xref: /openbmc/linux/drivers/md/dm-mpath.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		/*
207 		 * Default to request-based.
208 		 */
209 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
210 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
211 		else
212 			m->queue_mode = DM_TYPE_REQUEST_BASED;
213 
214 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
215 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
216 		/*
217 		 * bio-based doesn't support any direct scsi_dh management;
218 		 * it just discovers if a scsi_dh is attached.
219 		 */
220 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
221 	}
222 
223 	dm_table_set_type(ti->table, m->queue_mode);
224 
225 	/*
226 	 * Init fields that are only used when a scsi_dh is attached
227 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
228 	 */
229 	set_bit(MPATHF_QUEUE_IO, &m->flags);
230 	atomic_set(&m->pg_init_in_progress, 0);
231 	atomic_set(&m->pg_init_count, 0);
232 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
233 	init_waitqueue_head(&m->pg_init_wait);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	mutex_destroy(&m->work_mutex);
250 	kfree(m);
251 }
252 
253 static struct dm_mpath_io *get_mpio(union map_info *info)
254 {
255 	return info->ptr;
256 }
257 
258 static size_t multipath_per_bio_data_size(void)
259 {
260 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
261 }
262 
263 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
264 {
265 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
266 }
267 
268 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
269 {
270 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
271 	void *bio_details = mpio + 1;
272 	return bio_details;
273 }
274 
275 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
276 {
277 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
278 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
279 
280 	mpio->nr_bytes = bio->bi_iter.bi_size;
281 	mpio->pgpath = NULL;
282 	*mpio_p = mpio;
283 
284 	dm_bio_record(bio_details, bio);
285 }
286 
287 /*-----------------------------------------------
288  * Path selection
289  *-----------------------------------------------*/
290 
291 static int __pg_init_all_paths(struct multipath *m)
292 {
293 	struct pgpath *pgpath;
294 	unsigned long pg_init_delay = 0;
295 
296 	lockdep_assert_held(&m->lock);
297 
298 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
299 		return 0;
300 
301 	atomic_inc(&m->pg_init_count);
302 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
303 
304 	/* Check here to reset pg_init_required */
305 	if (!m->current_pg)
306 		return 0;
307 
308 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
309 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
310 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
311 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
312 		/* Skip failed paths */
313 		if (!pgpath->is_active)
314 			continue;
315 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
316 				       pg_init_delay))
317 			atomic_inc(&m->pg_init_in_progress);
318 	}
319 	return atomic_read(&m->pg_init_in_progress);
320 }
321 
322 static int pg_init_all_paths(struct multipath *m)
323 {
324 	int ret;
325 	unsigned long flags;
326 
327 	spin_lock_irqsave(&m->lock, flags);
328 	ret = __pg_init_all_paths(m);
329 	spin_unlock_irqrestore(&m->lock, flags);
330 
331 	return ret;
332 }
333 
334 static void __switch_pg(struct multipath *m, struct priority_group *pg)
335 {
336 	m->current_pg = pg;
337 
338 	/* Must we initialise the PG first, and queue I/O till it's ready? */
339 	if (m->hw_handler_name) {
340 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
341 		set_bit(MPATHF_QUEUE_IO, &m->flags);
342 	} else {
343 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
344 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
345 	}
346 
347 	atomic_set(&m->pg_init_count, 0);
348 }
349 
350 static struct pgpath *choose_path_in_pg(struct multipath *m,
351 					struct priority_group *pg,
352 					size_t nr_bytes)
353 {
354 	unsigned long flags;
355 	struct dm_path *path;
356 	struct pgpath *pgpath;
357 
358 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
359 	if (!path)
360 		return ERR_PTR(-ENXIO);
361 
362 	pgpath = path_to_pgpath(path);
363 
364 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
365 		/* Only update current_pgpath if pg changed */
366 		spin_lock_irqsave(&m->lock, flags);
367 		m->current_pgpath = pgpath;
368 		__switch_pg(m, pg);
369 		spin_unlock_irqrestore(&m->lock, flags);
370 	}
371 
372 	return pgpath;
373 }
374 
375 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
376 {
377 	unsigned long flags;
378 	struct priority_group *pg;
379 	struct pgpath *pgpath;
380 	unsigned bypassed = 1;
381 
382 	if (!atomic_read(&m->nr_valid_paths)) {
383 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
384 		goto failed;
385 	}
386 
387 	/* Were we instructed to switch PG? */
388 	if (READ_ONCE(m->next_pg)) {
389 		spin_lock_irqsave(&m->lock, flags);
390 		pg = m->next_pg;
391 		if (!pg) {
392 			spin_unlock_irqrestore(&m->lock, flags);
393 			goto check_current_pg;
394 		}
395 		m->next_pg = NULL;
396 		spin_unlock_irqrestore(&m->lock, flags);
397 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
398 		if (!IS_ERR_OR_NULL(pgpath))
399 			return pgpath;
400 	}
401 
402 	/* Don't change PG until it has no remaining paths */
403 check_current_pg:
404 	pg = READ_ONCE(m->current_pg);
405 	if (pg) {
406 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
407 		if (!IS_ERR_OR_NULL(pgpath))
408 			return pgpath;
409 	}
410 
411 	/*
412 	 * Loop through priority groups until we find a valid path.
