xref: /openbmc/linux/drivers/md/dm-mpath.c (revision bf070bb0)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
277 					struct dm_bio_details **bio_details_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
281 
282 	memset(mpio, 0, sizeof(*mpio));
283 	memset(bio_details, 0, sizeof(*bio_details));
284 	dm_bio_record(bio_details, bio);
285 
286 	if (mpio_p)
287 		*mpio_p = mpio;
288 	if (bio_details_p)
289 		*bio_details_p = bio_details;
290 }
291 
292 /*-----------------------------------------------
293  * Path selection
294  *-----------------------------------------------*/
295 
296 static int __pg_init_all_paths(struct multipath *m)
297 {
298 	struct pgpath *pgpath;
299 	unsigned long pg_init_delay = 0;
300 
301 	lockdep_assert_held(&m->lock);
302 
303 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
304 		return 0;
305 
306 	atomic_inc(&m->pg_init_count);
307 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
308 
309 	/* Check here to reset pg_init_required */
310 	if (!m->current_pg)
311 		return 0;
312 
313 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
314 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
315 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
316 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
317 		/* Skip failed paths */
318 		if (!pgpath->is_active)
319 			continue;
320 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
321 				       pg_init_delay))
322 			atomic_inc(&m->pg_init_in_progress);
323 	}
324 	return atomic_read(&m->pg_init_in_progress);
325 }
326 
327 static int pg_init_all_paths(struct multipath *m)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&m->lock, flags);
333 	ret = __pg_init_all_paths(m);
334 	spin_unlock_irqrestore(&m->lock, flags);
335 
336 	return ret;
337 }
338 
339 static void __switch_pg(struct multipath *m, struct priority_group *pg)
340 {
341 	m->current_pg = pg;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
389 		goto failed;
390 	}
391 
392 	/* Were we instructed to switch PG? */
393 	if (READ_ONCE(m->next_pg)) {
394 		spin_lock_irqsave(&m->lock, flags);
395 		pg = m->next_pg;
396 		if (!pg) {
397 			spin_unlock_irqrestore(&m->lock, flags);
398 			goto check_current_pg;
399 		}
400 		m->next_pg = NULL;
401 		spin_unlock_irqrestore(&m->lock, flags);
402 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
403 		if (!IS_ERR_OR_NULL(pgpath))
404 			return pgpath;
405 	}
406 
407 	/* Don't change PG until it has no remaining paths */
408 check_current_pg:
409 	pg = READ_ONCE(m->current_pg);
410 	if (pg) {
411 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
412 		if (!IS_ERR_OR_NULL(pgpath))
413 			return pgpath;
414 	}
415 
416 	/*
417 	 * Loop through priority groups until we find a valid path.
418 	 * First time we skip PGs marked 'bypassed'.
419 	 * Second time we only try the ones we skipped, but set
420 	 * pg_init_delay_retry so we do not hammer controllers.
421 	 */
422 	do {
423 		list_for_each_entry(pg, &m->priority_groups, list) {
424 			if (pg->bypassed == !!bypassed)
425 				continue;
426 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 			if (!IS_ERR_OR_NULL(pgpath)) {
428 				if (!bypassed)
429 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
430 				return pgpath;
431 			}
432 		}
433 	} while (bypassed--);
434 
435 failed:
436 	spin_lock_irqsave(&m->lock, flags);
437 	m->current_pgpath = NULL;
438 	m->current_pg = NULL;
439 	spin_unlock_irqrestore(&m->lock, flags);
440 
441 	return NULL;
442 }
443 
444 /*
445  * dm_report_EIO() is a macro instead of a function to make pr_debug()
446  * report the function name and line number of the function from which
447  * it has been invoked.
448  */
449 #define dm_report_EIO(m)						\
450 do {									\
451 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
452 									\
453 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
454 		 dm_device_name(md),					\
455 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
456 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
457 		 dm_noflush_suspending((m)->ti));			\
458 } while (0)
459 
460 /*
461  * Map cloned requests (request-based multipath)
462  */
463 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
464 				   union map_info *map_context,
465 				   struct request **__clone)
466 {
467 	struct multipath *m = ti->private;
468 	size_t nr_bytes = blk_rq_bytes(rq);
469 	struct pgpath *pgpath;
470 	struct block_device *bdev;
471 	struct dm_mpath_io *mpio = get_mpio(map_context);
472 	struct request_queue *q;
473 	struct request *clone;
474 
475 	/* Do we need to select a new pgpath? */
476 	pgpath = READ_ONCE(m->current_pgpath);
477 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
478 		pgpath = choose_pgpath(m, nr_bytes);
479 
480 	if (!pgpath) {
481 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
482 			return DM_MAPIO_DELAY_REQUEUE;
483 		dm_report_EIO(m);	/* Failed */
484 		return DM_MAPIO_KILL;
485 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
486 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
487 		if (pg_init_all_paths(m))
488 			return DM_MAPIO_DELAY_REQUEUE;
489 		return DM_MAPIO_REQUEUE;
490 	}
491 
492 	memset(mpio, 0, sizeof(*mpio));
493 	mpio->pgpath = pgpath;
494 	mpio->nr_bytes = nr_bytes;
495 
496 	bdev = pgpath->path.dev->bdev;
497 	q = bdev_get_queue(bdev);
498 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
499 	if (IS_ERR(clone)) {
500 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
501 		bool queue_dying = blk_queue_dying(q);
502 		if (queue_dying) {
503 			atomic_inc(&m->pg_init_in_progress);
504 			activate_or_offline_path(pgpath);
505 		}
506 		return DM_MAPIO_DELAY_REQUEUE;
507 	}
508 	clone->bio = clone->biotail = NULL;
509 	clone->rq_disk = bdev->bd_disk;
510 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
511 	*__clone = clone;
512 
513 	if (pgpath->pg->ps.type->start_io)
514 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
515 					      &pgpath->path,
516 					      nr_bytes);
517 	return DM_MAPIO_REMAPPED;
518 }
519 
520 static void multipath_release_clone(struct request *clone)
521 {
522 	blk_put_request(clone);
523 }
524 
525 /*
526  * Map cloned bios (bio-based multipath)
527  */
528 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
529 {
530 	size_t nr_bytes = bio->bi_iter.bi_size;
531 	struct pgpath *pgpath;
532 	unsigned long flags;
533 	bool queue_io;
534 
535 	/* Do we need to select a new pgpath? */
