1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/timer.h> 24 #include <linux/workqueue.h> 25 #include <linux/delay.h> 26 #include <scsi/scsi_dh.h> 27 #include <linux/atomic.h> 28 #include <linux/blk-mq.h> 29 30 #define DM_MSG_PREFIX "multipath" 31 #define DM_PG_INIT_DELAY_MSECS 2000 32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0 34 35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT; 36 37 /* Path properties */ 38 struct pgpath { 39 struct list_head list; 40 41 struct priority_group *pg; /* Owning PG */ 42 unsigned fail_count; /* Cumulative failure count */ 43 44 struct dm_path path; 45 struct delayed_work activate_path; 46 47 bool is_active:1; /* Path status */ 48 }; 49 50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 51 52 /* 53 * Paths are grouped into Priority Groups and numbered from 1 upwards. 54 * Each has a path selector which controls which path gets used. 55 */ 56 struct priority_group { 57 struct list_head list; 58 59 struct multipath *m; /* Owning multipath instance */ 60 struct path_selector ps; 61 62 unsigned pg_num; /* Reference number */ 63 unsigned nr_pgpaths; /* Number of paths in PG */ 64 struct list_head pgpaths; 65 66 bool bypassed:1; /* Temporarily bypass this PG? */ 67 }; 68 69 /* Multipath context */ 70 struct multipath { 71 unsigned long flags; /* Multipath state flags */ 72 73 spinlock_t lock; 74 enum dm_queue_mode queue_mode; 75 76 struct pgpath *current_pgpath; 77 struct priority_group *current_pg; 78 struct priority_group *next_pg; /* Switch to this PG if set */ 79 80 atomic_t nr_valid_paths; /* Total number of usable paths */ 81 unsigned nr_priority_groups; 82 struct list_head priority_groups; 83 84 const char *hw_handler_name; 85 char *hw_handler_params; 86 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 87 unsigned pg_init_retries; /* Number of times to retry pg_init */ 88 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 89 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 90 atomic_t pg_init_count; /* Number of times pg_init called */ 91 92 struct mutex work_mutex; 93 struct work_struct trigger_event; 94 struct dm_target *ti; 95 96 struct work_struct process_queued_bios; 97 struct bio_list queued_bios; 98 99 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */ 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 static void queue_if_no_path_timeout_work(struct timer_list *t); 118 119 /*----------------------------------------------- 120 * Multipath state flags. 121 *-----------------------------------------------*/ 122 123 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 124 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 127 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 128 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 129 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 130 131 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m) 132 { 133 bool r = test_bit(MPATHF_bit, &m->flags); 134 135 if (r) { 136 unsigned long flags; 137 spin_lock_irqsave(&m->lock, flags); 138 r = test_bit(MPATHF_bit, &m->flags); 139 spin_unlock_irqrestore(&m->lock, flags); 140 } 141 142 return r; 143 } 144 145 /*----------------------------------------------- 146 * Allocation routines 147 *-----------------------------------------------*/ 148 149 static struct pgpath *alloc_pgpath(void) 150 { 151 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 152 153 if (!pgpath) 154 return NULL; 155 156 pgpath->is_active = true; 157 158 return pgpath; 159 } 160 161 static void free_pgpath(struct pgpath *pgpath) 162 { 163 kfree(pgpath); 164 } 165 166 static struct priority_group *alloc_priority_group(void) 167 { 168 struct priority_group *pg; 169 170 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 171 172 if (pg) 173 INIT_LIST_HEAD(&pg->pgpaths); 174 175 return pg; 176 } 177 178 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 179 { 180 struct pgpath *pgpath, *tmp; 181 182 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 183 list_del(&pgpath->list); 184 dm_put_device(ti, pgpath->path.dev); 185 free_pgpath(pgpath); 186 } 187 } 188 189 static void free_priority_group(struct priority_group *pg, 190 struct dm_target *ti) 191 { 192 struct path_selector *ps = &pg->ps; 193 194 if (ps->type) { 195 ps->type->destroy(ps); 196 dm_put_path_selector(ps->type); 197 } 198 199 free_pgpaths(&pg->pgpaths, ti); 200 kfree(pg); 201 } 202 203 static struct multipath *alloc_multipath(struct dm_target *ti) 204 { 205 struct multipath *m; 206 207 m = kzalloc(sizeof(*m), GFP_KERNEL); 208 if (m) { 209 INIT_LIST_HEAD(&m->priority_groups); 210 spin_lock_init(&m->lock); 211 atomic_set(&m->nr_valid_paths, 0); 212 INIT_WORK(&m->trigger_event, trigger_event); 213 mutex_init(&m->work_mutex); 214 215 m->queue_mode = DM_TYPE_NONE; 216 217 m->ti = ti; 218 ti->private = m; 219 220 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0); 221 } 222 223 return m; 224 } 225 226 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 227 { 228 if (m->queue_mode == DM_TYPE_NONE) { 229 m->queue_mode = DM_TYPE_REQUEST_BASED; 230 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 231 INIT_WORK(&m->process_queued_bios, process_queued_bios); 232 /* 233 * bio-based doesn't support any direct scsi_dh management; 234 * it just discovers if a scsi_dh is attached. 235 */ 236 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 237 } 238 239 dm_table_set_type(ti->table, m->queue_mode); 240 241 /* 242 * Init fields that are only used when a scsi_dh is attached 243 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 244 */ 245 set_bit(MPATHF_QUEUE_IO, &m->flags); 246 atomic_set(&m->pg_init_in_progress, 0); 247 atomic_set(&m->pg_init_count, 0); 248 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 249 init_waitqueue_head(&m->pg_init_wait); 250 251 return 0; 252 } 253 254 static void free_multipath(struct multipath *m) 255 { 256 struct priority_group *pg, *tmp; 257 258 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 259 list_del(&pg->list); 260 free_priority_group(pg, m->ti); 261 } 262 263 kfree(m->hw_handler_name); 264 kfree(m->hw_handler_params); 265 mutex_destroy(&m->work_mutex); 266 kfree(m); 267 } 268 269 static struct dm_mpath_io *get_mpio(union map_info *info) 270 { 271 return info->ptr; 272 } 273 274 static size_t multipath_per_bio_data_size(void) 275 { 276 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 277 } 278 279 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 280 { 281 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 282 } 283 284 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 285 { 286 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 287 void *bio_details = mpio + 1; 288 return bio_details; 289 } 290 291 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 292 { 293 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 294 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 295 296 mpio->nr_bytes = bio->bi_iter.bi_size; 297 mpio->pgpath = NULL; 298 *mpio_p = mpio; 299 300 dm_bio_record(bio_details, bio); 301 } 302 303 /*----------------------------------------------- 304 * Path selection 305 *-----------------------------------------------*/ 306 307 static int __pg_init_all_paths(struct multipath *m) 308 { 309 struct pgpath *pgpath; 310 unsigned long pg_init_delay = 0; 311 312 lockdep_assert_held(&m->lock); 313 314 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 315 return 0; 316 317 atomic_inc(&m->pg_init_count); 318 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 319 320 /* Check here to reset pg_init_required */ 321 if (!m->current_pg) 322 return 0; 323 324 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 325 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 326 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 327 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 328 /* Skip failed paths */ 329 if (!pgpath->is_active) 330 continue; 331 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 332 pg_init_delay)) 333 atomic_inc(&m->pg_init_in_progress); 334 } 335 return atomic_read(&m->pg_init_in_progress); 336 } 337 338 static int pg_init_all_paths(struct multipath *m) 339 { 340 int ret; 341 unsigned long flags; 342 343 spin_lock_irqsave(&m->lock, flags); 344 ret = __pg_init_all_paths(m); 345 spin_unlock_irqrestore(&m->lock, flags); 346 347 return ret; 348 } 349 350 static void __switch_pg(struct multipath *m, struct priority_group *pg) 351 { 352 lockdep_assert_held(&m->lock); 353 354 m->current_pg = pg; 355 356 /* Must we initialise the PG first, and queue I/O till it's ready? */ 357 if (m->hw_handler_name) { 358 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 359 set_bit(MPATHF_QUEUE_IO, &m->flags); 360 } else { 361 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 362 clear_bit(MPATHF_QUEUE_IO, &m->flags); 363 } 364 365 atomic_set(&m->pg_init_count, 0); 366 } 367 368 static struct pgpath *choose_path_in_pg(struct multipath *m, 369 struct priority_group *pg, 370 size_t nr_bytes) 371 { 372 unsigned long flags; 373 struct dm_path *path; 374 struct pgpath *pgpath; 375 376 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 377 if (!path) 378 return ERR_PTR(-ENXIO); 379 380 pgpath = path_to_pgpath(path); 381 382 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 383 /* Only update current_pgpath if pg changed */ 384 spin_lock_irqsave(&m->lock, flags); 385 m->current_pgpath = pgpath; 386 __switch_pg(m, pg); 387 spin_unlock_irqrestore(&m->lock, flags); 388 } 389 390 return pgpath; 391 } 392 393 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 394 { 395 unsigned long flags; 396 struct priority_group *pg; 397 struct pgpath *pgpath; 398 unsigned bypassed = 1; 399 400 if (!atomic_read(&m->nr_valid_paths)) { 401 spin_lock_irqsave(&m->lock, flags); 402 clear_bit(MPATHF_QUEUE_IO, &m->flags); 403 spin_unlock_irqrestore(&m->lock, flags); 404 goto failed; 405 } 406 407 /* Were we instructed to switch PG? */ 408 if (READ_ONCE(m->next_pg)) { 409 spin_lock_irqsave(&m->lock, flags); 410 pg = m->next_pg; 411 if (!pg) { 412 spin_unlock_irqrestore(&m->lock, flags); 413 goto check_current_pg; 414 } 415 m->next_pg = NULL; 416 spin_unlock_irqrestore(&m->lock, flags); 417 pgpath = choose_path_in_pg(m, pg, nr_bytes); 418 if (!IS_ERR_OR_NULL(pgpath)) 419 return pgpath; 420 } 421 422 /* Don't change PG until it has no remaining paths */ 423 check_current_pg: 424 pg = READ_ONCE(m->current_pg); 425 if (pg) { 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) 428 return pgpath; 429 } 430 431 /* 432 * Loop through priority groups until we find a valid path. 433 * First time we skip PGs marked 'bypassed'. 434 * Second time we only try the ones we skipped, but set 435 * pg_init_delay_retry so we do not hammer controllers. 436 */ 437 do { 438 list_for_each_entry(pg, &m->priority_groups, list) { 439 if (pg->bypassed == !!bypassed) 440 continue; 441 pgpath = choose_path_in_pg(m, pg, nr_bytes); 442 if (!IS_ERR_OR_NULL(pgpath)) { 443 if (!bypassed) { 444 spin_lock_irqsave(&m->lock, flags); 445 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 446 spin_unlock_irqrestore(&m->lock, flags); 447 } 448 return pgpath; 449 } 450 } 451 } while (bypassed--); 452 453 failed: 454 spin_lock_irqsave(&m->lock, flags); 455 m->current_pgpath = NULL; 456 m->current_pg = NULL; 457 spin_unlock_irqrestore(&m->lock, flags); 458 459 return NULL; 460 } 461 462 /* 463 * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited() 464 * report the function name and line number of the function from which 465 * it has been invoked. 466 */ 467 #define dm_report_EIO(m) \ 468 do { \ 469 DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \ 470 dm_table_device_name((m)->ti->table), \ 471 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 472 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 473 dm_noflush_suspending((m)->ti)); \ 474 } while (0) 475 476 /* 477 * Check whether bios must be queued in the device-mapper core rather 478 * than here in the target. 479 */ 480 static bool __must_push_back(struct multipath *m) 481 { 482 return dm_noflush_suspending(m->ti); 483 } 484 485 static bool must_push_back_rq(struct multipath *m) 486 { 487 unsigned long flags; 488 bool ret; 489 490 spin_lock_irqsave(&m->lock, flags); 491 ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m)); 492 spin_unlock_irqrestore(&m->lock, flags); 493 494 return ret; 495 } 496 497 /* 498 * Map cloned requests (request-based multipath) 499 */ 500 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 501 union map_info *map_context, 502 struct request **__clone) 503 { 504 struct multipath *m = ti->private; 505 size_t nr_bytes = blk_rq_bytes(rq); 506 struct pgpath *pgpath; 507 struct block_device *bdev; 508 struct dm_mpath_io *mpio = get_mpio(map_context); 509 struct request_queue *q; 510 struct request *clone; 511 512 /* Do we need to select a new pgpath? */ 513 pgpath = READ_ONCE(m->current_pgpath); 514 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 515 pgpath = choose_pgpath(m, nr_bytes); 516 517 if (!pgpath) { 518 if (must_push_back_rq(m)) 519 return DM_MAPIO_DELAY_REQUEUE; 520 dm_report_EIO(m); /* Failed */ 521 return DM_MAPIO_KILL; 522 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 523 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 524 pg_init_all_paths(m); 525 return DM_MAPIO_DELAY_REQUEUE; 526 } 527 528 mpio->pgpath = pgpath; 529 mpio->nr_bytes = nr_bytes; 530 531 bdev = pgpath->path.dev->bdev; 532 q = bdev_get_queue(bdev); 533 clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE, 534 BLK_MQ_REQ_NOWAIT); 535 if (IS_ERR(clone)) { 536 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 537 if (blk_queue_dying(q)) { 538 atomic_inc(&m->pg_init_in_progress); 539 activate_or_offline_path(pgpath); 540 return DM_MAPIO_DELAY_REQUEUE; 541 } 542 543 /* 544 * blk-mq's SCHED_RESTART can cover this requeue, so we 545 * needn't deal with it by DELAY_REQUEUE. More importantly, 546 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 547 * get the queue busy feedback (via BLK_STS_RESOURCE), 548 * otherwise I/O merging can suffer. 