1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 enum dm_queue_mode queue_mode; 94 95 struct mutex work_mutex; 96 struct work_struct trigger_event; 97 98 struct work_struct process_queued_bios; 99 struct bio_list queued_bios; 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 118 /*----------------------------------------------- 119 * Multipath state flags. 120 *-----------------------------------------------*/ 121 122 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 123 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 126 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 127 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 128 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 129 130 /*----------------------------------------------- 131 * Allocation routines 132 *-----------------------------------------------*/ 133 134 static struct pgpath *alloc_pgpath(void) 135 { 136 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 137 138 if (pgpath) { 139 pgpath->is_active = true; 140 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work); 141 } 142 143 return pgpath; 144 } 145 146 static void free_pgpath(struct pgpath *pgpath) 147 { 148 kfree(pgpath); 149 } 150 151 static struct priority_group *alloc_priority_group(void) 152 { 153 struct priority_group *pg; 154 155 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 156 157 if (pg) 158 INIT_LIST_HEAD(&pg->pgpaths); 159 160 return pg; 161 } 162 163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 164 { 165 struct pgpath *pgpath, *tmp; 166 167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 168 list_del(&pgpath->list); 169 dm_put_device(ti, pgpath->path.dev); 170 free_pgpath(pgpath); 171 } 172 } 173 174 static void free_priority_group(struct priority_group *pg, 175 struct dm_target *ti) 176 { 177 struct path_selector *ps = &pg->ps; 178 179 if (ps->type) { 180 ps->type->destroy(ps); 181 dm_put_path_selector(ps->type); 182 } 183 184 free_pgpaths(&pg->pgpaths, ti); 185 kfree(pg); 186 } 187 188 static struct multipath *alloc_multipath(struct dm_target *ti) 189 { 190 struct multipath *m; 191 192 m = kzalloc(sizeof(*m), GFP_KERNEL); 193 if (m) { 194 INIT_LIST_HEAD(&m->priority_groups); 195 spin_lock_init(&m->lock); 196 set_bit(MPATHF_QUEUE_IO, &m->flags); 197 atomic_set(&m->nr_valid_paths, 0); 198 atomic_set(&m->pg_init_in_progress, 0); 199 atomic_set(&m->pg_init_count, 0); 200 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 201 INIT_WORK(&m->trigger_event, trigger_event); 202 init_waitqueue_head(&m->pg_init_wait); 203 mutex_init(&m->work_mutex); 204 205 m->queue_mode = DM_TYPE_NONE; 206 207 m->ti = ti; 208 ti->private = m; 209 } 210 211 return m; 212 } 213 214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 215 { 216 if (m->queue_mode == DM_TYPE_NONE) { 217 /* 218 * Default to request-based. 219 */ 220 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 221 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 222 else 223 m->queue_mode = DM_TYPE_REQUEST_BASED; 224 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 225 INIT_WORK(&m->process_queued_bios, process_queued_bios); 226 /* 227 * bio-based doesn't support any direct scsi_dh management; 228 * it just discovers if a scsi_dh is attached. 229 */ 230 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 231 } 232 233 dm_table_set_type(ti->table, m->queue_mode); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 kfree(m); 250 } 251 252 static struct dm_mpath_io *get_mpio(union map_info *info) 253 { 254 return info->ptr; 255 } 256 257 static size_t multipath_per_bio_data_size(void) 258 { 259 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 260 } 261 262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 263 { 264 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 265 } 266 267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 268 { 269 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 void *bio_details = mpio + 1; 272 273 return bio_details; 274 } 275 276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 277 struct dm_bio_details **bio_details_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 281 282 memset(mpio, 0, sizeof(*mpio)); 283 memset(bio_details, 0, sizeof(*bio_details)); 284 dm_bio_record(bio_details, bio); 285 286 if (mpio_p) 287 *mpio_p = mpio; 288 if (bio_details_p) 289 *bio_details_p = bio_details; 290 } 291 292 /*----------------------------------------------- 293 * Path selection 294 *-----------------------------------------------*/ 295 296 static int __pg_init_all_paths(struct multipath *m) 297 { 298 struct pgpath *pgpath; 299 unsigned long pg_init_delay = 0; 300 301 lockdep_assert_held(&m->lock); 302 303 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 304 return 0; 305 306 atomic_inc(&m->pg_init_count); 307 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 308 309 /* Check here to reset pg_init_required */ 310 if (!m->current_pg) 311 return 0; 312 313 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 314 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 315 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 316 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 317 /* Skip failed paths */ 318 if (!pgpath->is_active) 319 continue; 320 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 321 pg_init_delay)) 322 atomic_inc(&m->pg_init_in_progress); 323 } 324 return atomic_read(&m->pg_init_in_progress); 325 } 326 327 static int pg_init_all_paths(struct multipath *m) 328 { 329 int ret; 330 unsigned long flags; 331 332 spin_lock_irqsave(&m->lock, flags); 333 ret = __pg_init_all_paths(m); 334 spin_unlock_irqrestore(&m->lock, flags); 335 336 return ret; 337 } 338 339 static void __switch_pg(struct multipath *m, struct priority_group *pg) 340 { 341 m->current_pg = pg; 342 343 /* Must we initialise the PG first, and queue I/O till it's ready? */ 344 if (m->hw_handler_name) { 345 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 set_bit(MPATHF_QUEUE_IO, &m->flags); 347 } else { 348 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 349 clear_bit(MPATHF_QUEUE_IO, &m->flags); 350 } 351 352 atomic_set(&m->pg_init_count, 0); 353 } 354 355 static struct pgpath *choose_path_in_pg(struct multipath *m, 356 struct priority_group *pg, 357 size_t nr_bytes) 358 { 359 unsigned long flags; 360 