1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/timer.h> 24 #include <linux/workqueue.h> 25 #include <linux/delay.h> 26 #include <scsi/scsi_dh.h> 27 #include <linux/atomic.h> 28 #include <linux/blk-mq.h> 29 30 #define DM_MSG_PREFIX "multipath" 31 #define DM_PG_INIT_DELAY_MSECS 2000 32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0 34 35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT; 36 37 /* Path properties */ 38 struct pgpath { 39 struct list_head list; 40 41 struct priority_group *pg; /* Owning PG */ 42 unsigned fail_count; /* Cumulative failure count */ 43 44 struct dm_path path; 45 struct delayed_work activate_path; 46 47 bool is_active:1; /* Path status */ 48 }; 49 50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 51 52 /* 53 * Paths are grouped into Priority Groups and numbered from 1 upwards. 54 * Each has a path selector which controls which path gets used. 55 */ 56 struct priority_group { 57 struct list_head list; 58 59 struct multipath *m; /* Owning multipath instance */ 60 struct path_selector ps; 61 62 unsigned pg_num; /* Reference number */ 63 unsigned nr_pgpaths; /* Number of paths in PG */ 64 struct list_head pgpaths; 65 66 bool bypassed:1; /* Temporarily bypass this PG? */ 67 }; 68 69 /* Multipath context */ 70 struct multipath { 71 unsigned long flags; /* Multipath state flags */ 72 73 spinlock_t lock; 74 enum dm_queue_mode queue_mode; 75 76 struct pgpath *current_pgpath; 77 struct priority_group *current_pg; 78 struct priority_group *next_pg; /* Switch to this PG if set */ 79 80 atomic_t nr_valid_paths; /* Total number of usable paths */ 81 unsigned nr_priority_groups; 82 struct list_head priority_groups; 83 84 const char *hw_handler_name; 85 char *hw_handler_params; 86 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 87 unsigned pg_init_retries; /* Number of times to retry pg_init */ 88 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 89 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 90 atomic_t pg_init_count; /* Number of times pg_init called */ 91 92 struct mutex work_mutex; 93 struct work_struct trigger_event; 94 struct dm_target *ti; 95 96 struct work_struct process_queued_bios; 97 struct bio_list queued_bios; 98 99 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */ 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 static void queue_if_no_path_timeout_work(struct timer_list *t); 118 119 /*----------------------------------------------- 120 * Multipath state flags. 121 *-----------------------------------------------*/ 122 123 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 124 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 127 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 128 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 129 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 130 131 /*----------------------------------------------- 132 * Allocation routines 133 *-----------------------------------------------*/ 134 135 static struct pgpath *alloc_pgpath(void) 136 { 137 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 138 139 if (!pgpath) 140 return NULL; 141 142 pgpath->is_active = true; 143 144 return pgpath; 145 } 146 147 static void free_pgpath(struct pgpath *pgpath) 148 { 149 kfree(pgpath); 150 } 151 152 static struct priority_group *alloc_priority_group(void) 153 { 154 struct priority_group *pg; 155 156 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 157 158 if (pg) 159 INIT_LIST_HEAD(&pg->pgpaths); 160 161 return pg; 162 } 163 164 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 165 { 166 struct pgpath *pgpath, *tmp; 167 168 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 169 list_del(&pgpath->list); 170 dm_put_device(ti, pgpath->path.dev); 171 free_pgpath(pgpath); 172 } 173 } 174 175 static void free_priority_group(struct priority_group *pg, 176 struct dm_target *ti) 177 { 178 struct path_selector *ps = &pg->ps; 179 180 if (ps->type) { 181 ps->type->destroy(ps); 182 dm_put_path_selector(ps->type); 183 } 184 185 free_pgpaths(&pg->pgpaths, ti); 186 kfree(pg); 187 } 188 189 static struct multipath *alloc_multipath(struct dm_target *ti) 190 { 191 struct multipath *m; 192 193 m = kzalloc(sizeof(*m), GFP_KERNEL); 194 if (m) { 195 INIT_LIST_HEAD(&m->priority_groups); 196 spin_lock_init(&m->lock); 197 atomic_set(&m->nr_valid_paths, 0); 198 INIT_WORK(&m->trigger_event, trigger_event); 199 mutex_init(&m->work_mutex); 200 201 m->queue_mode = DM_TYPE_NONE; 202 203 m->ti = ti; 204 ti->private = m; 205 206 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0); 207 } 208 209 return m; 210 } 211 212 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 213 { 214 if (m->queue_mode == DM_TYPE_NONE) { 215 m->queue_mode = DM_TYPE_REQUEST_BASED; 216 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 217 INIT_WORK(&m->process_queued_bios, process_queued_bios); 218 /* 219 * bio-based doesn't support any direct scsi_dh management; 220 * it just discovers if a scsi_dh is attached. 221 */ 222 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 223 } 224 225 dm_table_set_type(ti->table, m->queue_mode); 226 227 /* 228 * Init fields that are only used when a scsi_dh is attached 229 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 230 */ 231 set_bit(MPATHF_QUEUE_IO, &m->flags); 232 atomic_set(&m->pg_init_in_progress, 0); 233 atomic_set(&m->pg_init_count, 0); 234 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 235 init_waitqueue_head(&m->pg_init_wait); 236 237 return 0; 238 } 239 240 static void free_multipath(struct multipath *m) 241 { 242 struct priority_group *pg, *tmp; 243 244 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 245 list_del(&pg->list); 246 free_priority_group(pg, m->ti); 247 } 248 249 kfree(m->hw_handler_name); 250 kfree(m->hw_handler_params); 251 mutex_destroy(&m->work_mutex); 252 kfree(m); 253 } 254 255 static struct dm_mpath_io *get_mpio(union map_info *info) 256 { 257 return info->ptr; 258 } 259 260 static size_t multipath_per_bio_data_size(void) 261 { 262 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 263 } 264 265 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 266 { 267 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 268 } 269 270 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 271 { 272 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 273 void *bio_details = mpio + 1; 274 return bio_details; 275 } 276 277 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 281 282 mpio->nr_bytes = bio->bi_iter.bi_size; 283 mpio->pgpath = NULL; 284 *mpio_p = mpio; 285 286 dm_bio_record(bio_details, bio); 287 } 288 289 /*----------------------------------------------- 290 * Path selection 291 *-----------------------------------------------*/ 292 293 static int __pg_init_all_paths(struct multipath *m) 294 { 295 struct pgpath *pgpath; 296 unsigned long pg_init_delay = 0; 297 298 lockdep_assert_held(&m->lock); 299 300 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 301 return 0; 302 303 atomic_inc(&m->pg_init_count); 304 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 