xref: /openbmc/linux/drivers/md/dm-mpath.c (revision c6fddb28)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/timer.h>
24 #include <linux/workqueue.h>
25 #include <linux/delay.h>
26 #include <scsi/scsi_dh.h>
27 #include <linux/atomic.h>
28 #include <linux/blk-mq.h>
29 
30 #define DM_MSG_PREFIX "multipath"
31 #define DM_PG_INIT_DELAY_MSECS 2000
32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0
34 
35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT;
36 
37 /* Path properties */
38 struct pgpath {
39 	struct list_head list;
40 
41 	struct priority_group *pg;	/* Owning PG */
42 	unsigned fail_count;		/* Cumulative failure count */
43 
44 	struct dm_path path;
45 	struct delayed_work activate_path;
46 
47 	bool is_active:1;		/* Path status */
48 };
49 
50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
51 
52 /*
53  * Paths are grouped into Priority Groups and numbered from 1 upwards.
54  * Each has a path selector which controls which path gets used.
55  */
56 struct priority_group {
57 	struct list_head list;
58 
59 	struct multipath *m;		/* Owning multipath instance */
60 	struct path_selector ps;
61 
62 	unsigned pg_num;		/* Reference number */
63 	unsigned nr_pgpaths;		/* Number of paths in PG */
64 	struct list_head pgpaths;
65 
66 	bool bypassed:1;		/* Temporarily bypass this PG? */
67 };
68 
69 /* Multipath context */
70 struct multipath {
71 	unsigned long flags;		/* Multipath state flags */
72 
73 	spinlock_t lock;
74 	enum dm_queue_mode queue_mode;
75 
76 	struct pgpath *current_pgpath;
77 	struct priority_group *current_pg;
78 	struct priority_group *next_pg;	/* Switch to this PG if set */
79 
80 	atomic_t nr_valid_paths;	/* Total number of usable paths */
81 	unsigned nr_priority_groups;
82 	struct list_head priority_groups;
83 
84 	const char *hw_handler_name;
85 	char *hw_handler_params;
86 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
87 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
88 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
89 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
90 	atomic_t pg_init_count;		/* Number of times pg_init called */
91 
92 	struct mutex work_mutex;
93 	struct work_struct trigger_event;
94 	struct dm_target *ti;
95 
96 	struct work_struct process_queued_bios;
97 	struct bio_list queued_bios;
98 
99 	struct timer_list nopath_timer;	/* Timeout for queue_if_no_path */
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 static void queue_if_no_path_timeout_work(struct timer_list *t);
118 
119 /*-----------------------------------------------
120  * Multipath state flags.
121  *-----------------------------------------------*/
122 
123 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
124 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
127 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
128 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
129 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
130 
131 /*-----------------------------------------------
132  * Allocation routines
133  *-----------------------------------------------*/
134 
135 static struct pgpath *alloc_pgpath(void)
136 {
137 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
138 
139 	if (!pgpath)
140 		return NULL;
141 
142 	pgpath->is_active = true;
143 
144 	return pgpath;
145 }
146 
147 static void free_pgpath(struct pgpath *pgpath)
148 {
149 	kfree(pgpath);
150 }
151 
152 static struct priority_group *alloc_priority_group(void)
153 {
154 	struct priority_group *pg;
155 
156 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
157 
158 	if (pg)
159 		INIT_LIST_HEAD(&pg->pgpaths);
160 
161 	return pg;
162 }
163 
164 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
165 {
166 	struct pgpath *pgpath, *tmp;
167 
168 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
169 		list_del(&pgpath->list);
170 		dm_put_device(ti, pgpath->path.dev);
171 		free_pgpath(pgpath);
172 	}
173 }
174 
175 static void free_priority_group(struct priority_group *pg,
176 				struct dm_target *ti)
177 {
178 	struct path_selector *ps = &pg->ps;
179 
180 	if (ps->type) {
181 		ps->type->destroy(ps);
182 		dm_put_path_selector(ps->type);
183 	}
184 
185 	free_pgpaths(&pg->pgpaths, ti);
186 	kfree(pg);
187 }
188 
189 static struct multipath *alloc_multipath(struct dm_target *ti)
190 {
191 	struct multipath *m;
192 
193 	m = kzalloc(sizeof(*m), GFP_KERNEL);
194 	if (m) {
195 		INIT_LIST_HEAD(&m->priority_groups);
196 		spin_lock_init(&m->lock);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		INIT_WORK(&m->trigger_event, trigger_event);
199 		mutex_init(&m->work_mutex);
200 
201 		m->queue_mode = DM_TYPE_NONE;
202 
203 		m->ti = ti;
204 		ti->private = m;
205 
206 		timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0);
207 	}
208 
209 	return m;
210 }
211 
212 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
213 {
214 	if (m->queue_mode == DM_TYPE_NONE) {
215 		m->queue_mode = DM_TYPE_REQUEST_BASED;
216 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
217 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
218 		/*
219 		 * bio-based doesn't support any direct scsi_dh management;
220 		 * it just discovers if a scsi_dh is attached.
221 		 */
222 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
223 	}
224 
225 	dm_table_set_type(ti->table, m->queue_mode);
226 
227 	/*
228 	 * Init fields that are only used when a scsi_dh is attached
229 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
230 	 */
231 	set_bit(MPATHF_QUEUE_IO, &m->flags);
232 	atomic_set(&m->pg_init_in_progress, 0);
233 	atomic_set(&m->pg_init_count, 0);
234 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
235 	init_waitqueue_head(&m->pg_init_wait);
236 
237 	return 0;
238 }
239 
240 static void free_multipath(struct multipath *m)
241 {
242 	struct priority_group *pg, *tmp;
243 
244 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
245 		list_del(&pg->list);
246 		free_priority_group(pg, m->ti);
247 	}
248 
249 	kfree(m->hw_handler_name);
250 	kfree(m->hw_handler_params);
251 	mutex_destroy(&m->work_mutex);
252 	kfree(m);
253 }
254 
255 static struct dm_mpath_io *get_mpio(union map_info *info)
256 {
257 	return info->ptr;
258 }
259 
260 static size_t multipath_per_bio_data_size(void)
261 {
262 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
263 }
264 
265 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
266 {
267 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
268 }
269 
270 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
271 {
272 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
273 	void *bio_details = mpio + 1;
274 	return bio_details;
275 }
276 
277 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
281 
282 	mpio->nr_bytes = bio->bi_iter.bi_size;
283 	mpio->pgpath = NULL;
284 	*mpio_p = mpio;
285 
286 	dm_bio_record(bio_details, bio);
287 }
288 
289 /*-----------------------------------------------
290  * Path selection
291  *-----------------------------------------------*/
292 
293 static int __pg_init_all_paths(struct multipath *m)
294 {
295 	struct pgpath *pgpath;
296 	unsigned long pg_init_delay = 0;
297 
298 	lockdep_assert_held(&m->lock);
299 
300 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
301 		return 0;
302 
303 	atomic_inc(&m->pg_init_count);
304 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
305 
306 	/* Check here to reset pg_init_required */
307 	if (!m->current_pg)
308 		return 0;
309 
310 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
311 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
312 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
313 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
314 		/* Skip failed paths */
315 		if (!pgpath->is_active)
316 			continue;
317 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
318 				       pg_init_delay))
319 			atomic_inc(&m->pg_init_in_progress);
320 	}
321 	return atomic_read(&m->pg_init_in_progress);
322 }
323 
324 static int pg_init_all_paths(struct multipath *m)
325 {
326 	int ret;
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(&m->lock, flags);
330 	ret = __pg_init_all_paths(m);
331 	spin_unlock_irqrestore(&m->lock, flags);
332 
333 	return ret;
334 }
335 
336 static void __switch_pg(struct multipath *m, struct priority_group *pg)
337 {
338 	m->current_pg = pg;
339 
340 	/* Must we initialise the PG first, and queue I/O till it's ready? */
341 	if (m->hw_handler_name) {
342 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
343 		set_bit(MPATHF_QUEUE_IO, &m->flags);
344 	} else {
345 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
347 	}
348 
349 	atomic_set(&m->pg_init_count, 0);
350 }
351 
352 static struct pgpath *choose_path_in_pg(struct multipath *m,
353 					struct priority_group *pg,
354 					size_t nr_bytes)
355 {
356 	unsigned long flags;
357 	struct dm_path *path;
358 	struct pgpath *pgpath;
359 
360 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
361 	if (!path)
362 		return ERR_PTR(-ENXIO);
363 
364 	pgpath = path_to_pgpath(path);
365 
366 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
367 		/* Only update current_pgpath if pg changed */
368 		spin_lock_irqsave(&m->lock, flags);
369 		m->current_pgpath = pgpath;
370 		__switch_pg(m, pg);
371 		spin_unlock_irqrestore(&m->lock, flags);
372 	}
373 
374 	return pgpath;
375 }
376 
377 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
378 {
379 	unsigned long flags;
380 	struct priority_group *pg;
381 	struct pgpath *pgpath;
382 	unsigned bypassed = 1;
383 
384 	if (!atomic_read(&m->nr_valid_paths)) {
385 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
386 		goto failed;
387 	}
388 
389 	/* Were we instructed to switch PG? */
390 	if (READ_ONCE(m->next_pg)) {
391 		spin_lock_irqsave(&m->lock, flags);
392 		pg = m->next_pg;
393 		if (!pg) {
394 			spin_unlock_irqrestore(&m->lock, flags);
395 			goto check_current_pg;
396 		}
397 		m->next_pg = NULL;
398 		spin_unlock_irqrestore(&m->lock, flags);
399 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
400 		if (!IS_ERR_OR_NULL(pgpath))
401 			return pgpath;
402 	}
403 
404 	/* Don't change PG until it has no remaining paths */
405 check_current_pg:
406 	pg = READ_ONCE(m->current_pg);
407 	if (pg) {
408 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
409 		if (!IS_ERR_OR_NULL(pgpath))
410 			return pgpath;
411 	}
412 
413 	/*
414 	 * Loop through priority groups until we find a valid path.