struct dm_path *path; 361 struct pgpath *pgpath; 362 363 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 364 if (!path) 365 return ERR_PTR(-ENXIO); 366 367 pgpath = path_to_pgpath(path); 368 369 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 370 /* Only update current_pgpath if pg changed */ 371 spin_lock_irqsave(&m->lock, flags); 372 m->current_pgpath = pgpath; 373 __switch_pg(m, pg); 374 spin_unlock_irqrestore(&m->lock, flags); 375 } 376 377 return pgpath; 378 } 379 380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 381 { 382 unsigned long flags; 383 struct priority_group *pg; 384 struct pgpath *pgpath; 385 unsigned bypassed = 1; 386 387 if (!atomic_read(&m->nr_valid_paths)) { 388 clear_bit(MPATHF_QUEUE_IO, &m->flags); 389 goto failed; 390 } 391 392 /* Were we instructed to switch PG? */ 393 if (READ_ONCE(m->next_pg)) { 394 spin_lock_irqsave(&m->lock, flags); 395 pg = m->next_pg; 396 if (!pg) { 397 spin_unlock_irqrestore(&m->lock, flags); 398 goto check_current_pg; 399 } 400 m->next_pg = NULL; 401 spin_unlock_irqrestore(&m->lock, flags); 402 pgpath = choose_path_in_pg(m, pg, nr_bytes); 403 if (!IS_ERR_OR_NULL(pgpath)) 404 return pgpath; 405 } 406 407 /* Don't change PG until it has no remaining paths */ 408 check_current_pg: 409 pg = READ_ONCE(m->current_pg); 410 if (pg) { 411 pgpath = choose_path_in_pg(m, pg, nr_bytes); 412 if (!IS_ERR_OR_NULL(pgpath)) 413 return pgpath; 414 } 415 416 /* 417 * Loop through priority groups until we find a valid path. 418 * First time we skip PGs marked 'bypassed'. 419 * Second time we only try the ones we skipped, but set 420 * pg_init_delay_retry so we do not hammer controllers. 421 */ 422 do { 423 list_for_each_entry(pg, &m->priority_groups, list) { 424 if (pg->bypassed == !!bypassed) 425 continue; 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) { 428 if (!bypassed) 429 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 430 return pgpath; 431 } 432 } 433 } while (bypassed--); 434 435 failed: 436 spin_lock_irqsave(&m->lock, flags); 437 m->current_pgpath = NULL; 438 m->current_pg = NULL; 439 spin_unlock_irqrestore(&m->lock, flags); 440 441 return NULL; 442 } 443 444 /* 445 * dm_report_EIO() is a macro instead of a function to make pr_debug() 446 * report the function name and line number of the function from which 447 * it has been invoked. 448 */ 449 #define dm_report_EIO(m) \ 450 do { \ 451 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 452 \ 453 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 454 dm_device_name(md), \ 455 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 456 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 457 dm_noflush_suspending((m)->ti)); \ 458 } while (0) 459 460 /* 461 * Map cloned requests (request-based multipath) 462 */ 463 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 464 union map_info *map_context, 465 struct request **__clone) 466 { 467 struct multipath *m = ti->private; 468 size_t nr_bytes = blk_rq_bytes(rq); 469 struct pgpath *pgpath; 470 struct block_device *bdev; 471 struct dm_mpath_io *mpio = get_mpio(map_context); 472 struct request_queue *q; 473 struct request *clone; 474 475 /* Do we need to select a new pgpath? */ 476 pgpath = READ_ONCE(m->current_pgpath); 477 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 478 pgpath = choose_pgpath(m, nr_bytes); 479 480 if (!pgpath) { 481 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 482 return DM_MAPIO_DELAY_REQUEUE; 483 dm_report_EIO(m); /* Failed */ 484 return DM_MAPIO_KILL; 485 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 486 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 487 if (pg_init_all_paths(m)) 488 return DM_MAPIO_DELAY_REQUEUE; 489 return DM_MAPIO_REQUEUE; 490 } 491 492 memset(mpio, 0, sizeof(*mpio)); 493 mpio->pgpath = pgpath; 494 mpio->nr_bytes = nr_bytes; 495 496 bdev = pgpath->path.dev->bdev; 497 q = bdev_get_queue(bdev); 498 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 499 if (IS_ERR(clone)) { 500 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 501 bool queue_dying = blk_queue_dying(q); 502 if (queue_dying) { 503 atomic_inc(&m->pg_init_in_progress); 504 activate_or_offline_path(pgpath); 505 } 506 return DM_MAPIO_DELAY_REQUEUE; 507 } 508 clone->bio = clone->biotail = NULL; 509 clone->rq_disk = bdev->bd_disk; 510 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 511 *__clone = clone; 512 513 if (pgpath->pg->ps.type->start_io) 514 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 515 &pgpath->path, 516 nr_bytes); 517 return DM_MAPIO_REMAPPED; 518 } 519 520 static void multipath_release_clone(struct request *clone) 521 { 522 blk_put_request(clone); 523 } 524 525 /* 526 * Map cloned bios (bio-based multipath) 527 */ 528 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 529 { 530 size_t nr_bytes = bio->bi_iter.bi_size; 531 struct pgpath *pgpath; 532 unsigned long flags; 533 bool queue_io; 534 535 /* Do we need to select a new pgpath? */ 536 pgpath = READ_ONCE(m->current_pgpath); 537 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 538 if (!pgpath || !queue_io) 539 pgpath = choose_pgpath(m, nr_bytes); 540 541 if ((pgpath && queue_io) || 542 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 543 /* Queue for the daemon to resubmit */ 544 spin_lock_irqsave(&m->lock, flags); 545 bio_list_add(&m->queued_bios, bio); 546 spin_unlock_irqrestore(&m->lock, flags); 547 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 548 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 549 pg_init_all_paths(m); 550 else if (!queue_io) 551 queue_work(kmultipathd, &m->process_queued_bios); 552 return DM_MAPIO_SUBMITTED; 553 } 554 555 if (!pgpath) { 556 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 557 return DM_MAPIO_REQUEUE; 558 dm_report_EIO(m); 559 return DM_MAPIO_KILL; 560 } 561 562 mpio->pgpath = pgpath; 563 mpio->nr_bytes = nr_bytes; 564 565 bio->bi_status = 0; 566 bio_set_dev(bio, pgpath->path.dev->bdev); 567 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 568 569 if (pgpath->pg->ps.type->start_io) 570 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 571 &pgpath->path, 572 nr_bytes); 573 return DM_MAPIO_REMAPPED; 574 } 575 576 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 577 { 578 struct multipath *m = ti->private; 579 struct dm_mpath_io *mpio = NULL; 580 581 multipath_init_per_bio_data(bio, &mpio, NULL); 582 583 return __multipath_map_bio(m, bio, mpio); 584 } 585 586 static void process_queued_io_list(struct multipath *m) 587 { 588 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 589 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 590 else if (m->queue_mode == DM_TYPE_BIO_BASED) 591 queue_work(kmultipathd, &m->process_queued_bios); 592 } 593 594 static void process_queued_bios(struct work_struct *work) 595 { 596 int r; 597 unsigned long flags; 598 struct bio *bio; 599 struct bio_list bios; 600 struct blk_plug plug; 601 struct multipath *m = 602 container_of(work, struct multipath, process_queued_bios); 603 604 bio_list_init(&bios); 605 606 spin_lock_irqsave(&m->lock, flags); 607 608 if (bio_list_empty(&m->queued_bios)) { 609 spin_unlock_irqrestore(&m->lock, flags); 610 return; 611 } 612 613 bio_list_merge(&bios, &m->queued_bios); 614 bio_list_init(&m->queued_bios); 615 616 spin_unlock_irqrestore(&m->lock, flags); 617 618 blk_start_plug(&plug); 619 while ((bio = bio_list_pop(&bios))) { 620 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 621 switch (r) { 622 case DM_MAPIO_KILL: 623 bio->bi_status = BLK_STS_IOERR; 624 bio_endio(bio); 625 break; 626 case DM_MAPIO_REQUEUE: 627 bio->bi_status = BLK_STS_DM_REQUEUE; 628 bio_endio(bio); 629 break; 630 case DM_MAPIO_REMAPPED: 631 generic_make_request(bio); 632 break; 633 case 0: 634 break; 635 default: 636 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 637 } 638 } 639 blk_finish_plug(&plug); 640 } 641 642 /* 643 * If we run out of usable paths, should we queue I/O or error it? 644 */ 645 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 646 bool save_old_value) 647 { 648 unsigned long flags; 649 650 spin_lock_irqsave(&m->lock, flags); 651 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 652 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 653 (!save_old_value && queue_if_no_path)); 654 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 655 queue_if_no_path || dm_noflush_suspending(m->ti)); 656 spin_unlock_irqrestore(&m->lock, flags); 657 658 if (!queue_if_no_path) { 659 dm_table_run_md_queue_async(m->ti->table); 660 process_queued_io_list(m); 661 } 662 663 return 0; 664 } 665 666 /* 667 * An event is triggered whenever a path is taken out of use. 668 * Includes path failure and PG bypass. 669 */ 670 static void trigger_event(struct work_struct *work) 671 { 672 struct multipath *m = 673 container_of(work, struct multipath, trigger_event); 674 675 dm_table_event(m->ti->table); 676 } 677 678 /*----------------------------------------------------------------- 679 * Constructor/argument parsing: 680 * <#multipath feature args> [<arg>]* 681 * <#hw_handler args> [hw_handler [<arg>]*] 682 * <#priority groups> 683 * <initial priority group> 684 * [<selector> <#selector args> [<arg>]* 685 * <#paths> <#per-path selector args> 686 * [<path> [<arg>]* ]+ ]+ 687 *---------------------------------------------------------------*/ 688 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 689 struct dm_target *ti) 690 { 691 int r; 692 struct path_selector_type *pst; 693 unsigned ps_argc; 694 695 static const struct dm_arg _args[] = { 696 {0, 1024, "invalid number of path selector args"}, 697 }; 698 699 pst = dm_get_path_selector(dm_shift_arg(as)); 700 if (!pst) { 701 ti->error = "unknown path selector type"; 702 return -EINVAL; 703 } 704 705 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 706 if (r) { 707 dm_put_path_selector(pst); 708 return -EINVAL; 709 } 710 711 r = pst->create(&pg->ps, ps_argc, as->argv); 712 if (r) { 713 dm_put_path_selector(pst); 714 ti->error = "path selector constructor failed"; 715 return r; 716 } 717 718 pg->ps.type = pst; 719 dm_consume_args(as, ps_argc); 720 721 return 0; 722 } 723 724 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 725 struct dm_target *ti) 726 { 727 int r; 728 struct pgpath *p; 729 struct multipath *m = ti->private; 730 struct request_queue *q = NULL; 731 const char *attached_handler_name; 732 733 /* we need at least a path arg */ 734 if (as->argc < 1) { 735 ti->error = "no device given"; 736 return ERR_PTR(-EINVAL); 737 } 738 739 p = alloc_pgpath(); 740 if (!p) 741 return ERR_PTR(-ENOMEM); 742 743 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 744 &p->path.dev); 745 if (r) { 746 ti->error = "error getting device"; 747 goto bad; 748 } 749 750 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 751 q = bdev_get_queue(p->path.dev->bdev); 752 753 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 754 retain: 755 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 756 if (attached_handler_name) { 757 /* 758 * Clear any hw_handler_params associated with a 759 * handler that isn't already attached. 760 */ 761 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 762 kfree(m->hw_handler_params); 763 m->hw_handler_params = NULL; 764 } 765 766 /* 767 * Reset hw_handler_name to match the attached handler 768 * 769 * NB. This modifies the table line to show the actual 770 * handler instead of the original table passed in. 771 */ 772 kfree(m->hw_handler_name); 773 m->hw_handler_name = attached_handler_name; 774 } 775 } 776 777 if (m->hw_handler_name) { 778 r = scsi_dh_attach(q, m->hw_handler_name); 779 if (r == -EBUSY) { 780 char b[BDEVNAME_SIZE]; 781 782 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 783 bdevname(p->path.dev->bdev, b)); 784 goto retain; 785 } 786 if (r < 0) { 787 ti->error = "error attaching hardware handler"; 788 dm_put_device(ti, p->path.dev); 789 goto bad; 790 } 791 792 if (m->hw_handler_params) { 793 r = scsi_dh_set_params(q, m->hw_handler_params); 794 if (r < 0) { 795 ti->error = "unable to set hardware " 796 "handler parameters"; 797 dm_put_device(ti, p->path.dev); 798 goto bad; 799 } 800 } 801 } 802 803 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 804 if (r) { 805 dm_put_device(ti, p->path.dev); 806 goto bad; 807 } 808 809 return p; 810 811 bad: 812 free_pgpath(p); 813 return ERR_PTR(r); 814 } 815 816 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 817 struct multipath *m) 818 { 819 static const struct dm_arg _args[] = { 820 {1, 1024, "invalid number of paths"}, 821 {0, 1024, "invalid number of selector args"} 822 }; 823 824 int r; 825 unsigned i, nr_selector_args, nr_args; 