305 306 /* Check here to reset pg_init_required */ 307 if (!m->current_pg) 308 return 0; 309 310 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 311 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 312 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 313 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 314 /* Skip failed paths */ 315 if (!pgpath->is_active) 316 continue; 317 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 318 pg_init_delay)) 319 atomic_inc(&m->pg_init_in_progress); 320 } 321 return atomic_read(&m->pg_init_in_progress); 322 } 323 324 static int pg_init_all_paths(struct multipath *m) 325 { 326 int ret; 327 unsigned long flags; 328 329 spin_lock_irqsave(&m->lock, flags); 330 ret = __pg_init_all_paths(m); 331 spin_unlock_irqrestore(&m->lock, flags); 332 333 return ret; 334 } 335 336 static void __switch_pg(struct multipath *m, struct priority_group *pg) 337 { 338 m->current_pg = pg; 339 340 /* Must we initialise the PG first, and queue I/O till it's ready? */ 341 if (m->hw_handler_name) { 342 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 343 set_bit(MPATHF_QUEUE_IO, &m->flags); 344 } else { 345 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 clear_bit(MPATHF_QUEUE_IO, &m->flags); 347 } 348 349 atomic_set(&m->pg_init_count, 0); 350 } 351 352 static struct pgpath *choose_path_in_pg(struct multipath *m, 353 struct priority_group *pg, 354 size_t nr_bytes) 355 { 356 unsigned long flags; 357 struct dm_path *path; 358 struct pgpath *pgpath; 359 360 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 361 if (!path) 362 return ERR_PTR(-ENXIO); 363 364 pgpath = path_to_pgpath(path); 365 366 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 367 /* Only update current_pgpath if pg changed */ 368 spin_lock_irqsave(&m->lock, flags); 369 m->current_pgpath = pgpath; 370 __switch_pg(m, pg); 371 spin_unlock_irqrestore(&m->lock, flags); 372 } 373 374 return pgpath; 375 } 376 377 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 378 { 379 unsigned long flags; 380 struct priority_group *pg; 381 struct pgpath *pgpath; 382 unsigned bypassed = 1; 383 384 if (!atomic_read(&m->nr_valid_paths)) { 385 clear_bit(MPATHF_QUEUE_IO, &m->flags); 386 goto failed; 387 } 388 389 /* Were we instructed to switch PG? */ 390 if (READ_ONCE(m->next_pg)) { 391 spin_lock_irqsave(&m->lock, flags); 392 pg = m->next_pg; 393 if (!pg) { 394 spin_unlock_irqrestore(&m->lock, flags); 395 goto check_current_pg; 396 } 397 m->next_pg = NULL; 398 spin_unlock_irqrestore(&m->lock, flags); 399 pgpath = choose_path_in_pg(m, pg, nr_bytes); 400 if (!IS_ERR_OR_NULL(pgpath)) 401 return pgpath; 402 } 403 404 /* Don't change PG until it has no remaining paths */ 405 check_current_pg: 406 pg = READ_ONCE(m->current_pg); 407 if (pg) { 408 pgpath = choose_path_in_pg(m, pg, nr_bytes); 409 if (!IS_ERR_OR_NULL(pgpath)) 410 return pgpath; 411 } 412 413 /* 414 * Loop through priority groups until we find a valid path. 415 * First time we skip PGs marked 'bypassed'. 416 * Second time we only try the ones we skipped, but set 417 * pg_init_delay_retry so we do not hammer controllers. 418 */ 419 do { 420 list_for_each_entry(pg, &m->priority_groups, list) { 421 if (pg->bypassed == !!bypassed) 422 continue; 423 pgpath = choose_path_in_pg(m, pg, nr_bytes); 424 if (!IS_ERR_OR_NULL(pgpath)) { 425 if (!bypassed) 426 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 427 return pgpath; 428 } 429 } 430 } while (bypassed--); 431 432 failed: 433 spin_lock_irqsave(&m->lock, flags); 434 m->current_pgpath = NULL; 435 m->current_pg = NULL; 436 spin_unlock_irqrestore(&m->lock, flags); 437 438 return NULL; 439 } 440 441 /* 442 * dm_report_EIO() is a macro instead of a function to make pr_debug() 443 * report the function name and line number of the function from which 444 * it has been invoked. 445 */ 446 #define dm_report_EIO(m) \ 447 do { \ 448 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 449 \ 450 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 451 dm_device_name(md), \ 452 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 453 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 454 dm_noflush_suspending((m)->ti)); \ 455 } while (0) 456 457 /* 458 * Check whether bios must be queued in the device-mapper core rather 459 * than here in the target. 460 * 461 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 462 * the same value then we are not between multipath_presuspend() 463 * and multipath_resume() calls and we have no need to check 464 * for the DMF_NOFLUSH_SUSPENDING flag. 465 */ 466 static bool __must_push_back(struct multipath *m, unsigned long flags) 467 { 468 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 469 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 470 dm_noflush_suspending(m->ti)); 471 } 472 473 /* 474 * Following functions use READ_ONCE to get atomic access to 475 * all m->flags to avoid taking spinlock 476 */ 477 static bool must_push_back_rq(struct multipath *m) 478 { 479 unsigned long flags = READ_ONCE(m->flags); 480 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 481 } 482 483 static bool must_push_back_bio(struct multipath *m) 484 { 485 unsigned long flags = READ_ONCE(m->flags); 486 return __must_push_back(m, flags); 487 } 488 489 /* 490 * Map cloned requests (request-based multipath) 491 */ 492 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 493 union map_info *map_context, 494 struct request **__clone) 495 { 496 struct multipath *m = ti->private; 497 size_t nr_bytes = blk_rq_bytes(rq); 498 struct pgpath *pgpath; 499 struct block_device *bdev; 500 struct dm_mpath_io *mpio = get_mpio(map_context); 501 struct request_queue *q; 502 struct request *clone; 503 504 /* Do we need to select a new pgpath? */ 505 pgpath = READ_ONCE(m->current_pgpath); 506 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 507 pgpath = choose_pgpath(m, nr_bytes); 508 509 if (!pgpath) { 510 if (must_push_back_rq(m)) 511 return DM_MAPIO_DELAY_REQUEUE; 512 dm_report_EIO(m); /* Failed */ 513 return DM_MAPIO_KILL; 514 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 515 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 516 pg_init_all_paths(m); 517 return DM_MAPIO_DELAY_REQUEUE; 518 } 519 520 mpio->pgpath = pgpath; 521 mpio->nr_bytes = nr_bytes; 522 523 bdev = pgpath->path.dev->bdev; 524 q = bdev_get_queue(bdev); 525 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, 526 BLK_MQ_REQ_NOWAIT); 527 if (IS_ERR(clone)) { 528 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 529 if (blk_queue_dying(q)) { 530 atomic_inc(&m->pg_init_in_progress); 531 activate_or_offline_path(pgpath); 532 return DM_MAPIO_DELAY_REQUEUE; 533 } 534 535 /* 536 * blk-mq's SCHED_RESTART can cover this requeue, so we 537 * needn't deal with it by DELAY_REQUEUE. More importantly, 538 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 539 * get the queue busy feedback (via BLK_STS_RESOURCE), 540 * otherwise I/O merging can suffer. 