536 	pgpath = READ_ONCE(m->current_pgpath);
537 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
538 	if (!pgpath || !queue_io)
539 		pgpath = choose_pgpath(m, nr_bytes);
540 
541 	if ((pgpath && queue_io) ||
542 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
543 		/* Queue for the daemon to resubmit */
544 		spin_lock_irqsave(&m->lock, flags);
545 		bio_list_add(&m->queued_bios, bio);
546 		spin_unlock_irqrestore(&m->lock, flags);
547 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
548 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
549 			pg_init_all_paths(m);
550 		else if (!queue_io)
551 			queue_work(kmultipathd, &m->process_queued_bios);
552 		return DM_MAPIO_SUBMITTED;
553 	}
554 
555 	if (!pgpath) {
556 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
557 			return DM_MAPIO_REQUEUE;
558 		dm_report_EIO(m);
559 		return DM_MAPIO_KILL;
560 	}
561 
562 	mpio->pgpath = pgpath;
563 	mpio->nr_bytes = nr_bytes;
564 
565 	bio->bi_status = 0;
566 	bio_set_dev(bio, pgpath->path.dev->bdev);
567 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
568 
569 	if (pgpath->pg->ps.type->start_io)
570 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
571 					      &pgpath->path,
572 					      nr_bytes);
573 	return DM_MAPIO_REMAPPED;
574 }
575 
576 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
577 {
578 	struct multipath *m = ti->private;
579 	struct dm_mpath_io *mpio = NULL;
580 
581 	multipath_init_per_bio_data(bio, &mpio, NULL);
582 
583 	return __multipath_map_bio(m, bio, mpio);
584 }
585 
586 static void process_queued_io_list(struct multipath *m)
587 {
588 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
589 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
590 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
591 		queue_work(kmultipathd, &m->process_queued_bios);
592 }
593 
594 static void process_queued_bios(struct work_struct *work)
595 {
596 	int r;
597 	unsigned long flags;
598 	struct bio *bio;
599 	struct bio_list bios;
600 	struct blk_plug plug;
601 	struct multipath *m =
602 		container_of(work, struct multipath, process_queued_bios);
603 
604 	bio_list_init(&bios);
605 
606 	spin_lock_irqsave(&m->lock, flags);
607 
608 	if (bio_list_empty(&m->queued_bios)) {
609 		spin_unlock_irqrestore(&m->lock, flags);
610 		return;
611 	}
612 
613 	bio_list_merge(&bios, &m->queued_bios);
614 	bio_list_init(&m->queued_bios);
615 
616 	spin_unlock_irqrestore(&m->lock, flags);
617 
618 	blk_start_plug(&plug);
619 	while ((bio = bio_list_pop(&bios))) {
620 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
621 		switch (r) {
622 		case DM_MAPIO_KILL:
623 			bio->bi_status = BLK_STS_IOERR;
624 			bio_endio(bio);
625 			break;
626 		case DM_MAPIO_REQUEUE:
627 			bio->bi_status = BLK_STS_DM_REQUEUE;
628 			bio_endio(bio);
629 			break;
630 		case DM_MAPIO_REMAPPED:
631 			generic_make_request(bio);
632 			break;
633 		case 0:
634 			break;
635 		default:
636 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
637 		}
638 	}
639 	blk_finish_plug(&plug);
640 }
641 
642 /*
643  * If we run out of usable paths, should we queue I/O or error it?
644  */
645 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
646 			    bool save_old_value)
647 {
648 	unsigned long flags;
649 
650 	spin_lock_irqsave(&m->lock, flags);
651 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
652 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
653 		   (!save_old_value && queue_if_no_path));
654 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
655 		   queue_if_no_path || dm_noflush_suspending(m->ti));
656 	spin_unlock_irqrestore(&m->lock, flags);
657 
658 	if (!queue_if_no_path) {
659 		dm_table_run_md_queue_async(m->ti->table);
660 		process_queued_io_list(m);
661 	}
662 
663 	return 0;
664 }
665 
666 /*
667  * An event is triggered whenever a path is taken out of use.
668  * Includes path failure and PG bypass.
669  */
670 static void trigger_event(struct work_struct *work)
671 {
672 	struct multipath *m =
673 		container_of(work, struct multipath, trigger_event);
674 
675 	dm_table_event(m->ti->table);
676 }
677 
678 /*-----------------------------------------------------------------
679  * Constructor/argument parsing:
680  * <#multipath feature args> [<arg>]*
681  * <#hw_handler args> [hw_handler [<arg>]*]
682  * <#priority groups>
683  * <initial priority group>
684  *     [<selector> <#selector args> [<arg>]*
685  *      <#paths> <#per-path selector args>
686  *         [<path> [<arg>]* ]+ ]+
687  *---------------------------------------------------------------*/
688 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
689 			       struct dm_target *ti)
690 {
691 	int r;
692 	struct path_selector_type *pst;
693 	unsigned ps_argc;
694 
695 	static const struct dm_arg _args[] = {
696 		{0, 1024, "invalid number of path selector args"},
697 	};
698 
699 	pst = dm_get_path_selector(dm_shift_arg(as));
700 	if (!pst) {
701 		ti->error = "unknown path selector type";
702 		return -EINVAL;
703 	}
704 
705 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
706 	if (r) {
707 		dm_put_path_selector(pst);
708 		return -EINVAL;
709 	}
710 
711 	r = pst->create(&pg->ps, ps_argc, as->argv);
712 	if (r) {
713 		dm_put_path_selector(pst);
714 		ti->error = "path selector constructor failed";
715 		return r;
716 	}
717 
718 	pg->ps.type = pst;
719 	dm_consume_args(as, ps_argc);
720 
721 	return 0;
722 }
723 
724 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
725 			       struct dm_target *ti)
726 {
727 	int r;
728 	struct pgpath *p;
729 	struct multipath *m = ti->private;
730 	struct request_queue *q = NULL;
731 	const char *attached_handler_name;
732 
733 	/* we need at least a path arg */
734 	if (as->argc < 1) {
735 		ti->error = "no device given";
736 		return ERR_PTR(-EINVAL);
737 	}
738 
739 	p = alloc_pgpath();
740 	if (!p)
741 		return ERR_PTR(-ENOMEM);
742 
743 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
744 			  &p->path.dev);
745 	if (r) {
746 		ti->error = "error getting device";
747 		goto bad;
748 	}
749 
750 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
751 		q = bdev_get_queue(p->path.dev->bdev);
752 
753 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
754 retain:
755 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
756 		if (attached_handler_name) {
757 			/*
758 			 * Clear any hw_handler_params associated with a
759 			 * handler that isn't already attached.