415 	 * First time we skip PGs marked 'bypassed'.
416 	 * Second time we only try the ones we skipped, but set
417 	 * pg_init_delay_retry so we do not hammer controllers.
418 	 */
419 	do {
420 		list_for_each_entry(pg, &m->priority_groups, list) {
421 			if (pg->bypassed == !!bypassed)
422 				continue;
423 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
424 			if (!IS_ERR_OR_NULL(pgpath)) {
425 				if (!bypassed)
426 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
427 				return pgpath;
428 			}
429 		}
430 	} while (bypassed--);
431 
432 failed:
433 	spin_lock_irqsave(&m->lock, flags);
434 	m->current_pgpath = NULL;
435 	m->current_pg = NULL;
436 	spin_unlock_irqrestore(&m->lock, flags);
437 
438 	return NULL;
439 }
440 
441 /*
442  * dm_report_EIO() is a macro instead of a function to make pr_debug()
443  * report the function name and line number of the function from which
444  * it has been invoked.
445  */
446 #define dm_report_EIO(m)						\
447 do {									\
448 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
449 									\
450 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
451 		 dm_device_name(md),					\
452 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
453 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
454 		 dm_noflush_suspending((m)->ti));			\
455 } while (0)
456 
457 /*
458  * Check whether bios must be queued in the device-mapper core rather
459  * than here in the target.
460  *
461  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
462  * the same value then we are not between multipath_presuspend()
463  * and multipath_resume() calls and we have no need to check
464  * for the DMF_NOFLUSH_SUSPENDING flag.
465  */
466 static bool __must_push_back(struct multipath *m, unsigned long flags)
467 {
468 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
469 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
470 		dm_noflush_suspending(m->ti));
471 }
472 
473 /*
474  * Following functions use READ_ONCE to get atomic access to
475  * all m->flags to avoid taking spinlock
476  */
477 static bool must_push_back_rq(struct multipath *m)
478 {
479 	unsigned long flags = READ_ONCE(m->flags);
480 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
481 }
482 
483 static bool must_push_back_bio(struct multipath *m)
484 {
485 	unsigned long flags = READ_ONCE(m->flags);
486 	return __must_push_back(m, flags);
487 }
488 
489 /*
490  * Map cloned requests (request-based multipath)
491  */
492 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
493 				   union map_info *map_context,
494 				   struct request **__clone)
495 {
496 	struct multipath *m = ti->private;
497 	size_t nr_bytes = blk_rq_bytes(rq);
498 	struct pgpath *pgpath;
499 	struct block_device *bdev;
500 	struct dm_mpath_io *mpio = get_mpio(map_context);
501 	struct request_queue *q;
502 	struct request *clone;
503 
504 	/* Do we need to select a new pgpath? */
505 	pgpath = READ_ONCE(m->current_pgpath);
506 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
507 		pgpath = choose_pgpath(m, nr_bytes);
508 
509 	if (!pgpath) {
510 		if (must_push_back_rq(m))
511 			return DM_MAPIO_DELAY_REQUEUE;
512 		dm_report_EIO(m);	/* Failed */
513 		return DM_MAPIO_KILL;
514 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
515 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
516 		pg_init_all_paths(m);
517 		return DM_MAPIO_DELAY_REQUEUE;
518 	}
519 
520 	mpio->pgpath = pgpath;
521 	mpio->nr_bytes = nr_bytes;
522 
523 	bdev = pgpath->path.dev->bdev;
524 	q = bdev_get_queue(bdev);
525 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
526 			BLK_MQ_REQ_NOWAIT);
527 	if (IS_ERR(clone)) {
528 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
529 		if (blk_queue_dying(q)) {
530 			atomic_inc(&m->pg_init_in_progress);
531 			activate_or_offline_path(pgpath);
532 			return DM_MAPIO_DELAY_REQUEUE;
533 		}
534 
535 		/*
536 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
537 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
538 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
539 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
540 		 * otherwise I/O merging can suffer.
