xref: /openbmc/linux/drivers/md/dm-mpath.c (revision b6dcefde)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-path-selector.h"
11 #include "dm-uevent.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/workqueue.h>
21 #include <scsi/scsi_dh.h>
22 #include <asm/atomic.h>
23 
24 #define DM_MSG_PREFIX "multipath"
25 #define MESG_STR(x) x, sizeof(x)
26 
27 /* Path properties */
28 struct pgpath {
29 	struct list_head list;
30 
31 	struct priority_group *pg;	/* Owning PG */
32 	unsigned is_active;		/* Path status */
33 	unsigned fail_count;		/* Cumulative failure count */
34 
35 	struct dm_path path;
36 	struct work_struct deactivate_path;
37 	struct work_struct activate_path;
38 };
39 
40 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
41 
42 /*
43  * Paths are grouped into Priority Groups and numbered from 1 upwards.
44  * Each has a path selector which controls which path gets used.
45  */
46 struct priority_group {
47 	struct list_head list;
48 
49 	struct multipath *m;		/* Owning multipath instance */
50 	struct path_selector ps;
51 
52 	unsigned pg_num;		/* Reference number */
53 	unsigned bypassed;		/* Temporarily bypass this PG? */
54 
55 	unsigned nr_pgpaths;		/* Number of paths in PG */
56 	struct list_head pgpaths;
57 };
58 
59 /* Multipath context */
60 struct multipath {
61 	struct list_head list;
62 	struct dm_target *ti;
63 
64 	spinlock_t lock;
65 
66 	const char *hw_handler_name;
67 	char *hw_handler_params;
68 	unsigned nr_priority_groups;
69 	struct list_head priority_groups;
70 	unsigned pg_init_required;	/* pg_init needs calling? */
71 	unsigned pg_init_in_progress;	/* Only one pg_init allowed at once */
72 
73 	unsigned nr_valid_paths;	/* Total number of usable paths */
74 	struct pgpath *current_pgpath;
75 	struct priority_group *current_pg;
76 	struct priority_group *next_pg;	/* Switch to this PG if set */
77 	unsigned repeat_count;		/* I/Os left before calling PS again */
78 
79 	unsigned queue_io;		/* Must we queue all I/O? */
80 	unsigned queue_if_no_path;	/* Queue I/O if last path fails? */
81 	unsigned saved_queue_if_no_path;/* Saved state during suspension */
82 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
83 	unsigned pg_init_count;		/* Number of times pg_init called */
84 
85 	struct work_struct process_queued_ios;
86 	struct list_head queued_ios;
87 	unsigned queue_size;
88 
89 	struct work_struct trigger_event;
90 
91 	/*
92 	 * We must use a mempool of dm_mpath_io structs so that we
93 	 * can resubmit bios on error.
94 	 */
95 	mempool_t *mpio_pool;
96 
97 	struct mutex work_mutex;
98 
99 	unsigned suspended;	/* Don't create new I/O internally when set. */
100 };
101 
102 /*
103  * Context information attached to each bio we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 #define MIN_IOS 256	/* Mempool size */
113 
114 static struct kmem_cache *_mpio_cache;
115 
116 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
117 static void process_queued_ios(struct work_struct *work);
118 static void trigger_event(struct work_struct *work);
119 static void activate_path(struct work_struct *work);
120 static void deactivate_path(struct work_struct *work);
121 
122 
123 /*-----------------------------------------------
124  * Allocation routines
125  *-----------------------------------------------*/
126 
127 static struct pgpath *alloc_pgpath(void)
128 {
129 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
130 
131 	if (pgpath) {
132 		pgpath->is_active = 1;
133 		INIT_WORK(&pgpath->deactivate_path, deactivate_path);
134 		INIT_WORK(&pgpath->activate_path, activate_path);
135 	}
136 
137 	return pgpath;
138 }
139 
140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
145 static void deactivate_path(struct work_struct *work)
146 {
147 	struct pgpath *pgpath =
148 		container_of(work, struct pgpath, deactivate_path);
149 
150 	blk_abort_queue(pgpath->path.dev->bdev->bd_disk->queue);
151 }
152 
153 static struct priority_group *alloc_priority_group(void)
154 {
155 	struct priority_group *pg;
156 
157 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
158 
159 	if (pg)
160 		INIT_LIST_HEAD(&pg->pgpaths);
161 
162 	return pg;
163 }
164 
165 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
166 {
167 	struct pgpath *pgpath, *tmp;
168 	struct multipath *m = ti->private;
169 
170 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
171 		list_del(&pgpath->list);
172 		if (m->hw_handler_name)
173 			scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
174 		dm_put_device(ti, pgpath->path.dev);
175 		free_pgpath(pgpath);
176 	}
177 }
178 
179 static void free_priority_group(struct priority_group *pg,
180 				struct dm_target *ti)
181 {
182 	struct path_selector *ps = &pg->ps;
183 
184 	if (ps->type) {
185 		ps->type->destroy(ps);
186 		dm_put_path_selector(ps->type);
187 	}
188 
189 	free_pgpaths(&pg->pgpaths, ti);
190 	kfree(pg);
191 }
192 
193 static struct multipath *alloc_multipath(struct dm_target *ti)
194 {
195 	struct multipath *m;
196 
197 	m = kzalloc(sizeof(*m), GFP_KERNEL);
198 	if (m) {
199 		INIT_LIST_HEAD(&m->priority_groups);
200 		INIT_LIST_HEAD(&m->queued_ios);
201 		spin_lock_init(&m->lock);
202 		m->queue_io = 1;
203 		INIT_WORK(&m->process_queued_ios, process_queued_ios);
204 		INIT_WORK(&m->trigger_event, trigger_event);
205 		mutex_init(&m->work_mutex);
206 		m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
207 		if (!m->mpio_pool) {
208 			kfree(m);
209 			return NULL;
210 		}
211 		m->ti = ti;
212 		ti->private = m;
213 	}
214 
215 	return m;
216 }
217 
218 static void free_multipath(struct multipath *m)
219 {
220 	struct priority_group *pg, *tmp;
221 
222 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
223 		list_del(&pg->list);
224 		free_priority_group(pg, m->ti);
225 	}
226 
227 	kfree(m->hw_handler_name);
228 	kfree(m->hw_handler_params);
229 	mempool_destroy(m->mpio_pool);
230 	kfree(m);
231 }
232 
233 
234 /*-----------------------------------------------
235  * Path selection
236  *-----------------------------------------------*/
237 
238 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
239 {
240 	m->current_pg = pgpath->pg;
241 
242 	/* Must we initialise the PG first, and queue I/O till it's ready? */
243 	if (m->hw_handler_name) {
244 		m->pg_init_required = 1;
245 		m->queue_io = 1;
246 	} else {
247 		m->pg_init_required = 0;
248 		m->queue_io = 0;
249 	}
250 
251 	m->pg_init_count = 0;
252 }
253 
254 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
255 			       size_t nr_bytes)
256 {
257 	struct dm_path *path;
258 
259 	path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
260 	if (!path)
261 		return -ENXIO;
262 
263 	m->current_pgpath = path_to_pgpath(path);
264 
265 	if (m->current_pg != pg)
266 		__switch_pg(m, m->current_pgpath);
267 
268 	return 0;
269 }
270 
271 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
272 {
273 	struct priority_group *pg;
274 	unsigned bypassed = 1;
275 
276 	if (!m->nr_valid_paths)
277 		goto failed;
278 
279 	/* Were we instructed to switch PG? */
280 	if (m->next_pg) {
281 		pg = m->next_pg;
282 		m->next_pg = NULL;
283 		if (!__choose_path_in_pg(m, pg, nr_bytes))
284 			return;
285 	}
286 
287 	/* Don't change PG until it has no remaining paths */
288 	if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
289 		return;
290 
291 	/*
292 	 * Loop through priority groups until we find a valid path.