760 			 */
761 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
762 				kfree(m->hw_handler_params);
763 				m->hw_handler_params = NULL;
764 			}
765 
766 			/*
767 			 * Reset hw_handler_name to match the attached handler
768 			 *
769 			 * NB. This modifies the table line to show the actual
770 			 * handler instead of the original table passed in.
771 			 */
772 			kfree(m->hw_handler_name);
773 			m->hw_handler_name = attached_handler_name;
774 		}
775 	}
776 
777 	if (m->hw_handler_name) {
778 		r = scsi_dh_attach(q, m->hw_handler_name);
779 		if (r == -EBUSY) {
780 			char b[BDEVNAME_SIZE];
781 
782 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
783 				bdevname(p->path.dev->bdev, b));
784 			goto retain;
785 		}
786 		if (r < 0) {
787 			ti->error = "error attaching hardware handler";
788 			dm_put_device(ti, p->path.dev);
789 			goto bad;
790 		}
791 
792 		if (m->hw_handler_params) {
793 			r = scsi_dh_set_params(q, m->hw_handler_params);
794 			if (r < 0) {
795 				ti->error = "unable to set hardware "
796 							"handler parameters";
797 				dm_put_device(ti, p->path.dev);
798 				goto bad;
799 			}
800 		}
801 	}
802 
803 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
804 	if (r) {
805 		dm_put_device(ti, p->path.dev);
806 		goto bad;
807 	}
808 
809 	return p;
810 
811  bad:
812 	free_pgpath(p);
813 	return ERR_PTR(r);
814 }
815 
816 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
817 						   struct multipath *m)
818 {
819 	static const struct dm_arg _args[] = {
820 		{1, 1024, "invalid number of paths"},
821 		{0, 1024, "invalid number of selector args"}
822 	};
823 
824 	int r;
825 	unsigned i, nr_selector_args, nr_args;
826 	struct priority_group *pg;
827 	struct dm_target *ti = m->ti;
828 
829 	if (as->argc < 2) {
830 		as->argc = 0;
831 		ti->error = "not enough priority group arguments";
832 		return ERR_PTR(-EINVAL);
833 	}
834 
835 	pg = alloc_priority_group();
836 	if (!pg) {
837 		ti->error = "couldn't allocate priority group";
838 		return ERR_PTR(-ENOMEM);
839 	}
840 	pg->m = m;
841 
842 	r = parse_path_selector(as, pg, ti);
843 	if (r)
844 		goto bad;
845 
846 	/*
847 	 * read the paths
848 	 */
849 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
850 	if (r)
851 		goto bad;
852 
853 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
854 	if (r)
855 		goto bad;
856 
857 	nr_args = 1 + nr_selector_args;
858 	for (i = 0; i < pg->nr_pgpaths; i++) {
859 		struct pgpath *pgpath;
860 		struct dm_arg_set path_args;
861 
862 		if (as->argc < nr_args) {
863 			ti->error = "not enough path parameters";
864 			r = -EINVAL;
865 			goto bad;
866 		}
867 
868 		path_args.argc = nr_args;
869 		path_args.argv = as->argv;
870 
871 		pgpath = parse_path(&path_args, &pg->ps, ti);
872 		if (IS_ERR(pgpath)) {
873 			r = PTR_ERR(pgpath);
874 			goto bad;
875 		}
876 
877 		pgpath->pg = pg;
878 		list_add_tail(&pgpath->list, &pg->pgpaths);
879 		dm_consume_args(as, nr_args);
880 	}
881 
882 	return pg;
883 
884  bad:
885 	free_priority_group(pg, ti);
886 	return ERR_PTR(r);
887 }
888 
889 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
890 {
891 	unsigned hw_argc;
892 	int ret;
893 	struct dm_target *ti = m->ti;
894 
895 	static const struct dm_arg _args[] = {
896 		{0, 1024, "invalid number of hardware handler args"},
897 	};
898 
899 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
900 		return -EINVAL;
901 
902 	if (!hw_argc)
903 		return 0;
904 
905 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
906 		dm_consume_args(as, hw_argc);
907 		DMERR("bio-based multipath doesn't allow hardware handler args");
908 		return 0;
909 	}
910 
911 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
912 	if (!m->hw_handler_name)
913 		return -EINVAL;
914 
915 	if (hw_argc > 1) {
916 		char *p;
917 		int i, j, len = 4;
918 
919 		for (i = 0; i <= hw_argc - 2; i++)
920 			len += strlen(as->argv[i]) + 1;
921 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
922 		if (!p) {
923 			ti->error = "memory allocation failed";
924 			ret = -ENOMEM;
925 			goto fail;
926 		}
927 		j = sprintf(p, "%d", hw_argc - 1);
928 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
929 			j = sprintf(p, "%s", as->argv[i]);
930 	}
931 	dm_consume_args(as, hw_argc - 1);
932 
933 	return 0;
934 fail:
935 	kfree(m->hw_handler_name);
936 	m->hw_handler_name = NULL;
937 	return ret;
938 }
939 
940 static int parse_features(struct dm_arg_set *as, struct multipath *m)
941 {
942 	int r;
943 	unsigned argc;
944 	struct dm_target *ti = m->ti;
945 	const char *arg_name;
946 
947 	static const struct dm_arg _args[] = {
948 		{0, 8, "invalid number of feature args"},
949 		{1, 50, "pg_init_retries must be between 1 and 50"},
950 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
951 	};
952 
953 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
954 	if (r)
955 		return -EINVAL;
956 
957 	if (!argc)
958 		return 0;
959 
960 	do {
961 		arg_name = dm_shift_arg(as);
962 		argc--;
963 
964 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
965 			r = queue_if_no_path(m, true, false);
966 			continue;
967 		}
968 
969 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
970 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
971 			continue;
972 		}
973 
974 		if (!strcasecmp(arg_name, "pg_init_retries") &&
975 		    (argc >= 1)) {
976 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
977 			argc--;
978 			continue;
979 		}
980 
981 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
982 		    (argc >= 1)) {
983 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
984 			argc--;
985 			continue;
986 		}
987 
988 		if (!strcasecmp(arg_name, "queue_mode") &&
989 		    (argc >= 1)) {
990 			const char *queue_mode_name = dm_shift_arg(as);
991 
992 			if (!strcasecmp(queue_mode_name, "bio"))
993 				m->queue_mode = DM_TYPE_BIO_BASED;
994 			else if (!strcasecmp(queue_mode_name, "rq"))
