1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 enum dm_queue_mode queue_mode; 94 95 struct mutex work_mutex; 96 struct work_struct trigger_event; 97 98 struct work_struct process_queued_bios; 99 struct bio_list queued_bios; 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 118 /*----------------------------------------------- 119 * Multipath state flags. 120 *-----------------------------------------------*/ 121 122 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 123 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 126 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 127 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 128 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 129 130 /*----------------------------------------------- 131 * Allocation routines 132 *-----------------------------------------------*/ 133 134 static struct pgpath *alloc_pgpath(void) 135 { 136 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 137 138 if (pgpath) { 139 pgpath->is_active = true; 140 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work); 141 } 142 143 return pgpath; 144 } 145 146 static void free_pgpath(struct pgpath *pgpath) 147 { 148 kfree(pgpath); 149 } 150 151 static struct priority_group *alloc_priority_group(void) 152 { 153 struct priority_group *pg; 154 155 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 156 157 if (pg) 158 INIT_LIST_HEAD(&pg->pgpaths); 159 160 return pg; 161 } 162 163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 164 { 165 struct pgpath *pgpath, *tmp; 166 167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 168 list_del(&pgpath->list); 169 dm_put_device(ti, pgpath->path.dev); 170 free_pgpath(pgpath); 171 } 172 } 173 174 static void free_priority_group(struct priority_group *pg, 175 struct dm_target *ti) 176 { 177 struct path_selector *ps = &pg->ps; 178 179 if (ps->type) { 180 ps->type->destroy(ps); 181 dm_put_path_selector(ps->type); 182 } 183 184 free_pgpaths(&pg->pgpaths, ti); 185 kfree(pg); 186 } 187 188 static struct multipath *alloc_multipath(struct dm_target *ti) 189 { 190 struct multipath *m; 191 192 m = kzalloc(sizeof(*m), GFP_KERNEL); 193 if (m) { 194 INIT_LIST_HEAD(&m->priority_groups); 195 spin_lock_init(&m->lock); 196 set_bit(MPATHF_QUEUE_IO, &m->flags); 197 atomic_set(&m->nr_valid_paths, 0); 198 atomic_set(&m->pg_init_in_progress, 0); 199 atomic_set(&m->pg_init_count, 0); 200 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 201 INIT_WORK(&m->trigger_event, trigger_event); 202 init_waitqueue_head(&m->pg_init_wait); 203 mutex_init(&m->work_mutex); 204 205 m->queue_mode = DM_TYPE_NONE; 206 207 m->ti = ti; 208 ti->private = m; 209 } 210 211 return m; 212 } 213 214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 215 { 216 if (m->queue_mode == DM_TYPE_NONE) { 217 /* 218 * Default to request-based. 219 */ 220 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 221 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 222 else 223 m->queue_mode = DM_TYPE_REQUEST_BASED; 224 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 225 INIT_WORK(&m->process_queued_bios, process_queued_bios); 226 /* 227 * bio-based doesn't support any direct scsi_dh management; 228 * it just discovers if a scsi_dh is attached. 229 */ 230 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 231 } 232 233 dm_table_set_type(ti->table, m->queue_mode); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 kfree(m); 250 } 251 252 static struct dm_mpath_io *get_mpio(union map_info *info) 253 { 254 return info->ptr; 255 } 256 257 static size_t multipath_per_bio_data_size(void) 258 { 259 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 260 } 261 262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 263 { 264 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 265 } 266 267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 268 { 269 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 void *bio_details = mpio + 1; 272 273 return bio_details; 274 } 275 276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 277 struct dm_bio_details **bio_details_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 281 282 memset(mpio, 0, sizeof(*mpio)); 283 memset(bio_details, 0, sizeof(*bio_details)); 284 dm_bio_record(bio_details, bio); 285 286 if (mpio_p) 287 *mpio_p = mpio; 288 if (bio_details_p) 289 *bio_details_p = bio_details; 290 } 291 292 /*----------------------------------------------- 293 * Path selection 294 *-----------------------------------------------*/ 295 296 static int __pg_init_all_paths(struct multipath *m) 297 { 298 struct pgpath *pgpath; 299 unsigned long pg_init_delay = 0; 300 301 lockdep_assert_held(&m->lock); 302 303 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 304 return 0; 305 306 atomic_inc(&m->pg_init_count); 307 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 308 309 /* Check here to reset pg_init_required */ 310 if (!m->current_pg) 311 return 0; 312 313 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 314 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 315 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 316 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 317 /* Skip failed paths */ 318 if (!pgpath->is_active) 319 continue; 320 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 321 pg_init_delay)) 322 atomic_inc(&m->pg_init_in_progress); 323 } 324 return atomic_read(&m->pg_init_in_progress); 325 } 326 327 static int pg_init_all_paths(struct multipath *m) 328 { 329 int ret; 330 unsigned long flags; 331 332 spin_lock_irqsave(&m->lock, flags); 333 ret = __pg_init_all_paths(m); 334 spin_unlock_irqrestore(&m->lock, flags); 335 336 return ret; 337 } 338 339 static void __switch_pg(struct multipath *m, struct priority_group *pg) 340 { 341 m->current_pg = pg; 342 343 /* Must we initialise the PG first, and queue I/O till it's ready? */ 344 if (m->hw_handler_name) { 345 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 set_bit(MPATHF_QUEUE_IO, &m->flags); 347 } else { 348 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 349 clear_bit(MPATHF_QUEUE_IO, &m->flags); 350 } 351 352 atomic_set(&m->pg_init_count, 0); 353 } 354 355 static struct pgpath *choose_path_in_pg(struct multipath *m, 356 struct priority_group *pg, 357 size_t nr_bytes) 358 { 359 unsigned long flags; 360 struct dm_path *path; 361 struct pgpath *pgpath; 362 