413 	 * First time we skip PGs marked 'bypassed'.
414 	 * Second time we only try the ones we skipped, but set
415 	 * pg_init_delay_retry so we do not hammer controllers.
416 	 */
417 	do {
418 		list_for_each_entry(pg, &m->priority_groups, list) {
419 			if (pg->bypassed == !!bypassed)
420 				continue;
421 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
422 			if (!IS_ERR_OR_NULL(pgpath)) {
423 				if (!bypassed)
424 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
425 				return pgpath;
426 			}
427 		}
428 	} while (bypassed--);
429 
430 failed:
431 	spin_lock_irqsave(&m->lock, flags);
432 	m->current_pgpath = NULL;
433 	m->current_pg = NULL;
434 	spin_unlock_irqrestore(&m->lock, flags);
435 
436 	return NULL;
437 }
438 
439 /*
440  * dm_report_EIO() is a macro instead of a function to make pr_debug()
441  * report the function name and line number of the function from which
442  * it has been invoked.
443  */
444 #define dm_report_EIO(m)						\
445 do {									\
446 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
447 									\
448 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
449 		 dm_device_name(md),					\
450 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
451 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
452 		 dm_noflush_suspending((m)->ti));			\
453 } while (0)
454 
455 /*
456  * Check whether bios must be queued in the device-mapper core rather
457  * than here in the target.
458  *
459  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
460  * the same value then we are not between multipath_presuspend()
461  * and multipath_resume() calls and we have no need to check
462  * for the DMF_NOFLUSH_SUSPENDING flag.
463  */
464 static bool __must_push_back(struct multipath *m, unsigned long flags)
465 {
466 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
467 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
468 		dm_noflush_suspending(m->ti));
469 }
470 
471 /*
472  * Following functions use READ_ONCE to get atomic access to
473  * all m->flags to avoid taking spinlock
474  */
475 static bool must_push_back_rq(struct multipath *m)
476 {
477 	unsigned long flags = READ_ONCE(m->flags);
478 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
479 }
480 
481 static bool must_push_back_bio(struct multipath *m)
482 {
483 	unsigned long flags = READ_ONCE(m->flags);
484 	return __must_push_back(m, flags);
485 }
486 
487 /*
488  * Map cloned requests (request-based multipath)
489  */
490 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
491 				   union map_info *map_context,
492 				   struct request **__clone)
493 {
494 	struct multipath *m = ti->private;
495 	size_t nr_bytes = blk_rq_bytes(rq);
496 	struct pgpath *pgpath;
497 	struct block_device *bdev;
498 	struct dm_mpath_io *mpio = get_mpio(map_context);
499 	struct request_queue *q;
500 	struct request *clone;
501 
502 	/* Do we need to select a new pgpath? */
503 	pgpath = READ_ONCE(m->current_pgpath);
504 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
505 		pgpath = choose_pgpath(m, nr_bytes);
506 
507 	if (!pgpath) {
508 		if (must_push_back_rq(m))
509 			return DM_MAPIO_DELAY_REQUEUE;
510 		dm_report_EIO(m);	/* Failed */
511 		return DM_MAPIO_KILL;
512 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
513 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
514 		pg_init_all_paths(m);
515 		return DM_MAPIO_DELAY_REQUEUE;
516 	}
517 
518 	mpio->pgpath = pgpath;
519 	mpio->nr_bytes = nr_bytes;
520 
521 	bdev = pgpath->path.dev->bdev;
522 	q = bdev_get_queue(bdev);
523 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
524 	if (IS_ERR(clone)) {
525 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
526 		if (blk_queue_dying(q)) {
527 			atomic_inc(&m->pg_init_in_progress);
528 			activate_or_offline_path(pgpath);
529 			return DM_MAPIO_DELAY_REQUEUE;
530 		}
531 
532 		/*
533 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
534 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
535 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
536 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
537 		 * otherwise I/O merging can suffer.