541 */ 542 return DM_MAPIO_REQUEUE; 543 } 544 clone->bio = clone->biotail = NULL; 545 clone->rq_disk = bdev->bd_disk; 546 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 547 *__clone = clone; 548 549 if (pgpath->pg->ps.type->start_io) 550 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 551 &pgpath->path, 552 nr_bytes); 553 return DM_MAPIO_REMAPPED; 554 } 555 556 static void multipath_release_clone(struct request *clone, 557 union map_info *map_context) 558 { 559 if (unlikely(map_context)) { 560 /* 561 * non-NULL map_context means caller is still map 562 * method; must undo multipath_clone_and_map() 563 */ 564 struct dm_mpath_io *mpio = get_mpio(map_context); 565 struct pgpath *pgpath = mpio->pgpath; 566 567 if (pgpath && pgpath->pg->ps.type->end_io) 568 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 569 &pgpath->path, 570 mpio->nr_bytes); 571 } 572 573 blk_put_request(clone); 574 } 575 576 /* 577 * Map cloned bios (bio-based multipath) 578 */ 579 580 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 581 { 582 struct pgpath *pgpath; 583 unsigned long flags; 584 bool queue_io; 585 586 /* Do we need to select a new pgpath? */ 587 pgpath = READ_ONCE(m->current_pgpath); 588 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 589 if (!pgpath || !queue_io) 590 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 591 592 if ((pgpath && queue_io) || 593 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 594 /* Queue for the daemon to resubmit */ 595 spin_lock_irqsave(&m->lock, flags); 596 bio_list_add(&m->queued_bios, bio); 597 spin_unlock_irqrestore(&m->lock, flags); 598 599 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 600 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 601 pg_init_all_paths(m); 602 else if (!queue_io) 603 queue_work(kmultipathd, &m->process_queued_bios); 604 605 return ERR_PTR(-EAGAIN); 606 } 607 608 return pgpath; 609 } 610 611 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 612 struct dm_mpath_io *mpio) 613 { 614 struct pgpath *pgpath = __map_bio(m, bio); 615 616 if (IS_ERR(pgpath)) 617 return DM_MAPIO_SUBMITTED; 618 619 if (!pgpath) { 620 if (must_push_back_bio(m)) 621 return DM_MAPIO_REQUEUE; 622 dm_report_EIO(m); 623 return DM_MAPIO_KILL; 624 } 625 626 mpio->pgpath = pgpath; 627 628 bio->bi_status = 0; 629 bio_set_dev(bio, pgpath->path.dev->bdev); 630 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 631 632 if (pgpath->pg->ps.type->start_io) 633 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 634 &pgpath->path, 635 mpio->nr_bytes); 636 return DM_MAPIO_REMAPPED; 637 } 638 639 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 640 { 641 struct multipath *m = ti->private; 642 struct dm_mpath_io *mpio = NULL; 643 644 multipath_init_per_bio_data(bio, &mpio); 645 return __multipath_map_bio(m, bio, mpio); 646 } 647 648 static void process_queued_io_list(struct multipath *m) 649 { 650 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 651 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 652 else if (m->queue_mode == DM_TYPE_BIO_BASED) 653 queue_work(kmultipathd, &m->process_queued_bios); 654 } 655 656 static void process_queued_bios(struct work_struct *work) 657 { 658 int r; 659 unsigned long flags; 660 struct bio *bio; 661 struct bio_list bios; 662 struct blk_plug plug; 663 struct multipath *m = 664 container_of(work, struct multipath, process_queued_bios); 665 666 bio_list_init(&bios); 667 668 spin_lock_irqsave(&m->lock, flags); 669 670 if (bio_list_empty(&m->queued_bios)) { 671 spin_unlock_irqrestore(&m->lock, flags); 672 return; 673 } 674 675 bio_list_merge(&bios, &m->queued_bios); 676 bio_list_init(&m->queued_bios); 677 678 spin_unlock_irqrestore(&m->lock, flags); 679 680 blk_start_plug(&plug); 681 while ((bio = bio_list_pop(&bios))) { 682 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 683 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 684 r = __multipath_map_bio(m, bio, mpio); 685 switch (r) { 686 case DM_MAPIO_KILL: 687 bio->bi_status = BLK_STS_IOERR; 688 bio_endio(bio); 689 break; 690 case DM_MAPIO_REQUEUE: 691 bio->bi_status = BLK_STS_DM_REQUEUE; 692 bio_endio(bio); 693 break; 694 case DM_MAPIO_REMAPPED: 695 generic_make_request(bio); 696 break; 697 case DM_MAPIO_SUBMITTED: 698 break; 699 default: 700 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 701 } 702 } 703 blk_finish_plug(&plug); 704 } 705 706 /* 707 * If we run out of usable paths, should we queue I/O or error it? 708 */ 709 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 710 bool save_old_value) 711 { 712 unsigned long flags; 713 714 spin_lock_irqsave(&m->lock, flags); 715 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 716 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 717 (!save_old_value && queue_if_no_path)); 718 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 719 spin_unlock_irqrestore(&m->lock, flags); 720 721 if (!queue_if_no_path) { 722 dm_table_run_md_queue_async(m->ti->table); 723 process_queued_io_list(m); 724 } 725 726 return 0; 727 } 728 729 /* 730 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and 731 * process any queued I/O. 732 */ 733 static void queue_if_no_path_timeout_work(struct timer_list *t) 734 { 735 struct multipath *m = from_timer(m, t, nopath_timer); 736 struct mapped_device *md = dm_table_get_md(m->ti->table); 737 738 DMWARN("queue_if_no_path timeout on %s, failing queued IO", dm_device_name(md)); 739 queue_if_no_path(m, false, false); 740 } 741 742 /* 743 * Enable the queue_if_no_path timeout if necessary. 744 * Called with m->lock held. 745 */ 746 static void enable_nopath_timeout(struct multipath *m) 747 { 748 unsigned long queue_if_no_path_timeout = 749 READ_ONCE(queue_if_no_path_timeout_secs) * HZ; 750 751 lockdep_assert_held(&m->lock); 752 753 if (queue_if_no_path_timeout > 0 && 754 atomic_read(&m->nr_valid_paths) == 0 && 755 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 756 mod_timer(&m->nopath_timer, 757 jiffies + queue_if_no_path_timeout); 758 } 759 } 760 761 static void disable_nopath_timeout(struct multipath *m) 762 { 763 del_timer_sync(&m->nopath_timer); 764 } 765 766 /* 767 * An event is triggered whenever a path is taken out of use. 768 * Includes path failure and PG bypass. 769 */ 770 static void trigger_event(struct work_struct *work) 771 { 772 struct multipath *m = 773 container_of(work, struct multipath, trigger_event); 774 775 dm_table_event(m->ti->table); 776 } 777 778 /*----------------------------------------------------------------- 779 * Constructor/argument parsing: 780 * <#multipath feature args> [<arg>]* 781 * <#hw_handler args> [hw_handler [<arg>]*] 782 * <#priority groups> 783 * <initial priority group> 784 * [<selector> <#selector args> [<arg>]* 785 * <#paths> <#per-path selector args> 786 * [<path> [<arg>]* ]+ ]+ 787 *---------------------------------------------------------------*/ 788 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 789 struct dm_target *ti) 790 { 791 int r; 792 struct path_selector_type *pst; 793 unsigned ps_argc; 794 795 static const struct dm_arg _args[] = { 796 {0, 1024, "invalid number of path selector args"}, 797 }; 798 799 pst = dm_get_path_selector(dm_shift_arg(as)); 800 if (!pst) { 801 ti->error = "unknown path selector type"; 802 return -EINVAL; 803 } 804 805 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 806 if (r) { 807 dm_put_path_selector(pst); 808 return -EINVAL; 809 } 810 811 r = pst->create(&pg->ps, ps_argc, as->argv); 812 if (r) { 813 dm_put_path_selector(pst); 814 ti->error = "path selector constructor failed"; 815 return r; 816 } 817 818 pg->ps.type = pst; 819 dm_consume_args(as, ps_argc); 820 821 return 0; 822 } 823 824 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 825 const char **attached_handler_name, char **error) 826 { 827 struct request_queue *q = bdev_get_queue(bdev); 828 int r; 829 830 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 831 retain: 832 if (*attached_handler_name) { 833 /* 834 * Clear any hw_handler_params associated with a 835 * handler that isn't already attached. 