549 */ 550 return DM_MAPIO_REQUEUE; 551 } 552 clone->bio = clone->biotail = NULL; 553 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 554 *__clone = clone; 555 556 if (pgpath->pg->ps.type->start_io) 557 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 558 &pgpath->path, 559 nr_bytes); 560 return DM_MAPIO_REMAPPED; 561 } 562 563 static void multipath_release_clone(struct request *clone, 564 union map_info *map_context) 565 { 566 if (unlikely(map_context)) { 567 /* 568 * non-NULL map_context means caller is still map 569 * method; must undo multipath_clone_and_map() 570 */ 571 struct dm_mpath_io *mpio = get_mpio(map_context); 572 struct pgpath *pgpath = mpio->pgpath; 573 574 if (pgpath && pgpath->pg->ps.type->end_io) 575 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 576 &pgpath->path, 577 mpio->nr_bytes, 578 clone->io_start_time_ns); 579 } 580 581 blk_mq_free_request(clone); 582 } 583 584 /* 585 * Map cloned bios (bio-based multipath) 586 */ 587 588 static void __multipath_queue_bio(struct multipath *m, struct bio *bio) 589 { 590 /* Queue for the daemon to resubmit */ 591 bio_list_add(&m->queued_bios, bio); 592 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 593 queue_work(kmultipathd, &m->process_queued_bios); 594 } 595 596 static void multipath_queue_bio(struct multipath *m, struct bio *bio) 597 { 598 unsigned long flags; 599 600 spin_lock_irqsave(&m->lock, flags); 601 __multipath_queue_bio(m, bio); 602 spin_unlock_irqrestore(&m->lock, flags); 603 } 604 605 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 606 { 607 struct pgpath *pgpath; 608 unsigned long flags; 609 610 /* Do we need to select a new pgpath? */ 611 pgpath = READ_ONCE(m->current_pgpath); 612 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 613 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 614 615 if (!pgpath) { 616 spin_lock_irqsave(&m->lock, flags); 617 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 618 __multipath_queue_bio(m, bio); 619 pgpath = ERR_PTR(-EAGAIN); 620 } 621 spin_unlock_irqrestore(&m->lock, flags); 622 623 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 624 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 625 multipath_queue_bio(m, bio); 626 pg_init_all_paths(m); 627 return ERR_PTR(-EAGAIN); 628 } 629 630 return pgpath; 631 } 632 633 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 634 struct dm_mpath_io *mpio) 635 { 636 struct pgpath *pgpath = __map_bio(m, bio); 637 638 if (IS_ERR(pgpath)) 639 return DM_MAPIO_SUBMITTED; 640 641 if (!pgpath) { 642 if (__must_push_back(m)) 643 return DM_MAPIO_REQUEUE; 644 dm_report_EIO(m); 645 return DM_MAPIO_KILL; 646 } 647 648 mpio->pgpath = pgpath; 649 650 bio->bi_status = 0; 651 bio_set_dev(bio, pgpath->path.dev->bdev); 652 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 653 654 if (pgpath->pg->ps.type->start_io) 655 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 656 &pgpath->path, 657 mpio->nr_bytes); 658 return DM_MAPIO_REMAPPED; 659 } 660 661 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 662 { 663 struct multipath *m = ti->private; 664 struct dm_mpath_io *mpio = NULL; 665 666 multipath_init_per_bio_data(bio, &mpio); 667 return __multipath_map_bio(m, bio, mpio); 668 } 669 670 static void process_queued_io_list(struct multipath *m) 671 { 672 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 673 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 674 else if (m->queue_mode == DM_TYPE_BIO_BASED) 675 queue_work(kmultipathd, &m->process_queued_bios); 676 } 677 678 static void process_queued_bios(struct work_struct *work) 679 { 680 int r; 681 unsigned long flags; 682 struct bio *bio; 683 struct bio_list bios; 684 struct blk_plug plug; 685 struct multipath *m = 686 container_of(work, struct multipath, process_queued_bios); 687 688 bio_list_init(&bios); 689 690 spin_lock_irqsave(&m->lock, flags); 691 692 if (bio_list_empty(&m->queued_bios)) { 693 spin_unlock_irqrestore(&m->lock, flags); 694 return; 695 } 696 697 bio_list_merge(&bios, &m->queued_bios); 698 bio_list_init(&m->queued_bios); 699 700 spin_unlock_irqrestore(&m->lock, flags); 701 702 blk_start_plug(&plug); 703 while ((bio = bio_list_pop(&bios))) { 704 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 705 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 706 r = __multipath_map_bio(m, bio, mpio); 707 switch (r) { 708 case DM_MAPIO_KILL: 709 bio->bi_status = BLK_STS_IOERR; 710 bio_endio(bio); 711 break; 712 case DM_MAPIO_REQUEUE: 713 bio->bi_status = BLK_STS_DM_REQUEUE; 714 bio_endio(bio); 715 break; 716 case DM_MAPIO_REMAPPED: 717 submit_bio_noacct(bio); 718 break; 719 case DM_MAPIO_SUBMITTED: 720 break; 721 default: 722 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 723 } 724 } 725 blk_finish_plug(&plug); 726 } 727 728 /* 729 * If we run out of usable paths, should we queue I/O or error it? 730 */ 731 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 732 bool save_old_value, const char *caller) 733 { 734 unsigned long flags; 735 bool queue_if_no_path_bit, saved_queue_if_no_path_bit; 736 const char *dm_dev_name = dm_table_device_name(m->ti->table); 737 738 DMDEBUG("%s: %s caller=%s queue_if_no_path=%d save_old_value=%d", 739 dm_dev_name, __func__, caller, queue_if_no_path, save_old_value); 740 741 spin_lock_irqsave(&m->lock, flags); 742 743 queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 744 saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 745 746 if (save_old_value) { 747 if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) { 748 DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!", 749 dm_dev_name); 750 } else 751 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit); 752 } else if (!queue_if_no_path && saved_queue_if_no_path_bit) { 753 /* due to "fail_if_no_path" message, need to honor it. */ 754 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 755 } 756 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 757 758 DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d", 759 dm_dev_name, __func__, 760 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 761 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 762 dm_noflush_suspending(m->ti)); 763 764 spin_unlock_irqrestore(&m->lock, flags); 765 766 if (!queue_if_no_path) { 767 dm_table_run_md_queue_async(m->ti->table); 768 process_queued_io_list(m); 769 } 770 771 return 0; 772 } 773 774 /* 775 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and 776 * process any queued I/O. 777 */ 778 static void queue_if_no_path_timeout_work(struct timer_list *t) 779 { 780 struct multipath *m = from_timer(m, t, nopath_timer); 781 782 DMWARN("queue_if_no_path timeout on %s, failing queued IO", 783 dm_table_device_name(m->ti->table)); 784 queue_if_no_path(m, false, false, __func__); 785 } 786 787 /* 788 * Enable the queue_if_no_path timeout if necessary. 789 * Called with m->lock held. 790 */ 791 static void enable_nopath_timeout(struct multipath *m) 792 { 793 unsigned long queue_if_no_path_timeout = 794 READ_ONCE(queue_if_no_path_timeout_secs) * HZ; 795 796 lockdep_assert_held(&m->lock); 797 798 if (queue_if_no_path_timeout > 0 && 799 atomic_read(&m->nr_valid_paths) == 0 && 800 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 801 mod_timer(&m->nopath_timer, 802 jiffies + queue_if_no_path_timeout); 803 } 804 } 805 806 static void disable_nopath_timeout(struct multipath *m) 807 { 808 del_timer_sync(&m->nopath_timer); 809 } 810 811 /* 812 * An event is triggered whenever a path is taken out of use. 813 * Includes path failure and PG bypass. 814 */ 815 static void trigger_event(struct work_struct *work) 816 { 817 struct multipath *m = 818 container_of(work, struct multipath, trigger_event); 819 820 dm_table_event(m->ti->table); 821 } 822 823 /*----------------------------------------------------------------- 824 * Constructor/argument parsing: 825 * <#multipath feature args> [<arg>]* 826 * <#hw_handler args> [hw_handler [<arg>]*] 827 * <#priority groups> 828 * <initial priority group> 829 * [<selector> <#selector args> [<arg>]* 830 * <#paths> <#per-path selector args> 831 * [<path> [<arg>]* ]+ ]+ 832 *---------------------------------------------------------------*/ 833 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 834 struct dm_target *ti) 835 { 836 int r; 837 struct path_selector_type *pst; 838 unsigned ps_argc; 839 840 static const struct dm_arg _args[] = { 841 {0, 1024, "invalid number of path selector args"}, 842 }; 843 844 pst = dm_get_path_selector(dm_shift_arg(as)); 845 if (!pst) { 846 ti->error = "unknown path selector type"; 847 return -EINVAL; 848 } 849 850 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 851 if (r) { 852 dm_put_path_selector(pst); 853 return -EINVAL; 854 } 855 856 r = pst->create(&pg->ps, ps_argc, as->argv); 857 if (r) { 858 dm_put_path_selector(pst); 859 ti->error = "path selector constructor failed"; 860 return r; 861 } 862 863 pg->ps.type = pst; 864 dm_consume_args(as, ps_argc); 865 866 return 0; 867 } 868 869 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 870 const char **attached_handler_name, char **error) 871 { 872 struct request_queue *q = bdev_get_queue(bdev); 873 int r; 874 875 if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) { 876 retain: 877 if (*attached_handler_name) { 878 /* 879 * Clear any hw_handler_params associated with a 880 * handler that isn't already attached. 