363 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 364 if (!path) 365 return ERR_PTR(-ENXIO); 366 367 pgpath = path_to_pgpath(path); 368 369 if (unlikely(lockless_dereference(m->current_pg) != pg)) { 370 /* Only update current_pgpath if pg changed */ 371 spin_lock_irqsave(&m->lock, flags); 372 m->current_pgpath = pgpath; 373 __switch_pg(m, pg); 374 spin_unlock_irqrestore(&m->lock, flags); 375 } 376 377 return pgpath; 378 } 379 380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 381 { 382 unsigned long flags; 383 struct priority_group *pg; 384 struct pgpath *pgpath; 385 unsigned bypassed = 1; 386 387 if (!atomic_read(&m->nr_valid_paths)) { 388 clear_bit(MPATHF_QUEUE_IO, &m->flags); 389 goto failed; 390 } 391 392 /* Were we instructed to switch PG? */ 393 if (lockless_dereference(m->next_pg)) { 394 spin_lock_irqsave(&m->lock, flags); 395 pg = m->next_pg; 396 if (!pg) { 397 spin_unlock_irqrestore(&m->lock, flags); 398 goto check_current_pg; 399 } 400 m->next_pg = NULL; 401 spin_unlock_irqrestore(&m->lock, flags); 402 pgpath = choose_path_in_pg(m, pg, nr_bytes); 403 if (!IS_ERR_OR_NULL(pgpath)) 404 return pgpath; 405 } 406 407 /* Don't change PG until it has no remaining paths */ 408 check_current_pg: 409 pg = lockless_dereference(m->current_pg); 410 if (pg) { 411 pgpath = choose_path_in_pg(m, pg, nr_bytes); 412 if (!IS_ERR_OR_NULL(pgpath)) 413 return pgpath; 414 } 415 416 /* 417 * Loop through priority groups until we find a valid path. 418 * First time we skip PGs marked 'bypassed'. 419 * Second time we only try the ones we skipped, but set 420 * pg_init_delay_retry so we do not hammer controllers. 421 */ 422 do { 423 list_for_each_entry(pg, &m->priority_groups, list) { 424 if (pg->bypassed == !!bypassed) 425 continue; 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) { 428 if (!bypassed) 429 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 430 return pgpath; 431 } 432 } 433 } while (bypassed--); 434 435 failed: 436 spin_lock_irqsave(&m->lock, flags); 437 m->current_pgpath = NULL; 438 m->current_pg = NULL; 439 spin_unlock_irqrestore(&m->lock, flags); 440 441 return NULL; 442 } 443 444 /* 445 * dm_report_EIO() is a macro instead of a function to make pr_debug() 446 * report the function name and line number of the function from which 447 * it has been invoked. 448 */ 449 #define dm_report_EIO(m) \ 450 do { \ 451 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 452 \ 453 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 454 dm_device_name(md), \ 455 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 456 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 457 dm_noflush_suspending((m)->ti)); \ 458 } while (0) 459 460 /* 461 * Map cloned requests (request-based multipath) 462 */ 463 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 464 union map_info *map_context, 465 struct request **__clone) 466 { 467 struct multipath *m = ti->private; 468 size_t nr_bytes = blk_rq_bytes(rq); 469 struct pgpath *pgpath; 470 struct block_device *bdev; 471 struct dm_mpath_io *mpio = get_mpio(map_context); 472 struct request_queue *q; 473 struct request *clone; 474 475 /* Do we need to select a new pgpath? */ 476 pgpath = lockless_dereference(m->current_pgpath); 477 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 478 pgpath = choose_pgpath(m, nr_bytes); 479 480 if (!pgpath) { 481 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 482 return DM_MAPIO_DELAY_REQUEUE; 483 dm_report_EIO(m); /* Failed */ 484 return DM_MAPIO_KILL; 485 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 486 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 487 if (pg_init_all_paths(m)) 488 return DM_MAPIO_DELAY_REQUEUE; 489 return DM_MAPIO_REQUEUE; 490 } 491 492 memset(mpio, 0, sizeof(*mpio)); 493 mpio->pgpath = pgpath; 494 mpio->nr_bytes = nr_bytes; 495 496 bdev = pgpath->path.dev->bdev; 497 q = bdev_get_queue(bdev); 498 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 499 if (IS_ERR(clone)) { 500 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 501 bool queue_dying = blk_queue_dying(q); 502 DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing", 503 PTR_ERR(clone), queue_dying ? " (path offline)" : ""); 504 if (queue_dying) { 505 atomic_inc(&m->pg_init_in_progress); 506 activate_or_offline_path(pgpath); 507 } 508 return DM_MAPIO_DELAY_REQUEUE; 509 } 510 clone->bio = clone->biotail = NULL; 511 clone->rq_disk = bdev->bd_disk; 512 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 513 *__clone = clone; 514 515 if (pgpath->pg->ps.type->start_io) 516 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 517 &pgpath->path, 518 nr_bytes); 519 return DM_MAPIO_REMAPPED; 520 } 521 522 static void multipath_release_clone(struct request *clone) 523 { 524 blk_put_request(clone); 525 } 526 527 /* 528 * Map cloned bios (bio-based multipath) 529 */ 530 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 531 { 532 size_t nr_bytes = bio->bi_iter.bi_size; 533 struct pgpath *pgpath; 534 unsigned long flags; 535 bool queue_io; 536 537 /* Do we need to select a new pgpath? */ 538 pgpath = lockless_dereference(m->current_pgpath); 539 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 540 if (!pgpath || !queue_io) 541 pgpath = choose_pgpath(m, nr_bytes); 542 543 if ((pgpath && queue_io) || 544 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 545 /* Queue for the daemon to resubmit */ 546 spin_lock_irqsave(&m->lock, flags); 547 bio_list_add(&m->queued_bios, bio); 548 spin_unlock_irqrestore(&m->lock, flags); 549 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 550 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 551 pg_init_all_paths(m); 552 else if (!queue_io) 553 queue_work(kmultipathd, &m->process_queued_bios); 554 return DM_MAPIO_SUBMITTED; 555 } 556 557 if (!pgpath) { 558 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 559 return DM_MAPIO_REQUEUE; 560 dm_report_EIO(m); 561 return DM_MAPIO_KILL; 562 } 563 564 mpio->pgpath = pgpath; 565 mpio->nr_bytes = nr_bytes; 566 567 bio->bi_status = 0; 568 bio_set_dev(bio, pgpath->path.dev->bdev); 569 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 570 571 if (pgpath->pg->ps.type->start_io) 572 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 573 &pgpath->path, 574 nr_bytes); 575 return DM_MAPIO_REMAPPED; 576 } 577 578 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 579 { 580 struct multipath *m = ti->private; 581 struct dm_mpath_io *mpio = NULL; 582 583 multipath_init_per_bio_data(bio, &mpio, NULL); 584 585 return __multipath_map_bio(m, bio, mpio); 586 } 587 588 static void process_queued_io_list(struct multipath *m) 589 { 590 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 591 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 592 else if (m->queue_mode == DM_TYPE_BIO_BASED) 593 queue_work(kmultipathd, &m->process_queued_bios); 594 } 595 596 static void process_queued_bios(struct work_struct *work) 597 { 598 int r; 599 unsigned long flags; 600 struct bio *bio; 601 struct bio_list bios; 602 struct blk_plug plug; 603 struct multipath *m = 604 container_of(work, struct multipath, process_queued_bios); 605 606 bio_list_init(&bios); 607 608 spin_lock_irqsave(&m->lock, flags); 609 610 if (bio_list_empty(&m->queued_bios)) { 611 spin_unlock_irqrestore(&m->lock, flags); 612 return; 613 } 614 615 bio_list_merge(&bios, &m->queued_bios); 616 bio_list_init(&m->queued_bios); 617 618 spin_unlock_irqrestore(&m->lock, flags); 619 620 blk_start_plug(&plug); 621 while ((bio = bio_list_pop(&bios))) { 622 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 623 switch (r) { 624 case DM_MAPIO_KILL: 625 bio->bi_status = BLK_STS_IOERR; 626 bio_endio(bio); 627 break; 628 case DM_MAPIO_REQUEUE: 629 bio->bi_status = BLK_STS_DM_REQUEUE; 630 bio_endio(bio); 631 break; 632 case DM_MAPIO_REMAPPED: 633 generic_make_request(bio); 634 break; 635 case 0: 636 break; 637 default: 638 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 639 } 640 } 641 blk_finish_plug(&plug); 642 } 643 644 static void assign_bit(bool value, long nr, unsigned long *addr) 645 { 646 if (value) 647 set_bit(nr, addr); 648 else 649 clear_bit(nr, addr); 650 } 651 652 /* 653 * If we run out of usable paths, should we queue I/O or error it? 654 */ 655 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 656 bool save_old_value) 657 { 658 unsigned long flags; 659 660 spin_lock_irqsave(&m->lock, flags); 661 assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 662 (!save_old_value && queue_if_no_path), 663 MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 664 assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti), 665 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 666 spin_unlock_irqrestore(&m->lock, flags); 667 668 if (!queue_if_no_path) { 669 dm_table_run_md_queue_async(m->ti->table); 670 process_queued_io_list(m); 671 } 672 673 return 0; 674 } 675 676 /* 677 * An event is triggered whenever a path is taken out of use. 678 * Includes path failure and PG bypass. 679 */ 680 static void trigger_event(struct work_struct *work) 681 { 682 struct multipath *m = 683 container_of(work, struct multipath, trigger_event); 684 685 dm_table_event(m->ti->table); 686 } 687 688 /*----------------------------------------------------------------- 689 * Constructor/argument parsing: 690 * <#multipath feature args> [<arg>]* 691 * <#hw_handler args> [hw_handler [<arg>]*] 692 * <#priority groups> 693 * <initial priority group> 694 * [<selector> <#selector args> [<arg>]* 695 * <#paths> <#per-path selector args> 696 * [<path> [<arg>]* ]+ ]+ 697 *---------------------------------------------------------------*/ 698 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 699 struct dm_target *ti) 700 { 701 int r; 702 struct path_selector_type *pst; 703 unsigned ps_argc; 704 705 static const struct dm_arg _args[] = { 706 {0, 1024, "invalid number of path selector args"}, 707 }; 708 709 pst = dm_get_path_selector(dm_shift_arg(as)); 710 if (!pst) { 711 ti->error = "unknown path selector type"; 712 return -EINVAL; 713 } 714 715 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 716 if (r) { 717 dm_put_path_selector(pst); 718 return -EINVAL; 719 } 720 721 r = pst->create(&pg->ps, ps_argc, as->argv); 722 if (r) { 723 dm_put_path_selector(pst); 724 ti->error = "path selector constructor failed"; 725 return r; 726 } 727 728 pg->ps.type = pst; 729 dm_consume_args(as, ps_argc); 730 731 return 0; 732 } 733 734 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 735 struct dm_target *ti) 736 { 737 int r; 738 struct pgpath *p; 739 struct multipath *m = ti->private; 740 struct request_queue *q = NULL; 741 const char *attached_handler_name; 742 743 /* we need at least a path arg */ 744 if (as->argc < 1) { 745 ti->error = "no device given"; 746 return ERR_PTR(-EINVAL); 747 } 748 749 p = alloc_pgpath(); 750 if (!p) 751 return ERR_PTR(-ENOMEM); 752 753 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 754 &p->path.dev); 755 if (r) { 756 ti->error = "error getting device"; 757 goto bad; 758 } 759 760 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 761 q = bdev_get_queue(p->path.dev->bdev); 762 763 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 764 retain: 765 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 766 if (attached_handler_name) { 767 /* 768 * Clear any hw_handler_params associated with a 769 * handler that isn't already attached. 770 */ 771 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 772 kfree(m->hw_handler_params); 773 m->hw_handler_params = NULL; 774 } 775 776 /* 777 * Reset hw_handler_name to match the attached handler 778 * 779 * NB. This modifies the table line to show the actual 780 * handler instead of the original table passed in. 781 */ 782 kfree(m->hw_handler_name); 783 m->hw_handler_name = attached_handler_name; 784 } 785 } 786 787 if (m->hw_handler_name) { 788 r = scsi_dh_attach(q, m->hw_handler_name); 789 if (r == -EBUSY) { 790 char b[BDEVNAME_SIZE]; 791 792 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 793 bdevname(p->path.dev->bdev, b)); 794 goto retain; 795 } 796 if (r < 0) { 797 ti->error = "error attaching hardware handler"; 798 dm_put_device(ti, p->path.dev); 799 goto bad; 800 } 801 802 if (m->hw_handler_params) { 803 r = scsi_dh_set_params(q, m->hw_handler_params); 804 if (r < 0) { 805 ti->error = "unable to set hardware " 806 "handler parameters"; 807 dm_put_device(ti, p->path.dev); 808 goto bad; 809 } 810 } 811 } 812 813 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 814 if (r) { 815 dm_put_device(ti, p->path.dev); 816 goto bad; 817 } 818 819 return p; 820 821 bad: 822 free_pgpath(p); 823 return ERR_PTR(r); 824 } 825 826 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 827 struct multipath *m) 828 { 829 