293 	 * First time we skip PGs marked 'bypassed'.
294 	 * Second time we only try the ones we skipped.
295 	 */
296 	do {
297 		list_for_each_entry(pg, &m->priority_groups, list) {
298 			if (pg->bypassed == bypassed)
299 				continue;
300 			if (!__choose_path_in_pg(m, pg, nr_bytes))
301 				return;
302 		}
303 	} while (bypassed--);
304 
305 failed:
306 	m->current_pgpath = NULL;
307 	m->current_pg = NULL;
308 }
309 
310 /*
311  * Check whether bios must be queued in the device-mapper core rather
312  * than here in the target.
313  *
314  * m->lock must be held on entry.
315  *
316  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
317  * same value then we are not between multipath_presuspend()
318  * and multipath_resume() calls and we have no need to check
319  * for the DMF_NOFLUSH_SUSPENDING flag.
320  */
321 static int __must_push_back(struct multipath *m)
322 {
323 	return (m->queue_if_no_path != m->saved_queue_if_no_path &&
324 		dm_noflush_suspending(m->ti));
325 }
326 
327 static int map_io(struct multipath *m, struct request *clone,
328 		  struct dm_mpath_io *mpio, unsigned was_queued)
329 {
330 	int r = DM_MAPIO_REMAPPED;
331 	size_t nr_bytes = blk_rq_bytes(clone);
332 	unsigned long flags;
333 	struct pgpath *pgpath;
334 	struct block_device *bdev;
335 
336 	spin_lock_irqsave(&m->lock, flags);
337 
338 	/* Do we need to select a new pgpath? */
339 	if (!m->current_pgpath ||
340 	    (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
341 		__choose_pgpath(m, nr_bytes);
342 
343 	pgpath = m->current_pgpath;
344 
345 	if (was_queued)
346 		m->queue_size--;
347 
348 	if ((pgpath && m->queue_io) ||
349 	    (!pgpath && m->queue_if_no_path)) {
350 		/* Queue for the daemon to resubmit */
351 		list_add_tail(&clone->queuelist, &m->queued_ios);
352 		m->queue_size++;
353 		if ((m->pg_init_required && !m->pg_init_in_progress) ||
354 		    !m->queue_io)
355 			queue_work(kmultipathd, &m->process_queued_ios);
356 		pgpath = NULL;
357 		r = DM_MAPIO_SUBMITTED;
358 	} else if (pgpath) {
359 		bdev = pgpath->path.dev->bdev;
360 		clone->q = bdev_get_queue(bdev);
361 		clone->rq_disk = bdev->bd_disk;
362 	} else if (__must_push_back(m))
363 		r = DM_MAPIO_REQUEUE;
364 	else
365 		r = -EIO;	/* Failed */
366 
367 	mpio->pgpath = pgpath;
368 	mpio->nr_bytes = nr_bytes;
369 
370 	if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
371 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
372 					      nr_bytes);
373 
374 	spin_unlock_irqrestore(&m->lock, flags);
375 
376 	return r;
377 }
378 
379 /*
380  * If we run out of usable paths, should we queue I/O or error it?
381  */
382 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
383 			    unsigned save_old_value)
384 {
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(&m->lock, flags);
388 
389 	if (save_old_value)
390 		m->saved_queue_if_no_path = m->queue_if_no_path;
391 	else
392 		m->saved_queue_if_no_path = queue_if_no_path;
393 	m->queue_if_no_path = queue_if_no_path;
394 	if (!m->queue_if_no_path && m->queue_size)
395 		queue_work(kmultipathd, &m->process_queued_ios);
396 
397 	spin_unlock_irqrestore(&m->lock, flags);
398 
399 	return 0;
400 }
401 
402 /*-----------------------------------------------------------------
403  * The multipath daemon is responsible for resubmitting queued ios.
404  *---------------------------------------------------------------*/
405 
406 static void dispatch_queued_ios(struct multipath *m)
407 {
408 	int r;
409 	unsigned long flags;
410 	struct dm_mpath_io *mpio;
411 	union map_info *info;
412 	struct request *clone, *n;
413 	LIST_HEAD(cl);
414 
415 	spin_lock_irqsave(&m->lock, flags);
416 	list_splice_init(&m->queued_ios, &cl);
417 	spin_unlock_irqrestore(&m->lock, flags);
418 
419 	list_for_each_entry_safe(clone, n, &cl, queuelist) {
420 		list_del_init(&clone->queuelist);
421 
422 		info = dm_get_rq_mapinfo(clone);
423 		mpio = info->ptr;
424 
425 		r = map_io(m, clone, mpio, 1);
426 		if (r < 0) {
427 			mempool_free(mpio, m->mpio_pool);
428 			dm_kill_unmapped_request(clone, r);
429 		} else if (r == DM_MAPIO_REMAPPED)
430 			dm_dispatch_request(clone);
431 		else if (r == DM_MAPIO_REQUEUE) {
432 			mempool_free(mpio, m->mpio_pool);
433 			dm_requeue_unmapped_request(clone);
434 		}
435 	}
436 }
437 
438 static void process_queued_ios(struct work_struct *work)
439 {
440 	struct multipath *m =
441 		container_of(work, struct multipath, process_queued_ios);
442 	struct pgpath *pgpath = NULL, *tmp;
443 	unsigned must_queue = 1;
444 	unsigned long flags;
445 
446 	spin_lock_irqsave(&m->lock, flags);
447 
448 	if (!m->queue_size)
449 		goto out;
450 
451 	if (!m->current_pgpath)
452 		__choose_pgpath(m, 0);
453 
454 	pgpath = m->current_pgpath;
455 
456 	if ((pgpath && !m->queue_io) ||
457 	    (!pgpath && !m->queue_if_no_path))
458 		must_queue = 0;
459 
460 	if (m->pg_init_required && !m->pg_init_in_progress && pgpath) {
461 		m->pg_init_count++;
462 		m->pg_init_required = 0;
463 		list_for_each_entry(tmp, &pgpath->pg->pgpaths, list) {
464 			if (queue_work(kmpath_handlerd, &tmp->activate_path))
465 				m->pg_init_in_progress++;
466 		}
467 	}
468 out:
469 	spin_unlock_irqrestore(&m->lock, flags);
470 	if (!must_queue)
471 		dispatch_queued_ios(m);
472 }
473 
474 /*
475  * An event is triggered whenever a path is taken out of use.