881 */ 882 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 883 kfree(m->hw_handler_params); 884 m->hw_handler_params = NULL; 885 } 886 887 /* 888 * Reset hw_handler_name to match the attached handler 889 * 890 * NB. This modifies the table line to show the actual 891 * handler instead of the original table passed in. 892 */ 893 kfree(m->hw_handler_name); 894 m->hw_handler_name = *attached_handler_name; 895 *attached_handler_name = NULL; 896 } 897 } 898 899 if (m->hw_handler_name) { 900 r = scsi_dh_attach(q, m->hw_handler_name); 901 if (r == -EBUSY) { 902 char b[BDEVNAME_SIZE]; 903 904 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 905 bdevname(bdev, b)); 906 goto retain; 907 } 908 if (r < 0) { 909 *error = "error attaching hardware handler"; 910 return r; 911 } 912 913 if (m->hw_handler_params) { 914 r = scsi_dh_set_params(q, m->hw_handler_params); 915 if (r < 0) { 916 *error = "unable to set hardware handler parameters"; 917 return r; 918 } 919 } 920 } 921 922 return 0; 923 } 924 925 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 926 struct dm_target *ti) 927 { 928 int r; 929 struct pgpath *p; 930 struct multipath *m = ti->private; 931 struct request_queue *q; 932 const char *attached_handler_name = NULL; 933 934 /* we need at least a path arg */ 935 if (as->argc < 1) { 936 ti->error = "no device given"; 937 return ERR_PTR(-EINVAL); 938 } 939 940 p = alloc_pgpath(); 941 if (!p) 942 return ERR_PTR(-ENOMEM); 943 944 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 945 &p->path.dev); 946 if (r) { 947 ti->error = "error getting device"; 948 goto bad; 949 } 950 951 q = bdev_get_queue(p->path.dev->bdev); 952 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 953 if (attached_handler_name || m->hw_handler_name) { 954 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 955 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 956 kfree(attached_handler_name); 957 if (r) { 958 dm_put_device(ti, p->path.dev); 959 goto bad; 960 } 961 } 962 963 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 964 if (r) { 965 dm_put_device(ti, p->path.dev); 966 goto bad; 967 } 968 969 return p; 970 bad: 971 free_pgpath(p); 972 return ERR_PTR(r); 973 } 974 975 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 976 struct multipath *m) 977 { 978 static const struct dm_arg _args[] = { 979 {1, 1024, "invalid number of paths"}, 980 {0, 1024, "invalid number of selector args"} 981 }; 982 983 int r; 984 unsigned i, nr_selector_args, nr_args; 985 struct priority_group *pg; 986 struct dm_target *ti = m->ti; 987 988 if (as->argc < 2) { 989 as->argc = 0; 990 ti->error = "not enough priority group arguments"; 991 return ERR_PTR(-EINVAL); 992 } 993 994 pg = alloc_priority_group(); 995 if (!pg) { 996 ti->error = "couldn't allocate priority group"; 997 return ERR_PTR(-ENOMEM); 998 } 999 pg->m = m; 1000 1001 r = parse_path_selector(as, pg, ti); 1002 if (r) 1003 goto bad; 1004 1005 /* 1006 * read the paths 1007 */ 1008 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 1009 if (r) 1010 goto bad; 1011 1012 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 1013 if (r) 1014 goto bad; 1015 1016 nr_args = 1 + nr_selector_args; 1017 for (i = 0; i < pg->nr_pgpaths; i++) { 1018 struct pgpath *pgpath; 1019 struct dm_arg_set path_args; 1020 1021 if (as->argc < nr_args) { 1022 ti->error = "not enough path parameters"; 1023 r = -EINVAL; 1024 goto bad; 1025 } 1026 1027 path_args.argc = nr_args; 1028 path_args.argv = as->argv; 1029 1030 pgpath = parse_path(&path_args, &pg->ps, ti); 1031 if (IS_ERR(pgpath)) { 1032 r = PTR_ERR(pgpath); 1033 goto bad; 1034 } 1035 1036 pgpath->pg = pg; 1037 list_add_tail(&pgpath->list, &pg->pgpaths); 1038 dm_consume_args(as, nr_args); 1039 } 1040 1041 return pg; 1042 1043 bad: 1044 free_priority_group(pg, ti); 1045 return ERR_PTR(r); 1046 } 1047 1048 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 1049 { 1050 unsigned hw_argc; 1051 int ret; 1052 struct dm_target *ti = m->ti; 1053 1054 static const struct dm_arg _args[] = { 1055 {0, 1024, "invalid number of hardware handler args"}, 1056 }; 1057 1058 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 1059 return -EINVAL; 1060 1061 if (!hw_argc) 1062 return 0; 1063 1064 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1065 dm_consume_args(as, hw_argc); 1066 DMERR("bio-based multipath doesn't allow hardware handler args"); 1067 return 0; 1068 } 1069 1070 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1071 if (!m->hw_handler_name) 1072 return -EINVAL; 1073 1074 if (hw_argc > 1) { 1075 char *p; 1076 int i, j, len = 4; 1077 1078 for (i = 0; i <= hw_argc - 2; i++) 1079 len += strlen(as->argv[i]) + 1; 1080 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1081 if (!p) { 1082 ti->error = "memory allocation failed"; 1083 ret = -ENOMEM; 1084 goto fail; 1085 } 1086 j = sprintf(p, "%d", hw_argc - 1); 1087 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1088 j = sprintf(p, "%s", as->argv[i]); 1089 } 1090 dm_consume_args(as, hw_argc - 1); 1091 1092 return 0; 1093 fail: 1094 kfree(m->hw_handler_name); 1095 m->hw_handler_name = NULL; 1096 return ret; 1097 } 1098 1099 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1100 { 1101 int r; 1102 unsigned argc; 1103 struct dm_target *ti = m->ti; 1104 const char *arg_name; 1105 1106 static const struct dm_arg _args[] = { 1107 {0, 8, "invalid number of feature args"}, 1108 {1, 50, "pg_init_retries must be between 1 and 50"}, 1109 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1110 }; 1111 1112 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1113 if (r) 1114 return -EINVAL; 1115 1116 if (!argc) 1117 return 0; 1118 1119 do { 1120 arg_name = dm_shift_arg(as); 1121 argc--; 1122 1123 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1124 r = queue_if_no_path(m, true, false, __func__); 1125 continue; 1126 } 1127 1128 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1129 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1130 continue; 1131 } 1132 1133 if (!strcasecmp(arg_name, "pg_init_retries") && 1134 (argc >= 1)) { 1135 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1136 argc--; 1137 continue; 1138 } 1139 1140 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1141 (argc >= 1)) { 1142 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1143 argc--; 1144 continue; 1145 } 1146 1147 if (!strcasecmp(arg_name, "queue_mode") && 1148 (argc >= 1)) { 1149 const char *queue_mode_name = dm_shift_arg(as); 1150 1151 if (!strcasecmp(queue_mode_name, "bio")) 1152 m->queue_mode = DM_TYPE_BIO_BASED; 1153 else if (!strcasecmp(queue_mode_name, "rq") || 1154 !strcasecmp(queue_mode_name, "mq")) 1155 m->queue_mode = DM_TYPE_REQUEST_BASED; 1156 else { 1157 ti->error = "Unknown 'queue_mode' requested"; 1158 r = -EINVAL; 1159 } 1160 argc--; 1161 continue; 1162 } 1163 1164 ti->error = "Unrecognised