836 */ 837 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 838 kfree(m->hw_handler_params); 839 m->hw_handler_params = NULL; 840 } 841 842 /* 843 * Reset hw_handler_name to match the attached handler 844 * 845 * NB. This modifies the table line to show the actual 846 * handler instead of the original table passed in. 847 */ 848 kfree(m->hw_handler_name); 849 m->hw_handler_name = *attached_handler_name; 850 *attached_handler_name = NULL; 851 } 852 } 853 854 if (m->hw_handler_name) { 855 r = scsi_dh_attach(q, m->hw_handler_name); 856 if (r == -EBUSY) { 857 char b[BDEVNAME_SIZE]; 858 859 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 860 bdevname(bdev, b)); 861 goto retain; 862 } 863 if (r < 0) { 864 *error = "error attaching hardware handler"; 865 return r; 866 } 867 868 if (m->hw_handler_params) { 869 r = scsi_dh_set_params(q, m->hw_handler_params); 870 if (r < 0) { 871 *error = "unable to set hardware handler parameters"; 872 return r; 873 } 874 } 875 } 876 877 return 0; 878 } 879 880 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 881 struct dm_target *ti) 882 { 883 int r; 884 struct pgpath *p; 885 struct multipath *m = ti->private; 886 struct request_queue *q; 887 const char *attached_handler_name = NULL; 888 889 /* we need at least a path arg */ 890 if (as->argc < 1) { 891 ti->error = "no device given"; 892 return ERR_PTR(-EINVAL); 893 } 894 895 p = alloc_pgpath(); 896 if (!p) 897 return ERR_PTR(-ENOMEM); 898 899 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 900 &p->path.dev); 901 if (r) { 902 ti->error = "error getting device"; 903 goto bad; 904 } 905 906 q = bdev_get_queue(p->path.dev->bdev); 907 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 908 if (attached_handler_name || m->hw_handler_name) { 909 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 910 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 911 kfree(attached_handler_name); 912 if (r) { 913 dm_put_device(ti, p->path.dev); 914 goto bad; 915 } 916 } 917 918 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 919 if (r) { 920 dm_put_device(ti, p->path.dev); 921 goto bad; 922 } 923 924 return p; 925 bad: 926 free_pgpath(p); 927 return ERR_PTR(r); 928 } 929 930 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 931 struct multipath *m) 932 { 933 static const struct dm_arg _args[] = { 934 {1, 1024, "invalid number of paths"}, 935 {0, 1024, "invalid number of selector args"} 936 }; 937 938 int r; 939 unsigned i, nr_selector_args, nr_args; 940 struct priority_group *pg; 941 struct dm_target *ti = m->ti; 942 943 if (as->argc < 2) { 944 as->argc = 0; 945 ti->error = "not enough priority group arguments"; 946 return ERR_PTR(-EINVAL); 947 } 948 949 pg = alloc_priority_group(); 950 if (!pg) { 951 ti->error = "couldn't allocate priority group"; 952 return ERR_PTR(-ENOMEM); 953 } 954 pg->m = m; 955 956 r = parse_path_selector(as, pg, ti); 957 if (r) 958 goto bad; 959 960 /* 961 * read the paths 962 */ 963 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 964 if (r) 965 goto bad; 966 967 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 968 if (r) 969 goto bad; 970 971 nr_args = 1 + nr_selector_args; 972 for (i = 0; i < pg->nr_pgpaths; i++) { 973 struct pgpath *pgpath; 974 struct dm_arg_set path_args; 975 976 if (as->argc < nr_args) { 977 ti->error = "not enough path parameters"; 978 r = -EINVAL; 979 goto bad; 980 } 981 982 path_args.argc = nr_args; 983 path_args.argv = as->argv; 984 985 pgpath = parse_path(&path_args, &pg->ps, ti); 986 if (IS_ERR(pgpath)) { 987 r = PTR_ERR(pgpath); 988 goto bad; 989 } 990 991 pgpath->pg = pg; 992 list_add_tail(&pgpath->list, &pg->pgpaths); 993 dm_consume_args(as, nr_args); 994 } 995 996 return pg; 997 998 bad: 999 free_priority_group(pg, ti); 1000 return ERR_PTR(r); 1001 } 1002 1003 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 1004 { 1005 unsigned hw_argc; 1006 int ret; 1007 struct dm_target *ti = m->ti; 1008 1009 static const struct dm_arg _args[] = { 1010 {0, 1024, "invalid number of hardware handler args"}, 1011 }; 1012 1013 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 1014 return -EINVAL; 1015 1016 if (!hw_argc) 1017 return 0; 1018 1019 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1020 dm_consume_args(as, hw_argc); 1021 DMERR("bio-based multipath doesn't allow hardware handler args"); 1022 return 0; 1023 } 1024 1025 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1026 if (!m->hw_handler_name) 1027 return -EINVAL; 1028 1029 if (hw_argc > 1) { 1030 char *p; 1031 int i, j, len = 4; 1032 1033 for (i = 0; i <= hw_argc - 2; i++) 1034 len += strlen(as->argv[i]) + 1; 1035 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1036 if (!p) { 1037 ti->error = "memory allocation failed"; 1038 ret = -ENOMEM; 1039 goto fail; 1040 } 1041 j = sprintf(p, "%d", hw_argc - 1); 1042 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1043 j = sprintf(p, "%s", as->argv[i]); 1044 } 1045 dm_consume_args(as, hw_argc - 1); 1046 1047 return 0; 1048 fail: 1049 kfree(m->hw_handler_name); 1050 m->hw_handler_name = NULL; 1051 return ret; 1052 } 1053 1054 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1055 { 1056 int r; 1057 unsigned argc; 1058 struct dm_target *ti = m->ti; 1059 const char *arg_name; 1060 1061 static const struct dm_arg _args[] = { 1062 {0, 8, "invalid number of feature args"}, 1063 {1, 50, "pg_init_retries must be between 1 and 50"}, 1064 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1065 }; 1066 1067 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1068 if (r) 1069 return -EINVAL; 1070 1071 if (!argc) 1072 return 0; 1073 1074 do { 1075 arg_name = dm_shift_arg(as); 1076 argc--; 1077 1078 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1079 r = queue_if_no_path(m, true, false); 1080 continue; 1081 } 1082 1083 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1084 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1085 continue; 1086 } 1087 1088 if (!strcasecmp(arg_name, "pg_init_retries") && 1089 (argc >= 1)) { 1090 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1091 argc--; 1092 continue; 1093 } 1094 1095 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1096 (argc >= 1)) { 1097 