_bytes)) 318 return; 319 } 320 } while (bypassed--); 321 322 failed: 323 m->current_pgpath = NULL; 324 m->current_pg = NULL; 325 } 326 327 /* 328 * Check whether bios must be queued in the device-mapper core rather 329 * than here in the target. 330 * 331 * m->lock must be held on entry. 332 * 333 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 334 * same value then we are not between multipath_presuspend() 335 * and multipath_resume() calls and we have no need to check 336 * for the DMF_NOFLUSH_SUSPENDING flag. 337 */ 338 static int __must_push_back(struct multipath *m) 339 { 340 return (m->queue_if_no_path != m->saved_queue_if_no_path && 341 dm_noflush_suspending(m->ti)); 342 } 343 344 static int map_io(struct multipath *m, struct request *clone, 345 struct dm_mpath_io *mpio, unsigned was_queued) 346 { 347 int r = DM_MAPIO_REMAPPED; 348 size_t nr_bytes = blk_rq_bytes(clone); 349 unsigned long flags; 350 struct pgpath *pgpath; 351 struct block_device *bdev; 352 353 spin_lock_irqsave(&m->lock, flags); 354 355 /* Do we need to select a new pgpath? */ 356 if (!m->current_pgpath || 357 (!m->queue_io && (m->repeat_count && --m->repeat_count == 0))) 358 __choose_pgpath(m, nr_bytes); 359 360 pgpath = m->current_pgpath; 361 362 if (was_queued) 363 m->queue_size--; 364 365 if ((pgpath && m->queue_io) || 366 (!pgpath && m->queue_if_no_path)) { 367 /* Queue for the daemon to resubmit */ 368 list_add_tail(&clone->queuelist, &m->queued_ios); 369 m->queue_size++; 370 if ((m->pg_init_required && !m->pg_init_in_progress) || 371 !m->queue_io) 372 queue_work(kmultipathd, &m->process_queued_ios); 373 pgpath = NULL; 374 r = DM_MAPIO_SUBMITTED; 375 } else if (pgpath) { 376 bdev = pgpath->path.dev->bdev; 377 clone->q = bdev_get_queue(bdev); 378 clone->rq_disk = bdev->bd_disk; 379 } else if (__must_push_back(m)) 380 r = DM_MAPIO_REQUEUE; 381 else 382 r = -EIO; /* Failed */ 383 384 mpio->pgpath = pgpath; 385 mpio->nr_bytes = nr_bytes; 386 387 if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io) 388 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path, 389 nr_bytes); 390 391 spin_unlock_irqrestore(&m->lock, flags); 392 393 return r; 394 } 395 396 /* 397 * If we run out of usable paths, should we queue I/O or error it? 398 */ 399 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path, 400 unsigned save_old_value) 401 { 402 unsigned long flags; 403 404 spin_lock_irqsave(&m->lock, flags); 405 406 if (save_old_value) 407 m->saved_queue_if_no_path = m->queue_if_no_path; 408 else 409 m->saved_queue_if_no_path = queue_if_no_path; 410 m->queue_if_no_path = queue_if_no_path; 411 if (!m->queue_if_no_path && m->queue_size) 412 queue_work(kmultipathd, &m->process_queued_ios); 413 414 spin_unlock_irqrestore(&m->lock, flags); 415 416 return 0; 417 } 418 419 /*----------------------------------------------------------------- 420 * The multipath daemon is responsible for resubmitting queued ios. 421 *---------------------------------------------------------------*/ 422 423 static void dispatch_queued_ios(struct multipath *m) 424 { 425 int r; 426 unsigned long flags; 427 struct dm_mpath_io *mpio; 428 union map_info *info; 429 struct request *clone, *n; 430 LIST_HEAD(cl); 431 432 spin_lock_irqsave(&m->lock, flags); 433 list_splice_init(&m->queued_ios, &cl); 434 spin_unlock_irqrestore(&m->lock, flags); 435 436 list_for_each_entry_safe(clone, n, &cl, queuelist) { 437 list_del_init(&clone->queuelist); 438 439 info = dm_get_rq_mapinfo(clone); 440 mpio = info->ptr; 441 442 r = map_io(m, clone, mpio, 1); 443 if (r < 0) { 444 mempool_free(mpio, m->mpio_pool); 445 dm_kill_unmapped_request(clone, r); 446 } else if (r == DM_MAPIO_REMAPPED) 447 dm_dispatch_request(clone); 448 else if (r == DM_MAPIO_REQUEUE) { 449 mempool_free(mpio, m->mpio_pool); 450 dm_requeue_unmapped_request(clone); 451 } 452 } 453 } 454 455 static void process_queued_ios(struct work_struct *work) 456 { 457 struct multipath *m = 458 container_of(work, struct multipath, process_queued_ios); 459 struct pgpath *pgpath = NULL; 460 unsigned must_queue = 1; 461 unsigned long flags; 462 463 spin_lock_irqsave(&m->lock, flags); 464 465 if (!m->queue_size) 466 goto out; 467 468 if (!m->current_pgpath) 469 __choose_pgpath(m, 0); 470 471 pgpath = m->current_pgpath; 472 473 if ((pgpath && !m->queue_io) || 474 (!pgpath && !m->queue_if_no_path)) 475 must_queue = 0; 476 477 if (m->pg_init_required && !m->pg_init_in_progress && pgpath) 478 __pg_init_all_paths(m); 479 480 out: 481 spin_unlock_irqrestore(&m->lock, flags); 482 if (!must_queue) 483 dispatch_queued_ios(m); 484 } 485 486 /* 487 * An event is triggered whenever a path is taken out of use. 488 * Includes path failure and PG bypass. 