538 		 */
539 		if (q->mq_ops)
540 			return DM_MAPIO_REQUEUE;
541 		else
542 			return DM_MAPIO_DELAY_REQUEUE;
543 	}
544 	clone->bio = clone->biotail = NULL;
545 	clone->rq_disk = bdev->bd_disk;
546 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
547 	*__clone = clone;
548 
549 	if (pgpath->pg->ps.type->start_io)
550 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
551 					      &pgpath->path,
552 					      nr_bytes);
553 	return DM_MAPIO_REMAPPED;
554 }
555 
556 static void multipath_release_clone(struct request *clone)
557 {
558 	blk_put_request(clone);
559 }
560 
561 /*
562  * Map cloned bios (bio-based multipath)
563  */
564 
565 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
566 {
567 	struct pgpath *pgpath;
568 	unsigned long flags;
569 	bool queue_io;
570 
571 	/* Do we need to select a new pgpath? */
572 	pgpath = READ_ONCE(m->current_pgpath);
573 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
574 	if (!pgpath || !queue_io)
575 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
576 
577 	if ((pgpath && queue_io) ||
578 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
579 		/* Queue for the daemon to resubmit */
580 		spin_lock_irqsave(&m->lock, flags);
581 		bio_list_add(&m->queued_bios, bio);
582 		spin_unlock_irqrestore(&m->lock, flags);
583 
584 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
585 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
586 			pg_init_all_paths(m);
587 		else if (!queue_io)
588 			queue_work(kmultipathd, &m->process_queued_bios);
589 
590 		return ERR_PTR(-EAGAIN);
591 	}
592 
593 	return pgpath;
594 }
595 
596 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio)
597 {
598 	struct pgpath *pgpath;
599 	unsigned long flags;
600 
601 	/* Do we need to select a new pgpath? */
602 	/*
603 	 * FIXME: currently only switching path if no path (due to failure, etc)
604 	 * - which negates the point of using a path selector
605 	 */
606 	pgpath = READ_ONCE(m->current_pgpath);
607 	if (!pgpath)
608 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
609 
610 	if (!pgpath) {
611 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
612 			/* Queue for the daemon to resubmit */
613 			spin_lock_irqsave(&m->lock, flags);
614 			bio_list_add(&m->queued_bios, bio);
615 			spin_unlock_irqrestore(&m->lock, flags);
616 			queue_work(kmultipathd, &m->process_queued_bios);
617 
618 			return ERR_PTR(-EAGAIN);
619 		}
620 		return NULL;
621 	}
622 
623 	return pgpath;
624 }
625 
626 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
627 			       struct dm_mpath_io *mpio)
628 {
629 	struct pgpath *pgpath;
630 
631 	if (!m->hw_handler_name)
632 		pgpath = __map_bio_fast(m, bio);
633 	else
634 		pgpath = __map_bio(m, bio);
635 
636 	if (IS_ERR(pgpath))
637 		return DM_MAPIO_SUBMITTED;
638 
639 	if (!pgpath) {
640 		if (must_push_back_bio(m))
641 			return DM_MAPIO_REQUEUE;
642 		dm_report_EIO(m);
643 		return DM_MAPIO_KILL;
644 	}
645 
646 	mpio->pgpath = pgpath;
647 
648 	bio->bi_status = 0;
649 	bio_set_dev(bio, pgpath->path.dev->bdev);
650 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
651 
652 	if (pgpath->pg->ps.type->start_io)
653 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
654 					      &pgpath->path,
655 					      mpio->nr_bytes);
656 	return DM_MAPIO_REMAPPED;
657 }
658 
659 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
660 {
661 	struct multipath *m = ti->private;
662 	struct dm_mpath_io *mpio = NULL;
663 
664 	multipath_init_per_bio_data(bio, &mpio);
665 	return __multipath_map_bio(m, bio, mpio);
666 }
667 
668 static void process_queued_io_list(struct multipath *m)
669 {
670 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
671 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
672 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
673 		queue_work(kmultipathd, &m->process_queued_bios);
674 }
675 
676 static void process_queued_bios(struct work_struct *work)
677 {
678 	int r;
679 	unsigned long flags;
680 	struct bio *bio;
681 	struct bio_list bios;
682 	struct blk_plug plug;
683 	struct multipath *m =
684 		container_of(work, struct multipath, process_queued_bios);
685 
686 	bio_list_init(&bios);
687 
688 	spin_lock_irqsave(&m->lock, flags);
689 
690 	if (bio_list_empty(&m->queued_bios)) {
691 		spin_unlock_irqrestore(&m->lock, flags);
692 		return;
693 	}
694 
695 	bio_list_merge(&bios, &m->queued_bios);
696 	bio_list_init(&m->queued_bios);
697 
698 	spin_unlock_irqrestore(&m->lock, flags);
699 
700 	blk_start_plug(&plug);
701 	while ((bio = bio_list_pop(&bios))) {
702 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
703 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
704 		r = __multipath_map_bio(m, bio, mpio);
705 		switch (r) {
706 		case DM_MAPIO_KILL:
707 			bio->bi_status = BLK_STS_IOERR;
708 			bio_endio(bio);
709 			break;
710 		case DM_MAPIO_REQUEUE:
711 			bio->bi_status = BLK_STS_DM_REQUEUE;
712 			bio_endio(bio);
713 			break;
714 		case DM_MAPIO_REMAPPED:
715 			generic_make_request(bio);
716 			break;
717 		case 0:
718 			break;
719 		default:
720 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
721 		}
722 	}
723 	blk_finish_plug(&plug);
724 }
725 
726 /*
727  * If we run out of usable paths, should we queue I/O or error it?