476  * Includes path failure and PG bypass.
477  */
478 static void trigger_event(struct work_struct *work)
479 {
480 	struct multipath *m =
481 		container_of(work, struct multipath, trigger_event);
482 
483 	dm_table_event(m->ti->table);
484 }
485 
486 /*-----------------------------------------------------------------
487  * Constructor/argument parsing:
488  * <#multipath feature args> [<arg>]*
489  * <#hw_handler args> [hw_handler [<arg>]*]
490  * <#priority groups>
491  * <initial priority group>
492  *     [<selector> <#selector args> [<arg>]*
493  *      <#paths> <#per-path selector args>
494  *         [<path> [<arg>]* ]+ ]+
495  *---------------------------------------------------------------*/
496 struct param {
497 	unsigned min;
498 	unsigned max;
499 	char *error;
500 };
501 
502 static int read_param(struct param *param, char *str, unsigned *v, char **error)
503 {
504 	if (!str ||
505 	    (sscanf(str, "%u", v) != 1) ||
506 	    (*v < param->min) ||
507 	    (*v > param->max)) {
508 		*error = param->error;
509 		return -EINVAL;
510 	}
511 
512 	return 0;
513 }
514 
515 struct arg_set {
516 	unsigned argc;
517 	char **argv;
518 };
519 
520 static char *shift(struct arg_set *as)
521 {
522 	char *r;
523 
524 	if (as->argc) {
525 		as->argc--;
526 		r = *as->argv;
527 		as->argv++;
528 		return r;
529 	}
530 
531 	return NULL;
532 }
533 
534 static void consume(struct arg_set *as, unsigned n)
535 {
536 	BUG_ON (as->argc < n);
537 	as->argc -= n;
538 	as->argv += n;
539 }
540 
541 static int parse_path_selector(struct arg_set *as, struct priority_group *pg,
542 			       struct dm_target *ti)
543 {
544 	int r;
545 	struct path_selector_type *pst;
546 	unsigned ps_argc;
547 
548 	static struct param _params[] = {
549 		{0, 1024, "invalid number of path selector args"},
550 	};
551 
552 	pst = dm_get_path_selector(shift(as));
553 	if (!pst) {
554 		ti->error = "unknown path selector type";
555 		return -EINVAL;
556 	}
557 
558 	r = read_param(_params, shift(as), &ps_argc, &ti->error);
559 	if (r) {
560 		dm_put_path_selector(pst);
561 		return -EINVAL;
562 	}
563 
564 	if (ps_argc > as->argc) {
565 		dm_put_path_selector(pst);
566 		ti->error = "not enough arguments for path selector";
567 		return -EINVAL;
568 	}
569 
570 	r = pst->create(&pg->ps, ps_argc, as->argv);
571 	if (r) {
572 		dm_put_path_selector(pst);
573 		ti->error = "path selector constructor failed";
574 		return r;
575 	}
576 
577 	pg->ps.type = pst;
578 	consume(as, ps_argc);
579 
580 	return 0;
581 }
582 
583 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps,
584 			       struct dm_target *ti)
585 {
586 	int r;
587 	struct pgpath *p;
588 	struct multipath *m = ti->private;
589 
590 	/* we need at least a path arg */
591 	if (as->argc < 1) {
592 		ti->error = "no device given";
593 		return ERR_PTR(-EINVAL);
594 	}
595 
596 	p = alloc_pgpath();
597 	if (!p)
598 		return ERR_PTR(-ENOMEM);
599 
600 	r = dm_get_device(ti, shift(as), ti->begin, ti->len,
601 			  dm_table_get_mode(ti->table), &p->path.dev);
602 	if (r) {
603 		ti->error = "error getting device";
604 		goto bad;
605 	}
606 
607 	if (m->hw_handler_name) {
608 		struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
609 
610 		r = scsi_dh_attach(q, m->hw_handler_name);
611 		if (r == -EBUSY) {
612 			/*
613 			 * Already attached to different hw_handler,
614 			 * try to reattach with correct one.