995 				m->queue_mode = DM_TYPE_REQUEST_BASED;
996 			else if (!strcasecmp(queue_mode_name, "mq"))
997 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
998 			else {
999 				ti->error = "Unknown 'queue_mode' requested";
1000 				r = -EINVAL;
1001 			}
1002 			argc--;
1003 			continue;
1004 		}
1005 
1006 		ti->error = "Unrecognised multipath feature request";
1007 		r = -EINVAL;
1008 	} while (argc && !r);
1009 
1010 	return r;
1011 }
1012 
1013 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1014 {
1015 	/* target arguments */
1016 	static const struct dm_arg _args[] = {
1017 		{0, 1024, "invalid number of priority groups"},
1018 		{0, 1024, "invalid initial priority group number"},
1019 	};
1020 
1021 	int r;
1022 	struct multipath *m;
1023 	struct dm_arg_set as;
1024 	unsigned pg_count = 0;
1025 	unsigned next_pg_num;
1026 
1027 	as.argc = argc;
1028 	as.argv = argv;
1029 
1030 	m = alloc_multipath(ti);
1031 	if (!m) {
1032 		ti->error = "can't allocate multipath";
1033 		return -EINVAL;
1034 	}
1035 
1036 	r = parse_features(&as, m);
1037 	if (r)
1038 		goto bad;
1039 
1040 	r = alloc_multipath_stage2(ti, m);
1041 	if (r)
1042 		goto bad;
1043 
1044 	r = parse_hw_handler(&as, m);
1045 	if (r)
1046 		goto bad;
1047 
1048 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1049 	if (r)
1050 		goto bad;
1051 
1052 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1053 	if (r)
1054 		goto bad;
1055 
1056 	if ((!m->nr_priority_groups && next_pg_num) ||
1057 	    (m->nr_priority_groups && !next_pg_num)) {
1058 		ti->error = "invalid initial priority group";
1059 		r = -EINVAL;
1060 		goto bad;
1061 	}
1062 
1063 	/* parse the priority groups */
1064 	while (as.argc) {
1065 		struct priority_group *pg;
1066 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1067 
1068 		pg = parse_priority_group(&as, m);
1069 		if (IS_ERR(pg)) {
1070 			r = PTR_ERR(pg);
1071 			goto bad;
1072 		}
1073 
1074 		nr_valid_paths += pg->nr_pgpaths;
1075 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1076 
1077 		list_add_tail(&pg->list, &m->priority_groups);
1078 		pg_count++;
1079 		pg->pg_num = pg_count;
1080 		if (!--next_pg_num)
1081 			m->next_pg = pg;
1082 	}
1083 
1084 	if (pg_count != m->nr_priority_groups) {
1085 		ti->error = "priority group count mismatch";
1086 		r = -EINVAL;
1087 		goto bad;
1088 	}
1089 
1090 	ti->num_flush_bios = 1;
1091 	ti->num_discard_bios = 1;
1092 	ti->num_write_same_bios = 1;
1093 	ti->num_write_zeroes_bios = 1;
1094 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1095 		ti->per_io_data_size = multipath_per_bio_data_size();
1096 	else
1097 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1098 
1099 	return 0;
1100 
1101  bad:
1102 	free_multipath(m);
1103 	return r;
1104 }
1105 
1106 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1107 {
1108 	DEFINE_WAIT(wait);
1109 
1110 	while (1) {
1111 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1112 
1113 		if (!atomic_read(&m->pg_init_in_progress))
1114 			break;
1115 
1116 		io_schedule();
1117 	}
1118 	finish_wait(&m->pg_init_wait, &wait);
1119 }
1120 
1121 static void flush_multipath_work(struct multipath *m)
1122 {
1123 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1124 	smp_mb__after_atomic();
1125 
1126 	flush_workqueue(kmpath_handlerd);
1127 	multipath_wait_for_pg_init_completion(m);
1128 	flush_workqueue(kmultipathd);
1129 	flush_work(&m->trigger_event);
1130 
1131 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1132 	smp_mb__after_atomic();
1133 }
1134 
1135 static void multipath_dtr(struct dm_target *ti)
1136 {
1137 	struct multipath *m = ti->private;
1138 
1139 	flush_multipath_work(m);
1140 	free_multipath(m);
1141 }
1142 
1143 /*
1144  * Take a path out of use.
1145  */
1146 static int fail_path(struct pgpath *pgpath)
1147 {
1148 	unsigned long flags;
1149 	struct multipath *m = pgpath->pg->m;
1150 
1151 	spin_lock_irqsave(&m->lock, flags);
1152 
1153 	if (!pgpath->is_active)
1154 		goto out;
1155 
1156 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1157 
1158 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1159 	pgpath->is_active = false;
1160 	pgpath->fail_count++;
1161 
1162 	atomic_dec(&m->nr_valid_paths);
1163 
1164 	if (pgpath == m->current_pgpath)
1165 		m->current_pgpath = NULL;
1166 
1167 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1168 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1169 
1170 	schedule_work(&m->trigger_event);
1171 
1172 out:
1173 	spin_unlock_irqrestore(&m->lock, flags);
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * Reinstate a previously-failed path
1180  */
1181 static int reinstate_path(struct pgpath *pgpath)
1182 {
1183 	int r = 0, run_queue = 0;
1184 	unsigned long flags;
1185 	struct multipath *m = pgpath->pg->m;
1186 	unsigned nr_valid_paths;
1187 
1188 	spin_lock_irqsave(&m->lock, flags);
1189 
1190 	if (pgpath->is_active)
1191 		goto out;
1192 
1193 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1194 
1195 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1196 	if (r)
1197 		goto out;
1198 
1199 	pgpath->is_active = true;
1200 
1201 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1202 	if (nr_valid_paths == 1) {
1203 		m->current_pgpath = NULL;
1204 		run_queue = 1;
1205 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1206 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1207 			atomic_inc(&m->pg_init_in_progress);
1208 	}
1209 
1210 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1211 		       pgpath->path.dev->name, nr_valid_paths);
1212 
1213 	schedule_work(&m->trigger_event);
1214 
1215 out:
1216 	spin_unlock_irqrestore(&m->lock, flags);
1217 	if (run_queue) {
1218 		dm_table_run_md_queue_async(m->ti->table);
1219 		process_queued_io_list(m);
1220 	}
1221 
1222 	return r;
1223 }
1224 
1225 /*
1226  * Fail or reinstate all paths that match the provided struct dm_dev.