826 struct priority_group *pg; 827 struct dm_target *ti = m->ti; 828 829 if (as->argc < 2) { 830 as->argc = 0; 831 ti->error = "not enough priority group arguments"; 832 return ERR_PTR(-EINVAL); 833 } 834 835 pg = alloc_priority_group(); 836 if (!pg) { 837 ti->error = "couldn't allocate priority group"; 838 return ERR_PTR(-ENOMEM); 839 } 840 pg->m = m; 841 842 r = parse_path_selector(as, pg, ti); 843 if (r) 844 goto bad; 845 846 /* 847 * read the paths 848 */ 849 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 850 if (r) 851 goto bad; 852 853 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 854 if (r) 855 goto bad; 856 857 nr_args = 1 + nr_selector_args; 858 for (i = 0; i < pg->nr_pgpaths; i++) { 859 struct pgpath *pgpath; 860 struct dm_arg_set path_args; 861 862 if (as->argc < nr_args) { 863 ti->error = "not enough path parameters"; 864 r = -EINVAL; 865 goto bad; 866 } 867 868 path_args.argc = nr_args; 869 path_args.argv = as->argv; 870 871 pgpath = parse_path(&path_args, &pg->ps, ti); 872 if (IS_ERR(pgpath)) { 873 r = PTR_ERR(pgpath); 874 goto bad; 875 } 876 877 pgpath->pg = pg; 878 list_add_tail(&pgpath->list, &pg->pgpaths); 879 dm_consume_args(as, nr_args); 880 } 881 882 return pg; 883 884 bad: 885 free_priority_group(pg, ti); 886 return ERR_PTR(r); 887 } 888 889 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 890 { 891 unsigned hw_argc; 892 int ret; 893 struct dm_target *ti = m->ti; 894 895 static const struct dm_arg _args[] = { 896 {0, 1024, "invalid number of hardware handler args"}, 897 }; 898 899 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 900 return -EINVAL; 901 902 if (!hw_argc) 903 return 0; 904 905 if (m->queue_mode == DM_TYPE_BIO_BASED) { 906 dm_consume_args(as, hw_argc); 907 DMERR("bio-based multipath doesn't allow hardware handler args"); 908 return 0; 909 } 910 911 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 912 if (!m->hw_handler_name) 913 return -EINVAL; 914 915 if (hw_argc > 1) { 916 char *p; 917 int i, j, len = 4; 918 919 for (i = 0; i <= hw_argc - 2; i++) 920 len += strlen(as->argv[i]) + 1; 921 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 922 if (!p) { 923 ti->error = "memory allocation failed"; 924 ret = -ENOMEM; 925 goto fail; 926 } 927 j = sprintf(p, "%d", hw_argc - 1); 928 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 929 j = sprintf(p, "%s", as->argv[i]); 930 } 931 dm_consume_args(as, hw_argc - 1); 932 933 return 0; 934 fail: 935 kfree(m->hw_handler_name); 936 m->hw_handler_name = NULL; 937 return ret; 938 } 939 940 static int parse_features(struct dm_arg_set *as, struct multipath *m) 941 { 942 int r; 943 unsigned argc; 944 struct dm_target *ti = m->ti; 945 const char *arg_name; 946 947 static const struct dm_arg _args[] = { 948 {0, 8, "invalid number of feature args"}, 949 {1, 50, "pg_init_retries must be between 1 and 50"}, 950 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 951 }; 952 953 r = dm_read_arg_group(_args, as, &argc, &ti->error); 954 if (r) 955 return -EINVAL; 956 957 if (!argc) 958 return 0; 959 960 do { 961 arg_name = dm_shift_arg(as); 962 argc--; 963 964 if (!strcasecmp(arg_name, "queue_if_no_path")) { 965 r = queue_if_no_path(m, true, false); 966 continue; 967 } 968 969 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 970 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 971 continue; 972 } 973 974 if (!strcasecmp(arg_name, "pg_init_retries") && 975 (argc >= 1)) { 976 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 977 argc--; 978 continue; 979 } 980 981 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 982 (argc >= 1)) { 983 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 984 argc--; 985 continue; 986 } 987 988 if (!strcasecmp(arg_name, "queue_mode") && 989 (argc >= 1)) { 990 const char *queue_mode_name = dm_shift_arg(as); 991 992 if (!strcasecmp(queue_mode_name, "bio")) 993 m->queue_mode = DM_TYPE_BIO_BASED; 994 else if (!strcasecmp(queue_mode_name, "rq")) 995 m->queue_mode = DM_TYPE_REQUEST_BASED; 996 else if (!strcasecmp(queue_mode_name, "mq")) 997 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 998 else { 999 ti->error = "Unknown 'queue_mode' requested"; 1000 r = -EINVAL; 1001 } 1002 argc--; 1003 continue; 1004 } 1005 1006 ti->error = "Unrecognised multipath feature request"; 1007 r = -EINVAL; 1008 } while (argc && !r); 1009 1010 return r; 1011 } 1012 1013 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1014 { 1015 /* target arguments */ 1016 static const struct dm_arg _args[] = { 1017 {0, 1024, "invalid number of priority groups"}, 1018 {0, 1024, "invalid initial priority group number"}, 1019 }; 1020 1021 int r; 1022 struct multipath *m; 1023 struct dm_arg_set as; 1024 unsigned pg_count = 0; 1025 unsigned next_pg_num; 1026 1027 as.argc = argc; 1028 as.argv = argv; 1029 1030 m = alloc_multipath(ti); 1031 if (!m) { 1032 ti->error = "can't allocate multipath"; 1033 return -EINVAL; 1034 } 1035 1036 r = parse_features(&as, m); 1037 if (r) 1038 goto bad; 1039 1040 r = alloc_multipath_stage2(ti, m); 1041 if (r) 1042 goto bad; 1043 1044 r = parse_hw_handler(&as, m); 1045 if (r) 1046 goto bad; 1047 1048 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1049 if (r) 1050 goto bad; 1051 1052 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1053 if (r) 1054 goto bad; 1055 1056 if ((!m->nr_priority_groups && next_pg_num) || 1057 (m->nr_priority_groups && !next_pg_num)) { 1058 ti->error = "invalid initial priority group"; 1059 r = -EINVAL; 1060 goto bad; 1061 } 1062 1063 /* parse the priority groups */ 1064 while (as.argc) { 1065 struct priority_group *pg; 1066 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1067 1068 pg = parse_priority_group(&as, m); 1069 if (IS_ERR(pg)) { 1070 r = PTR_ERR(pg); 1071 goto bad; 1072 } 1073 1074 nr_valid_paths += pg->nr_pgpaths; 1075 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1076 1077 list_add_tail(&pg->list, &m->priority_groups); 1078 pg_count++; 1079 pg->pg_num = pg_count; 1080 if (!