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1098 argc--; 1099 continue; 1100 } 1101 1102 if (!strcasecmp(arg_name, "queue_mode") && 1103 (argc >= 1)) { 1104 const char *queue_mode_name = dm_shift_arg(as); 1105 1106 if (!strcasecmp(queue_mode_name, "bio")) 1107 m->queue_mode = DM_TYPE_BIO_BASED; 1108 else if (!strcasecmp(queue_mode_name, "rq") || 1109 !strcasecmp(queue_mode_name, "mq")) 1110 m->queue_mode = DM_TYPE_REQUEST_BASED; 1111 else { 1112 ti->error = "Unknown 'queue_mode' requested"; 1113 r = -EINVAL; 1114 } 1115 argc--; 1116 continue; 1117 } 1118 1119 ti->error = "Unrecognised multipath feature request"; 1120 r = -EINVAL; 1121 } while (argc && !r); 1122 1123 return r; 1124 } 1125 1126 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1127 { 1128 /* target arguments */ 1129 static const struct dm_arg _args[] = { 1130 {0, 1024, "invalid number of priority groups"}, 1131 {0, 1024, "invalid initial priority group number"}, 1132 }; 1133 1134 int r; 1135 struct multipath *m; 1136 struct dm_arg_set as; 1137 unsigned pg_count = 0; 1138 unsigned next_pg_num; 1139 unsigned long flags; 1140 1141 as.argc = argc; 1142 as.argv = argv; 1143 1144 m = alloc_multipath(ti); 1145 if (!m) { 1146 ti->error = "can't allocate multipath"; 1147 return -EINVAL; 1148 } 1149 1150 r = parse_features(&as, m); 1151 if (r) 1152 goto bad; 1153 1154 r = alloc_multipath_stage2(ti, m); 1155 if (r) 1156 goto bad; 1157 1158 r = parse_hw_handler(&as, m); 1159 if (r) 1160 goto bad; 1161 1162 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1163 if (r) 1164 goto bad; 1165 1166 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1167 if (r) 1168 goto bad; 1169 1170 if ((!m->nr_priority_groups && next_pg_num) || 1171 (m->nr_priority_groups && !next_pg_num)) { 1172 ti->error = "invalid initial priority group"; 1173 r = -EINVAL; 1174 goto bad; 1175 } 1176 1177 /* parse the priority groups */ 1178 while (as.argc) { 1179 struct priority_group *pg; 1180 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1181 1182 pg = parse_priority_group(&as, m); 1183 if (IS_ERR(pg)) { 1184 r = PTR_ERR(pg); 1185 goto bad; 1186 } 1187 1188 nr_valid_paths += pg->nr_pgpaths; 1189 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1190 1191 list_add_tail(&pg->list, &m->priority_groups); 1192 pg_count++; 1193 pg->pg_num = pg_count; 1194 if (!--next_pg_num) 1195 m->next_pg = pg; 1196 } 1197 1198 if (pg_count != m->nr_priority_groups) { 1199 ti->error = "priority group count mismatch"; 1200 r = -EINVAL; 1201 goto bad; 1202 } 1203 1204 spin_lock_irqsave(&m->lock, flags); 1205 enable_nopath_timeout(m); 1206 spin_unlock_irqrestore(&m->lock, flags); 1207 1208 ti->num_flush_bios = 1; 1209 ti->num_discard_bios = 1; 1210 ti->num_write_same_bios = 1; 1211 ti->num_write_zeroes_bios = 1; 1212 if (m->queue_mode == DM_TYPE_BIO_BASED) 1213 ti->per_io_data_size = multipath_per_bio_data_size(); 1214 else 1215 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1216 1217 return 0; 1218 1219 bad: 1220 free_multipath(m); 1221 return r; 1222 } 1223 1224 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1225 { 1226 DEFINE_WAIT(wait); 1227 1228 while (1) { 1229 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1230 1231 if (!atomic_read(&m->pg_init_in_progress)) 1232 break; 1233 1234 io_schedule(); 1235 } 1236 finish_wait(&m->pg_init_wait, &wait); 1237 } 1238 1239 static void flush_multipath_work(struct multipath *m) 1240 { 1241 if (m->hw_handler_name) { 1242 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1243 smp_mb__after_atomic(); 1244 1245 if (atomic_read(&m->pg_init_in_progress)) 1246 flush_workqueue(kmpath_handlerd); 1247 multipath_wait_for_pg_init_completion(m); 1248 1249 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1250 smp_mb__after_atomic(); 1251 } 1252 1253 if (m->queue_mode == DM_TYPE_BIO_BASED) 1254 flush_work(&m->process_queued_bios); 1255 flush_work(&m->trigger_event); 1256 } 1257 1258 static void multipath_dtr(struct dm_target *ti) 1259 { 1260 struct multipath *m = ti->private; 1261 1262 disable_nopath_timeout(m); 1263 flush_multipath_work(m); 1264 free_multipath(m); 1265 } 1266 1267 /* 1268 * Take a path out of use. 1269 */ 1270 static int fail_path(struct pgpath *pgpath) 1271 { 1272 unsigned long flags; 1273 struct multipath *m = pgpath->pg->m; 1274 1275 spin_lock_irqsave(&m->lock, flags); 1276 1277 if (!pgpath->is_active) 1278 goto out; 1279 1280 DMWARN("Failing path %s.", pgpath->path.dev->name); 1281 1282 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1283 pgpath->is_active = false; 1284 pgpath->fail_count++; 1285 1286 atomic_dec(&m->nr_valid_paths); 1287 1288 if (pgpath == m->current_pgpath) 1289 m->current_pgpath = NULL; 1290 1291 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1292 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1293 1294 schedule_work(&m->trigger_event); 1295 1296 enable_nopath_timeout(m); 1297 1298 out: 1299 spin_unlock_irqrestore(&m->lock, flags); 1300 1301 return 0; 1302 } 1303 1304 /* 1305 * Reinstate a previously-failed path 1306 */ 1307 static int reinstate_path(struct pgpath *pgpath) 1308 { 1309 int r = 0, run_queue = 0; 1310 unsigned long flags; 1311 struct multipath *m = pgpath->pg->m; 1312 unsigned nr_valid_paths; 1313 1314 spin_lock_irqsave(&m->lock, flags); 1315 1316 if (pgpath->is_active) 1317 goto out; 1318 1319 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1320 1321 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1322 if (r) 1323 goto out; 1324 1325 pgpath->is_active = true; 1326 1327 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1328 if (nr_valid_paths == 1) { 1329 m->current_pgpath = NULL; 1330 run_queue = 1; 1331 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1332 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1333 atomic_inc(&m->pg_init_in_progress); 1334 } 1335 1336 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1337 pgpath->path.dev->name, nr_valid_paths); 1338 1339 schedule_work(&m->trigger_event); 1340 1341 out: 1342 spin_unlock_irqrestore(&m->lock, flags); 1343 if (run_queue) { 1344 dm_table_run_md_queue_async(m->ti->table); 1345 process_queued_io_list(m); 1346 } 1347 1348 if (pgpath->is_active) 1349 disable_nopath_timeout(m); 1350 1351 return r; 1352 } 1353 1354 /* 1355 * Fail or reinstate all paths that match the provided struct dm_dev. 1356 */ 1357 static int action_dev(struct multipath *m, struct dm_dev *dev, 1358 action_fn action) 1359 { 1360 int r = -EINVAL; 1361 struct pgpath *pgpath; 1362 struct priority_group *pg; 1363 1364 list_for_each_entry(pg, &m->priority_groups, list) { 1365 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1366 if (pgpath->path.dev == dev) 1367 r = action(pgpath); 1368 } 1369 } 1370 1371 return r; 1372 } 1373 1374 /* 1375 * Temporarily try to avoid having to use the specified PG 1376 */ 1377 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1378 bool bypassed) 1379 { 1380 unsigned long flags; 1381 1382 spin_lock_irqsave(&m->lock, flags); 1383 1384 pg->bypassed = bypassed; 1385 m->current_pgpath = NULL; 1386 m->current_pg = NULL; 1387 1388 spin_unlock_irqrestore(&m->lock, flags); 1389 1390 schedule_work(&m->trigger_event); 1391 } 1392 1393 /* 1394 * Switch to using the specified PG from the next I/O that gets mapped 1395 */ 1396 static int switch_pg_num(struct multipath *m, const char *pgstr) 1397 { 1398 struct priority_group *pg; 1399 unsigned pgnum; 1400 unsigned long flags; 1401 char dummy; 1402 1403 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1404 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1405 DMWARN("invalid PG number supplied to switch_pg_num"); 1406 return -EINVAL; 1407 } 1408 1409 spin_lock_irqsave(&m->lock, flags); 1410 list_for_each_entry(pg, &m->priority_groups, list) { 1411 pg->bypassed = false; 1412 if (--pgnum) 1413 continue; 1414 1415 m->current_pgpath = NULL; 1416 m->current_pg = NULL; 1417 m->next_pg = pg; 1418 } 1419 spin_unlock_irqrestore(&m->lock, flags); 1420 1421 schedule_work(&m->trigger_event); 1422 return 0; 1423 } 1424 1425 /* 1426 * Set/clear bypassed status of a PG. 1427 * PGs are numbered upwards from 1 in the order they were declared. 