489 */ 490 static void trigger_event(struct work_struct *work) 491 { 492 struct multipath *m = 493 container_of(work, struct multipath, trigger_event); 494 495 dm_table_event(m->ti->table); 496 } 497 498 /*----------------------------------------------------------------- 499 * Constructor/argument parsing: 500 * <#multipath feature args> [<arg>]* 501 * <#hw_handler args> [hw_handler [<arg>]*] 502 * <#priority groups> 503 * <initial priority group> 504 * [<selector> <#selector args> [<arg>]* 505 * <#paths> <#per-path selector args> 506 * [<path> [<arg>]* ]+ ]+ 507 *---------------------------------------------------------------*/ 508 struct param { 509 unsigned min; 510 unsigned max; 511 char *error; 512 }; 513 514 static int read_param(struct param *param, char *str, unsigned *v, char **error) 515 { 516 if (!str || 517 (sscanf(str, "%u", v) != 1) || 518 (*v < param->min) || 519 (*v > param->max)) { 520 *error = param->error; 521 return -EINVAL; 522 } 523 524 return 0; 525 } 526 527 struct arg_set { 528 unsigned argc; 529 char **argv; 530 }; 531 532 static char *shift(struct arg_set *as) 533 { 534 char *r; 535 536 if (as->argc) { 537 as->argc--; 538 r = *as->argv; 539 as->argv++; 540 return r; 541 } 542 543 return NULL; 544 } 545 546 static void consume(struct arg_set *as, unsigned n) 547 { 548 BUG_ON (as->argc < n); 549 as->argc -= n; 550 as->argv += n; 551 } 552 553 static int parse_path_selector(struct arg_set *as, struct priority_group *pg, 554 struct dm_target *ti) 555 { 556 int r; 557 struct path_selector_type *pst; 558 unsigned ps_argc; 559 560 static struct param _params[] = { 561 {0, 1024, "invalid number of path selector args"}, 562 }; 563 564 pst = dm_get_path_selector(shift(as)); 565 if (!pst) { 566 ti->error = "unknown path selector type"; 567 return -EINVAL; 568 } 569 570 r = read_param(_params, shift(as), &ps_argc, &ti->error); 571 if (r) { 572 dm_put_path_selector(pst); 573 return -EINVAL; 574 } 575 576 if (ps_argc > as->argc) { 577 dm_put_path_selector(pst); 578 ti->error = "not enough arguments for path selector"; 579 return -EINVAL; 580 } 581 582 r = pst->create(&pg->ps, ps_argc, as->argv); 583 if (r) { 584 dm_put_path_selector(pst); 585 ti->error = "path selector constructor failed"; 586 return r; 587 } 588 589 pg->ps.type = pst; 590 consume(as, ps_argc); 591 592 return 0; 593 } 594 595 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps, 596 struct dm_target *ti) 597 { 598 int r; 599 struct pgpath *p; 600 struct multipath *m = ti->private; 601 602 /* we need at least a path arg */ 603 if (as->argc < 1) { 604 ti->error = "no device given"; 605 return ERR_PTR(-EINVAL); 606 } 607 608 p = alloc_pgpath(); 609 if (!p) 610 return ERR_PTR(-ENOMEM); 611 612 r = dm_get_device(ti, shift(as), dm_table_get_mode(ti->table), 613 &p->path.dev); 614 if (r) { 615 ti->error = "error getting device"; 616 goto bad; 617 } 618 619 if (m->hw_handler_name) { 620 struct request_queue *q = bdev_get_queue(p->path.dev->bdev); 621 622 r = scsi_dh_attach(q, m->hw_handler_name); 623 if (r == -EBUSY) { 624 /* 625 * Already attached to different hw_handler, 626 * try to reattach with correct one. 627 */ 628 scsi_dh_detach(q); 629 r = scsi_dh_attach(q, m->hw_handler_name); 630 } 631 632 if (r < 0) { 633 ti->error = "error attaching hardware handler"; 634 dm_put_device(ti, p->path.dev); 635 goto bad; 636 } 637 638 if (m->hw_handler_params) { 639 r = scsi_dh_set_params(q, m->hw_handler_params); 640 if (r < 0) { 641 ti->error = "unable to set hardware " 642 "handler parameters"; 643 scsi_dh_detach(q); 644 dm_put_device(ti, p->path.dev); 645 goto bad; 646 } 647 } 648 } 649 650 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 651 if (r) { 652 dm_put_device(ti, p->path.dev); 653 goto bad; 654 } 655 656 return p; 657 658 bad: 659 free_pgpath(p); 660 return ERR_PTR(r); 661 } 662 663 static struct priority_group *parse_priority_group(struct arg_set *as, 664 struct multipath *m) 665 { 666 static struct param _params[] = { 667 {1, 1024, "invalid number of paths"}, 668 {0, 1024, "invalid number of selector args"} 669 }; 670 671 int r; 672 unsigned i, nr_selector_args, nr_params; 673 struct priority_group *pg; 674 struct dm_target *ti = m->ti; 675 676 if (as->argc < 2) { 677 as->argc = 0; 678 ti->error = "not enough priority group arguments"; 679 return ERR_PTR(-EINVAL); 680 } 681 682 pg = alloc_priority_group(); 683 if (!pg) { 684 ti->error = "couldn't allocate priority group"; 685 return ERR_PTR(-ENOMEM); 686 } 687 pg->m = m; 688 689 r = parse_path_selector(as, pg, ti); 