541 		 */
542 		return DM_MAPIO_REQUEUE;
543 	}
544 	clone->bio = clone->biotail = NULL;
545 	clone->rq_disk = bdev->bd_disk;
546 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
547 	*__clone = clone;
548 
549 	if (pgpath->pg->ps.type->start_io)
550 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
551 					      &pgpath->path,
552 					      nr_bytes);
553 	return DM_MAPIO_REMAPPED;
554 }
555 
556 static void multipath_release_clone(struct request *clone,
557 				    union map_info *map_context)
558 {
559 	if (unlikely(map_context)) {
560 		/*
561 		 * non-NULL map_context means caller is still map
562 		 * method; must undo multipath_clone_and_map()
563 		 */
564 		struct dm_mpath_io *mpio = get_mpio(map_context);
565 		struct pgpath *pgpath = mpio->pgpath;
566 
567 		if (pgpath && pgpath->pg->ps.type->end_io)
568 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
569 						    &pgpath->path,
570 						    mpio->nr_bytes);
571 	}
572 
573 	blk_put_request(clone);
574 }
575 
576 /*
577  * Map cloned bios (bio-based multipath)
578  */
579 
580 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
581 {
582 	struct pgpath *pgpath;
583 	unsigned long flags;
584 	bool queue_io;
585 
586 	/* Do we need to select a new pgpath? */
587 	pgpath = READ_ONCE(m->current_pgpath);
588 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
589 	if (!pgpath || !queue_io)
590 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
591 
592 	if ((pgpath && queue_io) ||
593 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
594 		/* Queue for the daemon to resubmit */
595 		spin_lock_irqsave(&m->lock, flags);
596 		bio_list_add(&m->queued_bios, bio);
597 		spin_unlock_irqrestore(&m->lock, flags);
598 
599 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
600 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
601 			pg_init_all_paths(m);
602 		else if (!queue_io)
603 			queue_work(kmultipathd, &m->process_queued_bios);
604 
605 		return ERR_PTR(-EAGAIN);
606 	}
607 
608 	return pgpath;
609 }
610 
611 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
612 			       struct dm_mpath_io *mpio)
613 {
614 	struct pgpath *pgpath = __map_bio(m, bio);
615 
616 	if (IS_ERR(pgpath))
617 		return DM_MAPIO_SUBMITTED;
618 
619 	if (!pgpath) {
620 		if (must_push_back_bio(m))
621 			return DM_MAPIO_REQUEUE;
622 		dm_report_EIO(m);
623 		return DM_MAPIO_KILL;
624 	}
625 
626 	mpio->pgpath = pgpath;
627 
628 	bio->bi_status = 0;
629 	bio_set_dev(bio, pgpath->path.dev->bdev);
630 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
631 
632 	if (pgpath->pg->ps.type->start_io)
633 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
634 					      &pgpath->path,
635 					      mpio->nr_bytes);
636 	return DM_MAPIO_REMAPPED;
637 }
638 
639 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
640 {
641 	struct multipath *m = ti->private;
642 	struct dm_mpath_io *mpio = NULL;
643 
644 	multipath_init_per_bio_data(bio, &mpio);
645 	return __multipath_map_bio(m, bio, mpio);
646 }
647 
648 static void process_queued_io_list(struct multipath *m)
649 {
650 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
651 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
652 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
653 		queue_work(kmultipathd, &m->process_queued_bios);
654 }
655 
656 static void process_queued_bios(struct work_struct *work)
657 {
658 	int r;
659 	unsigned long flags;
660 	struct bio *bio;
661 	struct bio_list bios;
662 	struct blk_plug plug;
663 	struct multipath *m =
664 		container_of(work, struct multipath, process_queued_bios);
665 
666 	bio_list_init(&bios);
667 
668 	spin_lock_irqsave(&m->lock, flags);
669 
670 	if (bio_list_empty(&m->queued_bios)) {
671 		spin_unlock_irqrestore(&m->lock, flags);
672 		return;
673 	}
674 
675 	bio_list_merge(&bios, &m->queued_bios);
676 	bio_list_init(&m->queued_bios);
677 
678 	spin_unlock_irqrestore(&m->lock, flags);
679 
680 	blk_start_plug(&plug);
681 	while ((bio = bio_list_pop(&bios))) {
682 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
683 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
684 		r = __multipath_map_bio(m, bio, mpio);
685 		switch (r) {
686 		case DM_MAPIO_KILL:
687 			bio->bi_status = BLK_STS_IOERR;
688 			bio_endio(bio);
689 			break;
690 		case DM_MAPIO_REQUEUE:
691 			bio->bi_status = BLK_STS_DM_REQUEUE;
692 			bio_endio(bio);
693 			break;
694 		case DM_MAPIO_REMAPPED:
695 			generic_make_request(bio);
696 			break;
697 		case DM_MAPIO_SUBMITTED:
698 			break;
699 		default:
700 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
701 		}
702 	}
703 	blk_finish_plug(&plug);
704 }
705 
706 /*
707  * If we run out of usable paths, should we queue I/O or error it?
708  */
709 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
710 			    bool save_old_value)
711 {
712 	unsigned long flags;
713 
714 	spin_lock_irqsave(&m->lock, flags);
715 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
716 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
717 		   (!save_old_value && queue_if_no_path));
718 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
719 	spin_unlock_irqrestore(&m->lock, flags);
720 
721 	if (!queue_if_no_path) {
722 		dm_table_run_md_queue_async(m->ti->table);
723 		process_queued_io_list(m);
724 	}
725 
726 	return 0;
727 }
728 
729 /*
730  * If the queue_if_no_path timeout fires, turn off queue_if_no_path and
731  * process any queued I/O.
732  */
733 static void queue_if_no_path_timeout_work(struct timer_list *t)
734 {
735 	struct multipath *m = from_timer(m, t, nopath_timer);
736 	struct mapped_device *md = dm_table_get_md(m->ti->table);
737 
738 	DMWARN("queue_if_no_path timeout on %s, failing queued IO", dm_device_name(md));
739 	queue_if_no_path(m, false, false);
740 }
741 
742 /*
743  * Enable the queue_if_no_path timeout if necessary.
744  * Called with m->lock held.
745  */
746 static void enable_nopath_timeout(struct multipath *m)
747 {
748 	unsigned long queue_if_no_path_timeout =
749 		READ_ONCE(queue_if_no_path_timeout_secs) * HZ;
750 
751 	lockdep_assert_held(&m->lock);
752 
753 	if (queue_if_no_path_timeout > 0 &&
754 	    atomic_read(&m->nr_valid_paths) == 0 &&
755 	    test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
756 		mod_timer(&m->nopath_timer,
757 			  jiffies + queue_if_no_path_timeout);
758 	}
759 }
760 
761 static void disable_nopath_timeout(struct multipath *m)
762 {
763 	del_timer_sync(&m->nopath_timer);
764 }
765 
766 /*
767  * An event is triggered whenever a path is taken out of use.
768  * Includes path failure and PG bypass.
769  */
770 static void trigger_event(struct work_struct *work)
771 {
772 	struct multipath *m =
773 		container_of(work, struct multipath, trigger_event);
774 
775 	dm_table_event(m->ti->table);
776 }
777 
778 /*-----------------------------------------------------------------
779  * Constructor/argument parsing:
780  * <#multipath feature args> [<arg>]*
781  * <#hw_handler args> [hw_handler [<arg>]*]
782  * <#priority groups>
783  * <initial priority group>
784  *     [<selector> <#selector args> [<arg>]*
785  *      <#paths> <#per-path selector args>
786  *         [<path> [<arg>]* ]+ ]+
787  *---------------------------------------------------------------*/
788 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
789 			       struct dm_target *ti)
790 {
791 	int r;
792 	struct path_selector_type *pst;
793 	unsigned ps_argc;
794 
795 	static const struct dm_arg _args[] = {
796 		{0, 1024, "invalid number of path selector args"},
797 	};
798 
799 	pst = dm_get_path_selector(dm_shift_arg(as));
800 	if (!pst) {
801 		ti->error = "unknown path selector type";
802 		return -EINVAL;
803 	}
804 
805 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
806 	if (r) {
807 		dm_put_path_selector(pst);
808 		return -EINVAL;
809 	}
810 
811 	r = pst->create(&pg->ps, ps_argc, as->argv);
812 	if (r) {
813 		dm_put_path_selector(pst);
814 		ti->error = "path selector constructor failed";
815 		return r;
816 	}
817 
818 	pg->ps.type = pst;
819 	dm_consume_args(as, ps_argc);
820 
821 	return 0;
822 }
823 
824 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
825 			 const char **attached_handler_name, char **error)
826 {
827 	struct request_queue *q = bdev_get_queue(bdev);
828 	int r;
829 
830 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
831 retain:
832 		if (*attached_handler_name) {
833 			/*
834 			 * Clear any hw_handler_params associated with a
835 			 * handler that isn't already attached.
836 			 */
837 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
838 				kfree(m->hw_handler_params);
839 				m->hw_handler_params = NULL;
840 			}
841 
842 			/*
843 			 * Reset hw_handler_name to match the attached handler
844 			 *
845 			 * NB. This modifies the table line to show the actual
846 			 * handler instead of the original table passed in.