1227  */
1228 static int action_dev(struct multipath *m, struct dm_dev *dev,
1229 		      action_fn action)
1230 {
1231 	int r = -EINVAL;
1232 	struct pgpath *pgpath;
1233 	struct priority_group *pg;
1234 
1235 	list_for_each_entry(pg, &m->priority_groups, list) {
1236 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1237 			if (pgpath->path.dev == dev)
1238 				r = action(pgpath);
1239 		}
1240 	}
1241 
1242 	return r;
1243 }
1244 
1245 /*
1246  * Temporarily try to avoid having to use the specified PG
1247  */
1248 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1249 		      bool bypassed)
1250 {
1251 	unsigned long flags;
1252 
1253 	spin_lock_irqsave(&m->lock, flags);
1254 
1255 	pg->bypassed = bypassed;
1256 	m->current_pgpath = NULL;
1257 	m->current_pg = NULL;
1258 
1259 	spin_unlock_irqrestore(&m->lock, flags);
1260 
1261 	schedule_work(&m->trigger_event);
1262 }
1263 
1264 /*
1265  * Switch to using the specified PG from the next I/O that gets mapped
1266  */
1267 static int switch_pg_num(struct multipath *m, const char *pgstr)
1268 {
1269 	struct priority_group *pg;
1270 	unsigned pgnum;
1271 	unsigned long flags;
1272 	char dummy;
1273 
1274 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1275 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1276 		DMWARN("invalid PG number supplied to switch_pg_num");
1277 		return -EINVAL;
1278 	}
1279 
1280 	spin_lock_irqsave(&m->lock, flags);
1281 	list_for_each_entry(pg, &m->priority_groups, list) {
1282 		pg->bypassed = false;
1283 		if (--pgnum)
1284 			continue;
1285 
1286 		m->current_pgpath = NULL;
1287 		m->current_pg = NULL;
1288 		m->next_pg = pg;
1289 	}
1290 	spin_unlock_irqrestore(&m->lock, flags);
1291 
1292 	schedule_work(&m->trigger_event);
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Set/clear bypassed status of a PG.
1298  * PGs are numbered upwards from 1 in the order they were declared.
1299  */
1300 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1301 {
1302 	struct priority_group *pg;
1303 	unsigned pgnum;
1304 	char dummy;
1305 
1306 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1307 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1308 		DMWARN("invalid PG number supplied to bypass_pg");
1309 		return -EINVAL;
1310 	}
1311 
1312 	list_for_each_entry(pg, &m->priority_groups, list) {
1313 		if (!--pgnum)
1314 			break;
1315 	}
1316 
1317 	bypass_pg(m, pg, bypassed);
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Should we retry pg_init immediately?
1323  */
1324 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1325 {
1326 	unsigned long flags;
1327 	bool limit_reached = false;
1328 
1329 	spin_lock_irqsave(&m->lock, flags);
1330 
1331 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1332 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1333 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1334 	else
1335 		limit_reached = true;
1336 
1337 	spin_unlock_irqrestore(&m->lock, flags);
1338 
1339 	return limit_reached;
1340 }
1341 
1342 static void pg_init_done(void *data, int errors)
1343 {
1344 	struct pgpath *pgpath = data;
1345 	struct priority_group *pg = pgpath->pg;
1346 	struct multipath *m = pg->m;
1347 	unsigned long flags;
1348 	bool delay_retry = false;
1349 
1350 	/* device or driver problems */
1351 	switch (errors) {
1352 	case SCSI_DH_OK:
1353 		break;
1354 	case SCSI_DH_NOSYS:
1355 		if (!m->hw_handler_name) {
1356 			errors = 0;
1357 			break;
1358 		}
1359 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1360 		      "Error %d.", m->hw_handler_name, errors);
1361 		/*
1362 		 * Fail path for now, so we do not ping pong
1363 		 */
1364 		fail_path(pgpath);
1365 		break;
1366 	case SCSI_DH_DEV_TEMP_BUSY:
1367 		/*
1368 		 * Probably doing something like FW upgrade on the
1369 		 * controller so try the other pg.
1370 		 */
1371 		bypass_pg(m, pg, true);
1372 		break;
1373 	case SCSI_DH_RETRY:
1374 		/* Wait before retrying. */
1375 		delay_retry = 1;
1376 		/* fall through */
1377 	case SCSI_DH_IMM_RETRY:
1378 	case SCSI_DH_RES_TEMP_UNAVAIL:
1379 		if (pg_init_limit_reached(m, pgpath))
1380 			fail_path(pgpath);
1381 		errors = 0;
1382 		break;
1383 	case SCSI_DH_DEV_OFFLINED:
1384 	default:
1385 		/*
1386 		 * We probably do not want to fail the path for a device
1387 		 * error, but this is what the old dm did. In future
1388 		 * patches we can do more advanced handling.
1389 		 */
1390 		fail_path(pgpath);
1391 	}
1392 
1393 	spin_lock_irqsave(&m->lock, flags);
1394 	if (errors) {
1395 		if (pgpath == m->current_pgpath) {
1396 			DMERR("Could not failover device. Error %d.", errors);
1397 			m->current_pgpath = NULL;
1398 			m->current_pg = NULL;
1399 		}
1400 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1401 		pg->bypassed = false;
1402 
1403 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1404 		/* Activations of other paths are still on going */
1405 		goto out;
1406 
1407 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1408 		if (delay_retry)
1409 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1410 		else
1411 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1412 
1413 		if (__pg_init_all_paths(m))
1414 			goto out;
1415 	}
1416 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1417 
1418 	process_queued_io_list(m);
1419 
1420 	/*
1421 	 * Wake up any thread waiting to suspend.