--next_pg_num) 1081 m->next_pg = pg; 1082 } 1083 1084 if (pg_count != m->nr_priority_groups) { 1085 ti->error = "priority group count mismatch"; 1086 r = -EINVAL; 1087 goto bad; 1088 } 1089 1090 ti->num_flush_bios = 1; 1091 ti->num_discard_bios = 1; 1092 ti->num_write_same_bios = 1; 1093 ti->num_write_zeroes_bios = 1; 1094 if (m->queue_mode == DM_TYPE_BIO_BASED) 1095 ti->per_io_data_size = multipath_per_bio_data_size(); 1096 else 1097 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1098 1099 return 0; 1100 1101 bad: 1102 free_multipath(m); 1103 return r; 1104 } 1105 1106 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1107 { 1108 DEFINE_WAIT(wait); 1109 1110 while (1) { 1111 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1112 1113 if (!atomic_read(&m->pg_init_in_progress)) 1114 break; 1115 1116 io_schedule(); 1117 } 1118 finish_wait(&m->pg_init_wait, &wait); 1119 } 1120 1121 static void flush_multipath_work(struct multipath *m) 1122 { 1123 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1124 smp_mb__after_atomic(); 1125 1126 flush_workqueue(kmpath_handlerd); 1127 multipath_wait_for_pg_init_completion(m); 1128 flush_workqueue(kmultipathd); 1129 flush_work(&m->trigger_event); 1130 1131 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1132 smp_mb__after_atomic(); 1133 } 1134 1135 static void multipath_dtr(struct dm_target *ti) 1136 { 1137 struct multipath *m = ti->private; 1138 1139 flush_multipath_work(m); 1140 free_multipath(m); 1141 } 1142 1143 /* 1144 * Take a path out of use. 1145 */ 1146 static int fail_path(struct pgpath *pgpath) 1147 { 1148 unsigned long flags; 1149 struct multipath *m = pgpath->pg->m; 1150 1151 spin_lock_irqsave(&m->lock, flags); 1152 1153 if (!pgpath->is_active) 1154 goto out; 1155 1156 DMWARN("Failing path %s.", pgpath->path.dev->name); 1157 1158 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1159 pgpath->is_active = false; 1160 pgpath->fail_count++; 1161 1162 atomic_dec(&m->nr_valid_paths); 1163 1164 if (pgpath == m->current_pgpath) 1165 m->current_pgpath = NULL; 1166 1167 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1168 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1169 1170 schedule_work(&m->trigger_event); 1171 1172 out: 1173 spin_unlock_irqrestore(&m->lock, flags); 1174 1175 return 0; 1176 } 1177 1178 /* 1179 * Reinstate a previously-failed path 1180 */ 1181 static int reinstate_path(struct pgpath *pgpath) 1182 { 1183 int r = 0, run_queue = 0; 1184 unsigned long flags; 1185 struct multipath *m = pgpath->pg->m; 1186 unsigned nr_valid_paths; 1187 1188 spin_lock_irqsave(&m->lock, flags); 1189 1190 if (pgpath->is_active) 1191 goto out; 1192 1193 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1194 1195 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1196 if (r) 1197 goto out; 1198 1199 pgpath->is_active = true; 1200 1201 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1202 if (nr_valid_paths == 1) { 1203 m->current_pgpath = NULL; 1204 run_queue = 1; 1205 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1206 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1207 atomic_inc(&m->pg_init_in_progress); 1208 } 1209 1210 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1211 pgpath->path.dev->name, nr_valid_paths); 1212 1213 schedule_work(&m->trigger_event); 1214 1215 out: 1216 spin_unlock_irqrestore(&m->lock, flags); 1217 if (run_queue) { 1218 dm_table_run_md_queue_async(m->ti->table); 1219 process_queued_io_list(m); 1220 } 1221 1222 return r; 1223 } 1224 1225 /* 1226 * Fail or reinstate all paths that match the provided struct dm_dev. 1227 */ 1228 static int action_dev(struct multipath *m, struct dm_dev *dev, 1229 action_fn action) 1230 { 1231 int r = -EINVAL; 1232 struct pgpath *pgpath; 1233 struct priority_group *pg; 1234 1235 list_for_each_entry(pg, &m->priority_groups, list) { 1236 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1237 if (pgpath->path.dev == dev) 1238 r = action(pgpath); 1239 } 1240 } 1241 1242 return r; 1243 } 1244 1245 /* 1246 * Temporarily try to avoid having to use the specified PG 1247 */ 1248 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1249 bool bypassed) 1250 { 1251 unsigned long flags; 1252 1253 spin_lock_irqsave(&m->lock, flags); 1254 1255 pg->bypassed = bypassed; 1256 m->current_pgpath = NULL; 1257 m->current_pg = NULL; 1258 1259 spin_unlock_irqrestore(&m->lock, flags); 1260 1261 schedule_work(&m->trigger_event); 1262 } 1263 1264 /* 1265 * Switch to using the specified PG from the next I/O that gets mapped 1266 */ 1267 static int switch_pg_num(struct multipath *m, const char *pgstr) 1268 { 1269 struct priority_group *pg; 1270 unsigned pgnum; 1271 unsigned long flags; 1272 char dummy; 1273 1274 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1275 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1276 DMWARN("invalid PG number supplied to switch_pg_num"); 1277 return -EINVAL; 1278 } 1279 1280 spin_lock_irqsave(&m->lock, flags); 1281 list_for_each_entry(pg, &m->priority_groups, list) { 1282 pg->bypassed = false; 1283 if (--pgnum) 1284 continue; 1285 1286 m->current_pgpath = NULL; 1287 m->current_pg = NULL; 1288 m->next_pg = pg; 1289 } 1290 spin_unlock_irqrestore(&m->lock, flags); 1291 1292 schedule_work(&m->trigger_event); 1293 return 0; 1294 } 1295 1296 /* 1297 * Set/clear bypassed status of a PG. 1298 * PGs are numbered upwards from 1 in the order they were declared. 1299 */ 1300 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1301 { 1302 struct priority_group *pg; 1303 unsigned pgnum; 1304 char dummy; 1305 1306 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1307 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1308 DMWARN("invalid PG number supplied to bypass_pg"); 1309 return -EINVAL; 1310 } 1311 1312 list_for_each_entry(pg, &m->priority_groups, list) { 1313 if (!--pgnum) 1314 break; 1315 } 1316 1317 bypass_pg(m, pg, bypassed); 1318 return 0; 1319 } 1320 1321 /* 1322 * Should we retry pg_init immediately? 