847 			 */
848 			kfree(m->hw_handler_name);
849 			m->hw_handler_name = *attached_handler_name;
850 			*attached_handler_name = NULL;
851 		}
852 	}
853 
854 	if (m->hw_handler_name) {
855 		r = scsi_dh_attach(q, m->hw_handler_name);
856 		if (r == -EBUSY) {
857 			char b[BDEVNAME_SIZE];
858 
859 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
860 			       bdevname(bdev, b));
861 			goto retain;
862 		}
863 		if (r < 0) {
864 			*error = "error attaching hardware handler";
865 			return r;
866 		}
867 
868 		if (m->hw_handler_params) {
869 			r = scsi_dh_set_params(q, m->hw_handler_params);
870 			if (r < 0) {
871 				*error = "unable to set hardware handler parameters";
872 				return r;
873 			}
874 		}
875 	}
876 
877 	return 0;
878 }
879 
880 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
881 				 struct dm_target *ti)
882 {
883 	int r;
884 	struct pgpath *p;
885 	struct multipath *m = ti->private;
886 	struct request_queue *q;
887 	const char *attached_handler_name = NULL;
888 
889 	/* we need at least a path arg */
890 	if (as->argc < 1) {
891 		ti->error = "no device given";
892 		return ERR_PTR(-EINVAL);
893 	}
894 
895 	p = alloc_pgpath();
896 	if (!p)
897 		return ERR_PTR(-ENOMEM);
898 
899 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
900 			  &p->path.dev);
901 	if (r) {
902 		ti->error = "error getting device";
903 		goto bad;
904 	}
905 
906 	q = bdev_get_queue(p->path.dev->bdev);
907 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
908 	if (attached_handler_name || m->hw_handler_name) {
909 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
910 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
911 		kfree(attached_handler_name);
912 		if (r) {
913 			dm_put_device(ti, p->path.dev);
914 			goto bad;
915 		}
916 	}
917 
918 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
919 	if (r) {
920 		dm_put_device(ti, p->path.dev);
921 		goto bad;
922 	}
923 
924 	return p;
925  bad:
926 	free_pgpath(p);
927 	return ERR_PTR(r);
928 }
929 
930 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
931 						   struct multipath *m)
932 {
933 	static const struct dm_arg _args[] = {
934 		{1, 1024, "invalid number of paths"},
935 		{0, 1024, "invalid number of selector args"}
936 	};
937 
938 	int r;
939 	unsigned i, nr_selector_args, nr_args;
940 	struct priority_group *pg;
941 	struct dm_target *ti = m->ti;
942 
943 	if (as->argc < 2) {
944 		as->argc = 0;
945 		ti->error = "not enough priority group arguments";
946 		return ERR_PTR(-EINVAL);
947 	}
948 
949 	pg = alloc_priority_group();
950 	if (!pg) {
951 		ti->error = "couldn't allocate priority group";
952 		return ERR_PTR(-ENOMEM);
953 	}
954 	pg->m = m;
955 
956 	r = parse_path_selector(as, pg, ti);
957 	if (r)
958 		goto bad;
959 
960 	/*
961 	 * read the paths
962 	 */
963 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
964 	if (r)
965 		goto bad;
966 
967 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
968 	if (r)
969 		goto bad;
970 
971 	nr_args = 1 + nr_selector_args;
972 	for (i = 0; i < pg->nr_pgpaths; i++) {
973 		struct pgpath *pgpath;
974 		struct dm_arg_set path_args;
975 
976 		if (as->argc < nr_args) {
977 			ti->error = "not enough path parameters";
978 			r = -EINVAL;
979 			goto bad;
980 		}
981 
982 		path_args.argc = nr_args;
983 		path_args.argv = as->argv;
984 
985 		pgpath = parse_path(&path_args, &pg->ps, ti);
986 		if (IS_ERR(pgpath)) {
987 			r = PTR_ERR(pgpath);
988 			goto bad;
989 		}
990 
991 		pgpath->pg = pg;
992 		list_add_tail(&pgpath->list, &pg->pgpaths);
993 		dm_consume_args(as, nr_args);
994 	}
995 
996 	return pg;
997 
998  bad:
999 	free_priority_group(pg, ti);
1000 	return ERR_PTR(r);
1001 }
1002 
1003 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
1004 {
1005 	unsigned hw_argc;
1006 	int ret;
1007 	struct dm_target *ti = m->ti;
1008 
1009 	static const struct dm_arg _args[] = {
1010 		{0, 1024, "invalid number of hardware handler args"},
1011 	};
1012 
1013 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
1014 		return -EINVAL;
1015 
1016 	if (!hw_argc)
1017 		return 0;
1018 
1019 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1020 		dm_consume_args(as, hw_argc);
1021 		DMERR("bio-based multipath doesn't allow hardware handler args");
1022 		return 0;
1023 	}
1024 
1025 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1026 	if (!m->hw_handler_name)
1027 		return -EINVAL;
1028 
1029 	if (hw_argc > 1) {
1030 		char *p;
1031 		int i, j, len = 4;
1032 
1033 		for (i = 0; i <= hw_argc - 2; i++)
1034 			len += strlen(as->argv[i]) + 1;
1035 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1036 		if (!p) {
1037 			ti->error = "memory allocation failed";
1038 			ret = -ENOMEM;
1039 			goto fail;
1040 		}
1041 		j = sprintf(p, "%d", hw_argc - 1);
1042 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1043 			j = sprintf(p, "%s", as->argv[i]);
1044 	}
1045 	dm_consume_args(as, hw_argc - 1);
1046 
1047 	return 0;
1048 fail:
1049 	kfree(m->hw_handler_name);
1050 	m->hw_handler_name = NULL;
1051 	return ret;
1052 }
1053 
1054 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1055 {
1056 	int r;
1057 	unsigned argc;
1058 	struct dm_target *ti = m->ti;
1059 	const char *arg_name;
1060 
1061 	static const struct dm_arg _args[] = {
1062 		{0, 8, "invalid number of feature args"},
1063 		{1, 50, "pg_init_retries must be between 1 and 50"},
1064 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1065 	};
1066 
1067 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1068 	if (r)
1069 		return -EINVAL;
1070 
1071 	if (!argc)
1072 		return 0;
1073 
1074 	do {
1075 		arg_name = dm_shift_arg(as);
1076 		argc--;
1077 
1078 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1079 			r = queue_if_no_path(m, true, false);
1080 			continue;
1081 		}
1082 
1083 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1084 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1085 			continue;
1086 		}
1087 
1088 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1089 		    (argc >= 1)) {
1090 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1091 			argc--;
1092 			continue;
1093 		}
1094 
1095 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1096 		    (argc >= 1)) {
1097 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1098 			argc--;
1099 			continue;
1100 		}
1101 
1102 		if (!strcasecmp(arg_name, "queue_mode") &&
1103 		    (argc >= 1)) {
1104 			const char *queue_mode_name = dm_shift_arg(as);
1105 
1106 			if (!strcasecmp(queue_mode_name, "bio"))
1107 				m->queue_mode = DM_TYPE_BIO_BASED;
1108 			else if (!strcasecmp(queue_mode_name, "rq") ||
1109 				 !strcasecmp(queue_mode_name, "mq"))
1110 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1111 			else {
1112 				ti->error = "Unknown 'queue_mode' requested";
1113 				r = -EINVAL;
1114 			}
1115 			argc--;
1116 			continue;
1117 		}
1118 
1119 		ti->error = "Unrecognised multipath feature request";
1120 		r = -EINVAL;
1121 	} while (argc && !r);
1122 
1123 	return r;
1124 }
1125 
1126 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1127 {
1128 	/* target arguments */
1129 	static const struct dm_arg _args[] = {
1130 		{0, 1024, "invalid number of priority groups"},
1131 		{0, 1024, "invalid initial priority group number"},
1132 	};
1133 
1134 	int r;
1135 	struct multipath *m;
1136 	struct dm_arg_set as;
1137 	unsigned pg_count = 0;