static const struct dm_arg _args[] = { 830 {1, 1024, "invalid number of paths"}, 831 {0, 1024, "invalid number of selector args"} 832 }; 833 834 int r; 835 unsigned i, nr_selector_args, nr_args; 836 struct priority_group *pg; 837 struct dm_target *ti = m->ti; 838 839 if (as->argc < 2) { 840 as->argc = 0; 841 ti->error = "not enough priority group arguments"; 842 return ERR_PTR(-EINVAL); 843 } 844 845 pg = alloc_priority_group(); 846 if (!pg) { 847 ti->error = "couldn't allocate priority group"; 848 return ERR_PTR(-ENOMEM); 849 } 850 pg->m = m; 851 852 r = parse_path_selector(as, pg, ti); 853 if (r) 854 goto bad; 855 856 /* 857 * read the paths 858 */ 859 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 860 if (r) 861 goto bad; 862 863 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 864 if (r) 865 goto bad; 866 867 nr_args = 1 + nr_selector_args; 868 for (i = 0; i < pg->nr_pgpaths; i++) { 869 struct pgpath *pgpath; 870 struct dm_arg_set path_args; 871 872 if (as->argc < nr_args) { 873 ti->error = "not enough path parameters"; 874 r = -EINVAL; 875 goto bad; 876 } 877 878 path_args.argc = nr_args; 879 path_args.argv = as->argv; 880 881 pgpath = parse_path(&path_args, &pg->ps, ti); 882 if (IS_ERR(pgpath)) { 883 r = PTR_ERR(pgpath); 884 goto bad; 885 } 886 887 pgpath->pg = pg; 888 list_add_tail(&pgpath->list, &pg->pgpaths); 889 dm_consume_args(as, nr_args); 890 } 891 892 return pg; 893 894 bad: 895 free_priority_group(pg, ti); 896 return ERR_PTR(r); 897 } 898 899 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 900 { 901 unsigned hw_argc; 902 int ret; 903 struct dm_target *ti = m->ti; 904 905 static const struct dm_arg _args[] = { 906 {0, 1024, "invalid number of hardware handler args"}, 907 }; 908 909 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 910 return -EINVAL; 911 912 if (!hw_argc) 913 return 0; 914 915 if (m->queue_mode == DM_TYPE_BIO_BASED) { 916 dm_consume_args(as, hw_argc); 917 DMERR("bio-based multipath doesn't allow hardware handler args"); 918 return 0; 919 } 920 921 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 922 if (!m->hw_handler_name) 923 return -EINVAL; 924 925 if (hw_argc > 1) { 926 char *p; 927 int i, j, len = 4; 928 929 for (i = 0; i <= hw_argc - 2; i++) 930 len += strlen(as->argv[i]) + 1; 931 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 932 if (!p) { 933 ti->error = "memory allocation failed"; 934 ret = -ENOMEM; 935 goto fail; 936 } 937 j = sprintf(p, "%d", hw_argc - 1); 938 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 939 j = sprintf(p, "%s", as->argv[i]); 940 } 941 dm_consume_args(as, hw_argc - 1); 942 943 return 0; 944 fail: 945 kfree(m->hw_handler_name); 946 m->hw_handler_name = NULL; 947 return ret; 948 } 949 950 static int parse_features(struct dm_arg_set *as, struct multipath *m) 951 { 952 int r; 953 unsigned argc; 954 struct dm_target *ti = m->ti; 955 const char *arg_name; 956 957 static const struct dm_arg _args[] = { 958 {0, 8, "invalid number of feature args"}, 959 {1, 50, "pg_init_retries must be between 1 and 50"}, 960 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 961 }; 962 963 r = dm_read_arg_group(_args, as, &argc, &ti->error); 964 if (r) 965 return -EINVAL; 966 967 if (!argc) 968 return 0; 969 970 do { 971 arg_name = dm_shift_arg(as); 972 argc--; 973 974 if (!strcasecmp(arg_name, "queue_if_no_path")) { 975 r = queue_if_no_path(m, true, false); 976 continue; 977 } 978 979 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 980 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 981 continue; 982 } 983 984 if (!strcasecmp(arg_name, "pg_init_retries") && 985 (argc >= 1)) { 986 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 987 argc--; 988 continue; 989 } 990 991 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 992 (argc >= 1)) { 993 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 994 argc--; 995 continue; 996 } 997 998 if (!strcasecmp(arg_name, "queue_mode") && 999 (argc >= 1)) { 1000 const char *queue_mode_name = dm_shift_arg(as); 1001 1002 if (!strcasecmp(queue_mode_name, "bio")) 1003 m->queue_mode = DM_TYPE_BIO_BASED; 1004 else if (!strcasecmp(queue_mode_name, "rq")) 1005 m->queue_mode = DM_TYPE_REQUEST_BASED; 1006 else if (!strcasecmp(queue_mode_name, "mq")) 1007 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1008 else { 1009 ti->error = "Unknown 'queue_mode' requested"; 1010 r = -EINVAL; 1011 } 1012 argc--; 1013 continue; 1014 } 1015 1016 ti->error = "Unrecognised multipath feature request"; 1017 r = -EINVAL; 1018 } while (argc && !r); 1019 1020 return r; 1021 } 1022 1023 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1024 { 1025 /* target arguments */ 1026 static const struct dm_arg _args[] = { 1027 {0, 1024, "invalid number of priority groups"}, 1028 {0, 1024, "invalid initial priority group number"}, 1029 }; 1030 1031 int r; 1032 struct multipath *m; 1033 struct dm_arg_set as; 1034 unsigned pg_count = 0; 1035 unsigned next_pg_num; 1036 1037 as.argc = argc; 1038 as.argv = argv; 1039 1040 m = alloc_multipath(ti); 1041 if (!m) { 1042 ti->error = "can't allocate multipath"; 1043 return -EINVAL; 1044 } 1045 1046 r = parse_features(&as, m); 1047 if (r) 1048 goto bad; 1049 1050 r = alloc_multipath_stage2(ti, m); 1051 if (r) 1052 goto bad; 1053 1054 r = parse_hw_handler(&as, m); 1055 if (r) 1056 goto bad; 1057 1058 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1059 if (r) 1060 goto bad; 1061 1062 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1063 if (r) 1064 goto bad; 1065 1066 if ((!m->nr_priority_groups && next_pg_num) || 1067 (m->nr_priority_groups && !next_pg_num)) { 1068 ti->error = "invalid initial priority group"; 1069 r = -EINVAL; 1070 goto bad; 1071 } 1072 1073 /* parse the priority groups */ 1074 while (as.argc) { 1075 struct priority_group *pg; 1076 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1077 1078 pg = parse_priority_group(&as, m); 1079 if (IS_ERR(pg)) { 1080 r = PTR_ERR(pg); 1081 goto bad; 1082 } 1083 1084 nr_valid_paths += pg->nr_pgpaths; 1085 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1086 1087 list_add_tail(&pg->list, &m->priority_groups); 1088 pg_count++; 1089 pg->pg_num = pg_count; 1090 if (!