615 			 */
616 			scsi_dh_detach(q);
617 			r = scsi_dh_attach(q, m->hw_handler_name);
618 		}
619 
620 		if (r < 0) {
621 			ti->error = "error attaching hardware handler";
622 			dm_put_device(ti, p->path.dev);
623 			goto bad;
624 		}
625 
626 		if (m->hw_handler_params) {
627 			r = scsi_dh_set_params(q, m->hw_handler_params);
628 			if (r < 0) {
629 				ti->error = "unable to set hardware "
630 							"handler parameters";
631 				scsi_dh_detach(q);
632 				dm_put_device(ti, p->path.dev);
633 				goto bad;
634 			}
635 		}
636 	}
637 
638 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
639 	if (r) {
640 		dm_put_device(ti, p->path.dev);
641 		goto bad;
642 	}
643 
644 	return p;
645 
646  bad:
647 	free_pgpath(p);
648 	return ERR_PTR(r);
649 }
650 
651 static struct priority_group *parse_priority_group(struct arg_set *as,
652 						   struct multipath *m)
653 {
654 	static struct param _params[] = {
655 		{1, 1024, "invalid number of paths"},
656 		{0, 1024, "invalid number of selector args"}
657 	};
658 
659 	int r;
660 	unsigned i, nr_selector_args, nr_params;
661 	struct priority_group *pg;
662 	struct dm_target *ti = m->ti;
663 
664 	if (as->argc < 2) {
665 		as->argc = 0;
666 		ti->error = "not enough priority group arguments";
667 		return ERR_PTR(-EINVAL);
668 	}
669 
670 	pg = alloc_priority_group();
671 	if (!pg) {
672 		ti->error = "couldn't allocate priority group";
673 		return ERR_PTR(-ENOMEM);
674 	}
675 	pg->m = m;
676 
677 	r = parse_path_selector(as, pg, ti);
678 	if (r)
679 		goto bad;
680 
681 	/*
682 	 * read the paths
683 	 */
684 	r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error);
685 	if (r)
686 		goto bad;
687 
688 	r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error);
689 	if (r)
690 		goto bad;
691 
692 	nr_params = 1 + nr_selector_args;
693 	for (i = 0; i < pg->nr_pgpaths; i++) {
694 		struct pgpath *pgpath;
695 		struct arg_set path_args;
696 
697 		if (as->argc < nr_params) {
698 			ti->error = "not enough path parameters";
699 			goto bad;
700 		}
701 
702 		path_args.argc = nr_params;
703 		path_args.argv = as->argv;
704 
705 		pgpath = parse_path(&path_args, &pg->ps, ti);
706 		if (IS_ERR(pgpath)) {
707 			r = PTR_ERR(pgpath);
708 			goto bad;
709 		}
710 
711 		pgpath->pg = pg;
712 		list_add_tail(&pgpath->list, &pg->pgpaths);
713 		consume(as, nr_params);
714 	}
715 
716 	return pg;
717 
718  bad:
719 	free_priority_group(pg, ti);
720 	return ERR_PTR(r);
721 }
722 
723 static int parse_hw_handler(struct arg_set *as, struct multipath *m)
724 {
725 	unsigned hw_argc;
726 	int ret;
727 	struct dm_target *ti = m->ti;
728 
729 	static struct param _params[] = {
730 		{0, 1024, "invalid number of hardware handler args"},
731 	};
732 
733 	if (read_param(_params, shift(as), &hw_argc, &ti->error))
734 		return -EINVAL;
735 
736 	if (!hw_argc)
737 		return 0;
738 
739 	if (hw_argc > as->argc) {
740 		ti->error = "not enough arguments for hardware handler";
741 		return -EINVAL;
742 	}
743 
744 	m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL);
745 	request_module("scsi_dh_%s", m->hw_handler_name);
746 	if (scsi_dh_handler_exist(m->hw_handler_name) == 0) {
747 		ti->error = "unknown hardware handler type";
748 		ret = -EINVAL;
749 		goto fail;
750 	}
751 
752 	if (hw_argc > 1) {
753 		char *p;
754 		int i, j, len = 4;
755 
756 		for (i = 0; i <= hw_argc - 2; i++)
757 			len += strlen(as->argv[i]) + 1;
758 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
759 		if (!p) {
760 			ti->error = "memory allocation failed";
761 			ret = -ENOMEM;
762 			goto fail;
763 		}
764 		j = sprintf(p, "%d", hw_argc - 1);
765 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
766 			j = sprintf(p, "%s", as->argv[i]);
767 	}
768 	consume(as, hw_argc - 1);
769 
770 	return 0;
771 fail:
772 	kfree(m->hw_handler_name);
773 	m->hw_handler_name = NULL;
774 	return ret;
775 }
776 
777 static int parse_features(struct arg_set *as, struct multipath *m)
778 {
779 	int r;
780 	unsigned argc;
781 	struct dm_target *ti = m->ti;
782 	const char *param_name;
783 
784 	static struct param _params[] = {
785 		{0, 3, "invalid number of feature args"},
786 		{1, 50, "pg_init_retries must be between 1 and 50"},
787 	};
788 
789 	r = read_param(_params, shift(as), &argc, &ti->error);
790 	if (r)
791 		return -EINVAL;
792 
793 	if (!argc)
794 		return 0;
795 
796 	do {
797 		param_name = shift(as);
798 		argc--;
799 
800 		if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) {
801 			r = queue_if_no_path(m, 1, 0);
802 			continue;
803 		}
804 
805 		if (!strnicmp(param_name, MESG_STR("pg_init_retries")) &&
806 		    (argc >= 1)) {
807 			r = read_param(_params + 1, shift(as),
808 				       &m->pg_init_retries, &ti->error);
809 			argc--;
810 			continue;
811 		}
812 
813 		ti->error = "Unrecognised multipath feature request";
814 		r = -EINVAL;
815 	} while (argc && !r);
816 
817 	return r;
818 }
819 
820 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
821 			 char **argv)
822 {
823 	/* target parameters */
824 	static struct param _params[] = {
825 		{1, 1024, "invalid number of priority groups"},
826 		{1, 1024, "invalid initial priority group number"},
827 	};
828 
829 	int r;
830 	struct multipath *m;
831 	struct arg_set as;
832 	unsigned pg_count = 0;
833 	unsigned next_pg_num;
834 
835 	as.argc = argc;
836 	as.argv = argv;
837 
838 	m = alloc_multipath(ti);
839 	if (!m) {
840 		ti->error = "can't allocate multipath";
841 		return -EINVAL;
842 	}
843 
844 	r = parse_features(&as, m);
845 	if (r)
846 		goto bad;
847 
848 	r = parse_hw_handler(&as, m);
849 	if (r)
850 		goto bad;
851 
852 	r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error);
853 	if (r)
854 		goto bad;
855 
856 	r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error);
857 	if (r)
858 		goto bad;
859 
860 	/* parse the priority groups */
861 	while (as.argc) {
862 		struct priority_group *pg;
863 
864 		pg = parse_priority_group(&as, m);
865 		if (IS_ERR(pg)) {
866 			r = PTR_ERR(pg);
867 			goto bad;
868 		}
869 
870 		m->nr_valid_paths += pg->nr_pgpaths;
871 		list_add_tail(&pg->list, &m->priority_groups);
872 		pg_count++;
873 		pg->pg_num = pg_count;
874 		if (!--next_pg_num)
875 			m->next_pg = pg;
876 	}
877 
878 	if (pg_count != m->nr_priority_groups) {
879 		ti->error = "priority group count mismatch";
880 		r = -EINVAL;
881 		goto bad;
882 	}
883 
884 	ti->num_flush_requests = 1;
885 
886 	return 0;
887 
888  bad:
889 	free_multipath(m);
890 	return r;
891 }
892 
893 static void flush_multipath_work(void)
894 {
895 	flush_workqueue(kmpath_handlerd);
896 	flush_workqueue(kmultipathd);
897 	flush_scheduled_work();
898 }
899 
900 static void multipath_dtr(struct dm_target *ti)
901 {
902 	struct multipath *m = ti->private;
903 
904 	flush_multipath_work();
905 	free_multipath(m);
906 }
907 
908 /*
909  * Map cloned requests
910  */
911 static int multipath_map(struct dm_target *ti, struct request *clone,
912 			 union map_info *map_context)
913 {
914 	int r;
915 	struct dm_mpath_io *mpio;
916 	struct multipath *m = (struct multipath *) ti->private;
917 
918 	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
919 	if (!mpio)
920 		/* ENOMEM, requeue */
921 		return DM_MAPIO_REQUEUE;
922 	memset(mpio, 0, sizeof(*mpio));
923 
924 	map_context->ptr = mpio;
925 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
926 	r = map_io(m, clone, mpio, 0);
927 	if (r < 0 || r == DM_MAPIO_REQUEUE)
928 		mempool_free(mpio, m->mpio_pool);
929 
930 	return r;
931 }
932 
933 /*
934  * Take a path out of use.