1138 	unsigned next_pg_num;
1139 	unsigned long flags;
1140 
1141 	as.argc = argc;
1142 	as.argv = argv;
1143 
1144 	m = alloc_multipath(ti);
1145 	if (!m) {
1146 		ti->error = "can't allocate multipath";
1147 		return -EINVAL;
1148 	}
1149 
1150 	r = parse_features(&as, m);
1151 	if (r)
1152 		goto bad;
1153 
1154 	r = alloc_multipath_stage2(ti, m);
1155 	if (r)
1156 		goto bad;
1157 
1158 	r = parse_hw_handler(&as, m);
1159 	if (r)
1160 		goto bad;
1161 
1162 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1163 	if (r)
1164 		goto bad;
1165 
1166 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1167 	if (r)
1168 		goto bad;
1169 
1170 	if ((!m->nr_priority_groups && next_pg_num) ||
1171 	    (m->nr_priority_groups && !next_pg_num)) {
1172 		ti->error = "invalid initial priority group";
1173 		r = -EINVAL;
1174 		goto bad;
1175 	}
1176 
1177 	/* parse the priority groups */
1178 	while (as.argc) {
1179 		struct priority_group *pg;
1180 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1181 
1182 		pg = parse_priority_group(&as, m);
1183 		if (IS_ERR(pg)) {
1184 			r = PTR_ERR(pg);
1185 			goto bad;
1186 		}
1187 
1188 		nr_valid_paths += pg->nr_pgpaths;
1189 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1190 
1191 		list_add_tail(&pg->list, &m->priority_groups);
1192 		pg_count++;
1193 		pg->pg_num = pg_count;
1194 		if (!--next_pg_num)
1195 			m->next_pg = pg;
1196 	}
1197 
1198 	if (pg_count != m->nr_priority_groups) {
1199 		ti->error = "priority group count mismatch";
1200 		r = -EINVAL;
1201 		goto bad;
1202 	}
1203 
1204 	spin_lock_irqsave(&m->lock, flags);
1205 	enable_nopath_timeout(m);
1206 	spin_unlock_irqrestore(&m->lock, flags);
1207 
1208 	ti->num_flush_bios = 1;
1209 	ti->num_discard_bios = 1;
1210 	ti->num_write_same_bios = 1;
1211 	ti->num_write_zeroes_bios = 1;
1212 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1213 		ti->per_io_data_size = multipath_per_bio_data_size();
1214 	else
1215 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1216 
1217 	return 0;
1218 
1219  bad:
1220 	free_multipath(m);
1221 	return r;
1222 }
1223 
1224 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1225 {
1226 	DEFINE_WAIT(wait);
1227 
1228 	while (1) {
1229 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1230 
1231 		if (!atomic_read(&m->pg_init_in_progress))
1232 			break;
1233 
1234 		io_schedule();
1235 	}
1236 	finish_wait(&m->pg_init_wait, &wait);
1237 }
1238 
1239 static void flush_multipath_work(struct multipath *m)
1240 {
1241 	if (m->hw_handler_name) {
1242 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1243 		smp_mb__after_atomic();
1244 
1245 		if (atomic_read(&m->pg_init_in_progress))
1246 			flush_workqueue(kmpath_handlerd);
1247 		multipath_wait_for_pg_init_completion(m);
1248 
1249 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1250 		smp_mb__after_atomic();
1251 	}
1252 
1253 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1254 		flush_work(&m->process_queued_bios);
1255 	flush_work(&m->trigger_event);
1256 }
1257 
1258 static void multipath_dtr(struct dm_target *ti)
1259 {
1260 	struct multipath *m = ti->private;
1261 
1262 	disable_nopath_timeout(m);
1263 	flush_multipath_work(m);
1264 	free_multipath(m);
1265 }
1266 
1267 /*
1268  * Take a path out of use.
1269  */
1270 static int fail_path(struct pgpath *pgpath)
1271 {
1272 	unsigned long flags;
1273 	struct multipath *m = pgpath->pg->m;
1274 
1275 	spin_lock_irqsave(&m->lock, flags);
1276 
1277 	if (!pgpath->is_active)
1278 		goto out;
1279 
1280 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1281 
1282 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1283 	pgpath->is_active = false;
1284 	pgpath->fail_count++;
1285 
1286 	atomic_dec(&m->nr_valid_paths);
1287 
1288 	if (pgpath == m->current_pgpath)
1289 		m->current_pgpath = NULL;
1290 
1291 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1292 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1293 
1294 	schedule_work(&m->trigger_event);
1295 
1296 	enable_nopath_timeout(m);
1297 
1298 out:
1299 	spin_unlock_irqrestore(&m->lock, flags);
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Reinstate a previously-failed path
1306  */
1307 static int reinstate_path(struct pgpath *pgpath)
1308 {
1309 	int r = 0, run_queue = 0;
1310 	unsigned long flags;
1311 	struct multipath *m = pgpath->pg->m;
1312 	unsigned nr_valid_paths;
1313 
1314 	spin_lock_irqsave(&m->lock, flags);
1315 
1316 	if (pgpath->is_active)
1317 		goto out;
1318 
1319 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1320 
1321 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1322 	if (r)
1323 		goto out;
1324 
1325 	pgpath->is_active = true;
1326 
1327 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1328 	if (nr_valid_paths == 1) {
1329 		m->current_pgpath = NULL;
1330 		run_queue = 1;
1331 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1332 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1333 			atomic_inc(&m->pg_init_in_progress);
1334 	}
1335 
1336 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1337 		       pgpath->path.dev->name, nr_valid_paths);
1338 
1339 	schedule_work(&m->trigger_event);
1340 
1341 out:
1342 	spin_unlock_irqrestore(&m->lock, flags);
1343 	if (run_queue) {
1344 		dm_table_run_md_queue_async(m->ti->table);
1345 		process_queued_io_list(m);
1346 	}
1347 
1348 	if (pgpath->is_active)
1349 		disable_nopath_timeout(m);
1350 
1351 	return r;
1352 }
1353 
1354 /*
1355  * Fail or reinstate all paths that match the provided struct dm_dev.
1356  */
1357 static int action_dev(struct multipath *m, struct dm_dev *dev,
1358 		      action_fn action)
1359 {
1360 	int r = -EINVAL;
1361 	struct pgpath *pgpath;
1362 	struct priority_group *pg;
1363 
1364 	list_for_each_entry(pg, &m->priority_groups, list) {
1365 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1366 			if (pgpath->path.dev == dev)
1367 				r = action(pgpath);
1368 		}
1369 	}
1370 
1371 	return r;
1372 }
1373 
1374 /*
1375  * Temporarily try to avoid having to use the specified PG
1376  */
1377 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1378 		      bool bypassed)
1379 {
1380 	unsigned long flags;
1381 
1382 	spin_lock_irqsave(&m->lock, flags);
1383 
1384 	pg->bypassed = bypassed;
1385 	m->current_pgpath = NULL;
1386 	m->current_pg = NULL;
1387 
1388 	spin_unlock_irqrestore(&m->lock, flags);
1389 
1390 	schedule_work(&m->trigger_event);
1391 }
1392 
1393 /*
1394  * Switch to using the specified PG from the next I/O that gets mapped
1395  */
1396 static int switch_pg_num(struct multipath *m, const char *pgstr)
1397 {
1398 	struct priority_group *pg;
1399 	unsigned pgnum;
1400 	unsigned long flags;
1401 	char dummy;
1402 
1403 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1404 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1405 		DMWARN("invalid PG number supplied to switch_pg_num");
1406 		return -EINVAL;
1407 	}
1408 
1409 	spin_lock_irqsave(&m->lock, flags);
1410 	list_for_each_entry(pg, &m->priority_groups, list) {
1411 		pg->bypassed = false;
1412 		if (--pgnum)
1413 			continue;
1414 
1415 		m->current_pgpath = NULL;
1416 		m->current_pg = NULL;
1417 		m->next_pg = pg;
1418 	}
1419 	spin_unlock_irqrestore(&m->lock, flags);
1420 
1421 	schedule_work(&m->trigger_event);
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Set/clear bypassed status of a PG.