690 if (r) 691 goto bad; 692 693 /* 694 * read the paths 695 */ 696 r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error); 697 if (r) 698 goto bad; 699 700 r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error); 701 if (r) 702 goto bad; 703 704 nr_params = 1 + nr_selector_args; 705 for (i = 0; i < pg->nr_pgpaths; i++) { 706 struct pgpath *pgpath; 707 struct arg_set path_args; 708 709 if (as->argc < nr_params) { 710 ti->error = "not enough path parameters"; 711 r = -EINVAL; 712 goto bad; 713 } 714 715 path_args.argc = nr_params; 716 path_args.argv = as->argv; 717 718 pgpath = parse_path(&path_args, &pg->ps, ti); 719 if (IS_ERR(pgpath)) { 720 r = PTR_ERR(pgpath); 721 goto bad; 722 } 723 724 pgpath->pg = pg; 725 list_add_tail(&pgpath->list, &pg->pgpaths); 726 consume(as, nr_params); 727 } 728 729 return pg; 730 731 bad: 732 free_priority_group(pg, ti); 733 return ERR_PTR(r); 734 } 735 736 static int parse_hw_handler(struct arg_set *as, struct multipath *m) 737 { 738 unsigned hw_argc; 739 int ret; 740 struct dm_target *ti = m->ti; 741 742 static struct param _params[] = { 743 {0, 1024, "invalid number of hardware handler args"}, 744 }; 745 746 if (read_param(_params, shift(as), &hw_argc, &ti->error)) 747 return -EINVAL; 748 749 if (!hw_argc) 750 return 0; 751 752 if (hw_argc > as->argc) { 753 ti->error = "not enough arguments for hardware handler"; 754 return -EINVAL; 755 } 756 757 m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL); 758 request_module("scsi_dh_%s", m->hw_handler_name); 759 if (scsi_dh_handler_exist(m->hw_handler_name) == 0) { 760 ti->error = "unknown hardware handler type"; 761 ret = -EINVAL; 762 goto fail; 763 } 764 765 if (hw_argc > 1) { 766 char *p; 767 int i, j, len = 4; 768 769 for (i = 0; i <= hw_argc - 2; i++) 770 len += strlen(as->argv[i]) + 1; 771 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 772 if (!p) { 773 ti->error = "memory allocation failed"; 774 ret = -ENOMEM; 775 goto fail; 776 } 777 j = sprintf(p, "%d", hw_argc - 1); 778 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 779 j = sprintf(p, "%s", as->argv[i]); 780 } 781 consume(as, hw_argc - 1); 782 783 return 0; 784 fail: 785 kfree(m->hw_handler_name); 786 m->hw_handler_name = NULL; 787 return ret; 788 } 789 790 static int parse_features(struct arg_set *as, struct multipath *m) 791 { 792 int r; 793 unsigned argc; 794 struct dm_target *ti = m->ti; 795 const char *param_name; 796 797 static struct param _params[] = { 798 {0, 5, "invalid number of feature args"}, 799 {1, 50, "pg_init_retries must be between 1 and 50"}, 800 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 801 }; 802 803 r = read_param(_params, shift(as), &argc, &ti->error); 804 if (r) 805 return -EINVAL; 806 807 if (!argc) 808 return 0; 809 810 do { 811 param_name = shift(as); 812 argc--; 813 814 if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) { 815 r = queue_if_no_path(m, 1, 0); 816 continue; 817 } 818 819 if (!strnicmp(param_name, MESG_STR("pg_init_retries")) && 820 (argc >= 1)) { 821 r = read_param(_params + 1, shift(as), 822 &m->pg_init_retries, &ti->error); 823 argc--; 824 continue; 825 } 826 827 if (!strnicmp(param_name, MESG_STR("pg_init_delay_msecs")) && 828 (argc >= 1)) { 829 r = read_param(_params + 2, shift(as), 830 &m->pg_init_delay_msecs, &ti->error); 831 argc--; 832 continue; 833 } 834 835 ti->error = "Unrecognised multipath feature request"; 836 r = -EINVAL; 837 } while (argc && !r); 838 839 return r; 840 } 841 842 static int multipath_ctr(struct dm_target *ti, unsigned int argc, 843 char **argv) 844 { 845 /* target parameters */ 846 static struct param _params[] = { 847 {1, 1024, "invalid number of priority groups"}, 848 {1, 1024, "invalid initial priority group number"}, 849 }; 850 851 int r; 852 struct multipath *m; 853 struct arg_set as; 854 unsigned pg_count = 0; 855 unsigned next_pg_num; 856 857 as.argc = argc; 858 as.argv = argv; 859 860 m = alloc_multipath(ti); 861 if (!m) { 862 ti->error = "can't allocate multipath"; 863 return -EINVAL; 864 } 865 866 r = parse_features(&as, m); 867 if (r) 868 goto bad; 869 870 r = parse_hw_handler(&as, m); 871 if (r) 872 goto bad; 873 874 r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error); 875 if (r) 876 goto bad; 877 878 r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error); 879 if (r) 880 goto bad; 881 882 /* parse the priority groups */ 883 while (as.argc) { 884 struct priority_group *pg; 885 886 pg = parse_priority_group(&as, m); 887 if (IS_ERR(pg)) { 888 r = PTR_ERR(pg); 889 goto bad; 890 } 891 892 m->nr_valid_paths += pg->nr_pgpaths; 893 list_add_tail(&pg->list, &m->priority_groups); 894 pg_count++; 895 pg->pg_num = pg_count; 896 if (!