multipath feature request"; 1165 r = -EINVAL; 1166 } while (argc && !r); 1167 1168 return r; 1169 } 1170 1171 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1172 { 1173 /* target arguments */ 1174 static const struct dm_arg _args[] = { 1175 {0, 1024, "invalid number of priority groups"}, 1176 {0, 1024, "invalid initial priority group number"}, 1177 }; 1178 1179 int r; 1180 struct multipath *m; 1181 struct dm_arg_set as; 1182 unsigned pg_count = 0; 1183 unsigned next_pg_num; 1184 unsigned long flags; 1185 1186 as.argc = argc; 1187 as.argv = argv; 1188 1189 m = alloc_multipath(ti); 1190 if (!m) { 1191 ti->error = "can't allocate multipath"; 1192 return -EINVAL; 1193 } 1194 1195 r = parse_features(&as, m); 1196 if (r) 1197 goto bad; 1198 1199 r = alloc_multipath_stage2(ti, m); 1200 if (r) 1201 goto bad; 1202 1203 r = parse_hw_handler(&as, m); 1204 if (r) 1205 goto bad; 1206 1207 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1208 if (r) 1209 goto bad; 1210 1211 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1212 if (r) 1213 goto bad; 1214 1215 if ((!m->nr_priority_groups && next_pg_num) || 1216 (m->nr_priority_groups && !next_pg_num)) { 1217 ti->error = "invalid initial priority group"; 1218 r = -EINVAL; 1219 goto bad; 1220 } 1221 1222 /* parse the priority groups */ 1223 while (as.argc) { 1224 struct priority_group *pg; 1225 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1226 1227 pg = parse_priority_group(&as, m); 1228 if (IS_ERR(pg)) { 1229 r = PTR_ERR(pg); 1230 goto bad; 1231 } 1232 1233 nr_valid_paths += pg->nr_pgpaths; 1234 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1235 1236 list_add_tail(&pg->list, &m->priority_groups); 1237 pg_count++; 1238 pg->pg_num = pg_count; 1239 if (!--next_pg_num) 1240 m->next_pg = pg; 1241 } 1242 1243 if (pg_count != m->nr_priority_groups) { 1244 ti->error = "priority group count mismatch"; 1245 r = -EINVAL; 1246 goto bad; 1247 } 1248 1249 spin_lock_irqsave(&m->lock, flags); 1250 enable_nopath_timeout(m); 1251 spin_unlock_irqrestore(&m->lock, flags); 1252 1253 ti->num_flush_bios = 1; 1254 ti->num_discard_bios = 1; 1255 ti->num_write_same_bios = 1; 1256 ti->num_write_zeroes_bios = 1; 1257 if (m->queue_mode == DM_TYPE_BIO_BASED) 1258 ti->per_io_data_size = multipath_per_bio_data_size(); 1259 else 1260 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1261 1262 return 0; 1263 1264 bad: 1265 free_multipath(m); 1266 return r; 1267 } 1268 1269 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1270 { 1271 DEFINE_WAIT(wait); 1272 1273 while (1) { 1274 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1275 1276 if (!atomic_read(&m->pg_init_in_progress)) 1277 break; 1278 1279 io_schedule(); 1280 } 1281 finish_wait(&m->pg_init_wait, &wait); 1282 } 1283 1284 static void flush_multipath_work(struct multipath *m) 1285 { 1286 if (m->hw_handler_name) { 1287 unsigned long flags; 1288 1289 if (!atomic_read(&m->pg_init_in_progress)) 1290 goto skip; 1291 1292 spin_lock_irqsave(&m->lock, flags); 1293 if (atomic_read(&m->pg_init_in_progress) && 1294 !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) { 1295 spin_unlock_irqrestore(&m->lock, flags); 1296 1297 flush_workqueue(kmpath_handlerd); 1298 multipath_wait_for_pg_init_completion(m); 1299 1300 spin_lock_irqsave(&m->lock, flags); 1301 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1302 } 1303 spin_unlock_irqrestore(&m->lock, flags); 1304 } 1305 skip: 1306 if (m->queue_mode == DM_TYPE_BIO_BASED) 1307 flush_work(&m->process_queued_bios); 1308 flush_work(&m->trigger_event); 1309 } 1310 1311 static void multipath_dtr(struct dm_target *ti) 1312 { 1313 struct multipath *m = ti->private; 1314 1315 disable_nopath_timeout(m); 1316 flush_multipath_work(m); 1317 free_multipath(m); 1318 } 1319 1320 /* 1321 * Take a path out of use. 1322 */ 1323 static int fail_path(struct pgpath *pgpath) 1324 { 1325 unsigned long flags; 1326 struct multipath *m = pgpath->pg->m; 1327 1328 spin_lock_irqsave(&m->lock, flags); 1329 1330 if (!pgpath->is_active) 1331 goto out; 1332 1333 DMWARN("%s: Failing path %s.", 1334 dm_table_device_name(m->ti->table), 1335 pgpath->path.dev->name); 1336 1337 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1338 pgpath->is_active = false; 1339 pgpath->fail_count++; 1340 1341 atomic_dec(&m->nr_valid_paths); 1342 1343 if (pgpath == m->current_pgpath) 1344 m->current_pgpath = NULL; 1345 1346 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1347 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1348 1349 schedule_work(&m->trigger_event); 1350 1351 enable_nopath_timeout(m); 1352 1353 out: 1354 spin_unlock_irqrestore(&m->lock, flags); 1355 1356 return 0; 1357 } 1358 1359 /* 1360 * Reinstate a previously-failed path 1361 */ 1362 static int reinstate_path(struct pgpath *pgpath) 1363 { 1364 int r = 0, run_queue = 0; 1365 unsigned long flags; 1366 struct multipath *m = pgpath->pg->m; 1367 unsigned nr_valid_paths; 1368 1369 spin_lock_irqsave(&m->lock, flags); 1370 1371 if (pgpath->is_active) 1372 goto out; 1373 1374 DMWARN("%s: Reinstating path %s.", 1375 dm_table_device_name(m->ti->table), 1376 pgpath->path.dev->name); 1377 1378 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1379 if (r) 1380 goto out; 1381 1382 pgpath->is_active = true; 1383 1384 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1385 if (nr_valid_paths == 1) { 1386 m->current_pgpath = NULL; 1387 run_queue = 1; 1388 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1389 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1390 atomic_inc(&m->pg_init_in_progress); 1391 } 1392 1393 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1394 pgpath->path.dev->name, nr_valid_paths); 1395 1396 schedule_work(&m->trigger_event); 1397 1398 out: 1399 spin_unlock_irqrestore(&m->lock, flags); 1400 if (run_queue) { 1401 dm_table_run_md_queue_async(m->ti->table); 1402 process_queued_io_list(m); 1403 } 1404 1405 if (pgpath->is_active) 1406 disable_nopath_timeout(m); 1407 1408 return r; 1409 } 1410 1411 /* 1412 * Fail or reinstate all paths that match the provided struct dm_dev. 1413 */ 1414 static int action_dev(struct multipath *m, struct dm_dev *dev, 1415 action_fn action) 1416 { 1417 int r = -EINVAL; 1418 struct pgpath *pgpath; 1419 struct priority_group *pg; 1420 1421 list_for_each_entry(pg, &m->priority_groups, list) { 1422 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1423 if (pgpath->path.dev == dev) 1424 r = action(pgpath); 1425 } 1426 } 1427 1428 return r; 1429 } 1430 1431 /* 1432 * Temporarily try to avoid having to use the specified PG 1433 */ 1434 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1435 bool bypassed) 1436 { 1437 unsigned long flags; 1438 1439 spin_lock_irqsave(&m->lock, flags); 1440 1441 pg->bypassed = bypassed; 1442 m->current_pgpath = NULL; 1443 m->current_pg = NULL; 1444 1445 spin_unlock_irqrestore(&m->lock, flags); 1446 1447 schedule_work(&m->trigger_event); 1448 } 1449 1450 /* 1451 * Switch to using the specified PG from the next I/O that gets mapped 1452 */ 1453 static int switch_pg_num(struct multipath *m, const char *pgstr) 1454 { 1455 struct priority_group *pg; 1456 unsigned pgnum; 1457 unsigned long flags; 1458 char dummy; 1459 1460 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1461 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1462 DMWARN("invalid PG number supplied to switch_pg_num"); 1463 return -EINVAL; 1464 } 1465 1466 spin_lock_irqsave(&m->lock, flags); 1467 list_for_each_entry(pg, &m->priority_groups, list) { 1468 pg->bypassed = false; 1469 if (--pgnum) 1470 continue; 1471 1472 m->current_pgpath = NULL; 1473 m->current_pg = NULL; 1474 m->next_pg = pg; 1475 } 1476 spin_unlock_irqrestore(&m->lock, flags); 1477 1478 schedule_work(&m->trigger_event); 1479 return 0; 1480 } 1481 1482 /* 1483 * Set/clear bypassed status of a PG. 1484 * PGs are numbered upwards from 1 in the order they were declared. 