728  */
729 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
730 			    bool save_old_value)
731 {
732 	unsigned long flags;
733 
734 	spin_lock_irqsave(&m->lock, flags);
735 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
736 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
737 		   (!save_old_value && queue_if_no_path));
738 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
739 	spin_unlock_irqrestore(&m->lock, flags);
740 
741 	if (!queue_if_no_path) {
742 		dm_table_run_md_queue_async(m->ti->table);
743 		process_queued_io_list(m);
744 	}
745 
746 	return 0;
747 }
748 
749 /*
750  * An event is triggered whenever a path is taken out of use.
751  * Includes path failure and PG bypass.
752  */
753 static void trigger_event(struct work_struct *work)
754 {
755 	struct multipath *m =
756 		container_of(work, struct multipath, trigger_event);
757 
758 	dm_table_event(m->ti->table);
759 }
760 
761 /*-----------------------------------------------------------------
762  * Constructor/argument parsing:
763  * <#multipath feature args> [<arg>]*
764  * <#hw_handler args> [hw_handler [<arg>]*]
765  * <#priority groups>
766  * <initial priority group>
767  *     [<selector> <#selector args> [<arg>]*
768  *      <#paths> <#per-path selector args>
769  *         [<path> [<arg>]* ]+ ]+
770  *---------------------------------------------------------------*/
771 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
772 			       struct dm_target *ti)
773 {
774 	int r;
775 	struct path_selector_type *pst;
776 	unsigned ps_argc;
777 
778 	static const struct dm_arg _args[] = {
779 		{0, 1024, "invalid number of path selector args"},
780 	};
781 
782 	pst = dm_get_path_selector(dm_shift_arg(as));
783 	if (!pst) {
784 		ti->error = "unknown path selector type";
785 		return -EINVAL;
786 	}
787 
788 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
789 	if (r) {
790 		dm_put_path_selector(pst);
791 		return -EINVAL;
792 	}
793 
794 	r = pst->create(&pg->ps, ps_argc, as->argv);
795 	if (r) {
796 		dm_put_path_selector(pst);
797 		ti->error = "path selector constructor failed";
798 		return r;
799 	}
800 
801 	pg->ps.type = pst;
802 	dm_consume_args(as, ps_argc);
803 
804 	return 0;
805 }
806 
807 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
808 			 const char *attached_handler_name, char **error)
809 {
810 	struct request_queue *q = bdev_get_queue(bdev);
811 	int r;
812 
813 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
814 retain:
815 		if (attached_handler_name) {
816 			/*
817 			 * Clear any hw_handler_params associated with a
818 			 * handler that isn't already attached.
819 			 */
820 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
821 				kfree(m->hw_handler_params);
822 				m->hw_handler_params = NULL;
823 			}
824 
825 			/*
826 			 * Reset hw_handler_name to match the attached handler
827 			 *
828 			 * NB. This modifies the table line to show the actual
829 			 * handler instead of the original table passed in.