935  */
936 static int fail_path(struct pgpath *pgpath)
937 {
938 	unsigned long flags;
939 	struct multipath *m = pgpath->pg->m;
940 
941 	spin_lock_irqsave(&m->lock, flags);
942 
943 	if (!pgpath->is_active)
944 		goto out;
945 
946 	DMWARN("Failing path %s.", pgpath->path.dev->name);
947 
948 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
949 	pgpath->is_active = 0;
950 	pgpath->fail_count++;
951 
952 	m->nr_valid_paths--;
953 
954 	if (pgpath == m->current_pgpath)
955 		m->current_pgpath = NULL;
956 
957 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
958 		      pgpath->path.dev->name, m->nr_valid_paths);
959 
960 	schedule_work(&m->trigger_event);
961 	queue_work(kmultipathd, &pgpath->deactivate_path);
962 
963 out:
964 	spin_unlock_irqrestore(&m->lock, flags);
965 
966 	return 0;
967 }
968 
969 /*
970  * Reinstate a previously-failed path
971  */
972 static int reinstate_path(struct pgpath *pgpath)
973 {
974 	int r = 0;
975 	unsigned long flags;
976 	struct multipath *m = pgpath->pg->m;
977 
978 	spin_lock_irqsave(&m->lock, flags);
979 
980 	if (pgpath->is_active)
981 		goto out;
982 
983 	if (!pgpath->pg->ps.type->reinstate_path) {
984 		DMWARN("Reinstate path not supported by path selector %s",
985 		       pgpath->pg->ps.type->name);
986 		r = -EINVAL;
987 		goto out;
988 	}
989 
990 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
991 	if (r)
992 		goto out;
993 
994 	pgpath->is_active = 1;
995 
996 	if (!m->nr_valid_paths++ && m->queue_size) {
997 		m->current_pgpath = NULL;
998 		queue_work(kmultipathd, &m->process_queued_ios);
999 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1000 		if (queue_work(kmpath_handlerd, &pgpath->activate_path))
1001 			m->pg_init_in_progress++;
1002 	}
1003 
1004 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1005 		      pgpath->path.dev->name, m->nr_valid_paths);
1006 
1007 	schedule_work(&m->trigger_event);
1008 
1009 out:
1010 	spin_unlock_irqrestore(&m->lock, flags);
1011 
1012 	return r;
1013 }
1014 
1015 /*
1016  * Fail or reinstate all paths that match the provided struct dm_dev.
1017  */
1018 static int action_dev(struct multipath *m, struct dm_dev *dev,
1019 		      action_fn action)
1020 {
1021 	int r = 0;
1022 	struct pgpath *pgpath;
1023 	struct priority_group *pg;
1024 
1025 	list_for_each_entry(pg, &m->priority_groups, list) {
1026 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1027 			if (pgpath->path.dev == dev)
1028 				r = action(pgpath);
1029 		}
1030 	}
1031 
1032 	return r;
1033 }
1034 
1035 /*
1036  * Temporarily try to avoid having to use the specified PG
1037  */
1038 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1039 		      int bypassed)
1040 {
1041 	unsigned long flags;
1042 
1043 	spin_lock_irqsave(&m->lock, flags);
1044 
1045 	pg->bypassed = bypassed;
1046 	m->current_pgpath = NULL;
1047 	m->current_pg = NULL;
1048 
1049 	spin_unlock_irqrestore(&m->lock, flags);
1050 
1051 	schedule_work(&m->trigger_event);
1052 }
1053 
1054 /*
1055  * Switch to using the specified PG from the next I/O that gets mapped
1056  */
1057 static int switch_pg_num(struct multipath *m, const char *pgstr)
1058 {
1059 	struct priority_group *pg;
1060 	unsigned pgnum;
1061 	unsigned long flags;
1062 
1063 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1064 	    (pgnum > m->nr_priority_groups)) {
1065 		DMWARN("invalid PG number supplied to switch_pg_num");
1066 		return -EINVAL;
1067 	}
1068 
1069 	spin_lock_irqsave(&m->lock, flags);
1070 	list_for_each_entry(pg, &m->priority_groups, list) {
1071 		pg->bypassed = 0;
1072 		if (--pgnum)
1073 			continue;
1074 
1075 		m->current_pgpath = NULL;
1076 		m->current_pg = NULL;
1077 		m->next_pg = pg;
1078 	}
1079 	spin_unlock_irqrestore(&m->lock, flags);
1080 
1081 	schedule_work(&m->trigger_event);
1082 	return 0;
1083 }
1084 
1085 /*
1086  * Set/clear bypassed status of a PG.
1087  * PGs are numbered upwards from 1 in the order they were declared.
1088  */
1089 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1090 {
1091 	struct priority_group *pg;
1092 	unsigned pgnum;
1093 
1094 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1095 	    (pgnum > m->nr_priority_groups)) {
1096 		DMWARN("invalid PG number supplied to bypass_pg");
1097 		return -EINVAL;
1098 	}
1099 
1100 	list_for_each_entry(pg, &m->priority_groups, list) {
1101 		if (!--pgnum)
1102 			break;
1103 	}
1104 
1105 	bypass_pg(m, pg, bypassed);
1106 	return 0;
1107 }
1108 
1109 /*
1110  * Should we retry pg_init immediately?