1428 */ 1429 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1430 { 1431 struct priority_group *pg; 1432 unsigned pgnum; 1433 char dummy; 1434 1435 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1436 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1437 DMWARN("invalid PG number supplied to bypass_pg"); 1438 return -EINVAL; 1439 } 1440 1441 list_for_each_entry(pg, &m->priority_groups, list) { 1442 if (!--pgnum) 1443 break; 1444 } 1445 1446 bypass_pg(m, pg, bypassed); 1447 return 0; 1448 } 1449 1450 /* 1451 * Should we retry pg_init immediately? 1452 */ 1453 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1454 { 1455 unsigned long flags; 1456 bool limit_reached = false; 1457 1458 spin_lock_irqsave(&m->lock, flags); 1459 1460 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1461 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1462 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1463 else 1464 limit_reached = true; 1465 1466 spin_unlock_irqrestore(&m->lock, flags); 1467 1468 return limit_reached; 1469 } 1470 1471 static void pg_init_done(void *data, int errors) 1472 { 1473 struct pgpath *pgpath = data; 1474 struct priority_group *pg = pgpath->pg; 1475 struct multipath *m = pg->m; 1476 unsigned long flags; 1477 bool delay_retry = false; 1478 1479 /* device or driver problems */ 1480 switch (errors) { 1481 case SCSI_DH_OK: 1482 break; 1483 case SCSI_DH_NOSYS: 1484 if (!m->hw_handler_name) { 1485 errors = 0; 1486 break; 1487 } 1488 DMERR("Could not failover the device: Handler scsi_dh_%s " 1489 "Error %d.", m->hw_handler_name, errors); 1490 /* 1491 * Fail path for now, so we do not ping pong 1492 */ 1493 fail_path(pgpath); 1494 break; 1495 case SCSI_DH_DEV_TEMP_BUSY: 1496 /* 1497 * Probably doing something like FW upgrade on the 1498 * controller so try the other pg. 1499 */ 1500 bypass_pg(m, pg, true); 1501 break; 1502 case SCSI_DH_RETRY: 1503 /* Wait before retrying. */ 1504 delay_retry = true; 1505 /* fall through */ 1506 case SCSI_DH_IMM_RETRY: 1507 case SCSI_DH_RES_TEMP_UNAVAIL: 1508 if (pg_init_limit_reached(m, pgpath)) 1509 fail_path(pgpath); 1510 errors = 0; 1511 break; 1512 case SCSI_DH_DEV_OFFLINED: 1513 default: 1514 /* 1515 * We probably do not want to fail the path for a device 1516 * error, but this is what the old dm did. In future 1517 * patches we can do more advanced handling. 1518 */ 1519 fail_path(pgpath); 1520 } 1521 1522 spin_lock_irqsave(&m->lock, flags); 1523 if (errors) { 1524 if (pgpath == m->current_pgpath) { 1525 DMERR("Could not failover device. Error %d.", errors); 1526 m->current_pgpath = NULL; 1527 m->current_pg = NULL; 1528 } 1529 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1530 pg->bypassed = false; 1531 1532 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1533 /* Activations of other paths are still on going */ 1534 goto out; 1535 1536 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1537 if (delay_retry) 1538 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1539 else 1540 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1541 1542 if (__pg_init_all_paths(m)) 1543 goto out; 1544 } 1545 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1546 1547 process_queued_io_list(m); 1548 1549 /* 1550 * Wake up any thread waiting to suspend. 1551 */ 1552 wake_up(&m->pg_init_wait); 1553 1554 out: 1555 spin_unlock_irqrestore(&m->lock, flags); 1556 } 1557 1558 static void activate_or_offline_path(struct pgpath *pgpath) 1559 { 1560 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1561 1562 if (pgpath->is_active && !blk_queue_dying(q)) 1563 scsi_dh_activate(q, pg_init_done, pgpath); 1564 else 1565 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1566 } 1567 1568 static void activate_path_work(struct work_struct *work) 1569 { 1570 struct pgpath *pgpath = 1571 container_of(work, struct pgpath, activate_path.work); 1572 1573 activate_or_offline_path(pgpath); 1574 } 1575 1576 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1577 blk_status_t error, union map_info *map_context) 1578 { 1579 struct dm_mpath_io *mpio = get_mpio(map_context); 1580 struct pgpath *pgpath = mpio->pgpath; 1581 int r = DM_ENDIO_DONE; 1582 1583 /* 1584 * We don't queue any clone request inside the multipath target 1585 * during end I/O handling, since those clone requests don't have 1586 * bio clones. If we queue them inside the multipath target, 1587 * we need to make bio clones, that requires memory allocation. 1588 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1589 * don't have bio clones.) 1590 * Instead of queueing the clone request here, we queue the original 1591 * request into dm core, which will remake a clone request and 1592 * clone bios for it and resubmit it later. 1593 */ 1594 if (error && blk_path_error(error)) { 1595 struct multipath *m = ti->private; 1596 1597 if (error == BLK_STS_RESOURCE) 1598 r = DM_ENDIO_DELAY_REQUEUE; 1599 else 1600 r = DM_ENDIO_REQUEUE; 1601 1602 if (pgpath) 1603 fail_path(pgpath); 1604 1605 if (atomic_read(&m->nr_valid_paths) == 0 && 1606 !must_push_back_rq(m)) { 1607 if (error == BLK_STS_IOERR) 1608 dm_report_EIO(m); 1609 /* complete with the original error */ 1610 r = DM_ENDIO_DONE; 1611 } 1612 } 1613 1614 if (pgpath) { 1615 struct path_selector *ps = &pgpath->pg->ps; 1616 1617 if (ps->type->end_io) 1618 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1619 } 1620 1621 return r; 1622 } 1623 1624 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1625 blk_status_t *error) 1626 { 1627 struct multipath *m = ti->private; 1628 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1629 struct pgpath *pgpath = mpio->pgpath; 1630 unsigned long flags; 1631 int r = DM_ENDIO_DONE; 1632 1633 if (!