1422 	 */
1423 	wake_up(&m->pg_init_wait);
1424 
1425 out:
1426 	spin_unlock_irqrestore(&m->lock, flags);
1427 }
1428 
1429 static void activate_or_offline_path(struct pgpath *pgpath)
1430 {
1431 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1432 
1433 	if (pgpath->is_active && !blk_queue_dying(q))
1434 		scsi_dh_activate(q, pg_init_done, pgpath);
1435 	else
1436 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1437 }
1438 
1439 static void activate_path_work(struct work_struct *work)
1440 {
1441 	struct pgpath *pgpath =
1442 		container_of(work, struct pgpath, activate_path.work);
1443 
1444 	activate_or_offline_path(pgpath);
1445 }
1446 
1447 static int noretry_error(blk_status_t error)
1448 {
1449 	switch (error) {
1450 	case BLK_STS_NOTSUPP:
1451 	case BLK_STS_NOSPC:
1452 	case BLK_STS_TARGET:
1453 	case BLK_STS_NEXUS:
1454 	case BLK_STS_MEDIUM:
1455 		return 1;
1456 	}
1457 
1458 	/* Anything else could be a path failure, so should be retried */
1459 	return 0;
1460 }
1461 
1462 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1463 			    blk_status_t error, union map_info *map_context)
1464 {
1465 	struct dm_mpath_io *mpio = get_mpio(map_context);
1466 	struct pgpath *pgpath = mpio->pgpath;
1467 	int r = DM_ENDIO_DONE;
1468 
1469 	/*
1470 	 * We don't queue any clone request inside the multipath target
1471 	 * during end I/O handling, since those clone requests don't have
1472 	 * bio clones.  If we queue them inside the multipath target,
1473 	 * we need to make bio clones, that requires memory allocation.
1474 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1475 	 *  don't have bio clones.)
1476 	 * Instead of queueing the clone request here, we queue the original
1477 	 * request into dm core, which will remake a clone request and
1478 	 * clone bios for it and resubmit it later.
1479 	 */
1480 	if (error && !noretry_error(error)) {
1481 		struct multipath *m = ti->private;
1482 
1483 		r = DM_ENDIO_REQUEUE;
1484 
1485 		if (pgpath)
1486 			fail_path(pgpath);
1487 
1488 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1489 		    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1490 			if (error == BLK_STS_IOERR)
1491 				dm_report_EIO(m);
1492 			/* complete with the original error */
1493 			r = DM_ENDIO_DONE;
1494 		}
1495 	}
1496 
1497 	if (pgpath) {
1498 		struct path_selector *ps = &pgpath->pg->ps;
1499 
1500 		if (ps->type->end_io)
1501 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1502 	}
1503 
1504 	return r;
1505 }
1506 
1507 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1508 		blk_status_t *error)
1509 {
1510 	struct multipath *m = ti->private;
1511 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1512 	struct pgpath *pgpath = mpio->pgpath;
1513 	unsigned long flags;
1514 	int r = DM_ENDIO_DONE;
1515 
1516 	if (!*error || noretry_error(*error))
1517 		goto done;
1518 
1519 	if (pgpath)
1520 		fail_path(pgpath);
1521 
1522 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1523 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1524 		dm_report_EIO(m);
1525 		*error = BLK_STS_IOERR;
1526 		goto done;
1527 	}
1528 
1529 	/* Queue for the daemon to resubmit */
1530 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1531 
1532 	spin_lock_irqsave(&m->lock, flags);
1533 	bio_list_add(&m->queued_bios, clone);
1534 	spin_unlock_irqrestore(&m->lock, flags);
1535 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1536 		queue_work(kmultipathd, &m->process_queued_bios);
1537 
1538 	r = DM_ENDIO_INCOMPLETE;
1539 done:
1540 	if (pgpath) {
1541 		struct path_selector *ps = &pgpath->pg->ps;
1542 
1543 		if (ps->type->end_io)
1544 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1545 	}
1546 
1547 	return r;
1548 }
1549 
1550 /*
1551  * Suspend can't complete until all the I/O is processed so if
1552  * the last path fails we must error any remaining I/O.
1553  * Note that if the freeze_bdev fails while suspending, the
1554  * queue_if_no_path state is lost - userspace should reset it.
1555  */
1556 static void multipath_presuspend(struct dm_target *ti)
1557 {
1558 	struct multipath *m = ti->private;
1559 
1560 	queue_if_no_path(m, false, true);
1561 }
1562 
1563 static void multipath_postsuspend(struct dm_target *ti)
1564 {
1565 	struct multipath *m = ti->private;
1566 
1567 	mutex_lock(&m->work_mutex);
1568 	flush_multipath_work(m);
1569 	mutex_unlock(&m->work_mutex);
1570 }
1571 
1572 /*
1573  * Restore the queue_if_no_path setting.