--next_pg_num) 1091 m->next_pg = pg; 1092 } 1093 1094 if (pg_count != m->nr_priority_groups) { 1095 ti->error = "priority group count mismatch"; 1096 r = -EINVAL; 1097 goto bad; 1098 } 1099 1100 ti->num_flush_bios = 1; 1101 ti->num_discard_bios = 1; 1102 ti->num_write_same_bios = 1; 1103 ti->num_write_zeroes_bios = 1; 1104 if (m->queue_mode == DM_TYPE_BIO_BASED) 1105 ti->per_io_data_size = multipath_per_bio_data_size(); 1106 else 1107 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1108 1109 return 0; 1110 1111 bad: 1112 free_multipath(m); 1113 return r; 1114 } 1115 1116 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1117 { 1118 DEFINE_WAIT(wait); 1119 1120 while (1) { 1121 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1122 1123 if (!atomic_read(&m->pg_init_in_progress)) 1124 break; 1125 1126 io_schedule(); 1127 } 1128 finish_wait(&m->pg_init_wait, &wait); 1129 } 1130 1131 static void flush_multipath_work(struct multipath *m) 1132 { 1133 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1134 smp_mb__after_atomic(); 1135 1136 flush_workqueue(kmpath_handlerd); 1137 multipath_wait_for_pg_init_completion(m); 1138 flush_workqueue(kmultipathd); 1139 flush_work(&m->trigger_event); 1140 1141 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1142 smp_mb__after_atomic(); 1143 } 1144 1145 static void multipath_dtr(struct dm_target *ti) 1146 { 1147 struct multipath *m = ti->private; 1148 1149 flush_multipath_work(m); 1150 free_multipath(m); 1151 } 1152 1153 /* 1154 * Take a path out of use. 1155 */ 1156 static int fail_path(struct pgpath *pgpath) 1157 { 1158 unsigned long flags; 1159 struct multipath *m = pgpath->pg->m; 1160 1161 spin_lock_irqsave(&m->lock, flags); 1162 1163 if (!pgpath->is_active) 1164 goto out; 1165 1166 DMWARN("Failing path %s.", pgpath->path.dev->name); 1167 1168 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1169 pgpath->is_active = false; 1170 pgpath->fail_count++; 1171 1172 atomic_dec(&m->nr_valid_paths); 1173 1174 if (pgpath == m->current_pgpath) 1175 m->current_pgpath = NULL; 1176 1177 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1178 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1179 1180 schedule_work(&m->trigger_event); 1181 1182 out: 1183 spin_unlock_irqrestore(&m->lock, flags); 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * Reinstate a previously-failed path 1190 */ 1191 static int reinstate_path(struct pgpath *pgpath) 1192 { 1193 int r = 0, run_queue = 0; 1194 unsigned long flags; 1195 struct multipath *m = pgpath->pg->m; 1196 unsigned nr_valid_paths; 1197 1198 spin_lock_irqsave(&m->lock, flags); 1199 1200 if (pgpath->is_active) 1201 goto out; 1202 1203 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1204 1205 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1206 if (r) 1207 goto out; 1208 1209 pgpath->is_active = true; 1210 1211 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1212 if (nr_valid_paths == 1) { 1213 m->current_pgpath = NULL; 1214 run_queue = 1; 1215 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1216 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1217 atomic_inc(&m->pg_init_in_progress); 1218 } 1219 1220 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1221 pgpath->path.dev->name, nr_valid_paths); 1222 1223 schedule_work(&m->trigger_event); 1224 1225 out: 1226 spin_unlock_irqrestore(&m->lock, flags); 1227 if (run_queue) { 1228 dm_table_run_md_queue_async(m->ti->table); 1229 process_queued_io_list(m); 1230 } 1231 1232 return r; 1233 } 1234 1235 /* 1236 * Fail or reinstate all paths that match the provided struct dm_dev. 1237 */ 1238 static int action_dev(struct multipath *m, struct dm_dev *dev, 1239 action_fn action) 1240 { 1241 int r = -EINVAL; 1242 struct pgpath *pgpath; 1243 struct priority_group *pg; 1244 1245 list_for_each_entry(pg, &m->priority_groups, list) { 1246 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1247 if (pgpath->path.dev == dev) 1248 r = action(pgpath); 1249 } 1250 } 1251 1252 return r; 1253 } 1254 1255 /* 1256 * Temporarily try to avoid having to use the specified PG 1257 */ 1258 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1259 bool bypassed) 1260 { 1261 unsigned long flags; 1262 1263 spin_lock_irqsave(&m->lock, flags); 1264 1265 pg->bypassed = bypassed; 1266 m->current_pgpath = NULL; 1267 m->current_pg = NULL; 1268 1269 spin_unlock_irqrestore(&m->lock, flags); 1270 1271 schedule_work(&m->trigger_event); 1272 } 1273 1274 /* 1275 * Switch to using the specified PG from the next I/O that gets mapped 1276 */ 1277 static int switch_pg_num(struct multipath *m, const char *pgstr) 1278 { 1279 struct priority_group *pg; 1280 unsigned pgnum; 1281 unsigned long flags; 1282 char dummy; 1283 1284 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1285 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1286 DMWARN("invalid PG number supplied to switch_pg_num"); 1287 return -EINVAL; 1288 } 1289 1290 spin_lock_irqsave(&m->lock, flags); 1291 list_for_each_entry(pg, &m->priority_groups, list) { 1292 pg->bypassed = false; 1293 if (--pgnum) 1294 continue; 1295 1296 m->current_pgpath = NULL; 1297 m->current_pg = NULL; 1298 m->next_pg = pg; 1299 } 1300 spin_unlock_irqrestore(&m->lock, flags); 1301 1302 schedule_work(&m->trigger_event); 1303 return 0; 1304 } 1305 1306 /* 1307 * Set/clear bypassed status of a PG. 1308 * PGs are numbered upwards from 1 in the order they were declared. 1309 */ 1310 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1311 { 1312 struct priority_group *pg; 1313 unsigned pgnum; 1314 char dummy; 1315 1316 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1317 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1318 DMWARN("invalid PG number supplied to bypass_pg"); 1319 return -EINVAL; 1320 } 1321 1322 list_for_each_entry(pg, &m->priority_groups, list) { 1323 if (!--pgnum) 1324 break; 1325 } 1326 1327 bypass_pg(m, pg, bypassed); 1328 return 0; 1329 } 1330 1331 /* 1332 * Should we retry pg_init immediately? 