1323 */ 1324 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1325 { 1326 unsigned long flags; 1327 bool limit_reached = false; 1328 1329 spin_lock_irqsave(&m->lock, flags); 1330 1331 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1332 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1333 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1334 else 1335 limit_reached = true; 1336 1337 spin_unlock_irqrestore(&m->lock, flags); 1338 1339 return limit_reached; 1340 } 1341 1342 static void pg_init_done(void *data, int errors) 1343 { 1344 struct pgpath *pgpath = data; 1345 struct priority_group *pg = pgpath->pg; 1346 struct multipath *m = pg->m; 1347 unsigned long flags; 1348 bool delay_retry = false; 1349 1350 /* device or driver problems */ 1351 switch (errors) { 1352 case SCSI_DH_OK: 1353 break; 1354 case SCSI_DH_NOSYS: 1355 if (!m->hw_handler_name) { 1356 errors = 0; 1357 break; 1358 } 1359 DMERR("Could not failover the device: Handler scsi_dh_%s " 1360 "Error %d.", m->hw_handler_name, errors); 1361 /* 1362 * Fail path for now, so we do not ping pong 1363 */ 1364 fail_path(pgpath); 1365 break; 1366 case SCSI_DH_DEV_TEMP_BUSY: 1367 /* 1368 * Probably doing something like FW upgrade on the 1369 * controller so try the other pg. 1370 */ 1371 bypass_pg(m, pg, true); 1372 break; 1373 case SCSI_DH_RETRY: 1374 /* Wait before retrying. */ 1375 delay_retry = 1; 1376 /* fall through */ 1377 case SCSI_DH_IMM_RETRY: 1378 case SCSI_DH_RES_TEMP_UNAVAIL: 1379 if (pg_init_limit_reached(m, pgpath)) 1380 fail_path(pgpath); 1381 errors = 0; 1382 break; 1383 case SCSI_DH_DEV_OFFLINED: 1384 default: 1385 /* 1386 * We probably do not want to fail the path for a device 1387 * error, but this is what the old dm did. In future 1388 * patches we can do more advanced handling. 1389 */ 1390 fail_path(pgpath); 1391 } 1392 1393 spin_lock_irqsave(&m->lock, flags); 1394 if (errors) { 1395 if (pgpath == m->current_pgpath) { 1396 DMERR("Could not failover device. Error %d.", errors); 1397 m->current_pgpath = NULL; 1398 m->current_pg = NULL; 1399 } 1400 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1401 pg->bypassed = false; 1402 1403 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1404 /* Activations of other paths are still on going */ 1405 goto out; 1406 1407 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1408 if (delay_retry) 1409 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1410 else 1411 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1412 1413 if (__pg_init_all_paths(m)) 1414 goto out; 1415 } 1416 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1417 1418 process_queued_io_list(m); 1419 1420 /* 1421 * Wake up any thread waiting to suspend. 1422 */ 1423 wake_up(&m->pg_init_wait); 1424 1425 out: 1426 spin_unlock_irqrestore(&m->lock, flags); 1427 } 1428 1429 static void activate_or_offline_path(struct pgpath *pgpath) 1430 { 1431 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1432 1433 if (pgpath->is_active && !blk_queue_dying(q)) 1434 scsi_dh_activate(q, pg_init_done, pgpath); 1435 else 1436 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1437 } 1438 1439 static void activate_path_work(struct work_struct *work) 1440 { 1441 struct pgpath *pgpath = 1442 container_of(work, struct pgpath, activate_path.work); 1443 1444 activate_or_offline_path(pgpath); 1445 } 1446 1447 static int noretry_error(blk_status_t error) 1448 { 1449 switch (error) { 1450 case BLK_STS_NOTSUPP: 1451 case BLK_STS_NOSPC: 1452 case BLK_STS_TARGET: 1453 case BLK_STS_NEXUS: 1454 case BLK_STS_MEDIUM: 1455 return 1; 1456 } 1457 1458 /* Anything else could be a path failure, so should be retried */ 1459 return 0; 1460 } 1461 1462 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1463 blk_status_t error, union map_info *map_context) 1464 { 1465 struct dm_mpath_io *mpio = get_mpio(map_context); 1466 struct pgpath *pgpath = mpio->pgpath; 1467 int r = DM_ENDIO_DONE; 1468 1469 /* 1470 * We don't queue any clone request inside the multipath target 1471 * during end I/O handling, since those clone requests don't have 1472 * bio clones. If we queue them inside the multipath target, 1473 * we need to make bio clones, that requires memory allocation. 1474 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1475 * don't have bio clones.) 1476 * Instead of queueing the clone request here, we queue the original 1477 * request into dm core, which will remake a clone request and 1478 * clone bios for it and resubmit it later. 1479 */ 1480 if (error && !noretry_error(error)) { 1481 struct multipath *m = ti->private; 1482 1483 r = DM_ENDIO_REQUEUE; 1484 1485 if (pgpath) 1486 fail_path(pgpath); 1487 1488 if (atomic_read(&m->nr_valid_paths) == 0 && 1489 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1490 if (error == BLK_STS_IOERR) 1491 dm_report_EIO(m); 1492 /* complete with the original error */ 1493 r = DM_ENDIO_DONE; 1494 } 1495 } 1496 1497 if (pgpath) { 1498 struct path_selector *ps = &pgpath->pg->ps; 1499 1500 if (ps->type->end_io) 1501 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1502 } 1503 1504 return r; 1505 } 1506 1507 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1508 blk_status_t *error) 1509 { 1510 struct multipath *m = ti->private; 1511 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1512 struct pgpath *pgpath = mpio->pgpath; 1513 unsigned long flags; 1514 int r = DM_ENDIO_DONE; 1515 1516 if (!*error || noretry_error(*error)) 1517 goto done; 1518 1519 if (pgpath) 1520 fail_path(pgpath); 1521 1522 if (atomic_read(&m->nr_valid_paths) == 0 && 1523 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1524 dm_report_EIO(m); 1525 *error = BLK_STS_IOERR; 1526 goto done; 1527 } 1528 1529 /* Queue for the daemon to resubmit */ 1530 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1531 1532 spin_lock_irqsave(&m->lock, flags); 1533 bio_list_add(&m->queued_bios, clone); 1534 spin_unlock_irqrestore(&m->lock, flags); 1535 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1536 queue_work(kmultipathd, &m->process_queued_bios); 1537 1538 r = DM_ENDIO_INCOMPLETE; 1539 done: 1540 if (pgpath) { 1541 struct path_selector *ps = &pgpath->pg->ps; 1542 1543 if (ps->type->end_io) 1544 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1545 } 1546 1547 return r; 1548 } 1549 1550 /* 1551 * Suspend can't complete until all the I/O is processed so if 1552 * the last path fails we must error any remaining I/O. 1553 * Note that if the freeze_bdev fails while suspending, the 1554 * queue_if_no_path state is lost - userspace should reset it. 1555 */ 1556 static void multipath_presuspend(struct dm_target *ti) 1557 { 1558 struct multipath *m = ti->private; 1559 1560 queue_if_no_path(m, false, true); 1561 } 1562 1563 static void multipath_postsuspend(struct dm_target *ti) 1564 { 1565 struct multipath *m = ti->private; 1566 1567 mutex_lock(&m->work_mutex); 1568 flush_multipath_work(m); 1569 mutex_unlock(&m->work_mutex); 1570 } 1571 1572 /* 1573 * Restore the queue_if_no_path setting. 