1427  * PGs are numbered upwards from 1 in the order they were declared.
1428  */
1429 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1430 {
1431 	struct priority_group *pg;
1432 	unsigned pgnum;
1433 	char dummy;
1434 
1435 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1436 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1437 		DMWARN("invalid PG number supplied to bypass_pg");
1438 		return -EINVAL;
1439 	}
1440 
1441 	list_for_each_entry(pg, &m->priority_groups, list) {
1442 		if (!--pgnum)
1443 			break;
1444 	}
1445 
1446 	bypass_pg(m, pg, bypassed);
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Should we retry pg_init immediately?
1452  */
1453 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1454 {
1455 	unsigned long flags;
1456 	bool limit_reached = false;
1457 
1458 	spin_lock_irqsave(&m->lock, flags);
1459 
1460 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1461 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1462 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1463 	else
1464 		limit_reached = true;
1465 
1466 	spin_unlock_irqrestore(&m->lock, flags);
1467 
1468 	return limit_reached;
1469 }
1470 
1471 static void pg_init_done(void *data, int errors)
1472 {
1473 	struct pgpath *pgpath = data;
1474 	struct priority_group *pg = pgpath->pg;
1475 	struct multipath *m = pg->m;
1476 	unsigned long flags;
1477 	bool delay_retry = false;
1478 
1479 	/* device or driver problems */
1480 	switch (errors) {
1481 	case SCSI_DH_OK:
1482 		break;
1483 	case SCSI_DH_NOSYS:
1484 		if (!m->hw_handler_name) {
1485 			errors = 0;
1486 			break;
1487 		}
1488 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1489 		      "Error %d.", m->hw_handler_name, errors);
1490 		/*
1491 		 * Fail path for now, so we do not ping pong
1492 		 */
1493 		fail_path(pgpath);
1494 		break;
1495 	case SCSI_DH_DEV_TEMP_BUSY:
1496 		/*
1497 		 * Probably doing something like FW upgrade on the
1498 		 * controller so try the other pg.
1499 		 */
1500 		bypass_pg(m, pg, true);
1501 		break;
1502 	case SCSI_DH_RETRY:
1503 		/* Wait before retrying. */
1504 		delay_retry = true;
1505 		/* fall through */
1506 	case SCSI_DH_IMM_RETRY:
1507 	case SCSI_DH_RES_TEMP_UNAVAIL:
1508 		if (pg_init_limit_reached(m, pgpath))
1509 			fail_path(pgpath);
1510 		errors = 0;
1511 		break;
1512 	case SCSI_DH_DEV_OFFLINED:
1513 	default:
1514 		/*
1515 		 * We probably do not want to fail the path for a device
1516 		 * error, but this is what the old dm did. In future
1517 		 * patches we can do more advanced handling.
1518 		 */
1519 		fail_path(pgpath);
1520 	}
1521 
1522 	spin_lock_irqsave(&m->lock, flags);
1523 	if (errors) {
1524 		if (pgpath == m->current_pgpath) {
1525 			DMERR("Could not failover device. Error %d.", errors);
1526 			m->current_pgpath = NULL;
1527 			m->current_pg = NULL;
1528 		}
1529 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1530 		pg->bypassed = false;
1531 
1532 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1533 		/* Activations of other paths are still on going */
1534 		goto out;
1535 
1536 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1537 		if (delay_retry)
1538 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1539 		else
1540 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1541 
1542 		if (__pg_init_all_paths(m))
1543 			goto out;
1544 	}
1545 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1546 
1547 	process_queued_io_list(m);
1548 
1549 	/*
1550 	 * Wake up any thread waiting to suspend.
1551 	 */
1552 	wake_up(&m->pg_init_wait);
1553 
1554 out:
1555 	spin_unlock_irqrestore(&m->lock, flags);
1556 }
1557 
1558 static void activate_or_offline_path(struct pgpath *pgpath)
1559 {
1560 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1561 
1562 	if (pgpath->is_active && !blk_queue_dying(q))
1563 		scsi_dh_activate(q, pg_init_done, pgpath);
1564 	else
1565 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1566 }
1567 
1568 static void activate_path_work(struct work_struct *work)
1569 {
1570 	struct pgpath *pgpath =
1571 		container_of(work, struct pgpath, activate_path.work);
1572 
1573 	activate_or_offline_path(pgpath);
1574 }
1575 
1576 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1577 			    blk_status_t error, union map_info *map_context)
1578 {
1579 	struct dm_mpath_io *mpio = get_mpio(map_context);
1580 	struct pgpath *pgpath = mpio->pgpath;
1581 	int r = DM_ENDIO_DONE;
1582 
1583 	/*
1584 	 * We don't queue any clone request inside the multipath target
1585 	 * during end I/O handling, since those clone requests don't have
1586 	 * bio clones.  If we queue them inside the multipath target,
1587 	 * we need to make bio clones, that requires memory allocation.
1588 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1589 	 *  don't have bio clones.)
1590 	 * Instead of queueing the clone request here, we queue the original
1591 	 * request into dm core, which will remake a clone request and
1592 	 * clone bios for it and resubmit it later.
1593 	 */
1594 	if (error && blk_path_error(error)) {
1595 		struct multipath *m = ti->private;
1596 
1597 		if (error == BLK_STS_RESOURCE)
1598 			r = DM_ENDIO_DELAY_REQUEUE;
1599 		else
1600 			r = DM_ENDIO_REQUEUE;
1601 
1602 		if (pgpath)
1603 			fail_path(pgpath);
1604 
1605 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1606 		    !must_push_back_rq(m)) {
1607 			if (error == BLK_STS_IOERR)
1608 				dm_report_EIO(m);
1609 			/* complete with the original error */
1610 			r = DM_ENDIO_DONE;
1611 		}
1612 	}
1613 
1614 	if (pgpath) {
1615 		struct path_selector *ps = &pgpath->pg->ps;
1616 
1617 		if (ps->type->end_io)
1618 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1619 	}
1620 
1621 	return r;
1622 }
1623 
1624 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1625 				blk_status_t *error)
1626 {
1627 	struct multipath *m = ti->private;
1628 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1629 	struct pgpath *pgpath = mpio->pgpath;
1630 	unsigned long flags;
1631 	int r = DM_ENDIO_DONE;
1632 
1633 	if (!*error || !blk_path_error(*error))
1634 		goto done;
1635 
1636 	if (pgpath)
1637 		fail_path(pgpath);
1638 
1639 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1640 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1641 		if (must_push_back_bio(m)) {
1642 			r = DM_ENDIO_REQUEUE;
1643 		} else {
1644 			dm_report_EIO(m);
1645 			*error = BLK_STS_IOERR;
1646 		}
1647 		goto done;
1648 	}
1649 
1650 	spin_lock_irqsave(&m->lock, flags);
1651 	bio_list_add(&m->queued_bios, clone);
1652 	spin_unlock_irqrestore(&m->lock, flags);
1653 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1654 		queue_work(kmultipathd, &m->process_queued_bios);
1655 
1656 	r = DM_ENDIO_INCOMPLETE;
1657 done:
1658 	if (pgpath) {
1659 		struct path_selector *ps = &pgpath->pg->ps;
1660 
1661 		if (ps->type->end_io)
1662 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1663 	}
1664 
1665 	return r;
1666 }
1667 
1668 /*
1669  * Suspend can't complete until all the I/O is processed so if
1670  * the last path fails we must error any remaining I/O.