1333 */ 1334 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1335 { 1336 unsigned long flags; 1337 bool limit_reached = false; 1338 1339 spin_lock_irqsave(&m->lock, flags); 1340 1341 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1342 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1343 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1344 else 1345 limit_reached = true; 1346 1347 spin_unlock_irqrestore(&m->lock, flags); 1348 1349 return limit_reached; 1350 } 1351 1352 static void pg_init_done(void *data, int errors) 1353 { 1354 struct pgpath *pgpath = data; 1355 struct priority_group *pg = pgpath->pg; 1356 struct multipath *m = pg->m; 1357 unsigned long flags; 1358 bool delay_retry = false; 1359 1360 /* device or driver problems */ 1361 switch (errors) { 1362 case SCSI_DH_OK: 1363 break; 1364 case SCSI_DH_NOSYS: 1365 if (!m->hw_handler_name) { 1366 errors = 0; 1367 break; 1368 } 1369 DMERR("Could not failover the device: Handler scsi_dh_%s " 1370 "Error %d.", m->hw_handler_name, errors); 1371 /* 1372 * Fail path for now, so we do not ping pong 1373 */ 1374 fail_path(pgpath); 1375 break; 1376 case SCSI_DH_DEV_TEMP_BUSY: 1377 /* 1378 * Probably doing something like FW upgrade on the 1379 * controller so try the other pg. 1380 */ 1381 bypass_pg(m, pg, true); 1382 break; 1383 case SCSI_DH_RETRY: 1384 /* Wait before retrying. */ 1385 delay_retry = 1; 1386 /* fall through */ 1387 case SCSI_DH_IMM_RETRY: 1388 case SCSI_DH_RES_TEMP_UNAVAIL: 1389 if (pg_init_limit_reached(m, pgpath)) 1390 fail_path(pgpath); 1391 errors = 0; 1392 break; 1393 case SCSI_DH_DEV_OFFLINED: 1394 default: 1395 /* 1396 * We probably do not want to fail the path for a device 1397 * error, but this is what the old dm did. In future 1398 * patches we can do more advanced handling. 1399 */ 1400 fail_path(pgpath); 1401 } 1402 1403 spin_lock_irqsave(&m->lock, flags); 1404 if (errors) { 1405 if (pgpath == m->current_pgpath) { 1406 DMERR("Could not failover device. Error %d.", errors); 1407 m->current_pgpath = NULL; 1408 m->current_pg = NULL; 1409 } 1410 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1411 pg->bypassed = false; 1412 1413 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1414 /* Activations of other paths are still on going */ 1415 goto out; 1416 1417 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1418 if (delay_retry) 1419 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1420 else 1421 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1422 1423 if (__pg_init_all_paths(m)) 1424 goto out; 1425 } 1426 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1427 1428 process_queued_io_list(m); 1429 1430 /* 1431 * Wake up any thread waiting to suspend. 1432 */ 1433 wake_up(&m->pg_init_wait); 1434 1435 out: 1436 spin_unlock_irqrestore(&m->lock, flags); 1437 } 1438 1439 static void activate_or_offline_path(struct pgpath *pgpath) 1440 { 1441 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1442 1443 if (pgpath->is_active && !blk_queue_dying(q)) 1444 scsi_dh_activate(q, pg_init_done, pgpath); 1445 else 1446 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1447 } 1448 1449 static void activate_path_work(struct work_struct *work) 1450 { 1451 struct pgpath *pgpath = 1452 container_of(work, struct pgpath, activate_path.work); 1453 1454 activate_or_offline_path(pgpath); 1455 } 1456 1457 static int noretry_error(blk_status_t error) 1458 { 1459 switch (error) { 1460 case BLK_STS_NOTSUPP: 1461 case BLK_STS_NOSPC: 1462 case BLK_STS_TARGET: 1463 case BLK_STS_NEXUS: 1464 case BLK_STS_MEDIUM: 1465 return 1; 1466 } 1467 1468 /* Anything else could be a path failure, so should be retried */ 1469 return 0; 1470 } 1471 1472 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1473 blk_status_t error, union map_info *map_context) 1474 { 1475 struct dm_mpath_io *mpio = get_mpio(map_context); 1476 struct pgpath *pgpath = mpio->pgpath; 1477 int r = DM_ENDIO_DONE; 1478 1479 /* 1480 * We don't queue any clone request inside the multipath target 1481 * during end I/O handling, since those clone requests don't have 1482 * bio clones. If we queue them inside the multipath target, 1483 * we need to make bio clones, that requires memory allocation. 1484 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1485 * don't have bio clones.) 1486 * Instead of queueing the clone request here, we queue the original 1487 * request into dm core, which will remake a clone request and 1488 * clone bios for it and resubmit it later. 1489 */ 1490 if (error && !noretry_error(error)) { 1491 struct multipath *m = ti->private; 1492 1493 r = DM_ENDIO_REQUEUE; 1494 1495 if (pgpath) 1496 fail_path(pgpath); 1497 1498 if (atomic_read(&m->nr_valid_paths) == 0 && 1499 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1500 if (error == BLK_STS_IOERR) 1501 dm_report_EIO(m); 1502 /* complete with the original error */ 1503 r = DM_ENDIO_DONE; 1504 } 1505 } 1506 1507 if (pgpath) { 1508 struct path_selector *ps = &pgpath->pg->ps; 1509 1510 if (ps->type->end_io) 1511 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1512 } 1513 1514 return r; 1515 } 1516 1517 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1518 blk_status_t *error) 1519 { 1520 struct multipath *m = ti->private; 1521 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1522 struct pgpath *pgpath = mpio->pgpath; 1523 unsigned long flags; 1524 int r = DM_ENDIO_DONE; 1525 1526 if (!*error || noretry_error(*error)) 1527 goto done; 1528 1529 if (pgpath) 1530 fail_path(pgpath); 1531 1532 if (atomic_read(&m->nr_valid_paths) == 0 && 1533 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1534 dm_report_EIO(m); 1535 *error = BLK_STS_IOERR; 1536 goto done; 1537 } 1538 1539 /* Queue for the daemon to resubmit */ 1540 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1541 1542 spin_lock_irqsave(&m->lock, flags); 1543 bio_list_add(&m->queued_bios, clone); 1544 spin_unlock_irqrestore(&m->lock, flags); 1545 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1546 queue_work(kmultipathd, &m->process_queued_bios); 1547 1548 r = DM_ENDIO_INCOMPLETE; 1549 done: 1550 if (pgpath) { 1551 struct path_selector *ps = &pgpath->pg->ps; 1552 1553 if (ps->type->end_io) 1554 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1555 } 1556 1557 return r; 1558 } 1559 1560 /* 1561 * Suspend can't complete until all the I/O is processed so if 1562 * the last path fails we must error any remaining I/O. 1563 * Note that if the freeze_bdev fails while suspending, the 1564 * queue_if_no_path state is lost - userspace should reset it. 1565 */ 1566 static void multipath_presuspend(struct dm_target *ti) 1567 { 1568 struct multipath *m = ti->private; 1569 1570 queue_if_no_path(m, false, true); 1571 } 1572 1573 static void multipath_postsuspend(struct dm_target *ti) 1574 { 1575 struct multipath *m = ti->private; 1576 1577 mutex_lock(&m->work_mutex); 1578 flush_multipath_work(m); 1579 mutex_unlock(&m->work_mutex); 1580 } 1581 1582 /* 1583 * Restore the queue_if_no_path setting. 