--next_pg_num) 897 m->next_pg = pg; 898 } 899 900 if (pg_count != m->nr_priority_groups) { 901 ti->error = "priority group count mismatch"; 902 r = -EINVAL; 903 goto bad; 904 } 905 906 ti->num_flush_requests = 1; 907 ti->num_discard_requests = 1; 908 909 return 0; 910 911 bad: 912 free_multipath(m); 913 return r; 914 } 915 916 static void multipath_wait_for_pg_init_completion(struct multipath *m) 917 { 918 DECLARE_WAITQUEUE(wait, current); 919 unsigned long flags; 920 921 add_wait_queue(&m->pg_init_wait, &wait); 922 923 while (1) { 924 set_current_state(TASK_UNINTERRUPTIBLE); 925 926 spin_lock_irqsave(&m->lock, flags); 927 if (!m->pg_init_in_progress) { 928 spin_unlock_irqrestore(&m->lock, flags); 929 break; 930 } 931 spin_unlock_irqrestore(&m->lock, flags); 932 933 io_schedule(); 934 } 935 set_current_state(TASK_RUNNING); 936 937 remove_wait_queue(&m->pg_init_wait, &wait); 938 } 939 940 static void flush_multipath_work(struct multipath *m) 941 { 942 flush_workqueue(kmpath_handlerd); 943 multipath_wait_for_pg_init_completion(m); 944 flush_workqueue(kmultipathd); 945 flush_work_sync(&m->trigger_event); 946 } 947 948 static void multipath_dtr(struct dm_target *ti) 949 { 950 struct multipath *m = ti->private; 951 952 flush_multipath_work(m); 953 free_multipath(m); 954 } 955 956 /* 957 * Map cloned requests 958 */ 959 static int multipath_map(struct dm_target *ti, struct request *clone, 960 union map_info *map_context) 961 { 962 int r; 963 struct dm_mpath_io *mpio; 964 struct multipath *m = (struct multipath *) ti->private; 965 966 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 967 if (!mpio) 968 /* ENOMEM, requeue */ 969 return DM_MAPIO_REQUEUE; 970 memset(mpio, 0, sizeof(*mpio)); 971 972 map_context->ptr = mpio; 973 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 974 r = map_io(m, clone, mpio, 0); 975 if (r < 0 || r == DM_MAPIO_REQUEUE) 976 mempool_free(mpio, m->mpio_pool); 977 978 return r; 979 } 980 981 /* 982 * Take a path out of use. 983 */ 984 static int fail_path(struct pgpath *pgpath) 985 { 986 unsigned long flags; 987 struct multipath *m = pgpath->pg->m; 988 989 spin_lock_irqsave(&m->lock, flags); 990 991 if (!pgpath->is_active) 992 goto out; 993 994 DMWARN("Failing path %s.", pgpath->path.dev->name); 995 996 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 997 pgpath->is_active = 0; 998 pgpath->fail_count++; 999 1000 m->nr_valid_paths--; 1001 1002 if (pgpath == m->current_pgpath) 1003 m->current_pgpath = NULL; 1004 1005 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1006 pgpath->path.dev->name, m->nr_valid_paths); 1007 1008 schedule_work(&m->trigger_event); 1009 1010 out: 1011 spin_unlock_irqrestore(&m->lock, flags); 1012 1013 return 0; 1014 } 1015 1016 /* 1017 * Reinstate a previously-failed path 1018 */ 1019 static int reinstate_path(struct pgpath *pgpath) 1020 { 1021 int r = 0; 1022 unsigned long flags; 1023 struct multipath *m = pgpath->pg->m; 1024 1025 spin_lock_irqsave(&m->lock, flags); 1026 1027 if (pgpath->is_active) 1028 goto out; 1029 1030 if (!pgpath->pg->ps.type->reinstate_path) { 1031 DMWARN("Reinstate path not supported by path selector %s", 1032 pgpath->pg->ps.type->name); 1033 r = -EINVAL; 1034 goto out; 1035 } 1036 1037 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1038 if (r) 1039 goto out; 1040 1041 pgpath->is_active = 1; 1042 1043 if (!m->nr_valid_paths++ && m->queue_size) { 1044 m->current_pgpath = NULL; 1045 queue_work(kmultipathd, &m->process_queued_ios); 1046 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1047 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1048 m->pg_init_in_progress++; 1049 } 1050 1051 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1052 pgpath->path.dev->name, m->nr_valid_paths); 1053 1054 schedule_work(&m->trigger_event); 1055 1056 out: 1057 spin_unlock_irqrestore(&m->lock, flags); 1058 1059 return r; 1060 } 1061 1062 /* 1063 * Fail or reinstate all paths that match the provided struct dm_dev. 1064 */ 1065 static int action_dev(struct multipath *m, struct dm_dev *dev, 1066 action_fn action) 1067 { 1068 int r = 0; 1069 struct pgpath *pgpath; 1070 struct priority_group *pg; 1071 1072 list_for_each_entry(pg, &m->priority_groups, list) { 1073 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1074 if (pgpath->path.dev == dev) 1075 r = action(pgpath); 1076 } 1077 } 1078 1079 return r; 1080 } 1081 1082 /* 1083 * Temporarily try to avoid having to use the specified PG 1084 */ 1085 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1086 int bypassed) 1087 { 