*error || !blk_path_error(*error)) 1634 goto done; 1635 1636 if (pgpath) 1637 fail_path(pgpath); 1638 1639 if (atomic_read(&m->nr_valid_paths) == 0 && 1640 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1641 if (must_push_back_bio(m)) { 1642 r = DM_ENDIO_REQUEUE; 1643 } else { 1644 dm_report_EIO(m); 1645 *error = BLK_STS_IOERR; 1646 } 1647 goto done; 1648 } 1649 1650 spin_lock_irqsave(&m->lock, flags); 1651 bio_list_add(&m->queued_bios, clone); 1652 spin_unlock_irqrestore(&m->lock, flags); 1653 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1654 queue_work(kmultipathd, &m->process_queued_bios); 1655 1656 r = DM_ENDIO_INCOMPLETE; 1657 done: 1658 if (pgpath) { 1659 struct path_selector *ps = &pgpath->pg->ps; 1660 1661 if (ps->type->end_io) 1662 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1663 } 1664 1665 return r; 1666 } 1667 1668 /* 1669 * Suspend can't complete until all the I/O is processed so if 1670 * the last path fails we must error any remaining I/O. 1671 * Note that if the freeze_bdev fails while suspending, the 1672 * queue_if_no_path state is lost - userspace should reset it. 1673 */ 1674 static void multipath_presuspend(struct dm_target *ti) 1675 { 1676 struct multipath *m = ti->private; 1677 1678 queue_if_no_path(m, false, true); 1679 } 1680 1681 static void multipath_postsuspend(struct dm_target *ti) 1682 { 1683 struct multipath *m = ti->private; 1684 1685 mutex_lock(&m->work_mutex); 1686 flush_multipath_work(m); 1687 mutex_unlock(&m->work_mutex); 1688 } 1689 1690 /* 1691 * Restore the queue_if_no_path setting. 1692 */ 1693 static void multipath_resume(struct dm_target *ti) 1694 { 1695 struct multipath *m = ti->private; 1696 unsigned long flags; 1697 1698 spin_lock_irqsave(&m->lock, flags); 1699 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1700 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1701 spin_unlock_irqrestore(&m->lock, flags); 1702 } 1703 1704 /* 1705 * Info output has the following format: 1706 * num_multipath_feature_args [multipath_feature_args]* 1707 * num_handler_status_args [handler_status_args]* 1708 * num_groups init_group_number 1709 * [A|D|E num_ps_status_args [ps_status_args]* 1710 * num_paths num_selector_args 1711 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1712 * 1713 * Table output has the following format (identical to the constructor string): 1714 * num_feature_args [features_args]* 1715 * num_handler_args hw_handler [hw_handler_args]* 1716 * num_groups init_group_number 1717 * [priority selector-name num_ps_args [ps_args]* 1718 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1719 */ 1720 static void multipath_status(struct dm_target *ti, status_type_t type, 1721 unsigned status_flags, char *result, unsigned maxlen) 1722 { 1723 int sz = 0; 1724 unsigned long flags; 1725 struct multipath *m = ti->private; 1726 struct priority_group *pg; 1727 struct pgpath *p; 1728 unsigned pg_num; 1729 char state; 1730 1731 spin_lock_irqsave(&m->lock, flags); 1732 1733 /* Features */ 1734 if (type == STATUSTYPE_INFO) 1735 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1736 atomic_read(&m->pg_init_count)); 1737 else { 1738 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1739 (m->pg_init_retries > 0) * 2 + 1740 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1741 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1742 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1743 1744 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1745 DMEMIT("queue_if_no_path "); 1746 if (m->pg_init_retries) 1747 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1748 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1749 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1750 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1751 DMEMIT("retain_attached_hw_handler "); 1752 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1753 switch(m->queue_mode) { 1754 case DM_TYPE_BIO_BASED: 1755 DMEMIT("queue_mode bio "); 1756 break; 1757 default: 1758 WARN_ON_ONCE(true); 1759 break; 1760 } 1761 } 1762 } 1763 1764 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1765 DMEMIT("0 "); 1766 else 1767 DMEMIT("1 %s ", m->hw_handler_name); 1768 1769 DMEMIT("%u ", m->nr_priority_groups); 1770 1771 if (m->next_pg) 1772 pg_num = m->next_pg->pg_num; 1773 else if (m->current_pg) 1774 pg_num = m->current_pg->pg_num; 1775 else 1776 pg_num = (m->nr_priority_groups ? 1 : 0); 1777 1778 DMEMIT("%u ", pg_num); 1779 1780 switch (type) { 1781 case STATUSTYPE_INFO: 1782 list_for_each_entry(pg, &m->priority_groups, list) { 1783 if (pg->bypassed) 1784 state = 'D'; /* Disabled */ 1785 else if (pg == m->current_pg) 1786 state = 'A'; /* Currently Active */ 1787 else 1788 state = 'E'; /* Enabled */ 1789 1790 DMEMIT("%c ", state); 1791 1792 if (pg->ps.type->status) 1793 sz += pg->ps.type->status(&pg->ps, NULL, type, 1794 result + sz, 1795 maxlen - sz); 1796 else 1797 DMEMIT("0 "); 1798 1799 DMEMIT("%u %u ", pg->nr_pgpaths, 1800 pg->ps.type->info_args); 1801 1802 list_for_each_entry(p, &pg->pgpaths, list) { 1803 DMEMIT("%s %s %u ", p->path.dev->name, 1804 p->is_active ? "A" : "F", 1805 p->fail_count); 1806 if (pg->ps.type->status) 1807 sz += pg->ps.type->status(&pg->ps, 1808 &p->path, type, result + sz, 1809 maxlen - sz); 1810 } 1811 } 1812 break; 1813 1814 case STATUSTYPE_TABLE: 1815 list_for_each_entry(pg, &m->priority_groups, list) { 1816 DMEMIT("%s ", pg->ps.type->name); 1817 1818 if (pg->ps.type->status) 1819 sz += pg->ps.type->status(&pg->ps, NULL, type, 1820 result + sz, 1821 maxlen - sz); 1822 else 1823 DMEMIT("0 "); 1824 1825 DMEMIT("%u %u ", pg->nr_pgpaths, 1826 pg->ps.type->table_args); 1827 1828 list_for_each_entry(p, &pg->pgpaths, list) { 1829 DMEMIT("%s ", p->path.dev->name); 1830 if (pg->ps.type->status) 1831 sz += pg->ps.type->status(&pg->ps, 1832 &p->path, type, result + sz, 1833 maxlen - sz); 1834 } 1835 } 1836 break; 1837 } 1838 1839 spin_unlock_irqrestore(&m->lock, flags); 1840 } 1841 1842 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1843 char *result, unsigned maxlen) 1844 { 1845 int r = -EINVAL; 1846 struct dm_dev *dev; 1847 struct multipath *m = ti->private; 1848 action_fn action; 1849 unsigned long flags; 1850 1851 mutex_lock(&m->work_mutex); 1852 1853 if (dm_suspended(ti)) { 1854 r = -EBUSY; 1855 goto out; 1856 } 1857 1858 if (argc == 1) { 1859 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1860 r = queue_if_no_path(m, true, false); 1861 spin_lock_irqsave(&m->lock, flags); 1862 enable_nopath_timeout(m); 1863 spin_unlock_irqrestore(&m->lock, flags); 1864 goto out; 1865 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1866 r = queue_if_no_path(m, false, false); 1867 disable_nopath_timeout(m); 1868 goto out; 1869 } 1870 } 1871 1872 if (argc != 2) { 1873 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1874 goto out; 1875 } 1876 1877 if (!strcasecmp(argv[0], "disable_group")) { 1878 r = bypass_pg_num(m, argv[1], true); 1879 goto out; 1880 } else if (!strcasecmp(argv[0], "enable_group")) { 1881 r = bypass_pg_num(m, argv[1], false); 1882 goto out; 1883 } else if (!strcasecmp(argv[0], "switch_group")) { 1884 r = switch_pg_num(m, argv[1]); 1885 goto out; 1886 } else if (!strcasecmp(argv[0], "reinstate_path")) 1887 action = reinstate_path; 1888 else if (!strcasecmp(argv[0], "fail_path")) 1889 action = fail_path; 1890 else { 1891 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1892 