1584 */ 1585 static void multipath_resume(struct dm_target *ti) 1586 { 1587 struct multipath *m = ti->private; 1588 unsigned long flags; 1589 1590 spin_lock_irqsave(&m->lock, flags); 1591 assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 1592 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1593 spin_unlock_irqrestore(&m->lock, flags); 1594 } 1595 1596 /* 1597 * Info output has the following format: 1598 * num_multipath_feature_args [multipath_feature_args]* 1599 * num_handler_status_args [handler_status_args]* 1600 * num_groups init_group_number 1601 * [A|D|E num_ps_status_args [ps_status_args]* 1602 * num_paths num_selector_args 1603 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1604 * 1605 * Table output has the following format (identical to the constructor string): 1606 * num_feature_args [features_args]* 1607 * num_handler_args hw_handler [hw_handler_args]* 1608 * num_groups init_group_number 1609 * [priority selector-name num_ps_args [ps_args]* 1610 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1611 */ 1612 static void multipath_status(struct dm_target *ti, status_type_t type, 1613 unsigned status_flags, char *result, unsigned maxlen) 1614 { 1615 int sz = 0; 1616 unsigned long flags; 1617 struct multipath *m = ti->private; 1618 struct priority_group *pg; 1619 struct pgpath *p; 1620 unsigned pg_num; 1621 char state; 1622 1623 spin_lock_irqsave(&m->lock, flags); 1624 1625 /* Features */ 1626 if (type == STATUSTYPE_INFO) 1627 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1628 atomic_read(&m->pg_init_count)); 1629 else { 1630 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1631 (m->pg_init_retries > 0) * 2 + 1632 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1633 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1634 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1635 1636 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1637 DMEMIT("queue_if_no_path "); 1638 if (m->pg_init_retries) 1639 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1640 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1641 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1642 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1643 DMEMIT("retain_attached_hw_handler "); 1644 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1645 switch(m->queue_mode) { 1646 case DM_TYPE_BIO_BASED: 1647 DMEMIT("queue_mode bio "); 1648 break; 1649 case DM_TYPE_MQ_REQUEST_BASED: 1650 DMEMIT("queue_mode mq "); 1651 break; 1652 default: 1653 WARN_ON_ONCE(true); 1654 break; 1655 } 1656 } 1657 } 1658 1659 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1660 DMEMIT("0 "); 1661 else 1662 DMEMIT("1 %s ", m->hw_handler_name); 1663 1664 DMEMIT("%u ", m->nr_priority_groups); 1665 1666 if (m->next_pg) 1667 pg_num = m->next_pg->pg_num; 1668 else if (m->current_pg) 1669 pg_num = m->current_pg->pg_num; 1670 else 1671 pg_num = (m->nr_priority_groups ? 1 : 0); 1672 1673 DMEMIT("%u ", pg_num); 1674 1675 switch (type) { 1676 case STATUSTYPE_INFO: 1677 list_for_each_entry(pg, &m->priority_groups, list) { 1678 if (pg->bypassed) 1679 state = 'D'; /* Disabled */ 1680 else if (pg == m->current_pg) 1681 state = 'A'; /* Currently Active */ 1682 else 1683 state = 'E'; /* Enabled */ 1684 1685 DMEMIT("%c ", state); 1686 1687 if (pg->ps.type->status) 1688 sz += pg->ps.type->status(&pg->ps, NULL, type, 1689 result + sz, 1690 maxlen - sz); 1691 else 1692 DMEMIT("0 "); 1693 1694 DMEMIT("%u %u ", pg->nr_pgpaths, 1695 pg->ps.type->info_args); 1696 1697 list_for_each_entry(p, &pg->pgpaths, list) { 1698 DMEMIT("%s %s %u ", p->path.dev->name, 1699 p->is_active ? "A" : "F", 1700 p->fail_count); 1701 if (pg->ps.type->status) 1702 sz += pg->ps.type->status(&pg->ps, 1703 &p->path, type, result + sz, 1704 maxlen - sz); 1705 } 1706 } 1707 break; 1708 1709 case STATUSTYPE_TABLE: 1710 list_for_each_entry(pg, &m->priority_groups, list) { 1711 DMEMIT("%s ", pg->ps.type->name); 1712 1713 if (pg->ps.type->status) 1714 sz += pg->ps.type->status(&pg->ps, NULL, type, 1715 result + sz, 1716 maxlen - sz); 1717 else 1718 DMEMIT("0 "); 1719 1720 DMEMIT("%u %u ", pg->nr_pgpaths, 1721 pg->ps.type->table_args); 1722 1723 list_for_each_entry(p, &pg->pgpaths, list) { 1724 DMEMIT("%s ", p->path.dev->name); 1725 if (pg->ps.type->status) 1726 sz += pg->ps.type->status(&pg->ps, 1727 &p->path, type, result + sz, 1728 maxlen - sz); 1729 } 1730 } 1731 break; 1732 } 1733 1734 spin_unlock_irqrestore(&m->lock, flags); 1735 } 1736 1737 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1738 { 1739 int r = -EINVAL; 1740 struct dm_dev *dev; 1741 struct multipath *m = ti->private; 1742 action_fn action; 1743 1744 mutex_lock(&m->work_mutex); 1745 1746 if (dm_suspended(ti)) { 1747 r = -EBUSY; 1748 goto out; 1749 } 1750 1751 if (argc == 1) { 1752 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1753 r = queue_if_no_path(m, true, false); 1754 goto out; 1755 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1756 r = queue_if_no_path(m, false, false); 1757 goto out; 1758 } 1759 } 1760 1761 if (argc != 2) { 1762 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1763 goto out; 1764 } 1765 1766 if (!strcasecmp(argv[0], "disable_group")) { 1767 r = bypass_pg_num(m, argv[1], true); 1768 goto out; 1769 } else if (!strcasecmp(argv[0], "enable_group")) { 1770 r = bypass_pg_num(m, argv[1], false); 1771 goto out; 1772 } else if (!strcasecmp(argv[0], "switch_group")) { 1773 r = switch_pg_num(m, argv[1]); 1774 goto out; 1775 } else if (!strcasecmp(argv[0], "reinstate_path")) 1776 action = reinstate_path; 1777 else if (!strcasecmp(argv[0], "fail_path")) 1778 action = fail_path; 1779 else { 1780 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1781 goto out; 1782 } 1783 1784 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1785 if (r) { 1786 DMWARN("message: error getting device %s", 1787 argv[1]); 1788 goto out; 1789 } 1790 1791 r = action_dev(m, dev, action); 1792 1793 dm_put_device(ti, dev); 1794 1795 out: 1796 mutex_unlock(&m->work_mutex); 1797 return r; 1798 } 1799 1800 static int multipath_prepare_ioctl(struct dm_target *ti, 1801 struct block_device **bdev, fmode_t *mode) 1802 { 1803 struct multipath *m = ti->private; 1804 struct pgpath *current_pgpath; 1805 int r; 1806 1807 current_pgpath = lockless_dereference(m->current_pgpath); 1808 if (!current_pgpath) 1809 current_pgpath = choose_pgpath(m, 0); 1810 1811 if (current_pgpath) { 1812 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1813 *bdev = current_pgpath->path.dev->bdev; 1814 *mode = current_pgpath->path.dev->mode; 1815 r = 0; 1816 } else { 1817 /* pg_init has not started or completed */ 1818 r = -ENOTCONN; 1819 } 1820 } else { 1821 /* No path is available */ 1822 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1823 r = -ENOTCONN; 1824 else 1825 r = -EIO; 1826 } 1827 1828 if (r == -ENOTCONN) { 1829 if (!lockless_dereference(m->current_pg)) { 1830 /* Path status changed, redo selection */ 1831 (void) choose_pgpath(m, 0); 1832 } 1833 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1834 pg_init_all_paths(m); 1835 dm_table_run_md_queue_async(m->ti->table); 1836 process_queued_io_list(m); 1837 } 1838 1839 /* 1840 * Only pass ioctls through if the device sizes match exactly. 