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&m->lock, flags); 1091 1092 pg->bypassed = bypassed; 1093 m->current_pgpath = NULL; 1094 m->current_pg = NULL; 1095 1096 spin_unlock_irqrestore(&m->lock, flags); 1097 1098 schedule_work(&m->trigger_event); 1099 } 1100 1101 /* 1102 * Switch to using the specified PG from the next I/O that gets mapped 1103 */ 1104 static int switch_pg_num(struct multipath *m, const char *pgstr) 1105 { 1106 struct priority_group *pg; 1107 unsigned pgnum; 1108 unsigned long flags; 1109 1110 if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum || 1111 (pgnum > m->nr_priority_groups)) { 1112 DMWARN("invalid PG number supplied to switch_pg_num"); 1113 return -EINVAL; 1114 } 1115 1116 spin_lock_irqsave(&m->lock, flags); 1117 list_for_each_entry(pg, &m->priority_groups, list) { 1118 pg->bypassed = 0; 1119 if (--pgnum) 1120 continue; 1121 1122 m->current_pgpath = NULL; 1123 m->current_pg = NULL; 1124 m->next_pg = pg; 1125 } 1126 spin_unlock_irqrestore(&m->lock, flags); 1127 1128 schedule_work(&m->trigger_event); 1129 return 0; 1130 } 1131 1132 /* 1133 * Set/clear bypassed status of a PG. 1134 * PGs are numbered upwards from 1 in the order they were declared. 1135 */ 1136 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed) 1137 { 1138 struct priority_group *pg; 1139 unsigned pgnum; 1140 1141 if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum || 1142 (pgnum > m->nr_priority_groups)) { 1143 DMWARN("invalid PG number supplied to bypass_pg"); 1144 return -EINVAL; 1145 } 1146 1147 list_for_each_entry(pg, &m->priority_groups, list) { 1148 if (!--pgnum) 1149 break; 1150 } 1151 1152 bypass_pg(m, pg, bypassed); 1153 return 0; 1154 } 1155 1156 /* 1157 * Should we retry pg_init immediately? 1158 */ 1159 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1160 { 1161 unsigned long flags; 1162 int limit_reached = 0; 1163 1164 spin_lock_irqsave(&m->lock, flags); 1165 1166 if (m->pg_init_count <= m->pg_init_retries) 1167 m->pg_init_required = 1; 1168 else 1169 limit_reached = 1; 1170 1171 spin_unlock_irqrestore(&m->lock, flags); 1172 1173 return limit_reached; 1174 } 1175 1176 static void pg_init_done(void *data, int errors) 1177 { 1178 struct pgpath *pgpath = data; 1179 struct priority_group *pg = pgpath->pg; 1180 struct multipath *m = pg->m; 1181 unsigned long flags; 1182 unsigned delay_retry = 0; 1183 1184 /* device or driver problems */ 1185 switch (errors) { 1186 case SCSI_DH_OK: 1187 break; 1188 case SCSI_DH_NOSYS: 1189 if (!m->hw_handler_name) { 1190 errors = 0; 1191 break; 1192 } 1193 DMERR("Could not failover the device: Handler scsi_dh_%s " 1194 "Error %d.", m->hw_handler_name, errors); 1195 /* 1196 * Fail path for now, so we do not ping pong 1197 */ 1198 fail_path(pgpath); 1199 break; 1200 case SCSI_DH_DEV_TEMP_BUSY: 1201 /* 1202 * Probably doing something like FW upgrade on the 1203 * controller so try the other pg. 1204 */ 1205 bypass_pg(m, pg, 1); 1206 break; 1207 case SCSI_DH_RETRY: 1208 /* Wait before retrying. */ 1209 delay_retry = 1; 1210 case SCSI_DH_IMM_RETRY: 1211 case SCSI_DH_RES_TEMP_UNAVAIL: 1212 if (pg_init_limit_reached(m, pgpath)) 1213 fail_path(pgpath); 1214 errors = 0; 1215 break; 1216 default: 1217 /* 1218 * We probably do not want to fail the path for a device 1219 * error, but this is what the old dm did. In future 1220 * patches we can do more advanced handling. 1221 */ 1222 fail_path(pgpath); 1223 } 1224 1225 spin_lock_irqsave(&m->lock, flags); 1226 if (errors) { 1227 if (pgpath == m->current_pgpath) { 1228 DMERR("Could not failover device. Error %d.", errors); 1229 m->current_pgpath = NULL; 1230 m->current_pg = NULL; 1231 } 1232 } else if (!m->pg_init_required) 1233 pg->bypassed = 0; 1234 1235 if (--m->pg_init_in_progress) 1236 /* Activations of other paths are still on going */ 1237 goto out; 1238 1239 if (!m->pg_init_required) 1240 m->queue_io = 0; 1241 1242 m->pg_init_delay_retry = delay_retry; 1243 queue_work(kmultipathd, &m->process_queued_ios); 1244 1245 /* 1246 * Wake up any thread waiting to suspend. 1247 */ 1248 wake_up(&m->pg_init_wait); 1249 1250 out: 1251 spin_unlock_irqrestore(&m->lock, flags); 1252 } 1253 1254 static void activate_path(struct work_struct *work) 1255 { 1256 struct pgpath *pgpath = 1257 container_of(work, struct pgpath, activate_path.work); 1258 1259 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), 1260 pg_init_done, pgpath); 1261 } 1262 1263 /* 1264 * end_io handling 1265 */ 1266 static int do_end_io(struct multipath *m, struct request *clone, 1267 int error, struct dm_mpath_io *mpio) 1268 { 1269 /* 1270 * We don't queue any clone request inside the multipath target 1271 * during end I/O handling, since those clone requests don't have 1272 * bio clones. If we queue them inside the multipath target, 1273 * we need to make bio clones, that requires memory allocation. 