1671  * Note that if the freeze_bdev fails while suspending, the
1672  * queue_if_no_path state is lost - userspace should reset it.
1673  */
1674 static void multipath_presuspend(struct dm_target *ti)
1675 {
1676 	struct multipath *m = ti->private;
1677 
1678 	queue_if_no_path(m, false, true);
1679 }
1680 
1681 static void multipath_postsuspend(struct dm_target *ti)
1682 {
1683 	struct multipath *m = ti->private;
1684 
1685 	mutex_lock(&m->work_mutex);
1686 	flush_multipath_work(m);
1687 	mutex_unlock(&m->work_mutex);
1688 }
1689 
1690 /*
1691  * Restore the queue_if_no_path setting.
1692  */
1693 static void multipath_resume(struct dm_target *ti)
1694 {
1695 	struct multipath *m = ti->private;
1696 	unsigned long flags;
1697 
1698 	spin_lock_irqsave(&m->lock, flags);
1699 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1700 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1701 	spin_unlock_irqrestore(&m->lock, flags);
1702 }
1703 
1704 /*
1705  * Info output has the following format:
1706  * num_multipath_feature_args [multipath_feature_args]*
1707  * num_handler_status_args [handler_status_args]*
1708  * num_groups init_group_number
1709  *            [A|D|E num_ps_status_args [ps_status_args]*
1710  *             num_paths num_selector_args
1711  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1712  *
1713  * Table output has the following format (identical to the constructor string):
1714  * num_feature_args [features_args]*
1715  * num_handler_args hw_handler [hw_handler_args]*
1716  * num_groups init_group_number
1717  *     [priority selector-name num_ps_args [ps_args]*
1718  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1719  */
1720 static void multipath_status(struct dm_target *ti, status_type_t type,
1721 			     unsigned status_flags, char *result, unsigned maxlen)
1722 {
1723 	int sz = 0;
1724 	unsigned long flags;
1725 	struct multipath *m = ti->private;
1726 	struct priority_group *pg;
1727 	struct pgpath *p;
1728 	unsigned pg_num;
1729 	char state;
1730 
1731 	spin_lock_irqsave(&m->lock, flags);
1732 
1733 	/* Features */
1734 	if (type == STATUSTYPE_INFO)
1735 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1736 		       atomic_read(&m->pg_init_count));
1737 	else {
1738 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1739 			      (m->pg_init_retries > 0) * 2 +
1740 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1741 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1742 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1743 
1744 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1745 			DMEMIT("queue_if_no_path ");
1746 		if (m->pg_init_retries)
1747 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1748 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1749 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1750 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1751 			DMEMIT("retain_attached_hw_handler ");
1752 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1753 			switch(m->queue_mode) {
1754 			case DM_TYPE_BIO_BASED:
1755 				DMEMIT("queue_mode bio ");
1756 				break;
1757 			default:
1758 				WARN_ON_ONCE(true);
1759 				break;
1760 			}
1761 		}
1762 	}
1763 
1764 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1765 		DMEMIT("0 ");
1766 	else
1767 		DMEMIT("1 %s ", m->hw_handler_name);
1768 
1769 	DMEMIT("%u ", m->nr_priority_groups);
1770 
1771 	if (m->next_pg)
1772 		pg_num = m->next_pg->pg_num;
1773 	else if (m->current_pg)
1774 		pg_num = m->current_pg->pg_num;
1775 	else
1776 		pg_num = (m->nr_priority_groups ? 1 : 0);
1777 
1778 	DMEMIT("%u ", pg_num);
1779 
1780 	switch (type) {
1781 	case STATUSTYPE_INFO:
1782 		list_for_each_entry(pg, &m->priority_groups, list) {
1783 			if (pg->bypassed)
1784 				state = 'D';	/* Disabled */
1785 			else if (pg == m->current_pg)
1786 				state = 'A';	/* Currently Active */
1787 			else
1788 				state = 'E';	/* Enabled */
1789 
1790 			DMEMIT("%c ", state);
1791 
1792 			if (pg->ps.type->status)
1793 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1794 							  result + sz,
1795 							  maxlen - sz);
1796 			else
1797 				DMEMIT("0 ");
1798 
1799 			DMEMIT("%u %u ", pg->nr_pgpaths,
1800 			       pg->ps.type->info_args);
1801 
1802 			list_for_each_entry(p, &pg->pgpaths, list) {
1803 				DMEMIT("%s %s %u ", p->path.dev->name,
1804 				       p->is_active ? "A" : "F",
1805 				       p->fail_count);
1806 				if (pg->ps.type->status)
1807 					sz += pg->ps.type->status(&pg->ps,
1808 					      &p->path, type, result + sz,
1809 					      maxlen - sz);
1810 			}
1811 		}
1812 		break;
1813 
1814 	case STATUSTYPE_TABLE:
1815 		list_for_each_entry(pg, &m->priority_groups, list) {
1816 			DMEMIT("%s ", pg->ps.type->name);
1817 
1818 			if (pg->ps.type->status)
1819 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1820 							  result + sz,
1821 							  maxlen - sz);
1822 			else
1823 				DMEMIT("0 ");
1824 
1825 			DMEMIT("%u %u ", pg->nr_pgpaths,
1826 			       pg->ps.type->table_args);
1827 
1828 			list_for_each_entry(p, &pg->pgpaths, list) {
1829 				DMEMIT("%s ", p->path.dev->name);
1830 				if (pg->ps.type->status)
1831 					sz += pg->ps.type->status(&pg->ps,
1832 					      &p->path, type, result + sz,
1833 					      maxlen - sz);
1834 			}
1835 		}
1836 		break;
1837 	}
1838 
1839 	spin_unlock_irqrestore(&m->lock, flags);
1840 }
1841 
1842 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1843 			     char *result, unsigned maxlen)
1844 {
1845 	int r = -EINVAL;
1846 	struct dm_dev *dev;
1847 	struct multipath *m = ti->private;
1848 	action_fn action;
1849 	unsigned long flags;
1850 
1851 	mutex_lock(&m->work_mutex);
1852 
1853 	if (dm_suspended(ti)) {
1854 		r = -EBUSY;
1855 		goto out;
1856 	}
1857 
1858 	if (argc == 1) {
1859 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1860 			r = queue_if_no_path(m, true, false);
1861 			spin_lock_irqsave(&m->lock, flags);
1862 			enable_nopath_timeout(m);
1863 			spin_unlock_irqrestore(&m->lock, flags);
1864 			goto out;
1865 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1866 			r = queue_if_no_path(m, false, false);
1867 			disable_nopath_timeout(m);
1868 			goto out;
1869 		}
1870 	}
1871 
1872 	if (argc != 2) {
1873 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1874 		goto out;
1875 	}
1876 
1877 	if (!strcasecmp(argv[0], "disable_group")) {
1878 		r = bypass_pg_num(m, argv[1], true);
1879 		goto out;
1880 	} else if (!strcasecmp(argv[0], "enable_group")) {
1881 		r = bypass_pg_num(m, argv[1], false);
1882 		goto out;
1883 	} else if (!strcasecmp(argv[0], "switch_group")) {
1884 		r = switch_pg_num(m, argv[1]);
1885 		goto out;
1886 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1887 		action = reinstate_path;
1888 	else if (!strcasecmp(argv[0], "fail_path"))
1889 		action = fail_path;
1890 	else {
1891 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1892 		goto out;
1893 	}
1894 
1895 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1896 	if (r) {
1897 		DMWARN("message: error getting device %s",
1898 		       argv[1]);
1899 		goto out;
1900 	}
1901 
1902 	r = action_dev(m, dev, action);
1903 
1904 	dm_put_device(ti, dev);
1905 
1906 out:
1907 	mutex_unlock(&m->work_mutex);
1908 	return r;
1909 }
1910 
1911 static int multipath_prepare_ioctl(struct dm_target *ti,
1912 				   struct block_device **bdev)
1913 {
1914 	struct multipath *m = ti->private;
1915 	struct pgpath *current_pgpath;
1916 	int r;
1917 
1918 	current_pgpath = READ_ONCE(m->current_pgpath);
1919 	if (!current_pgpath)
1920 		current_pgpath = choose_pgpath(m, 0);
1921 
1922 	if (current_pgpath) {
1923 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1924 			*bdev = current_pgpath->path.dev->bdev;
1925 			r = 0;
1926 		} else {
1927 			/* pg_init has not started or completed */
1928 			r = -ENOTCONN;
1929 		}
1930 	} else {
1931 		/* No path is available */
1932 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1933 			r = -ENOTCONN;
1934 		else
1935 			r = -EIO;
1936 	}
1937 
1938 	if (r == -ENOTCONN) {
1939 		if (!READ_ONCE(m->current_pg)) {
1940 			/* Path status changed, redo selection */
1941 			(void) choose_pgpath(m, 0);
1942 		}
1943 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1944 			pg_init_all_paths(m);
1945 		dm_table_run_md_queue_async(m->ti->table);
1946 		process_queued_io_list(m);
1947 	}
1948 
1949 	/*
1950 	 * Only pass ioctls through if the device sizes match exactly.