1485 */ 1486 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1487 { 1488 struct priority_group *pg; 1489 unsigned pgnum; 1490 char dummy; 1491 1492 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1493 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1494 DMWARN("invalid PG number supplied to bypass_pg"); 1495 return -EINVAL; 1496 } 1497 1498 list_for_each_entry(pg, &m->priority_groups, list) { 1499 if (!--pgnum) 1500 break; 1501 } 1502 1503 bypass_pg(m, pg, bypassed); 1504 return 0; 1505 } 1506 1507 /* 1508 * Should we retry pg_init immediately? 1509 */ 1510 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1511 { 1512 unsigned long flags; 1513 bool limit_reached = false; 1514 1515 spin_lock_irqsave(&m->lock, flags); 1516 1517 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1518 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1519 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1520 else 1521 limit_reached = true; 1522 1523 spin_unlock_irqrestore(&m->lock, flags); 1524 1525 return limit_reached; 1526 } 1527 1528 static void pg_init_done(void *data, int errors) 1529 { 1530 struct pgpath *pgpath = data; 1531 struct priority_group *pg = pgpath->pg; 1532 struct multipath *m = pg->m; 1533 unsigned long flags; 1534 bool delay_retry = false; 1535 1536 /* device or driver problems */ 1537 switch (errors) { 1538 case SCSI_DH_OK: 1539 break; 1540 case SCSI_DH_NOSYS: 1541 if (!m->hw_handler_name) { 1542 errors = 0; 1543 break; 1544 } 1545 DMERR("Could not failover the device: Handler scsi_dh_%s " 1546 "Error %d.", m->hw_handler_name, errors); 1547 /* 1548 * Fail path for now, so we do not ping pong 1549 */ 1550 fail_path(pgpath); 1551 break; 1552 case SCSI_DH_DEV_TEMP_BUSY: 1553 /* 1554 * Probably doing something like FW upgrade on the 1555 * controller so try the other pg. 1556 */ 1557 bypass_pg(m, pg, true); 1558 break; 1559 case SCSI_DH_RETRY: 1560 /* Wait before retrying. */ 1561 delay_retry = true; 1562 fallthrough; 1563 case SCSI_DH_IMM_RETRY: 1564 case SCSI_DH_RES_TEMP_UNAVAIL: 1565 if (pg_init_limit_reached(m, pgpath)) 1566 fail_path(pgpath); 1567 errors = 0; 1568 break; 1569 case SCSI_DH_DEV_OFFLINED: 1570 default: 1571 /* 1572 * We probably do not want to fail the path for a device 1573 * error, but this is what the old dm did. In future 1574 * patches we can do more advanced handling. 1575 */ 1576 fail_path(pgpath); 1577 } 1578 1579 spin_lock_irqsave(&m->lock, flags); 1580 if (errors) { 1581 if (pgpath == m->current_pgpath) { 1582 DMERR("Could not failover device. Error %d.", errors); 1583 m->current_pgpath = NULL; 1584 m->current_pg = NULL; 1585 } 1586 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1587 pg->bypassed = false; 1588 1589 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1590 /* Activations of other paths are still on going */ 1591 goto out; 1592 1593 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1594 if (delay_retry) 1595 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1596 else 1597 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1598 1599 if (__pg_init_all_paths(m)) 1600 goto out; 1601 } 1602 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1603 1604 process_queued_io_list(m); 1605 1606 /* 1607 * Wake up any thread waiting to suspend. 1608 */ 1609 wake_up(&m->pg_init_wait); 1610 1611 out: 1612 spin_unlock_irqrestore(&m->lock, flags); 1613 } 1614 1615 static void activate_or_offline_path(struct pgpath *pgpath) 1616 { 1617 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1618 1619 if (pgpath->is_active && !blk_queue_dying(q)) 1620 scsi_dh_activate(q, pg_init_done, pgpath); 1621 else 1622 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1623 } 1624 1625 static void activate_path_work(struct work_struct *work) 1626 { 1627 struct pgpath *pgpath = 1628 container_of(work, struct pgpath, activate_path.work); 1629 1630 activate_or_offline_path(pgpath); 1631 } 1632 1633 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1634 blk_status_t error, union map_info *map_context) 1635 { 1636 struct dm_mpath_io *mpio = get_mpio(map_context); 1637 struct pgpath *pgpath = mpio->pgpath; 1638 int r = DM_ENDIO_DONE; 1639 1640 /* 1641 * We don't queue any clone request inside the multipath target 1642 * during end I/O handling, since those clone requests don't have 1643 * bio clones. If we queue them inside the multipath target, 1644 * we need to make bio clones, that requires memory allocation. 1645 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1646 * don't have bio clones.) 1647 * Instead of queueing the clone request here, we queue the original 1648 * request into dm core, which will remake a clone request and 1649 * clone bios for it and resubmit it later. 1650 */ 1651 if (error && blk_path_error(error)) { 1652 struct multipath *m = ti->private; 1653 1654 if (error == BLK_STS_RESOURCE) 1655 r = DM_ENDIO_DELAY_REQUEUE; 1656 else 1657 r = DM_ENDIO_REQUEUE; 1658 1659 if (pgpath) 1660 fail_path(pgpath); 1661 1662 if (!atomic_read(&m->nr_valid_paths) && 1663 !must_push_back_rq(m)) { 1664 if (error == BLK_STS_IOERR) 1665 dm_report_EIO(m); 1666 /* complete with the original error */ 1667 r = DM_ENDIO_DONE; 1668 } 1669 } 1670 1671 if (pgpath) { 1672 struct path_selector *ps = &pgpath->pg->ps; 1673 1674 if (ps->type->end_io) 1675 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1676 clone->io_start_time_ns); 1677 } 1678 1679 return r; 1680 } 1681 1682 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1683 blk_status_t *error) 1684 { 1685 struct multipath *m = ti->private; 1686 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1687 struct pgpath *pgpath = mpio->pgpath; 1688 unsigned long flags; 1689 int r = DM_ENDIO_DONE; 1690 1691 if (!*error || !blk_path_error(*error)) 1692 goto done; 1693 1694 if (pgpath) 1695 fail_path(pgpath); 1696 1697 if (!atomic_read(&m->nr_valid_paths)) { 1698 spin_lock_irqsave(&m->lock, flags); 1699 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1700 if (__must_push_back(m)) { 1701 r = DM_ENDIO_REQUEUE; 1702 } else { 1703 dm_report_EIO(m); 1704 *error = BLK_STS_IOERR; 1705 } 1706 spin_unlock_irqrestore(&m->lock, flags); 1707 goto done; 1708 } 1709 spin_unlock_irqrestore(&m->lock, flags); 1710 } 1711 1712 multipath_queue_bio(m, clone); 1713 r = DM_ENDIO_INCOMPLETE; 1714 done: 1715 if (pgpath) { 1716 struct path_selector *ps = &pgpath->pg->ps; 1717 1718 if (ps->type->end_io) 1719 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1720 dm_start_time_ns_from_clone(clone)); 1721 } 1722 1723 return r; 1724 } 1725 1726 /* 1727 * Suspend with flush can't complete until all the I/O is processed 1728 * so if the last path fails we must error any remaining I/O. 1729 * - Note that if the freeze_bdev fails while suspending, the 1730 * queue_if_no_path state is lost - userspace should reset it. 1731 * Otherwise, during noflush suspend, queue_if_no_path will not change. 1732 */ 1733 static void multipath_presuspend(struct dm_target *ti) 1734 { 1735 struct multipath *m = ti->private; 1736 1737 /* FIXME: bio-based shouldn't need to always disable queue_if_no_path */ 1738 if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti)) 1739 queue_if_no_path(m, false, true, __func__); 1740 } 1741 1742 static void multipath_postsuspend(struct dm_target *ti) 1743 { 1744 struct multipath *m = ti->private; 1745 1746 mutex_lock(&m->work_mutex); 1747 flush_multipath_work(m); 1748 mutex_unlock(&m->work_mutex); 1749 } 1750 1751 /* 1752 * Restore the queue_if_no_path setting. 