1111  */
1112 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1113 {
1114 	unsigned long flags;
1115 	int limit_reached = 0;
1116 
1117 	spin_lock_irqsave(&m->lock, flags);
1118 
1119 	if (m->pg_init_count <= m->pg_init_retries)
1120 		m->pg_init_required = 1;
1121 	else
1122 		limit_reached = 1;
1123 
1124 	spin_unlock_irqrestore(&m->lock, flags);
1125 
1126 	return limit_reached;
1127 }
1128 
1129 static void pg_init_done(void *data, int errors)
1130 {
1131 	struct dm_path *path = data;
1132 	struct pgpath *pgpath = path_to_pgpath(path);
1133 	struct priority_group *pg = pgpath->pg;
1134 	struct multipath *m = pg->m;
1135 	unsigned long flags;
1136 
1137 	/* device or driver problems */
1138 	switch (errors) {
1139 	case SCSI_DH_OK:
1140 		break;
1141 	case SCSI_DH_NOSYS:
1142 		if (!m->hw_handler_name) {
1143 			errors = 0;
1144 			break;
1145 		}
1146 		DMERR("Cannot failover device because scsi_dh_%s was not "
1147 		      "loaded.", m->hw_handler_name);
1148 		/*
1149 		 * Fail path for now, so we do not ping pong
1150 		 */
1151 		fail_path(pgpath);
1152 		break;
1153 	case SCSI_DH_DEV_TEMP_BUSY:
1154 		/*
1155 		 * Probably doing something like FW upgrade on the
1156 		 * controller so try the other pg.
1157 		 */
1158 		bypass_pg(m, pg, 1);
1159 		break;
1160 	/* TODO: For SCSI_DH_RETRY we should wait a couple seconds */
1161 	case SCSI_DH_RETRY:
1162 	case SCSI_DH_IMM_RETRY:
1163 	case SCSI_DH_RES_TEMP_UNAVAIL:
1164 		if (pg_init_limit_reached(m, pgpath))
1165 			fail_path(pgpath);
1166 		errors = 0;
1167 		break;
1168 	default:
1169 		/*
1170 		 * We probably do not want to fail the path for a device
1171 		 * error, but this is what the old dm did. In future
1172 		 * patches we can do more advanced handling.
1173 		 */
1174 		fail_path(pgpath);
1175 	}
1176 
1177 	spin_lock_irqsave(&m->lock, flags);
1178 	if (errors) {
1179 		if (pgpath == m->current_pgpath) {
1180 			DMERR("Could not failover device. Error %d.", errors);
1181 			m->current_pgpath = NULL;
1182 			m->current_pg = NULL;
1183 		}
1184 	} else if (!m->pg_init_required) {
1185 		m->queue_io = 0;
1186 		pg->bypassed = 0;
1187 	}
1188 
1189 	m->pg_init_in_progress--;
1190 	if (!m->pg_init_in_progress)
1191 		queue_work(kmultipathd, &m->process_queued_ios);
1192 	spin_unlock_irqrestore(&m->lock, flags);
1193 }
1194 
1195 static void activate_path(struct work_struct *work)
1196 {
1197 	struct pgpath *pgpath =
1198 		container_of(work, struct pgpath, activate_path);
1199 
1200 	scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
1201 				pg_init_done, &pgpath->path);
1202 }
1203 
1204 /*
1205  * end_io handling
1206  */
1207 static int do_end_io(struct multipath *m, struct request *clone,
1208 		     int error, struct dm_mpath_io *mpio)
1209 {
1210 	/*
1211 	 * We don't queue any clone request inside the multipath target
1212 	 * during end I/O handling, since those clone requests don't have
1213 	 * bio clones.  If we queue them inside the multipath target,
1214 	 * we need to make bio clones, that requires memory allocation.
1215 	 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1216 	 *  don't have bio clones.)
1217 	 * Instead of queueing the clone request here, we queue the original
1218 	 * request into dm core, which will remake a clone request and
1219 	 * clone bios for it and resubmit it later.
1220 	 */
1221 	int r = DM_ENDIO_REQUEUE;
1222 	unsigned long flags;
1223 
1224 	if (!error && !clone->errors)
1225 		return 0;	/* I/O complete */
1226 
1227 	if (error == -EOPNOTSUPP)
1228 		return error;
1229 
1230 	if (mpio->pgpath)
1231 		fail_path(mpio->pgpath);
1232 
1233 	spin_lock_irqsave(&m->lock, flags);
1234 	if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m))
1235 		r = -EIO;
1236 	spin_unlock_irqrestore(&m->lock, flags);
1237 
1238 	return r;
1239 }
1240 
1241 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1242 			    int error, union map_info *map_context)
1243 {
1244 	struct multipath *m = ti->private;
1245 	struct dm_mpath_io *mpio = map_context->ptr;
1246 	struct pgpath *pgpath = mpio->pgpath;
1247 	struct path_selector *ps;
1248 	int r;
1249 
1250 	r  = do_end_io(m, clone, error, mpio);
1251 	if (pgpath) {
1252 		ps = &pgpath->pg->ps;
1253 		if (ps->type->end_io)
1254 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1255 	}
1256 	mempool_free(mpio, m->mpio_pool);
1257 
1258 	return r;
1259 }
1260 
1261 /*
1262  * Suspend can't complete until all the I/O is processed so if
1263  * the last path fails we must error any remaining I/O.
1264  * Note that if the freeze_bdev fails while suspending, the
1265  * queue_if_no_path state is lost - userspace should reset it.
1266  */
1267 static void multipath_presuspend(struct dm_target *ti)
1268 {
1269 	struct multipath *m = (struct multipath *) ti->private;
1270 
1271 	queue_if_no_path(m, 0, 1);
1272 }
1273 
1274 static void multipath_postsuspend(struct dm_target *ti)
1275 {
1276 	struct multipath *m = ti->private;
1277 
1278 	mutex_lock(&m->work_mutex);
1279 	m->suspended = 1;
1280 	flush_multipath_work();
1281 	mutex_unlock(&m->work_mutex);
1282 }
1283 
1284 /*
1285  * Restore the queue_if_no_path setting.