1274 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests 1275 * don't have bio clones.) 1276 * Instead of queueing the clone request here, we queue the original 1277 * request into dm core, which will remake a clone request and 1278 * clone bios for it and resubmit it later. 1279 */ 1280 int r = DM_ENDIO_REQUEUE; 1281 unsigned long flags; 1282 1283 if (!error && !clone->errors) 1284 return 0; /* I/O complete */ 1285 1286 if (error == -EOPNOTSUPP) 1287 return error; 1288 1289 if (clone->cmd_flags & REQ_DISCARD) 1290 /* 1291 * Pass all discard request failures up. 1292 * FIXME: only fail_path if the discard failed due to a 1293 * transport problem. This requires precise understanding 1294 * of the underlying failure (e.g. the SCSI sense). 1295 */ 1296 return error; 1297 1298 if (mpio->pgpath) 1299 fail_path(mpio->pgpath); 1300 1301 spin_lock_irqsave(&m->lock, flags); 1302 if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m)) 1303 r = -EIO; 1304 spin_unlock_irqrestore(&m->lock, flags); 1305 1306 return r; 1307 } 1308 1309 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1310 int error, union map_info *map_context) 1311 { 1312 struct multipath *m = ti->private; 1313 struct dm_mpath_io *mpio = map_context->ptr; 1314 struct pgpath *pgpath = mpio->pgpath; 1315 struct path_selector *ps; 1316 int r; 1317 1318 r = do_end_io(m, clone, error, mpio); 1319 if (pgpath) { 1320 ps = &pgpath->pg->ps; 1321 if (ps->type->end_io) 1322 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1323 } 1324 mempool_free(mpio, m->mpio_pool); 1325 1326 return r; 1327 } 1328 1329 /* 1330 * Suspend can't complete until all the I/O is processed so if 1331 * the last path fails we must error any remaining I/O. 1332 * Note that if the freeze_bdev fails while suspending, the 1333 * queue_if_no_path state is lost - userspace should reset it. 1334 */ 1335 static void multipath_presuspend(struct dm_target *ti) 1336 { 1337 struct multipath *m = (struct multipath *) ti->private; 1338 1339 queue_if_no_path(m, 0, 1); 1340 } 1341 1342 static void multipath_postsuspend(struct dm_target *ti) 1343 { 1344 struct multipath *m = ti->private; 1345 1346 mutex_lock(&m->work_mutex); 1347 flush_multipath_work(m); 1348 mutex_unlock(&m->work_mutex); 1349 } 1350 1351 /* 1352 * Restore the queue_if_no_path setting. 1353 */ 1354 static void multipath_resume(struct dm_target *ti) 1355 { 1356 struct multipath *m = (struct multipath *) ti->private; 1357 unsigned long flags; 1358 1359 spin_lock_irqsave(&m->lock, flags); 1360 m->queue_if_no_path = m->saved_queue_if_no_path; 1361 spin_unlock_irqrestore(&m->lock, flags); 1362 } 1363 1364 /* 1365 * Info output has the following format: 1366 * num_multipath_feature_args [multipath_feature_args]* 1367 * num_handler_status_args [handler_status_args]* 1368 * num_groups init_group_number 1369 * [A|D|E num_ps_status_args [ps_status_args]* 1370 * num_paths num_selector_args 1371 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1372 * 1373 * Table output has the following format (identical to the constructor string): 1374 * num_feature_args [features_args]* 1375 * num_handler_args hw_handler [hw_handler_args]* 1376 * num_groups init_group_number 1377 * [priority selector-name num_ps_args [ps_args]* 1378 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1379 */ 1380 static int multipath_status(struct dm_target *ti, status_type_t type, 1381 char *result, unsigned int maxlen) 1382 { 1383 int sz = 0; 1384 unsigned long flags; 1385 struct multipath *m = (struct multipath *) ti->private; 1386 struct priority_group *pg; 1387 struct pgpath *p; 1388 unsigned pg_num; 1389 char state; 1390 1391 spin_lock_irqsave(&m->lock, flags); 1392 1393 /* Features */ 1394 if (type == STATUSTYPE_INFO) 1395 DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count); 1396 else { 1397 DMEMIT("%u ", m->queue_if_no_path + 1398 (m->pg_init_retries > 0) * 2 + 1399 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2); 1400 if (m->queue_if_no_path) 1401 DMEMIT("queue_if_no_path "); 1402 if (m->pg_init_retries) 1403 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1404 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1405 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1406 } 1407 1408 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1409 DMEMIT("0 "); 1410 else 1411 DMEMIT("1 %s ", m->hw_handler_name); 1412 1413 DMEMIT("%u ", m->nr_priority_groups); 1414 1415 if (m->next_pg) 1416 pg_num = m->next_pg->pg_num; 1417 else if (m->current_pg) 1418 pg_num = m->current_pg->pg_num; 1419 else 1420 pg_num = 1; 1421 1422 DMEMIT("%u ", pg_num); 1423 1424 switch (type) { 1425 case STATUSTYPE_INFO: 1426 list_for_each_entry(pg, &m->priority_groups, list) { 1427 if (pg->bypassed) 1428 state = 'D'; /* Disabled */ 1429 else if (pg == m->current_pg) 1430 state = 'A'; /* Currently Active */ 1431 else 1432 state = 'E'; /* Enabled */ 1433 1434 DMEMIT("%c ", state); 1435 1436 if (pg->ps.type->status) 1437 sz += pg->ps.type->status(&pg->ps, NULL, type, 1438 result + sz, 1439 maxlen - sz); 1440 else 1441 DMEMIT("0 "); 1442 1443 DMEMIT("%u %u ", pg->nr_pgpaths, 1444 pg->ps.type->info_args); 1445 1446 list_for_each_entry(p, &pg->pgpaths, list) { 1447 DMEMIT("%s %s %u ", p->path.dev->name, 1448 p->is_active ? "A" : "F", 1449 p->fail_count); 1450 if (pg->ps.type->status) 1451 sz += pg->ps.type->status(&pg->ps, 1452 &p->path, type, result + sz, 1453 maxlen - sz); 1454 } 1455 } 1456 break; 1457 1458 case STATUSTYPE_TABLE: 1459 list_for_each_entry(pg, &m->priority_groups, list) { 1460 DMEMIT("%s ", pg->ps.type->name); 1461 1462 if (pg->ps.type->status) 1463 sz += pg->ps.type->status(&pg->ps, NULL, type, 1464 result + sz, 1465 maxlen - sz); 1466 else 1467 DMEMIT("0 "); 1468 1469 DMEMIT("%u %u ", pg->nr_pgpaths, 1470 pg->ps.type->table_args); 1471 1472 list_for_each_entry(p, &pg->pgpaths, list) { 1473 DMEMIT("%s ", p->path.dev->name); 1474 if (pg->ps.type->status) 1475 sz += pg->ps.type->status(&pg->ps, 1476 &p->path, type, result + sz, 1477 maxlen - sz); 1478 } 1479 } 1480 break; 1481 } 1482 1483 spin_unlock_irqrestore(&m->lock, flags); 1484 1485 return 0; 1486 } 1487 1488 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1489 { 1490 int r = -EINVAL; 1491 struct dm_dev *dev; 1492 struct multipath *m = (struct multipath *) ti->private; 1493 action_fn action; 1494 1495 mutex_lock(&m->work_mutex); 1496 1497 if (dm_suspended(ti)) { 1498 r = -EBUSY; 1499 goto out; 1500 } 1501 1502 if (argc == 1) { 1503 if (!strnicmp(argv[0], MESG_STR("queue_if_no_path"))) { 1504 r = queue_if_no_path(m, 1, 0); 1505 goto out; 1506 } else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path"))) { 1507 r = queue_if_no_path(m, 0, 0); 1508 goto out; 1509 } 1510 } 1511 1512 if (argc != 2) { 1513 DMWARN("Unrecognised multipath message received."); 1514 goto out; 1515 } 1516 1517 if (!strnicmp(argv[0], MESG_STR("disable_group"))) { 1518 r = bypass_pg_num(m, argv[1], 1); 1519 goto out; 1520 } else if (!strnicmp(argv[0], MESG_STR("enable_group"))) { 1521 r = bypass_pg_num(m, argv[1], 0); 1522 goto out; 1523 } else if (!strnicmp(argv[0], MESG_STR("switch_group"))) { 1524 r = switch_pg_num(m, argv[1]); 1525 goto out; 1526 } else if (!strnicmp(argv[0], MESG_STR("reinstate_path"))) 1527 action = reinstate_path; 1528 else if (!strnicmp(argv[0], MESG_STR("fail_path"))) 1529 action = fail_path; 1530 else { 1531 DMWARN("Unrecognised multipath message received."); 1532 goto out; 1533 } 1534 1535 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1536 if (r) { 1537 DMWARN("message: error getting device %s", 1538 argv[1]); 1539 goto out; 1540 } 1541 1542 r = action_dev(m, dev, action); 1543 1544 dm_put_device(ti, dev); 1545 1546 out: 1547 mutex_unlock(&m->work_mutex); 1548 return r; 1549 } 1550 1551 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd, 1552 unsigned long arg) 1553 { 1554 struct multipath *m = (struct multipath *) ti->private; 1555 struct block_device *bdev = NULL; 1556 fmode_t mode = 0; 1557 unsigned long flags; 1558 int r = 0; 1559 1560 spin_lock_irqsave(&m->lock, flags); 1561 1562 if (!m->current_pgpath) 1563 __choose_pgpath(m, 0); 1564 1565 if (m->current_pgpath) { 1566 bdev = m->current_pgpath->path.dev->bdev; 1567 mode = m->current_pgpath->path.dev->mode; 1568 } 1569 1570 if (m->queue_io) 1571 r = -EAGAIN; 1572 else if (!bdev) 1573 r = -EIO; 1574 1575 spin_unlock_irqrestore(&m->lock, flags); 1576 1577 return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg); 1578 } 1579 1580 static int multipath_iterate_devices(struct dm_target *ti, 1581 iterate_devices_callout_fn fn, void *data) 1582 { 1583 struct multipath *m = ti->private; 1584 struct priority_group *pg; 1585 struct pgpath *p; 1586 int ret = 0; 1587 1588 list_for_each_entry(pg, &m->priority_groups, list) { 1589 list_for_each_entry(p, &pg->pgpaths, list) { 1590 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1591 if (ret) 1592 goto out; 1593 } 1594 } 1595 1596 out: 1597 return ret; 1598 } 1599 1600 static int __pgpath_busy(struct pgpath *pgpath) 1601 { 1602 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1603 1604 return dm_underlying_device_busy(q); 1605 } 1606 1607 /* 1608 * We return "busy", only when we can map I/Os but underlying devices 1609 * are busy (so even if we map I/Os now, the I/Os will wait on 1610 * the underlying queue). 