1951 	 */
1952 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1953 		return 1;
1954 	return r;
1955 }
1956 
1957 static int multipath_iterate_devices(struct dm_target *ti,
1958 				     iterate_devices_callout_fn fn, void *data)
1959 {
1960 	struct multipath *m = ti->private;
1961 	struct priority_group *pg;
1962 	struct pgpath *p;
1963 	int ret = 0;
1964 
1965 	list_for_each_entry(pg, &m->priority_groups, list) {
1966 		list_for_each_entry(p, &pg->pgpaths, list) {
1967 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1968 			if (ret)
1969 				goto out;
1970 		}
1971 	}
1972 
1973 out:
1974 	return ret;
1975 }
1976 
1977 static int pgpath_busy(struct pgpath *pgpath)
1978 {
1979 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1980 
1981 	return blk_lld_busy(q);
1982 }
1983 
1984 /*
1985  * We return "busy", only when we can map I/Os but underlying devices
1986  * are busy (so even if we map I/Os now, the I/Os will wait on
1987  * the underlying queue).
1988  * In other words, if we want to kill I/Os or queue them inside us
1989  * due to map unavailability, we don't return "busy".  Otherwise,
1990  * dm core won't give us the I/Os and we can't do what we want.
1991  */
1992 static int multipath_busy(struct dm_target *ti)
1993 {
1994 	bool busy = false, has_active = false;
1995 	struct multipath *m = ti->private;
1996 	struct priority_group *pg, *next_pg;
1997 	struct pgpath *pgpath;
1998 
1999 	/* pg_init in progress */
2000 	if (atomic_read(&m->pg_init_in_progress))
2001 		return true;
2002 
2003 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
2004 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
2005 		return (m->queue_mode != DM_TYPE_REQUEST_BASED);
2006 
2007 	/* Guess which priority_group will be used at next mapping time */
2008 	pg = READ_ONCE(m->current_pg);
2009 	next_pg = READ_ONCE(m->next_pg);
2010 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
2011 		pg = next_pg;
2012 
2013 	if (!pg) {
2014 		/*
2015 		 * We don't know which pg will be used at next mapping time.
2016 		 * We don't call choose_pgpath() here to avoid to trigger
2017 		 * pg_init just by busy checking.
2018 		 * So we don't know whether underlying devices we will be using
2019 		 * at next mapping time are busy or not. Just try mapping.
2020 		 */
2021 		return busy;
2022 	}
2023 
2024 	/*
2025 	 * If there is one non-busy active path at least, the path selector
2026 	 * will be able to select it. So we consider such a pg as not busy.
2027 	 */
2028 	busy = true;
2029 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2030 		if (pgpath->is_active) {
2031 			has_active = true;
2032 			if (!pgpath_busy(pgpath)) {
2033 				busy = false;
2034 				break;
2035 			}
2036 		}
2037 	}
2038 
2039 	if (!has_active) {
2040 		/*
2041 		 * No active path in this pg, so this pg won't be used and
2042 		 * the current_pg will be changed at next mapping time.
2043 		 * We need to try mapping to determine it.
2044 		 */
2045 		busy = false;
2046 	}
2047 
2048 	return busy;
2049 }
2050 
2051 /*-----------------------------------------------------------------
2052  * Module setup
2053  *---------------------------------------------------------------*/
2054 static struct target_type multipath_target = {
2055 	.name = "multipath",
2056 	.version = {1, 14, 0},
2057 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2058 		    DM_TARGET_PASSES_INTEGRITY,
2059 	.module = THIS_MODULE,
2060 	.ctr = multipath_ctr,
2061 	.dtr = multipath_dtr,
2062 	.clone_and_map_rq = multipath_clone_and_map,
2063 	.release_clone_rq = multipath_release_clone,
2064 	.rq_end_io = multipath_end_io,
2065 	.map = multipath_map_bio,
2066 	.end_io = multipath_end_io_bio,
2067 	.presuspend = multipath_presuspend,
2068 	.postsuspend = multipath_postsuspend,
2069 	.resume = multipath_resume,
2070 	.status = multipath_status,
2071 	.message = multipath_message,
2072 	.prepare_ioctl = multipath_prepare_ioctl,
2073 	.iterate_devices = multipath_iterate_devices,
2074 	.busy = multipath_busy,
2075 };
2076 
2077 static int __init dm_multipath_init(void)
2078 {
2079 	int r;
2080 
2081 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2082 	if (!kmultipathd) {
2083 		DMERR("failed to create workqueue kmpathd");
2084 		r = -ENOMEM;
2085 		goto bad_alloc_kmultipathd;
2086 	}
2087 
2088 	/*
2089 	 * A separate workqueue is used to handle the device handlers
2090 	 * to avoid overloading existing workqueue. Overloading the
2091 	 * old workqueue would also create a bottleneck in the
2092 	 * path of the storage hardware device activation.
2093 	 */
2094 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2095 						  WQ_MEM_RECLAIM);
2096 	if (!kmpath_handlerd) {
2097 		DMERR("failed to create workqueue kmpath_handlerd");
2098 		r = -ENOMEM;
2099 		goto bad_alloc_kmpath_handlerd;
2100 	}
2101 
2102 	r = dm_register_target(&multipath_target);
2103 	if (r < 0) {
2104 		DMERR("request-based register failed %d", r);
2105 		r = -EINVAL;
2106 		goto bad_register_target;
2107 	}
2108 
2109 	return 0;
2110 
2111 bad_register_target:
2112 	destroy_workqueue(kmpath_handlerd);
2113 bad_alloc_kmpath_handlerd:
2114 	destroy_workqueue(kmultipathd);
2115 bad_alloc_kmultipathd:
2116 	return r;
2117 }
2118 
2119 static void __exit dm_multipath_exit(void)
2120 {
2121 	destroy_workqueue(kmpath_handlerd);
2122 	destroy_workqueue(kmultipathd);
2123 
2124 	dm_unregister_target(&multipath_target);
2125 }
2126 
2127 module_init(dm_multipath_init);
2128 module_exit(dm_multipath_exit);
2129 
2130 module_param_named(queue_if_no_path_timeout_secs,
2131 		   queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR);
2132 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds");
2133 
2134 MODULE_DESCRIPTION(DM_NAME " multipath target");
2135 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2136 MODULE_LICENSE("GPL");
2137