1286  */
1287 static void multipath_resume(struct dm_target *ti)
1288 {
1289 	struct multipath *m = (struct multipath *) ti->private;
1290 	unsigned long flags;
1291 
1292 	mutex_lock(&m->work_mutex);
1293 	m->suspended = 0;
1294 	mutex_unlock(&m->work_mutex);
1295 
1296 	spin_lock_irqsave(&m->lock, flags);
1297 	m->queue_if_no_path = m->saved_queue_if_no_path;
1298 	spin_unlock_irqrestore(&m->lock, flags);
1299 }
1300 
1301 /*
1302  * Info output has the following format:
1303  * num_multipath_feature_args [multipath_feature_args]*
1304  * num_handler_status_args [handler_status_args]*
1305  * num_groups init_group_number
1306  *            [A|D|E num_ps_status_args [ps_status_args]*
1307  *             num_paths num_selector_args
1308  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1309  *
1310  * Table output has the following format (identical to the constructor string):
1311  * num_feature_args [features_args]*
1312  * num_handler_args hw_handler [hw_handler_args]*
1313  * num_groups init_group_number
1314  *     [priority selector-name num_ps_args [ps_args]*
1315  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1316  */
1317 static int multipath_status(struct dm_target *ti, status_type_t type,
1318 			    char *result, unsigned int maxlen)
1319 {
1320 	int sz = 0;
1321 	unsigned long flags;
1322 	struct multipath *m = (struct multipath *) ti->private;
1323 	struct priority_group *pg;
1324 	struct pgpath *p;
1325 	unsigned pg_num;
1326 	char state;
1327 
1328 	spin_lock_irqsave(&m->lock, flags);
1329 
1330 	/* Features */
1331 	if (type == STATUSTYPE_INFO)
1332 		DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1333 	else {
1334 		DMEMIT("%u ", m->queue_if_no_path +
1335 			      (m->pg_init_retries > 0) * 2);
1336 		if (m->queue_if_no_path)
1337 			DMEMIT("queue_if_no_path ");
1338 		if (m->pg_init_retries)
1339 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1340 	}
1341 
1342 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1343 		DMEMIT("0 ");
1344 	else
1345 		DMEMIT("1 %s ", m->hw_handler_name);
1346 
1347 	DMEMIT("%u ", m->nr_priority_groups);
1348 
1349 	if (m->next_pg)
1350 		pg_num = m->next_pg->pg_num;
1351 	else if (m->current_pg)
1352 		pg_num = m->current_pg->pg_num;
1353 	else
1354 			pg_num = 1;
1355 
1356 	DMEMIT("%u ", pg_num);
1357 
1358 	switch (type) {
1359 	case STATUSTYPE_INFO:
1360 		list_for_each_entry(pg, &m->priority_groups, list) {
1361 			if (pg->bypassed)
1362 				state = 'D';	/* Disabled */
1363 			else if (pg == m->current_pg)
1364 				state = 'A';	/* Currently Active */
1365 			else
1366 				state = 'E';	/* Enabled */
1367 
1368 			DMEMIT("%c ", state);
1369 
1370 			if (pg->ps.type->status)
1371 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1372 							  result + sz,
1373 							  maxlen - sz);
1374 			else
1375 				DMEMIT("0 ");
1376 
1377 			DMEMIT("%u %u ", pg->nr_pgpaths,
1378 			       pg->ps.type->info_args);
1379 
1380 			list_for_each_entry(p, &pg->pgpaths, list) {
1381 				DMEMIT("%s %s %u ", p->path.dev->name,
1382 				       p->is_active ? "A" : "F",
1383 				       p->fail_count);
1384 				if (pg->ps.type->status)
1385 					sz += pg->ps.type->status(&pg->ps,
1386 					      &p->path, type, result + sz,
1387 					      maxlen - sz);
1388 			}
1389 		}
1390 		break;
1391 
1392 	case STATUSTYPE_TABLE:
1393 		list_for_each_entry(pg, &m->priority_groups, list) {
1394 			DMEMIT("%s ", pg->ps.type->name);
1395 
1396 			if (pg->ps.type->status)
1397 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1398 							  result + sz,
1399 							  maxlen - sz);
1400 			else
1401 				DMEMIT("0 ");
1402 
1403 			DMEMIT("%u %u ", pg->nr_pgpaths,
1404 			       pg->ps.type->table_args);
1405 
1406 			list_for_each_entry(p, &pg->pgpaths, list) {
1407 				DMEMIT("%s ", p->path.dev->name);
1408 				if (pg->ps.type->status)
1409 					sz += pg->ps.type->status(&pg->ps,
1410 					      &p->path, type, result + sz,
1411 					      maxlen - sz);
1412 			}
1413 		}
1414 		break;
1415 	}
1416 
1417 	spin_unlock_irqrestore(&m->lock, flags);
1418 
1419 	return 0;
1420 }
1421 
1422 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1423 {
1424 	int r = -EINVAL;
1425 	struct dm_dev *dev;
1426 	struct multipath *m = (struct multipath *) ti->private;
1427 	action_fn action;
1428 
1429 	mutex_lock(&m->work_mutex);
1430 
1431 	if (m->suspended) {
1432 		r = -EBUSY;
1433 		goto out;
1434 	}
1435 
1436 	if (dm_suspended(ti)) {
1437 		r = -EBUSY;
1438 		goto out;
1439 	}
1440 
1441 	if (argc == 1) {
1442 		if (!strnicmp(argv[0], MESG_STR("queue_if_no_path"))) {
1443 			r = queue_if_no_path(m, 1, 0);
1444 			goto out;
1445 		} else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path"))) {
1446 			r = queue_if_no_path(m, 0, 0);
1447 			goto out;
1448 		}
1449 	}
1450 
1451 	if (argc != 2) {
1452 		DMWARN("Unrecognised multipath message received.");
1453 		goto out;
1454 	}
1455 
1456 	if (!strnicmp(argv[0], MESG_STR("disable_group"))) {
1457 		r = bypass_pg_num(m, argv[1], 1);
1458 		goto out;
1459 	} else if (!strnicmp(argv[0], MESG_STR("enable_group"))) {
1460 		r = bypass_pg_num(m, argv[1], 0);
1461 		goto out;
1462 	} else if (!strnicmp(argv[0], MESG_STR("switch_group"))) {
1463 		r = switch_pg_num(m, argv[1]);
1464 		goto out;
1465 	} else if (!strnicmp(argv[0], MESG_STR("reinstate_path")))
1466 		action = reinstate_path;
1467 	else if (!strnicmp(argv[0], MESG_STR("fail_path")))
1468 		action = fail_path;
1469 	else {
1470 		DMWARN("Unrecognised multipath message received.");
1471 		goto out;
1472 	}
1473 
1474 	r = dm_get_device(ti, argv[1], ti->begin, ti->len,
1475 			  dm_table_get_mode(ti->table), &dev);
1476 	if (r) {
1477 		DMWARN("message: error getting device %s",
1478 		       argv[1]);
1479 		goto out;
1480 	}
1481 
1482 	r = action_dev(m, dev, action);
1483 
1484 	dm_put_device(ti, dev);
1485 
1486 out:
1487 	mutex_unlock(&m->work_mutex);
1488 	return r;
1489 }
1490 
1491 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1492 			   unsigned long arg)
1493 {
1494 	struct multipath *m = (struct multipath *) ti->private;
1495 	struct block_device *bdev = NULL;
1496 	fmode_t mode = 0;
1497 	unsigned long flags;
1498 	int r = 0;
1499 
1500 	spin_lock_irqsave(&m->lock, flags);
1501 
1502 	if (!m->current_pgpath)
1503 		__choose_pgpath(m, 0);
1504 
1505 	if (m->current_pgpath) {
1506 		bdev = m->current_pgpath->path.dev->bdev;
1507 		mode = m->current_pgpath->path.dev->mode;
1508 	}
1509 
1510 	if (m->queue_io)
1511 		r = -EAGAIN;
1512 	else if (!bdev)
1513 		r = -EIO;
1514 
1515 	spin_unlock_irqrestore(&m->lock, flags);
1516 
1517 	return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1518 }
1519 
1520 static int multipath_iterate_devices(struct dm_target *ti,
1521 				     iterate_devices_callout_fn fn, void *data)
1522 {
1523 	struct multipath *m = ti->private;
1524 	struct priority_group *pg;
1525 	struct pgpath *p;
1526 	int ret = 0;
1527 
1528 	list_for_each_entry(pg, &m->priority_groups, list) {
1529 		list_for_each_entry(p, &pg->pgpaths, list) {
1530 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1531 			if (ret)
1532 				goto out;
1533 		}
1534 	}
1535 
1536 out:
1537 	return ret;
1538 }
1539 
1540 static int __pgpath_busy(struct pgpath *pgpath)
1541 {
1542 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1543 
1544 	return dm_underlying_device_busy(q);
1545 }
1546 
1547 /*
1548  * We return "busy", only when we can map I/Os but underlying devices
1549  * are busy (so even if we map I/Os now, the I/Os will wait on
1550  * the underlying queue).