1574  */
1575 static void multipath_resume(struct dm_target *ti)
1576 {
1577 	struct multipath *m = ti->private;
1578 	unsigned long flags;
1579 
1580 	spin_lock_irqsave(&m->lock, flags);
1581 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1582 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1583 	spin_unlock_irqrestore(&m->lock, flags);
1584 }
1585 
1586 /*
1587  * Info output has the following format:
1588  * num_multipath_feature_args [multipath_feature_args]*
1589  * num_handler_status_args [handler_status_args]*
1590  * num_groups init_group_number
1591  *            [A|D|E num_ps_status_args [ps_status_args]*
1592  *             num_paths num_selector_args
1593  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1594  *
1595  * Table output has the following format (identical to the constructor string):
1596  * num_feature_args [features_args]*
1597  * num_handler_args hw_handler [hw_handler_args]*
1598  * num_groups init_group_number
1599  *     [priority selector-name num_ps_args [ps_args]*
1600  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1601  */
1602 static void multipath_status(struct dm_target *ti, status_type_t type,
1603 			     unsigned status_flags, char *result, unsigned maxlen)
1604 {
1605 	int sz = 0;
1606 	unsigned long flags;
1607 	struct multipath *m = ti->private;
1608 	struct priority_group *pg;
1609 	struct pgpath *p;
1610 	unsigned pg_num;
1611 	char state;
1612 
1613 	spin_lock_irqsave(&m->lock, flags);
1614 
1615 	/* Features */
1616 	if (type == STATUSTYPE_INFO)
1617 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1618 		       atomic_read(&m->pg_init_count));
1619 	else {
1620 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1621 			      (m->pg_init_retries > 0) * 2 +
1622 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1623 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1624 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1625 
1626 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1627 			DMEMIT("queue_if_no_path ");
1628 		if (m->pg_init_retries)
1629 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1630 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1631 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1632 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1633 			DMEMIT("retain_attached_hw_handler ");
1634 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1635 			switch(m->queue_mode) {
1636 			case DM_TYPE_BIO_BASED:
1637 				DMEMIT("queue_mode bio ");
1638 				break;
1639 			case DM_TYPE_MQ_REQUEST_BASED:
1640 				DMEMIT("queue_mode mq ");
1641 				break;
1642 			default:
1643 				WARN_ON_ONCE(true);
1644 				break;
1645 			}
1646 		}
1647 	}
1648 
1649 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1650 		DMEMIT("0 ");
1651 	else
1652 		DMEMIT("1 %s ", m->hw_handler_name);
1653 
1654 	DMEMIT("%u ", m->nr_priority_groups);
1655 
1656 	if (m->next_pg)
1657 		pg_num = m->next_pg->pg_num;
1658 	else if (m->current_pg)
1659 		pg_num = m->current_pg->pg_num;
1660 	else
1661 		pg_num = (m->nr_priority_groups ? 1 : 0);
1662 
1663 	DMEMIT("%u ", pg_num);
1664 
1665 	switch (type) {
1666 	case STATUSTYPE_INFO:
1667 		list_for_each_entry(pg, &m->priority_groups, list) {
1668 			if (pg->bypassed)
1669 				state = 'D';	/* Disabled */
1670 			else if (pg == m->current_pg)
1671 				state = 'A';	/* Currently Active */
1672 			else
1673 				state = 'E';	/* Enabled */
1674 
1675 			DMEMIT("%c ", state);
1676 
1677 			if (pg->ps.type->status)
1678 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1679 							  result + sz,
1680 							  maxlen - sz);
1681 			else
1682 				DMEMIT("0 ");
1683 
1684 			DMEMIT("%u %u ", pg->nr_pgpaths,
1685 			       pg->ps.type->info_args);
1686 
1687 			list_for_each_entry(p, &pg->pgpaths, list) {
1688 				DMEMIT("%s %s %u ", p->path.dev->name,
1689 				       p->is_active ? "A" : "F",
1690 				       p->fail_count);
1691 				if (pg->ps.type->status)
1692 					sz += pg->ps.type->status(&pg->ps,
1693 					      &p->path, type, result + sz,
1694 					      maxlen - sz);
1695 			}
1696 		}
1697 		break;
1698 
1699 	case STATUSTYPE_TABLE:
1700 		list_for_each_entry(pg, &m->priority_groups, list) {
1701 			DMEMIT("%s ", pg->ps.type->name);
1702 
1703 			if (pg->ps.type->status)
1704 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1705 							  result + sz,
1706 							  maxlen - sz);
1707 			else
1708 				DMEMIT("0 ");
1709 
1710 			DMEMIT("%u %u ", pg->nr_pgpaths,
1711 			       pg->ps.type->table_args);
1712 
1713 			list_for_each_entry(p, &pg->pgpaths, list) {
1714 				DMEMIT("%s ", p->path.dev->name);
1715 				if (pg->ps.type->status)
1716 					sz += pg->ps.type->status(&pg->ps,
1717 					      &p->path, type, result + sz,
1718 					      maxlen - sz);
1719 			}
1720 		}
1721 		break;
1722 	}
1723 
1724 	spin_unlock_irqrestore(&m->lock, flags);
1725 }
1726 
1727 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1728 {
1729 	int r = -EINVAL;
1730 	struct dm_dev *dev;
1731 	struct multipath *m = ti->private;
1732 	action_fn action;
1733 
1734 	mutex_lock(&m->work_mutex);
1735 
1736 	if (dm_suspended(ti)) {
1737 		r = -EBUSY;
1738 		goto out;
1739 	}
1740 
1741 	if (argc == 1) {
1742 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1743 			r = queue_if_no_path(m, true, false);
1744 			goto out;
1745 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1746 			r = queue_if_no_path(m, false, false);
1747 			goto out;
1748 		}
1749 	}
1750 
1751 	if (argc != 2) {
1752 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1753 		goto out;
1754 	}
1755 
1756 	if (!strcasecmp(argv[0], "disable_group")) {
1757 		r = bypass_pg_num(m, argv[1], true);
1758 		goto out;
1759 	} else if (!strcasecmp(argv[0], "enable_group")) {
1760 		r = bypass_pg_num(m, argv[1], false);
1761 		goto out;
1762 	} else if (!strcasecmp(argv[0], "switch_group")) {
1763 		r = switch_pg_num(m, argv[1]);
1764 		goto out;
1765 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1766 		action = reinstate_path;
1767 	else if (!strcasecmp(argv[0], "fail_path"))
1768 		action = fail_path;
1769 	else {
1770 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1771 		goto out;
1772 	}
1773 
1774 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1775 	if (r) {
1776 		DMWARN("message: error getting device %s",
1777 		       argv[1]);
1778 		goto out;
1779 	}
1780 
1781 	r = action_dev(m, dev, action);
1782 
1783 	dm_put_device(ti, dev);
1784 
1785 out:
1786 	mutex_unlock(&m->work_mutex);
1787 	return r;
1788 }
1789 
1790 static int multipath_prepare_ioctl(struct dm_target *ti,
1791 		struct block_device **bdev, fmode_t *mode)
1792 {
1793 	struct multipath *m = ti->private;
1794 	struct pgpath *current_pgpath;
1795 	int r;
1796 
1797 	current_pgpath = READ_ONCE(m->current_pgpath);
1798 	if (!current_pgpath)
1799 		current_pgpath = choose_pgpath(m, 0);
1800 
1801 	if (current_pgpath) {
1802 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1803 			*bdev = current_pgpath->path.dev->bdev;
1804 			*mode = current_pgpath->path.dev->mode;
1805 			r = 0;
1806 		} else {
1807 			/* pg_init has not started or completed */
1808 			r = -ENOTCONN;
1809 		}
1810 	} else {
1811 		/* No path is available */
1812 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1813 			r = -ENOTCONN;
1814 		else
1815 			r = -EIO;
1816 	}
1817 
1818 	if (r == -ENOTCONN) {
1819 		if (!READ_ONCE(m->current_pg)) {
1820 			/* Path status changed, redo selection */
1821 			(void) choose_pgpath(m, 0);
1822 		}
1823 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1824 			pg_init_all_paths(m);
1825 		dm_table_run_md_queue_async(m->ti->table);
1826 		process_queued_io_list(m);
1827 	}
1828 
1829 	/*
1830 	 * Only pass ioctls through if the device sizes match exactly.