1841 */ 1842 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1843 return 1; 1844 return r; 1845 } 1846 1847 static int multipath_iterate_devices(struct dm_target *ti, 1848 iterate_devices_callout_fn fn, void *data) 1849 { 1850 struct multipath *m = ti->private; 1851 struct priority_group *pg; 1852 struct pgpath *p; 1853 int ret = 0; 1854 1855 list_for_each_entry(pg, &m->priority_groups, list) { 1856 list_for_each_entry(p, &pg->pgpaths, list) { 1857 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1858 if (ret) 1859 goto out; 1860 } 1861 } 1862 1863 out: 1864 return ret; 1865 } 1866 1867 static int pgpath_busy(struct pgpath *pgpath) 1868 { 1869 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1870 1871 return blk_lld_busy(q); 1872 } 1873 1874 /* 1875 * We return "busy", only when we can map I/Os but underlying devices 1876 * are busy (so even if we map I/Os now, the I/Os will wait on 1877 * the underlying queue). 1878 * In other words, if we want to kill I/Os or queue them inside us 1879 * due to map unavailability, we don't return "busy". Otherwise, 1880 * dm core won't give us the I/Os and we can't do what we want. 1881 */ 1882 static int multipath_busy(struct dm_target *ti) 1883 { 1884 bool busy = false, has_active = false; 1885 struct multipath *m = ti->private; 1886 struct priority_group *pg, *next_pg; 1887 struct pgpath *pgpath; 1888 1889 /* pg_init in progress */ 1890 if (atomic_read(&m->pg_init_in_progress)) 1891 return true; 1892 1893 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1894 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1895 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1896 1897 /* Guess which priority_group will be used at next mapping time */ 1898 pg = lockless_dereference(m->current_pg); 1899 next_pg = lockless_dereference(m->next_pg); 1900 if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg)) 1901 pg = next_pg; 1902 1903 if (!pg) { 1904 /* 1905 * We don't know which pg will be used at next mapping time. 1906 * We don't call choose_pgpath() here to avoid to trigger 1907 * pg_init just by busy checking. 1908 * So we don't know whether underlying devices we will be using 1909 * at next mapping time are busy or not. Just try mapping. 1910 */ 1911 return busy; 1912 } 1913 1914 /* 1915 * If there is one non-busy active path at least, the path selector 1916 * will be able to select it. So we consider such a pg as not busy. 1917 */ 1918 busy = true; 1919 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1920 if (pgpath->is_active) { 1921 has_active = true; 1922 if (!pgpath_busy(pgpath)) { 1923 busy = false; 1924 break; 1925 } 1926 } 1927 } 1928 1929 if (!has_active) { 1930 /* 1931 * No active path in this pg, so this pg won't be used and 1932 * the current_pg will be changed at next mapping time. 1933 * We need to try mapping to determine it. 1934 */ 1935 busy = false; 1936 } 1937 1938 return busy; 1939 } 1940 1941 /*----------------------------------------------------------------- 1942 * Module setup 1943 *---------------------------------------------------------------*/ 1944 static struct target_type multipath_target = { 1945 .name = "multipath", 1946 .version = {1, 12, 0}, 1947 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1948 .module = THIS_MODULE, 1949 .ctr = multipath_ctr, 1950 .dtr = multipath_dtr, 1951 .clone_and_map_rq = multipath_clone_and_map, 1952 .release_clone_rq = multipath_release_clone, 1953 .rq_end_io = multipath_end_io, 1954 .map = multipath_map_bio, 1955 .end_io = multipath_end_io_bio, 1956 .presuspend = multipath_presuspend, 1957 .postsuspend = multipath_postsuspend, 1958 .resume = multipath_resume, 1959 .status = multipath_status, 1960 .message = multipath_message, 1961 .prepare_ioctl = multipath_prepare_ioctl, 1962 .iterate_devices = multipath_iterate_devices, 1963 .busy = multipath_busy, 1964 }; 1965 1966 static int __init dm_multipath_init(void) 1967 { 1968 int r; 1969 1970 r = dm_register_target(&multipath_target); 1971 if (r < 0) { 1972 DMERR("request-based register failed %d", r); 1973 r = -EINVAL; 1974 goto bad_register_target; 1975 } 1976 1977 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1978 if (!kmultipathd) { 1979 DMERR("failed to create workqueue kmpathd"); 1980 r = -ENOMEM; 1981 goto bad_alloc_kmultipathd; 1982 } 1983 1984 /* 1985 * A separate workqueue is used to handle the device handlers 1986 * to avoid overloading existing workqueue. Overloading the 1987 * old workqueue would also create a bottleneck in the 1988 * path of the storage hardware device activation. 1989 */ 1990 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1991 WQ_MEM_RECLAIM); 1992 if (!kmpath_handlerd) { 1993 DMERR("failed to create workqueue kmpath_handlerd"); 1994 r = -ENOMEM; 1995 goto bad_alloc_kmpath_handlerd; 1996 } 1997 1998 return 0; 1999 2000 bad_alloc_kmpath_handlerd: 2001 destroy_workqueue(kmultipathd); 2002 bad_alloc_kmultipathd: 2003 dm_unregister_target(&multipath_target); 2004 bad_register_target: 2005 return r; 2006 } 2007 2008 static void __exit dm_multipath_exit(void) 2009 { 2010 destroy_workqueue(kmpath_handlerd); 2011 destroy_workqueue(kmultipathd); 2012 2013 dm_unregister_target(&multipath_target); 2014 } 2015 2016 module_init(dm_multipath_init); 2017 module_exit(dm_multipath_exit); 2018 2019 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2020 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2021 MODULE_LICENSE("GPL"); 2022