1611 * In other words, if we want to kill I/Os or queue them inside us 1612 * due to map unavailability, we don't return "busy". Otherwise, 1613 * dm core won't give us the I/Os and we can't do what we want. 1614 */ 1615 static int multipath_busy(struct dm_target *ti) 1616 { 1617 int busy = 0, has_active = 0; 1618 struct multipath *m = ti->private; 1619 struct priority_group *pg; 1620 struct pgpath *pgpath; 1621 unsigned long flags; 1622 1623 spin_lock_irqsave(&m->lock, flags); 1624 1625 /* Guess which priority_group will be used at next mapping time */ 1626 if (unlikely(!m->current_pgpath && m->next_pg)) 1627 pg = m->next_pg; 1628 else if (likely(m->current_pg)) 1629 pg = m->current_pg; 1630 else 1631 /* 1632 * We don't know which pg will be used at next mapping time. 1633 * We don't call __choose_pgpath() here to avoid to trigger 1634 * pg_init just by busy checking. 1635 * So we don't know whether underlying devices we will be using 1636 * at next mapping time are busy or not. Just try mapping. 1637 */ 1638 goto out; 1639 1640 /* 1641 * If there is one non-busy active path at least, the path selector 1642 * will be able to select it. So we consider such a pg as not busy. 1643 */ 1644 busy = 1; 1645 list_for_each_entry(pgpath, &pg->pgpaths, list) 1646 if (pgpath->is_active) { 1647 has_active = 1; 1648 1649 if (!__pgpath_busy(pgpath)) { 1650 busy = 0; 1651 break; 1652 } 1653 } 1654 1655 if (!has_active) 1656 /* 1657 * No active path in this pg, so this pg won't be used and 1658 * the current_pg will be changed at next mapping time. 1659 * We need to try mapping to determine it. 1660 */ 1661 busy = 0; 1662 1663 out: 1664 spin_unlock_irqrestore(&m->lock, flags); 1665 1666 return busy; 1667 } 1668 1669 /*----------------------------------------------------------------- 1670 * Module setup 1671 *---------------------------------------------------------------*/ 1672 static struct target_type multipath_target = { 1673 .name = "multipath", 1674 .version = {1, 2, 0}, 1675 .module = THIS_MODULE, 1676 .ctr = multipath_ctr, 1677 .dtr = multipath_dtr, 1678 .map_rq = multipath_map, 1679 .rq_end_io = multipath_end_io, 1680 .presuspend = multipath_presuspend, 1681 .postsuspend = multipath_postsuspend, 1682 .resume = multipath_resume, 1683 .status = multipath_status, 1684 .message = multipath_message, 1685 .ioctl = multipath_ioctl, 1686 .iterate_devices = multipath_iterate_devices, 1687 .busy = multipath_busy, 1688 }; 1689 1690 static int __init dm_multipath_init(void) 1691 { 1692 int r; 1693 1694 /* allocate a slab for the dm_ios */ 1695 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 1696 if (!_mpio_cache) 1697 return -ENOMEM; 1698 1699 r = dm_register_target(&multipath_target); 1700 if (r < 0) { 1701 DMERR("register failed %d", r); 1702 kmem_cache_destroy(_mpio_cache); 1703 return -EINVAL; 1704 } 1705 1706 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1707 if (!kmultipathd) { 1708 DMERR("failed to create workqueue kmpathd"); 1709 dm_unregister_target(&multipath_target); 1710 kmem_cache_destroy(_mpio_cache); 1711 return -ENOMEM; 1712 } 1713 1714 /* 1715 * A separate workqueue is used to handle the device handlers 1716 * to avoid overloading existing workqueue. Overloading the 1717 * old workqueue would also create a bottleneck in the 1718 * path of the storage hardware device activation. 1719 */ 1720 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1721 WQ_MEM_RECLAIM); 1722 if (!kmpath_handlerd) { 1723 DMERR("failed to create workqueue kmpath_handlerd"); 1724 destroy_workqueue(kmultipathd); 1725 dm_unregister_target(&multipath_target); 1726 kmem_cache_destroy(_mpio_cache); 1727 return -ENOMEM; 1728 } 1729 1730 DMINFO("version %u.%u.%u loaded", 1731 multipath_target.version[0], multipath_target.version[1], 1732 multipath_target.version[2]); 1733 1734 return r; 1735 } 1736 1737 static void __exit dm_multipath_exit(void) 1738 { 1739 destroy_workqueue(kmpath_handlerd); 1740 destroy_workqueue(kmultipathd); 1741 1742 dm_unregister_target(&multipath_target); 1743 kmem_cache_destroy(_mpio_cache); 1744 } 1745 1746 module_init(dm_multipath_init); 1747 module_exit(dm_multipath_exit); 1748 1749 MODULE_DESCRIPTION(DM_NAME " multipath target"); 1750 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 1751 MODULE_LICENSE("GPL"); 1752