1831 	 */
1832 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1833 		return 1;
1834 	return r;
1835 }
1836 
1837 static int multipath_iterate_devices(struct dm_target *ti,
1838 				     iterate_devices_callout_fn fn, void *data)
1839 {
1840 	struct multipath *m = ti->private;
1841 	struct priority_group *pg;
1842 	struct pgpath *p;
1843 	int ret = 0;
1844 
1845 	list_for_each_entry(pg, &m->priority_groups, list) {
1846 		list_for_each_entry(p, &pg->pgpaths, list) {
1847 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1848 			if (ret)
1849 				goto out;
1850 		}
1851 	}
1852 
1853 out:
1854 	return ret;
1855 }
1856 
1857 static int pgpath_busy(struct pgpath *pgpath)
1858 {
1859 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1860 
1861 	return blk_lld_busy(q);
1862 }
1863 
1864 /*
1865  * We return "busy", only when we can map I/Os but underlying devices
1866  * are busy (so even if we map I/Os now, the I/Os will wait on
1867  * the underlying queue).
1868  * In other words, if we want to kill I/Os or queue them inside us
1869  * due to map unavailability, we don't return "busy".  Otherwise,
1870  * dm core won't give us the I/Os and we can't do what we want.
1871  */
1872 static int multipath_busy(struct dm_target *ti)
1873 {
1874 	bool busy = false, has_active = false;
1875 	struct multipath *m = ti->private;
1876 	struct priority_group *pg, *next_pg;
1877 	struct pgpath *pgpath;
1878 
1879 	/* pg_init in progress */
1880 	if (atomic_read(&m->pg_init_in_progress))
1881 		return true;
1882 
1883 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1884 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1885 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1886 
1887 	/* Guess which priority_group will be used at next mapping time */
1888 	pg = READ_ONCE(m->current_pg);
1889 	next_pg = READ_ONCE(m->next_pg);
1890 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1891 		pg = next_pg;
1892 
1893 	if (!pg) {
1894 		/*
1895 		 * We don't know which pg will be used at next mapping time.
1896 		 * We don't call choose_pgpath() here to avoid to trigger
1897 		 * pg_init just by busy checking.
1898 		 * So we don't know whether underlying devices we will be using
1899 		 * at next mapping time are busy or not. Just try mapping.
1900 		 */
1901 		return busy;
1902 	}
1903 
1904 	/*
1905 	 * If there is one non-busy active path at least, the path selector
1906 	 * will be able to select it. So we consider such a pg as not busy.
1907 	 */
1908 	busy = true;
1909 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1910 		if (pgpath->is_active) {
1911 			has_active = true;
1912 			if (!pgpath_busy(pgpath)) {
1913 				busy = false;
1914 				break;
1915 			}
1916 		}
1917 	}
1918 
1919 	if (!has_active) {
1920 		/*
1921 		 * No active path in this pg, so this pg won't be used and
1922 		 * the current_pg will be changed at next mapping time.
1923 		 * We need to try mapping to determine it.
1924 		 */
1925 		busy = false;
1926 	}
1927 
1928 	return busy;
1929 }
1930 
1931 /*-----------------------------------------------------------------
1932  * Module setup
1933  *---------------------------------------------------------------*/
1934 static struct target_type multipath_target = {
1935 	.name = "multipath",
1936 	.version = {1, 12, 0},
1937 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1938 	.module = THIS_MODULE,
1939 	.ctr = multipath_ctr,
1940 	.dtr = multipath_dtr,
1941 	.clone_and_map_rq = multipath_clone_and_map,
1942 	.release_clone_rq = multipath_release_clone,
1943 	.rq_end_io = multipath_end_io,
1944 	.map = multipath_map_bio,
1945 	.end_io = multipath_end_io_bio,
1946 	.presuspend = multipath_presuspend,
1947 	.postsuspend = multipath_postsuspend,
1948 	.resume = multipath_resume,
1949 	.status = multipath_status,
1950 	.message = multipath_message,
1951 	.prepare_ioctl = multipath_prepare_ioctl,
1952 	.iterate_devices = multipath_iterate_devices,
1953 	.busy = multipath_busy,
1954 };
1955 
1956 static int __init dm_multipath_init(void)
1957 {
1958 	int r;
1959 
1960 	r = dm_register_target(&multipath_target);
1961 	if (r < 0) {
1962 		DMERR("request-based register failed %d", r);
1963 		r = -EINVAL;
1964 		goto bad_register_target;
1965 	}
1966 
1967 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1968 	if (!kmultipathd) {
1969 		DMERR("failed to create workqueue kmpathd");
1970 		r = -ENOMEM;
1971 		goto bad_alloc_kmultipathd;
1972 	}
1973 
1974 	/*
1975 	 * A separate workqueue is used to handle the device handlers
1976 	 * to avoid overloading existing workqueue. Overloading the
1977 	 * old workqueue would also create a bottleneck in the
1978 	 * path of the storage hardware device activation.
1979 	 */
1980 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1981 						  WQ_MEM_RECLAIM);
1982 	if (!kmpath_handlerd) {
1983 		DMERR("failed to create workqueue kmpath_handlerd");
1984 		r = -ENOMEM;
1985 		goto bad_alloc_kmpath_handlerd;
1986 	}
1987 
1988 	return 0;
1989 
1990 bad_alloc_kmpath_handlerd:
1991 	destroy_workqueue(kmultipathd);
1992 bad_alloc_kmultipathd:
1993 	dm_unregister_target(&multipath_target);
1994 bad_register_target:
1995 	return r;
1996 }
1997 
1998 static void __exit dm_multipath_exit(void)
1999 {
2000 	destroy_workqueue(kmpath_handlerd);
2001 	destroy_workqueue(kmultipathd);
2002 
2003 	dm_unregister_target(&multipath_target);
2004 }
2005 
2006 module_init(dm_multipath_init);
2007 module_exit(dm_multipath_exit);
2008 
2009 MODULE_DESCRIPTION(DM_NAME " multipath target");
2010 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2011 MODULE_LICENSE("GPL");
2012