1551  * In other words, if we want to kill I/Os or queue them inside us
1552  * due to map unavailability, we don't return "busy".  Otherwise,
1553  * dm core won't give us the I/Os and we can't do what we want.
1554  */
1555 static int multipath_busy(struct dm_target *ti)
1556 {
1557 	int busy = 0, has_active = 0;
1558 	struct multipath *m = ti->private;
1559 	struct priority_group *pg;
1560 	struct pgpath *pgpath;
1561 	unsigned long flags;
1562 
1563 	spin_lock_irqsave(&m->lock, flags);
1564 
1565 	/* Guess which priority_group will be used at next mapping time */
1566 	if (unlikely(!m->current_pgpath && m->next_pg))
1567 		pg = m->next_pg;
1568 	else if (likely(m->current_pg))
1569 		pg = m->current_pg;
1570 	else
1571 		/*
1572 		 * We don't know which pg will be used at next mapping time.
1573 		 * We don't call __choose_pgpath() here to avoid to trigger
1574 		 * pg_init just by busy checking.
1575 		 * So we don't know whether underlying devices we will be using
1576 		 * at next mapping time are busy or not. Just try mapping.
1577 		 */
1578 		goto out;
1579 
1580 	/*
1581 	 * If there is one non-busy active path at least, the path selector
1582 	 * will be able to select it. So we consider such a pg as not busy.
1583 	 */
1584 	busy = 1;
1585 	list_for_each_entry(pgpath, &pg->pgpaths, list)
1586 		if (pgpath->is_active) {
1587 			has_active = 1;
1588 
1589 			if (!__pgpath_busy(pgpath)) {
1590 				busy = 0;
1591 				break;
1592 			}
1593 		}
1594 
1595 	if (!has_active)
1596 		/*
1597 		 * No active path in this pg, so this pg won't be used and
1598 		 * the current_pg will be changed at next mapping time.
1599 		 * We need to try mapping to determine it.
1600 		 */
1601 		busy = 0;
1602 
1603 out:
1604 	spin_unlock_irqrestore(&m->lock, flags);
1605 
1606 	return busy;
1607 }
1608 
1609 /*-----------------------------------------------------------------
1610  * Module setup
1611  *---------------------------------------------------------------*/
1612 static struct target_type multipath_target = {
1613 	.name = "multipath",
1614 	.version = {1, 1, 1},
1615 	.module = THIS_MODULE,
1616 	.ctr = multipath_ctr,
1617 	.dtr = multipath_dtr,
1618 	.map_rq = multipath_map,
1619 	.rq_end_io = multipath_end_io,
1620 	.presuspend = multipath_presuspend,
1621 	.postsuspend = multipath_postsuspend,
1622 	.resume = multipath_resume,
1623 	.status = multipath_status,
1624 	.message = multipath_message,
1625 	.ioctl  = multipath_ioctl,
1626 	.iterate_devices = multipath_iterate_devices,
1627 	.busy = multipath_busy,
1628 };
1629 
1630 static int __init dm_multipath_init(void)
1631 {
1632 	int r;
1633 
1634 	/* allocate a slab for the dm_ios */
1635 	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1636 	if (!_mpio_cache)
1637 		return -ENOMEM;
1638 
1639 	r = dm_register_target(&multipath_target);
1640 	if (r < 0) {
1641 		DMERR("register failed %d", r);
1642 		kmem_cache_destroy(_mpio_cache);
1643 		return -EINVAL;
1644 	}
1645 
1646 	kmultipathd = create_workqueue("kmpathd");
1647 	if (!kmultipathd) {
1648 		DMERR("failed to create workqueue kmpathd");
1649 		dm_unregister_target(&multipath_target);
1650 		kmem_cache_destroy(_mpio_cache);
1651 		return -ENOMEM;
1652 	}
1653 
1654 	/*
1655 	 * A separate workqueue is used to handle the device handlers
1656 	 * to avoid overloading existing workqueue. Overloading the
1657 	 * old workqueue would also create a bottleneck in the
1658 	 * path of the storage hardware device activation.
1659 	 */
1660 	kmpath_handlerd = create_singlethread_workqueue("kmpath_handlerd");
1661 	if (!kmpath_handlerd) {
1662 		DMERR("failed to create workqueue kmpath_handlerd");
1663 		destroy_workqueue(kmultipathd);
1664 		dm_unregister_target(&multipath_target);
1665 		kmem_cache_destroy(_mpio_cache);
1666 		return -ENOMEM;
1667 	}
1668 
1669 	DMINFO("version %u.%u.%u loaded",
1670 	       multipath_target.version[0], multipath_target.version[1],
1671 	       multipath_target.version[2]);
1672 
1673 	return r;
1674 }
1675 
1676 static void __exit dm_multipath_exit(void)
1677 {
1678 	destroy_workqueue(kmpath_handlerd);
1679 	destroy_workqueue(kmultipathd);
1680 
1681 	dm_unregister_target(&multipath_target);
1682 	kmem_cache_destroy(_mpio_cache);
1683 }
1684 
1685 module_init(dm_multipath_init);
1686 module_exit(dm_multipath_exit);
1687 
1688 MODULE_DESCRIPTION(DM_NAME " multipath target");
1689 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
1690 MODULE_LICENSE("GPL");
1691