1574 */ 1575 static void multipath_resume(struct dm_target *ti) 1576 { 1577 struct multipath *m = ti->private; 1578 unsigned long flags; 1579 1580 spin_lock_irqsave(&m->lock, flags); 1581 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1582 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1583 spin_unlock_irqrestore(&m->lock, flags); 1584 } 1585 1586 /* 1587 * Info output has the following format: 1588 * num_multipath_feature_args [multipath_feature_args]* 1589 * num_handler_status_args [handler_status_args]* 1590 * num_groups init_group_number 1591 * [A|D|E num_ps_status_args [ps_status_args]* 1592 * num_paths num_selector_args 1593 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1594 * 1595 * Table output has the following format (identical to the constructor string): 1596 * num_feature_args [features_args]* 1597 * num_handler_args hw_handler [hw_handler_args]* 1598 * num_groups init_group_number 1599 * [priority selector-name num_ps_args [ps_args]* 1600 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1601 */ 1602 static void multipath_status(struct dm_target *ti, status_type_t type, 1603 unsigned status_flags, char *result, unsigned maxlen) 1604 { 1605 int sz = 0; 1606 unsigned long flags; 1607 struct multipath *m = ti->private; 1608 struct priority_group *pg; 1609 struct pgpath *p; 1610 unsigned pg_num; 1611 char state; 1612 1613 spin_lock_irqsave(&m->lock, flags); 1614 1615 /* Features */ 1616 if (type == STATUSTYPE_INFO) 1617 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1618 atomic_read(&m->pg_init_count)); 1619 else { 1620 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1621 (m->pg_init_retries > 0) * 2 + 1622 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1623 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1624 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1625 1626 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1627 DMEMIT("queue_if_no_path "); 1628 if (m->pg_init_retries) 1629 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1630 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1631 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1632 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1633 DMEMIT("retain_attached_hw_handler "); 1634 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1635 switch(m->queue_mode) { 1636 case DM_TYPE_BIO_BASED: 1637 DMEMIT("queue_mode bio "); 1638 break; 1639 case DM_TYPE_MQ_REQUEST_BASED: 1640 DMEMIT("queue_mode mq "); 1641 break; 1642 default: 1643 WARN_ON_ONCE(true); 1644 break; 1645 } 1646 } 1647 } 1648 1649 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1650 DMEMIT("0 "); 1651 else 1652 DMEMIT("1 %s ", m->hw_handler_name); 1653 1654 DMEMIT("%u ", m->nr_priority_groups); 1655 1656 if (m->next_pg) 1657 pg_num = m->next_pg->pg_num; 1658 else if (m->current_pg) 1659 pg_num = m->current_pg->pg_num; 1660 else 1661 pg_num = (m->nr_priority_groups ? 1 : 0); 1662 1663 DMEMIT("%u ", pg_num); 1664 1665 switch (type) { 1666 case STATUSTYPE_INFO: 1667 list_for_each_entry(pg, &m->priority_groups, list) { 1668 if (pg->bypassed) 1669 state = 'D'; /* Disabled */ 1670 else if (pg == m->current_pg) 1671 state = 'A'; /* Currently Active */ 1672 else 1673 state = 'E'; /* Enabled */ 1674 1675 DMEMIT("%c ", state); 1676 1677 if (pg->ps.type->status) 1678 sz += pg->ps.type->status(&pg->ps, NULL, type, 1679 result + sz, 1680 maxlen - sz); 1681 else 1682 DMEMIT("0 "); 1683 1684 DMEMIT("%u %u ", pg->nr_pgpaths, 1685 pg->ps.type->info_args); 1686 1687 list_for_each_entry(p, &pg->pgpaths, list) { 1688 DMEMIT("%s %s %u ", p->path.dev->name, 1689 p->is_active ? "A" : "F", 1690 p->fail_count); 1691 if (pg->ps.type->status) 1692 sz += pg->ps.type->status(&pg->ps, 1693 &p->path, type, result + sz, 1694 maxlen - sz); 1695 } 1696 } 1697 break; 1698 1699 case STATUSTYPE_TABLE: 1700 list_for_each_entry(pg, &m->priority_groups, list) { 1701 DMEMIT("%s ", pg->ps.type->name); 1702 1703 if (pg->ps.type->status) 1704 sz += pg->ps.type->status(&pg->ps, NULL, type, 1705 result + sz, 1706 maxlen - sz); 1707 else 1708 DMEMIT("0 "); 1709 1710 DMEMIT("%u %u ", pg->nr_pgpaths, 1711 pg->ps.type->table_args); 1712 1713 list_for_each_entry(p, &pg->pgpaths, list) { 1714 DMEMIT("%s ", p->path.dev->name); 1715 if (pg->ps.type->status) 1716 sz += pg->ps.type->status(&pg->ps, 1717 &p->path, type, result + sz, 1718 maxlen - sz); 1719 } 1720 } 1721 break; 1722 } 1723 1724 spin_unlock_irqrestore(&m->lock, flags); 1725 } 1726 1727 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1728 { 1729 int r = -EINVAL; 1730 struct dm_dev *dev; 1731 struct multipath *m = ti->private; 1732 action_fn action; 1733 1734 mutex_lock(&m->work_mutex); 1735 1736 if (dm_suspended(ti)) { 1737 r = -EBUSY; 1738 goto out; 1739 } 1740 1741 if (argc == 1) { 1742 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1743 r = queue_if_no_path(m, true, false); 1744 goto out; 1745 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1746 r = queue_if_no_path(m, false, false); 1747 goto out; 1748 } 1749 } 1750 1751 if (argc != 2) { 1752 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1753 goto out; 1754 } 1755 1756 if (!strcasecmp(argv[0], "disable_group")) { 1757 r = bypass_pg_num(m, argv[1], true); 1758 goto out; 1759 } else if (!strcasecmp(argv[0], "enable_group")) { 1760 r = bypass_pg_num(m, argv[1], false); 1761 goto out; 1762 } else if (!strcasecmp(argv[0], "switch_group")) { 1763 r = switch_pg_num(m, argv[1]); 1764 goto out; 1765 } else if (!strcasecmp(argv[0], "reinstate_path")) 1766 action = reinstate_path; 1767 else if (!strcasecmp(argv[0], "fail_path")) 1768 action = fail_path; 1769 else { 1770 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1771 goto out; 1772 } 1773 1774 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1775 if (r) { 1776 DMWARN("message: error getting device %s", 1777 argv[1]); 1778 goto out; 1779 } 1780 1781 r = action_dev(m, dev, action); 1782 1783 dm_put_device(ti, dev); 1784 1785 out: 1786 mutex_unlock(&m->work_mutex); 1787 return r; 1788 } 1789 1790 static int multipath_prepare_ioctl(struct dm_target *ti, 1791 struct block_device **bdev, fmode_t *mode) 1792 { 1793 struct multipath *m = ti->private; 1794 struct pgpath *current_pgpath; 1795 int r; 1796 1797 current_pgpath = READ_ONCE(m->current_pgpath); 1798 if (!current_pgpath) 1799 current_pgpath = choose_pgpath(m, 0); 1800 1801 if (current_pgpath) { 1802 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1803 *bdev = current_pgpath->path.dev->bdev; 1804 *mode = current_pgpath->path.dev->mode; 1805 r = 0; 1806 } else { 1807 /* pg_init has not started or completed */ 1808 r = -ENOTCONN; 1809 } 1810 } else { 1811 /* No path is available */ 1812 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1813 r = -ENOTCONN; 1814 else 1815 r = -EIO; 1816 } 1817 1818 if (r == -ENOTCONN) { 1819 if (!READ_ONCE(m->current_pg)) { 1820 /* Path status changed, redo selection */ 1821 (void) choose_pgpath(m, 0); 1822 } 1823 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1824 pg_init_all_paths(m); 1825 dm_table_run_md_queue_async(m->ti->table); 1826 process_queued_io_list(m); 1827 } 1828 1829 /* 1830 * Only pass ioctls through if the device sizes match exactly. 