830 			 */
831 			kfree(m->hw_handler_name);
832 			m->hw_handler_name = attached_handler_name;
833 		}
834 	}
835 
836 	if (m->hw_handler_name) {
837 		r = scsi_dh_attach(q, m->hw_handler_name);
838 		if (r == -EBUSY) {
839 			char b[BDEVNAME_SIZE];
840 
841 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
842 			       bdevname(bdev, b));
843 			goto retain;
844 		}
845 		if (r < 0) {
846 			*error = "error attaching hardware handler";
847 			return r;
848 		}
849 
850 		if (m->hw_handler_params) {
851 			r = scsi_dh_set_params(q, m->hw_handler_params);
852 			if (r < 0) {
853 				*error = "unable to set hardware handler parameters";
854 				return r;
855 			}
856 		}
857 	}
858 
859 	return 0;
860 }
861 
862 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
863 				 struct dm_target *ti)
864 {
865 	int r;
866 	struct pgpath *p;
867 	struct multipath *m = ti->private;
868 	struct request_queue *q;
869 	const char *attached_handler_name;
870 
871 	/* we need at least a path arg */
872 	if (as->argc < 1) {
873 		ti->error = "no device given";
874 		return ERR_PTR(-EINVAL);
875 	}
876 
877 	p = alloc_pgpath();
878 	if (!p)
879 		return ERR_PTR(-ENOMEM);
880 
881 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
882 			  &p->path.dev);
883 	if (r) {
884 		ti->error = "error getting device";
885 		goto bad;
886 	}
887 
888 	q = bdev_get_queue(p->path.dev->bdev);
889 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
890 	if (attached_handler_name || m->hw_handler_name) {
891 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
892 		r = setup_scsi_dh(p->path.dev->bdev, m, attached_handler_name, &ti->error);
893 		if (r) {
894 			dm_put_device(ti, p->path.dev);
895 			goto bad;
896 		}
897 	}
898 
899 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
900 	if (r) {
901 		dm_put_device(ti, p->path.dev);
902 		goto bad;
903 	}
904 
905 	return p;
906  bad:
907 	free_pgpath(p);
908 	return ERR_PTR(r);
909 }
910 
911 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
912 						   struct multipath *m)
913 {
914 	static const struct dm_arg _args[] = {
915 		{1, 1024, "invalid number of paths"},
916 		{0, 1024, "invalid number of selector args"}
917 	};
918 
919 	int r;
920 	unsigned i, nr_selector_args, nr_args;
921 	struct priority_group *pg;
922 	struct dm_target *ti = m->ti;
923 
924 	if (as->argc < 2) {
925 		as->argc = 0;
926 		ti->error = "not enough priority group arguments";
927 		return ERR_PTR(-EINVAL);
928 	}
929 
930 	pg = alloc_priority_group();
931 	if (!pg) {
932 		ti->error = "couldn't allocate priority group";
933 		return ERR_PTR(-ENOMEM);
934 	}
935 	pg->m = m;
936 
937 	r = parse_path_selector(as, pg, ti);
938 	if (r)
939 		goto bad;
940 
941 	/*
942 	 * read the paths
943 	 */
944 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
945 	if (r)
946 		goto bad;
947 
948 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
949 	if (r)
950 		goto bad;
951 
952 	nr_args = 1 + nr_selector_args;
953 	for (i = 0; i < pg->nr_pgpaths; i++) {
954 		struct pgpath *pgpath;
955 		struct dm_arg_set path_args;
956 
957 		if (as->argc < nr_args) {
958 			ti->error = "not enough path parameters";
959 			r = -EINVAL;
960 			goto bad;
961 		}
962 
963 		path_args.argc = nr_args;
964 		path_args.argv = as->argv;
965 
966 		pgpath = parse_path(&path_args, &pg->ps, ti);
967 		if (IS_ERR(pgpath)) {
968 			r = PTR_ERR(pgpath);
969 			goto bad;
970 		}
971 
972 		pgpath->pg = pg;
973 		list_add_tail(&pgpath->list, &pg->pgpaths);
974 		dm_consume_args(as, nr_args);
975 	}
976 
977 	return pg;
978 
979  bad:
980 	free_priority_group(pg, ti);
981 	return ERR_PTR(r);
982 }
983 
984 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
985 {
986 	unsigned hw_argc;
987 	int ret;
988 	struct dm_target *ti = m->ti;
989 
990 	static const struct dm_arg _args[] = {
991 		{0, 1024, "invalid number of hardware handler args"},
992 	};
993 
994 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
995 		return -EINVAL;
996 
997 	if (!hw_argc)
998 		return 0;
999 
1000 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1001 		dm_consume_args(as, hw_argc);
1002 		DMERR("bio-based multipath doesn't allow hardware handler args");
1003 		return 0;
1004 	}
1005 
1006 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1007 	if (!m->hw_handler_name)
1008 		return -EINVAL;
1009 
1010 	if (hw_argc > 1) {
1011 		char *p;
1012 		int i, j, len = 4;
1013 
1014 		for (i = 0; i <= hw_argc - 2; i++)
1015 			len += strlen(as->argv[i]) + 1;
1016 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1017 		if (!p) {
1018 			ti->error = "memory allocation failed";
1019 			ret = -ENOMEM;
1020 			goto fail;
1021 		}
1022 		j = sprintf(p, "%d", hw_argc - 1);
1023 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1024 			j = sprintf(p, "%s", as->argv[i]);
1025 	}
1026 	dm_consume_args(as, hw_argc - 1);
1027 
1028 	return 0;
1029 fail:
1030 	kfree(m->hw_handler_name);
1031 	m->hw_handler_name = NULL;
1032 	return ret;
1033 }
1034 
1035 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1036 {
1037 	int r;
1038 	unsigned argc;
1039 	struct dm_target *ti = m->ti;
1040 	const char *arg_name;
1041 