goto out; 1893 } 1894 1895 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1896 if (r) { 1897 DMWARN("message: error getting device %s", 1898 argv[1]); 1899 goto out; 1900 } 1901 1902 r = action_dev(m, dev, action); 1903 1904 dm_put_device(ti, dev); 1905 1906 out: 1907 mutex_unlock(&m->work_mutex); 1908 return r; 1909 } 1910 1911 static int multipath_prepare_ioctl(struct dm_target *ti, 1912 struct block_device **bdev) 1913 { 1914 struct multipath *m = ti->private; 1915 struct pgpath *current_pgpath; 1916 int r; 1917 1918 current_pgpath = READ_ONCE(m->current_pgpath); 1919 if (!current_pgpath) 1920 current_pgpath = choose_pgpath(m, 0); 1921 1922 if (current_pgpath) { 1923 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1924 *bdev = current_pgpath->path.dev->bdev; 1925 r = 0; 1926 } else { 1927 /* pg_init has not started or completed */ 1928 r = -ENOTCONN; 1929 } 1930 } else { 1931 /* No path is available */ 1932 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1933 r = -ENOTCONN; 1934 else 1935 r = -EIO; 1936 } 1937 1938 if (r == -ENOTCONN) { 1939 if (!READ_ONCE(m->current_pg)) { 1940 /* Path status changed, redo selection */ 1941 (void) choose_pgpath(m, 0); 1942 } 1943 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1944 pg_init_all_paths(m); 1945 dm_table_run_md_queue_async(m->ti->table); 1946 process_queued_io_list(m); 1947 } 1948 1949 /* 1950 * Only pass ioctls through if the device sizes match exactly. 1951 */ 1952 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1953 return 1; 1954 return r; 1955 } 1956 1957 static int multipath_iterate_devices(struct dm_target *ti, 1958 iterate_devices_callout_fn fn, void *data) 1959 { 1960 struct multipath *m = ti->private; 1961 struct priority_group *pg; 1962 struct pgpath *p; 1963 int ret = 0; 1964 1965 list_for_each_entry(pg, &m->priority_groups, list) { 1966 list_for_each_entry(p, &pg->pgpaths, list) { 1967 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1968 if (ret) 1969 goto out; 1970 } 1971 } 1972 1973 out: 1974 return ret; 1975 } 1976 1977 static int pgpath_busy(struct pgpath *pgpath) 1978 { 1979 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1980 1981 return blk_lld_busy(q); 1982 } 1983 1984 /* 1985 * We return "busy", only when we can map I/Os but underlying devices 1986 * are busy (so even if we map I/Os now, the I/Os will wait on 1987 * the underlying queue). 1988 * In other words, if we want to kill I/Os or queue them inside us 1989 * due to map unavailability, we don't return "busy". Otherwise, 1990 * dm core won't give us the I/Os and we can't do what we want. 1991 */ 1992 static int multipath_busy(struct dm_target *ti) 1993 { 1994 bool busy = false, has_active = false; 1995 struct multipath *m = ti->private; 1996 struct priority_group *pg, *next_pg; 1997 struct pgpath *pgpath; 1998 1999 /* pg_init in progress */ 2000 if (atomic_read(&m->pg_init_in_progress)) 2001 return true; 2002 2003 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2004 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2005 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 2006 2007 /* Guess which priority_group will be used at next mapping time */ 2008 pg = READ_ONCE(m->current_pg); 2009 next_pg = READ_ONCE(m->next_pg); 2010 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 2011 pg = next_pg; 2012 2013 if (!pg) { 2014 /* 2015 * We don't know which pg will be used at next mapping time. 2016 * We don't call choose_pgpath() here to avoid to trigger 2017 * pg_init just by busy checking. 2018 * So we don't know whether underlying devices we will be using 2019 * at next mapping time are busy or not. Just try mapping. 2020 */ 2021 return busy; 2022 } 2023 2024 /* 2025 * If there is one non-busy active path at least, the path selector 2026 * will be able to select it. So we consider such a pg as not busy. 2027 */ 2028 busy = true; 2029 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2030 if (pgpath->is_active) { 2031 has_active = true; 2032 if (!pgpath_busy(pgpath)) { 2033 busy = false; 2034 break; 2035 } 2036 } 2037 } 2038 2039 if (!has_active) { 2040 /* 2041 * No active path in this pg, so this pg won't be used and 2042 * the current_pg will be changed at next mapping time. 2043 * We need to try mapping to determine it. 2044 */ 2045 busy = false; 2046 } 2047 2048 return busy; 2049 } 2050 2051 /*----------------------------------------------------------------- 2052 * Module setup 2053 *---------------------------------------------------------------*/ 2054 static struct target_type multipath_target = { 2055 .name = "multipath", 2056 .version = {1, 14, 0}, 2057 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2058 DM_TARGET_PASSES_INTEGRITY, 2059 .module = THIS_MODULE, 2060 .ctr = multipath_ctr, 2061 .dtr = multipath_dtr, 2062 .clone_and_map_rq = multipath_clone_and_map, 2063 .release_clone_rq = multipath_release_clone, 2064 .rq_end_io = multipath_end_io, 2065 .map = multipath_map_bio, 2066 .end_io = multipath_end_io_bio, 2067 .presuspend = multipath_presuspend, 2068 .postsuspend = multipath_postsuspend, 2069 .resume = multipath_resume, 2070 .status = multipath_status, 2071 .message = multipath_message, 2072 .prepare_ioctl = multipath_prepare_ioctl, 2073 .iterate_devices = multipath_iterate_devices, 2074 .busy = multipath_busy, 2075 }; 2076 2077 static int __init dm_multipath_init(void) 2078 { 2079 int r; 2080 2081 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2082 if (!kmultipathd) { 2083 DMERR("failed to create workqueue kmpathd"); 2084 r = -ENOMEM; 2085 goto bad_alloc_kmultipathd; 2086 } 2087 2088 /* 2089 * A separate workqueue is used to handle the device handlers 2090 * to avoid overloading existing workqueue. Overloading the 2091 * old workqueue would also create a bottleneck in the 2092 * path of the storage hardware device activation. 2093 */ 2094 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2095 WQ_MEM_RECLAIM); 2096 if (!kmpath_handlerd) { 2097 DMERR("failed to create workqueue kmpath_handlerd"); 2098 r = -ENOMEM; 2099 goto bad_alloc_kmpath_handlerd; 2100 } 2101 2102 r = dm_register_target(&multipath_target); 2103 if (r < 0) { 2104 DMERR("request-based register failed %d", r); 2105 r = -EINVAL; 2106 goto bad_register_target; 2107 } 2108 2109 return 0; 2110 2111 bad_register_target: 2112 destroy_workqueue(kmpath_handlerd); 2113 bad_alloc_kmpath_handlerd: 2114 destroy_workqueue(kmultipathd); 2115 bad_alloc_kmultipathd: 2116 return r; 2117 } 2118 2119 static void __exit dm_multipath_exit(void) 2120 { 2121 destroy_workqueue(kmpath_handlerd); 2122 destroy_workqueue(kmultipathd); 2123 2124 dm_unregister_target(&multipath_target); 2125 } 2126 2127 module_init(dm_multipath_init); 2128 module_exit(dm_multipath_exit); 2129 2130 module_param_named(queue_if_no_path_timeout_secs, 2131 queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR); 2132 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds"); 2133 2134 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2135 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2136 MODULE_LICENSE("GPL"); 2137