1831 */ 1832 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1833 return 1; 1834 return r; 1835 } 1836 1837 static int multipath_iterate_devices(struct dm_target *ti, 1838 iterate_devices_callout_fn fn, void *data) 1839 { 1840 struct multipath *m = ti->private; 1841 struct priority_group *pg; 1842 struct pgpath *p; 1843 int ret = 0; 1844 1845 list_for_each_entry(pg, &m->priority_groups, list) { 1846 list_for_each_entry(p, &pg->pgpaths, list) { 1847 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1848 if (ret) 1849 goto out; 1850 } 1851 } 1852 1853 out: 1854 return ret; 1855 } 1856 1857 static int pgpath_busy(struct pgpath *pgpath) 1858 { 1859 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1860 1861 return blk_lld_busy(q); 1862 } 1863 1864 /* 1865 * We return "busy", only when we can map I/Os but underlying devices 1866 * are busy (so even if we map I/Os now, the I/Os will wait on 1867 * the underlying queue). 1868 * In other words, if we want to kill I/Os or queue them inside us 1869 * due to map unavailability, we don't return "busy". Otherwise, 1870 * dm core won't give us the I/Os and we can't do what we want. 1871 */ 1872 static int multipath_busy(struct dm_target *ti) 1873 { 1874 bool busy = false, has_active = false; 1875 struct multipath *m = ti->private; 1876 struct priority_group *pg, *next_pg; 1877 struct pgpath *pgpath; 1878 1879 /* pg_init in progress */ 1880 if (atomic_read(&m->pg_init_in_progress)) 1881 return true; 1882 1883 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1884 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1885 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1886 1887 /* Guess which priority_group will be used at next mapping time */ 1888 pg = READ_ONCE(m->current_pg); 1889 next_pg = READ_ONCE(m->next_pg); 1890 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1891 pg = next_pg; 1892 1893 if (!pg) { 1894 /* 1895 * We don't know which pg will be used at next mapping time. 1896 * We don't call choose_pgpath() here to avoid to trigger 1897 * pg_init just by busy checking. 1898 * So we don't know whether underlying devices we will be using 1899 * at next mapping time are busy or not. Just try mapping. 1900 */ 1901 return busy; 1902 } 1903 1904 /* 1905 * If there is one non-busy active path at least, the path selector 1906 * will be able to select it. So we consider such a pg as not busy. 1907 */ 1908 busy = true; 1909 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1910 if (pgpath->is_active) { 1911 has_active = true; 1912 if (!pgpath_busy(pgpath)) { 1913 busy = false; 1914 break; 1915 } 1916 } 1917 } 1918 1919 if (!has_active) { 1920 /* 1921 * No active path in this pg, so this pg won't be used and 1922 * the current_pg will be changed at next mapping time. 1923 * We need to try mapping to determine it. 1924 */ 1925 busy = false; 1926 } 1927 1928 return busy; 1929 } 1930 1931 /*----------------------------------------------------------------- 1932 * Module setup 1933 *---------------------------------------------------------------*/ 1934 static struct target_type multipath_target = { 1935 .name = "multipath", 1936 .version = {1, 12, 0}, 1937 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1938 .module = THIS_MODULE, 1939 .ctr = multipath_ctr, 1940 .dtr = multipath_dtr, 1941 .clone_and_map_rq = multipath_clone_and_map, 1942 .release_clone_rq = multipath_release_clone, 1943 .rq_end_io = multipath_end_io, 1944 .map = multipath_map_bio, 1945 .end_io = multipath_end_io_bio, 1946 .presuspend = multipath_presuspend, 1947 .postsuspend = multipath_postsuspend, 1948 .resume = multipath_resume, 1949 .status = multipath_status, 1950 .message = multipath_message, 1951 .prepare_ioctl = multipath_prepare_ioctl, 1952 .iterate_devices = multipath_iterate_devices, 1953 .busy = multipath_busy, 1954 }; 1955 1956 static int __init dm_multipath_init(void) 1957 { 1958 int r; 1959 1960 r = dm_register_target(&multipath_target); 1961 if (r < 0) { 1962 DMERR("request-based register failed %d", r); 1963 r = -EINVAL; 1964 goto bad_register_target; 1965 } 1966 1967 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1968 if (!kmultipathd) { 1969 DMERR("failed to create workqueue kmpathd"); 1970 r = -ENOMEM; 1971 goto bad_alloc_kmultipathd; 1972 } 1973 1974 /* 1975 * A separate workqueue is used to handle the device handlers 1976 * to avoid overloading existing workqueue. Overloading the 1977 * old workqueue would also create a bottleneck in the 1978 * path of the storage hardware device activation. 1979 */ 1980 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1981 WQ_MEM_RECLAIM); 1982 if (!kmpath_handlerd) { 1983 DMERR("failed to create workqueue kmpath_handlerd"); 1984 r = -ENOMEM; 1985 goto bad_alloc_kmpath_handlerd; 1986 } 1987 1988 return 0; 1989 1990 bad_alloc_kmpath_handlerd: 1991 destroy_workqueue(kmultipathd); 1992 bad_alloc_kmultipathd: 1993 dm_unregister_target(&multipath_target); 1994 bad_register_target: 1995 return r; 1996 } 1997 1998 static void __exit dm_multipath_exit(void) 1999 { 2000 destroy_workqueue(kmpath_handlerd); 2001 destroy_workqueue(kmultipathd); 2002 2003 dm_unregister_target(&multipath_target); 2004 } 2005 2006 module_init(dm_multipath_init); 2007 module_exit(dm_multipath_exit); 2008 2009 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2010 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2011 MODULE_LICENSE("GPL"); 2012