1042 	static const struct dm_arg _args[] = {
1043 		{0, 8, "invalid number of feature args"},
1044 		{1, 50, "pg_init_retries must be between 1 and 50"},
1045 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1046 	};
1047 
1048 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1049 	if (r)
1050 		return -EINVAL;
1051 
1052 	if (!argc)
1053 		return 0;
1054 
1055 	do {
1056 		arg_name = dm_shift_arg(as);
1057 		argc--;
1058 
1059 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1060 			r = queue_if_no_path(m, true, false);
1061 			continue;
1062 		}
1063 
1064 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1065 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1066 			continue;
1067 		}
1068 
1069 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1070 		    (argc >= 1)) {
1071 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1072 			argc--;
1073 			continue;
1074 		}
1075 
1076 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1077 		    (argc >= 1)) {
1078 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1079 			argc--;
1080 			continue;
1081 		}
1082 
1083 		if (!strcasecmp(arg_name, "queue_mode") &&
1084 		    (argc >= 1)) {
1085 			const char *queue_mode_name = dm_shift_arg(as);
1086 
1087 			if (!strcasecmp(queue_mode_name, "bio"))
1088 				m->queue_mode = DM_TYPE_BIO_BASED;
1089 			else if (!strcasecmp(queue_mode_name, "rq"))
1090 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1091 			else if (!strcasecmp(queue_mode_name, "mq"))
1092 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1093 			else {
1094 				ti->error = "Unknown 'queue_mode' requested";
1095 				r = -EINVAL;
1096 			}
1097 			argc--;
1098 			continue;
1099 		}
1100 
1101 		ti->error = "Unrecognised multipath feature request";
1102 		r = -EINVAL;
1103 	} while (argc && !r);
1104 
1105 	return r;
1106 }
1107 
1108 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1109 {
1110 	/* target arguments */
1111 	static const struct dm_arg _args[] = {
1112 		{0, 1024, "invalid number of priority groups"},
1113 		{0, 1024, "invalid initial priority group number"},
1114 	};
1115 
1116 	int r;
1117 	struct multipath *m;
1118 	struct dm_arg_set as;
1119 	unsigned pg_count = 0;
1120 	unsigned next_pg_num;
1121 
1122 	as.argc = argc;
1123 	as.argv = argv;
1124 
1125 	m = alloc_multipath(ti);
1126 	if (!m) {
1127 		ti->error = "can't allocate multipath";
1128 		return -EINVAL;
1129 	}
1130 
1131 	r = parse_features(&as, m);
1132 	if (r)
1133 		goto bad;
1134 
1135 	r = alloc_multipath_stage2(ti, m);
1136 	if (r)
1137 		goto bad;
1138 
1139 	r = parse_hw_handler(&as, m);
1140 	if (r)
1141 		goto bad;
1142 
1143 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1144 	if (r)
1145 		goto bad;
1146 
1147 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1148 	if (r)
1149 		goto bad;
1150 
1151 	if ((!m->nr_priority_groups && next_pg_num) ||
1152 	    (m->nr_priority_groups && !next_pg_num)) {
1153 		ti->error = "invalid initial priority group";
1154 		r = -EINVAL;
1155 		goto bad;
1156 	}
1157 
1158 	/* parse the priority groups */
1159 	while (as.argc) {
1160 		struct priority_group *pg;
1161 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1162 
1163 		pg = parse_priority_group(&as, m);
1164 		if (IS_ERR(pg)) {
1165 			r = PTR_ERR(pg);
1166 			goto bad;
1167 		}
1168 
1169 		nr_valid_paths += pg->nr_pgpaths;
1170 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1171 
1172 		list_add_tail(&pg->list, &m->priority_groups);
1173 		pg_count++;
1174 		pg->pg_num = pg_count;
1175 		if (!--next_pg_num)
1176 			m->next_pg = pg;
1177 	}
1178 
1179 	if (pg_count != m->nr_priority_groups) {
1180 		ti->error = "priority group count mismatch";
1181 		r = -EINVAL;
1182 		goto bad;
1183 	}
1184 
1185 	ti->num_flush_bios = 1;
1186 	ti->num_discard_bios = 1;
1187 	ti->num_write_same_bios = 1;
1188 	ti->num_write_zeroes_bios = 1;
1189 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1190 		ti->per_io_data_size = multipath_per_bio_data_size();
1191 	else
1192 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1193 
1194 	return 0;
1195 
1196  bad:
1197 	free_multipath(m);
1198 	return r;
1199 }
1200 
1201 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1202 {
1203 	DEFINE_WAIT(wait);
1204 
1205 	while (1) {
1206 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1207 
1208 		if (!atomic_read(&m->pg_init_in_progress))
1209 			break;
1210 
1211 		io_schedule();
1212 	}
1213 	finish_wait(&m->pg_init_wait, &wait);
1214 }
1215 
1216 static void flush_multipath_work(struct multipath *m)
1217 {
1218 	if (m->hw_handler_name) {
1219 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1220 		smp_mb__after_atomic();
1221 
1222 		flush_workqueue(kmpath_handlerd);
1223 		multipath_wait_for_pg_init_completion(m);
1224 
1225 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1226 		smp_mb__after_atomic();
1227 	}
1228 
1229 	flush_workqueue(kmultipathd);
1230 	flush_work(&m->trigger_event);
1231 }
1232 
1233 static void multipath_dtr(struct dm_target *ti)
1234 {
1235 	struct multipath *m = ti->private;
1236 
1237 	flush_multipath_work(m);
1238 	free_multipath(m);
1239 }
1240 
1241 /*
1242  * Take a path out of use.