1753 */ 1754 static void multipath_resume(struct dm_target *ti) 1755 { 1756 struct multipath *m = ti->private; 1757 unsigned long flags; 1758 1759 spin_lock_irqsave(&m->lock, flags); 1760 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) { 1761 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1762 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 1763 } 1764 1765 DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d", 1766 dm_table_device_name(m->ti->table), __func__, 1767 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 1768 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1769 1770 spin_unlock_irqrestore(&m->lock, flags); 1771 } 1772 1773 /* 1774 * Info output has the following format: 1775 * num_multipath_feature_args [multipath_feature_args]* 1776 * num_handler_status_args [handler_status_args]* 1777 * num_groups init_group_number 1778 * [A|D|E num_ps_status_args [ps_status_args]* 1779 * num_paths num_selector_args 1780 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1781 * 1782 * Table output has the following format (identical to the constructor string): 1783 * num_feature_args [features_args]* 1784 * num_handler_args hw_handler [hw_handler_args]* 1785 * num_groups init_group_number 1786 * [priority selector-name num_ps_args [ps_args]* 1787 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1788 */ 1789 static void multipath_status(struct dm_target *ti, status_type_t type, 1790 unsigned status_flags, char *result, unsigned maxlen) 1791 { 1792 int sz = 0, pg_counter, pgpath_counter; 1793 unsigned long flags; 1794 struct multipath *m = ti->private; 1795 struct priority_group *pg; 1796 struct pgpath *p; 1797 unsigned pg_num; 1798 char state; 1799 1800 spin_lock_irqsave(&m->lock, flags); 1801 1802 /* Features */ 1803 if (type == STATUSTYPE_INFO) 1804 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1805 atomic_read(&m->pg_init_count)); 1806 else { 1807 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1808 (m->pg_init_retries > 0) * 2 + 1809 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1810 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1811 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1812 1813 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1814 DMEMIT("queue_if_no_path "); 1815 if (m->pg_init_retries) 1816 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1817 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1818 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1819 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1820 DMEMIT("retain_attached_hw_handler "); 1821 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1822 switch(m->queue_mode) { 1823 case DM_TYPE_BIO_BASED: 1824 DMEMIT("queue_mode bio "); 1825 break; 1826 default: 1827 WARN_ON_ONCE(true); 1828 break; 1829 } 1830 } 1831 } 1832 1833 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1834 DMEMIT("0 "); 1835 else 1836 DMEMIT("1 %s ", m->hw_handler_name); 1837 1838 DMEMIT("%u ", m->nr_priority_groups); 1839 1840 if (m->next_pg) 1841 pg_num = m->next_pg->pg_num; 1842 else if (m->current_pg) 1843 pg_num = m->current_pg->pg_num; 1844 else 1845 pg_num = (m->nr_priority_groups ? 1 : 0); 1846 1847 DMEMIT("%u ", pg_num); 1848 1849 switch (type) { 1850 case STATUSTYPE_INFO: 1851 list_for_each_entry(pg, &m->priority_groups, list) { 1852 if (pg->bypassed) 1853 state = 'D'; /* Disabled */ 1854 else if (pg == m->current_pg) 1855 state = 'A'; /* Currently Active */ 1856 else 1857 state = 'E'; /* Enabled */ 1858 1859 DMEMIT("%c ", state); 1860 1861 if (pg->ps.type->status) 1862 sz += pg->ps.type->status(&pg->ps, NULL, type, 1863 result + sz, 1864 maxlen - sz); 1865 else 1866 DMEMIT("0 "); 1867 1868 DMEMIT("%u %u ", pg->nr_pgpaths, 1869 pg->ps.type->info_args); 1870 1871 list_for_each_entry(p, &pg->pgpaths, list) { 1872 DMEMIT("%s %s %u ", p->path.dev->name, 1873 p->is_active ? "A" : "F", 1874 p->fail_count); 1875 if (pg->ps.type->status) 1876 sz += pg->ps.type->status(&pg->ps, 1877 &p->path, type, result + sz, 1878 maxlen - sz); 1879 } 1880 } 1881 break; 1882 1883 case STATUSTYPE_TABLE: 1884 list_for_each_entry(pg, &m->priority_groups, list) { 1885 DMEMIT("%s ", pg->ps.type->name); 1886 1887 if (pg->ps.type->status) 1888 sz += pg->ps.type->status(&pg->ps, NULL, type, 1889 result + sz, 1890 maxlen - sz); 1891 else 1892 DMEMIT("0 "); 1893 1894 DMEMIT("%u %u ", pg->nr_pgpaths, 1895 pg->ps.type->table_args); 1896 1897 list_for_each_entry(p, &pg->pgpaths, list) { 1898 DMEMIT("%s ", p->path.dev->name); 1899 if (pg->ps.type->status) 1900 sz += pg->ps.type->status(&pg->ps, 1901 &p->path, type, result + sz, 1902 maxlen - sz); 1903 } 1904 } 1905 break; 1906 1907 case STATUSTYPE_IMA: 1908 sz = 0; /*reset the result pointer*/ 1909 1910 DMEMIT_TARGET_NAME_VERSION(ti->type); 1911 DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups); 1912 1913 pg_counter = 0; 1914 list_for_each_entry(pg, &m->priority_groups, list) { 1915 if (pg->bypassed) 1916 state = 'D'; /* Disabled */ 1917 else if (pg == m->current_pg) 1918 state = 'A'; /* Currently Active */ 1919 else 1920 state = 'E'; /* Enabled */ 1921 DMEMIT(",pg_state_%d=%c", pg_counter, state); 1922 DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths); 1923 DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name); 1924 1925 pgpath_counter = 0; 1926 list_for_each_entry(p, &pg->pgpaths, list) { 1927 DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u", 1928 pg_counter, pgpath_counter, p->path.dev->name, 1929 pg_counter, pgpath_counter, p->is_active ? 'A' : 'F', 1930 pg_counter, pgpath_counter, p->fail_count); 1931 if (pg->ps.type->status) { 1932 DMEMIT(",path_selector_status_%d_%d=", 1933 pg_counter, pgpath_counter); 1934 sz += pg->ps.type->status(&pg->ps, &p->path, 1935 type, result + sz, 1936 maxlen - sz); 1937 } 1938 pgpath_counter++; 1939 } 1940 pg_counter++; 1941 } 1942 DMEMIT(";"); 1943 break; 1944 } 1945 1946 spin_unlock_irqrestore(&m->lock, flags); 1947 } 1948 1949 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1950 char *result, unsigned maxlen) 1951 { 1952 int r = -EINVAL; 1953 struct dm_dev *dev; 1954 struct multipath *m = ti->private; 1955 action_fn action; 1956 unsigned long flags; 1957 1958 mutex_lock(&m->work_mutex); 1959 1960 if (dm_suspended(ti)) { 1961 r = -EBUSY; 1962 goto out; 1963 } 1964 1965 if (argc == 1) { 1966 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1967 r = queue_if_no_path(m, true, false, __func__); 1968 spin_lock_irqsave(&m->lock, flags); 1969 enable_nopath_timeout(m); 1970 spin_unlock_irqrestore(&m->lock, flags); 1971 goto out; 1972 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1973 r = queue_if_no_path(m, false, false, __func__); 1974 disable_nopath_timeout(m); 1975 goto out; 1976 } 1977 } 1978 1979 if (argc != 2) { 1980 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1981 goto out; 1982 } 1983 1984 if (!strcasecmp(argv[0], "disable_group")) { 1985 r = bypass_pg_num(m, argv[1], true); 1986 goto out; 1987 } else if (!strcasecmp(argv[0], "enable_group")) { 1988 r = bypass_pg_num(m, argv[1], false); 1989 goto out; 1990 } else if (!strcasecmp(argv[0], "switch_group")) { 1991 r = switch_pg_num(m, argv[1]); 1992 goto out; 1993 } else if (!strcasecmp(argv[0], "reinstate_path")) 1994 action = reinstate_path; 1995 else if (!strcasecmp(argv[0], "fail_path")) 1996 action = fail_path; 1997 else { 1998 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1999 goto out; 2000 } 2001 2002 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 2003 if (r) { 2004 DMWARN("message: error getting device %s", 2005 argv[1]); 2006 goto out; 2007 } 2008 2009 r = action_dev(m, dev, action); 2010 2011 dm_put_device(ti, dev); 2012 2013 out: 2014 mutex_unlock(&m->work_mutex); 2015 return r; 2016 } 2017 2018 static int multipath_prepare_ioctl(struct dm_target *ti, 2019 struct block_device **bdev) 2020 { 2021 struct multipath *m = ti->private; 2022 struct pgpath *pgpath; 2023 unsigned long flags; 2024 int r; 2025 2026 pgpath = READ_ONCE(m->current_pgpath); 2027 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 2028 pgpath = choose_pgpath(m, 0); 2029 2030 if (pgpath) { 2031 if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) { 2032 *bdev = pgpath->path.dev->bdev; 2033 r = 0; 2034 } else { 2035 /* pg_init has not started or completed */ 2036 r = -ENOTCONN; 2037 } 2038 } else { 2039 /* No path is available */ 2040 r = -EIO; 2041 spin_lock_irqsave(&m->lock, flags); 2042 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2043 r = -ENOTCONN; 2044 spin_unlock_irqrestore(&m->lock, flags); 2045 } 2046 2047 if (r == -ENOTCONN) { 2048 if (!READ_ONCE(m->current_pg)) { 2049 /* Path status changed, redo selection */ 2050 (void) choose_pgpath(m, 0); 2051 } 2052 spin_lock_irqsave(&m->lock, flags); 2053 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 2054 (void) __pg_init_all_paths(m); 2055 spin_unlock_irqrestore(&m->lock, flags); 2056 dm_table_run_md_queue_async(m->ti->table); 2057 process_queued_io_list(m); 2058 } 2059 2060 /* 2061 * Only pass ioctls through if the device sizes match exactly. 2062 */ 2063 if (!r && ti->len != bdev_nr_sectors((*bdev))) 2064 return 1; 2065 return r; 2066 } 2067 2068 static int multipath_iterate_devices(struct dm_target *ti, 2069 iterate_devices_callout_fn fn, void *data) 2070 { 2071 struct multipath *m = ti->private; 2072 struct priority_group *pg; 2073 struct pgpath *p; 2074 int ret = 0; 2075 2076 list_for_each_entry(pg, &m->priority_groups, list) { 2077 list_for_each_entry(p, &pg->pgpaths, list) { 2078 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 2079 if (ret) 2080 goto out; 2081 } 2082 } 2083 2084 out: 2085 return ret; 2086 } 2087 2088 static int pgpath_busy(struct pgpath *pgpath) 2089 { 2090 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 2091 2092 return blk_lld_busy(q); 2093 } 2094 2095 /* 2096 * We return "busy", only when we can map I/Os but underlying devices 2097 * are busy (so even if we map I/Os now, the I/Os will wait on 2098 * the underlying queue). 2099 * In other words, if we want to kill I/Os or queue them inside us 2100 * due to map unavailability, we don't return "busy". Otherwise, 2101 * dm core won't give us the I/Os and we can't do what we want. 2102 */ 2103 static int multipath_busy(struct dm_target *ti) 2104 { 2105 bool busy = false, has_active = false; 2106 struct multipath *m = ti->private; 2107 struct priority_group *pg, *next_pg; 2108 struct pgpath *pgpath; 2109 2110 /* pg_init in progress */ 2111 if (atomic_read(&m->pg_init_in_progress)) 2112 return true; 2113 2114 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2115 if (!atomic_read(&m->nr_valid_paths)) { 2116 unsigned long flags; 2117 spin_lock_irqsave(&m->lock, flags); 2118 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 2119 spin_unlock_irqrestore(&m->lock, flags); 2120 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 2121 } 2122 spin_unlock_irqrestore(&m->lock, flags); 2123 } 2124 2125 /* Guess which priority_group will be used at next mapping time */ 2126 pg = READ_ONCE(m->current_pg); 2127 next_pg = READ_ONCE(m->next_pg); 2128 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 2129 pg = next_pg; 2130 2131 if (!pg) { 2132 /* 2133 * We don't know which pg will be used at next mapping time. 2134 * We don't call choose_pgpath() here to avoid to trigger 2135 * pg_init just by busy checking. 2136 * So we don't know whether underlying devices we will be using 2137 * at next mapping time are busy or not. Just try mapping. 2138 */ 2139 return busy; 2140 } 2141 2142 /* 2143 * If there is one non-busy active path at least, the path selector 2144 * will be able to select it. So we consider such a pg as not busy. 2145 */ 2146 busy = true; 2147 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2148 if (pgpath->is_active) { 2149 has_active = true; 2150 if (!pgpath_busy(pgpath)) { 2151 busy = false; 2152 break; 2153 } 2154 } 2155 } 2156 2157 if (!has_active) { 2158 /* 2159 * No active path in this pg, so this pg won't be used and 2160 * the current_pg will be changed at next mapping time. 2161 * We need to try mapping to determine it. 2162 */ 2163 busy = false; 2164 } 2165 2166 return busy; 2167 } 2168 2169 /*----------------------------------------------------------------- 2170 * Module setup 2171 *---------------------------------------------------------------*/ 2172 static struct target_type multipath_target = { 2173 .name = "multipath", 2174 .version = {1, 14, 0}, 2175 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2176 DM_TARGET_PASSES_INTEGRITY, 2177 .module = THIS_MODULE, 2178 .ctr = multipath_ctr, 2179 .dtr = multipath_dtr, 2180 .clone_and_map_rq = multipath_clone_and_map, 2181 .release_clone_rq = multipath_release_clone, 2182 .rq_end_io = multipath_end_io, 2183 .map = multipath_map_bio, 2184 .end_io = multipath_end_io_bio, 2185 .presuspend = multipath_presuspend, 2186 .postsuspend = multipath_postsuspend, 2187 .resume = multipath_resume, 2188 .status = multipath_status, 2189 .message = multipath_message, 2190 .prepare_ioctl = multipath_prepare_ioctl, 2191 .iterate_devices = multipath_iterate_devices, 2192 .busy = multipath_busy, 2193 }; 2194 2195 static int __init dm_multipath_init(void) 2196 { 2197 int r; 2198 2199 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2200 if (!kmultipathd) { 2201 DMERR("failed to create workqueue kmpathd"); 2202 r = -ENOMEM; 2203 goto bad_alloc_kmultipathd; 2204 } 2205 2206 /* 2207 * A separate workqueue is used to handle the device handlers 2208 * to avoid overloading existing workqueue. Overloading the 2209 * old workqueue would also create a bottleneck in the 2210 * path of the storage hardware device activation. 2211 */ 2212 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2213 WQ_MEM_RECLAIM); 2214 if (!kmpath_handlerd) { 2215 DMERR("failed to create workqueue kmpath_handlerd"); 2216 r = -ENOMEM; 2217 goto bad_alloc_kmpath_handlerd; 2218 } 2219 2220 r = dm_register_target(&multipath_target); 2221 if (r < 0) { 2222 DMERR("request-based register failed %d", r); 2223 r = -EINVAL; 2224 goto bad_register_target; 2225 } 2226 2227 return 0; 2228 2229 bad_register_target: 2230 destroy_workqueue(kmpath_handlerd); 2231 bad_alloc_kmpath_handlerd: 2232 destroy_workqueue(kmultipathd); 2233 bad_alloc_kmultipathd: 2234 return r; 2235 } 2236 2237 static void __exit dm_multipath_exit(void) 2238 { 2239 destroy_workqueue(kmpath_handlerd); 2240 destroy_workqueue(kmultipathd); 2241 2242 dm_unregister_target(&multipath_target); 2243 } 2244 2245 module_init(dm_multipath_init); 2246 module_exit(dm_multipath_exit); 2247 2248 module_param_named(queue_if_no_path_timeout_secs, 2249 queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR); 2250 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds"); 2251 2252 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2253 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2254 MODULE_LICENSE("GPL"); 2255