1243  */
1244 static int fail_path(struct pgpath *pgpath)
1245 {
1246 	unsigned long flags;
1247 	struct multipath *m = pgpath->pg->m;
1248 
1249 	spin_lock_irqsave(&m->lock, flags);
1250 
1251 	if (!pgpath->is_active)
1252 		goto out;
1253 
1254 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1255 
1256 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1257 	pgpath->is_active = false;
1258 	pgpath->fail_count++;
1259 
1260 	atomic_dec(&m->nr_valid_paths);
1261 
1262 	if (pgpath == m->current_pgpath)
1263 		m->current_pgpath = NULL;
1264 
1265 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1266 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1267 
1268 	schedule_work(&m->trigger_event);
1269 
1270 out:
1271 	spin_unlock_irqrestore(&m->lock, flags);
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Reinstate a previously-failed path
1278  */
1279 static int reinstate_path(struct pgpath *pgpath)
1280 {
1281 	int r = 0, run_queue = 0;
1282 	unsigned long flags;
1283 	struct multipath *m = pgpath->pg->m;
1284 	unsigned nr_valid_paths;
1285 
1286 	spin_lock_irqsave(&m->lock, flags);
1287 
1288 	if (pgpath->is_active)
1289 		goto out;
1290 
1291 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1292 
1293 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1294 	if (r)
1295 		goto out;
1296 
1297 	pgpath->is_active = true;
1298 
1299 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1300 	if (nr_valid_paths == 1) {
1301 		m->current_pgpath = NULL;
1302 		run_queue = 1;
1303 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1304 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1305 			atomic_inc(&m->pg_init_in_progress);
1306 	}
1307 
1308 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1309 		       pgpath->path.dev->name, nr_valid_paths);
1310 
1311 	schedule_work(&m->trigger_event);
1312 
1313 out:
1314 	spin_unlock_irqrestore(&m->lock, flags);
1315 	if (run_queue) {
1316 		dm_table_run_md_queue_async(m->ti->table);
1317 		process_queued_io_list(m);
1318 	}
1319 
1320 	return r;
1321 }
1322 
1323 /*
1324  * Fail or reinstate all paths that match the provided struct dm_dev.
1325  */
1326 static int action_dev(struct multipath *m, struct dm_dev *dev,
1327 		      action_fn action)
1328 {
1329 	int r = -EINVAL;
1330 	struct pgpath *pgpath;
1331 	struct priority_group *pg;
1332 
1333 	list_for_each_entry(pg, &m->priority_groups, list) {
1334 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1335 			if (pgpath->path.dev == dev)
1336 				r = action(pgpath);
1337 		}
1338 	}
1339 
1340 	return r;
1341 }
1342 
1343 /*
1344  * Temporarily try to avoid having to use the specified PG
1345  */
1346 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1347 		      bool bypassed)
1348 {
1349 	unsigned long flags;
1350 
1351 	spin_lock_irqsave(&m->lock, flags);
1352 
1353 	pg->bypassed = bypassed;
1354 	m->current_pgpath = NULL;
1355 	m->current_pg = NULL;
1356 
1357 	spin_unlock_irqrestore(&m->lock, flags);
1358 
1359 	schedule_work(&m->trigger_event);
1360 }
1361 
1362 /*
1363  * Switch to using the specified PG from the next I/O that gets mapped
1364  */
1365 static int switch_pg_num(struct multipath *m, const char *pgstr)
1366 {
1367 	struct priority_group *pg;
1368 	unsigned pgnum;
1369 	unsigned long flags;
1370 	char dummy;
1371 
1372 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1373 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1374 		DMWARN("invalid PG number supplied to switch_pg_num");
1375 		return -EINVAL;
1376 	}
1377 
1378 	spin_lock_irqsave(&m->lock, flags);
1379 	list_for_each_entry(pg, &m->priority_groups, list) {
1380 		pg->bypassed = false;
1381 		if (--pgnum)
1382 			continue;
1383 
1384 		m->current_pgpath = NULL;
1385 		m->current_pg = NULL;
1386 		m->next_pg = pg;
1387 	}
1388 	spin_unlock_irqrestore(&m->lock, flags);
1389 
1390 	schedule_work(&m->trigger_event);
1391 	return 0;
1392 }
1393 
1394 /*
1395  * Set/clear bypassed status of a PG.
1396  * PGs are numbered upwards from 1 in the order they were declared.
1397  */
1398 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1399 {
1400 	struct priority_group *pg;
1401 	unsigned pgnum;
1402 	char dummy;
1403 
1404 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1405 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1406 		DMWARN("invalid PG number supplied to bypass_pg");
1407 		return -EINVAL;
1408 	}
1409 
1410 	list_for_each_entry(pg, &m->priority_groups, list) {
1411 		if (!--pgnum)
1412 			break;
1413 	}
1414 
1415 	bypass_pg(m, pg, bypassed);
1416 	return 0;
1417 }
1418 
1419 /*
1420  * Should we retry pg_init immediately?
1421  */
1422 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1423 {
1424 	unsigned long flags;
1425 	bool limit_reached = false;
1426 
1427 	spin_lock_irqsave(&m->lock, flags);
1428 
1429 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1430 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1431 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1432 	else
1433 		limit_reached = true;
1434 
1435 	spin_unlock_irqrestore(&m->lock, flags);
1436 
1437 	return limit_reached;
1438 }
1439 
1440 static void pg_init_done(void *data, int errors)
1441 {
1442 	struct pgpath *pgpath = data;
1443 	struct priority_group *pg = pgpath->pg;
1444 	struct multipath *m = pg->m;
1445 	unsigned long flags;
1446 	bool delay_retry = false;
1447 
1448 	/* device or driver problems */
1449 	switch (errors) {
1450 	case SCSI_DH_OK:
1451 		break;
1452 	case SCSI_DH_NOSYS:
1453 		if (!m->hw_handler_name) {
1454 			errors = 0;
1455 			break;
1456 		}
1457 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1458 		      "Error %d.", m->hw_handler_name, errors);
1459 		/*
1460 		 * Fail path for now, so we do not ping pong
1461 		 */
1462 		fail_path(pgpath);
1463 		break;
1464 	case SCSI_DH_DEV_TEMP_BUSY:
1465 		/*
1466 		 * Probably doing something like FW upgrade on the
1467 		 * controller so try the other pg.
1468 		 */
1469 		bypass_pg(m, pg, true);
1470 		break;
1471 	case SCSI_DH_RETRY:
1472 		/* Wait before retrying. */
1473 		delay_retry = 1;
1474 		/* fall through */
1475 	case SCSI_DH_IMM_RETRY:
1476 	case SCSI_DH_RES_TEMP_UNAVAIL:
1477 		if (pg_init_limit_reached(m, pgpath))
1478 			fail_path(pgpath);
1479 		errors = 0;
1480 		break;
1481 	case SCSI_DH_DEV_OFFLINED:
1482 	default:
1483 		/*
1484 		 * We probably do not want to fail the path for a device
1485 		 * error, but this is what the old dm did. In future
1486 		 * patches we can do more advanced handling.
1487 		 */
1488 		fail_path(pgpath);
1489 	}
1490 
1491 	spin_lock_irqsave(&m->lock, flags);
1492 	if (errors) {
1493 		if (pgpath == m->current_pgpath) {
1494 			DMERR("Could not failover device. Error %d.", errors);
1495 			m->current_pgpath = NULL;
1496 			m->current_pg = NULL;
1497 		}
1498 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1499 		pg->bypassed = false;
1500 
1501 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1502 		/* Activations of other paths are still on going */
1503 		goto out;
1504 
1505 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1506 		if (delay_retry)
1507 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1508 		else
1509 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1510 
1511 		if (__pg_init_all_paths(m))
1512 			goto out;
1513 	}
1514 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1515 
1516 	process_queued_io_list(m);
1517 
1518 	/*
1519 	 * Wake up any thread waiting to suspend.
1520 	 */
1521 	wake_up(&m->pg_init_wait);
1522 
1523 out:
1524 	spin_unlock_irqrestore(&m->lock, flags);
1525 }
1526 
1527 static void activate_or_offline_path(struct pgpath *pgpath)
1528 {
1529 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1530 
1531 	if (pgpath->is_active && !blk_queue_dying(q))
1532 		scsi_dh_activate(q, pg_init_done, pgpath);
1533 	else
1534 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1535 }
1536 
1537 static void activate_path_work(struct work_struct *work)
1538 {
1539 	struct pgpath *pgpath =
1540 		container_of(work, struct pgpath, activate_path.work);
1541 
1542 	activate_or_offline_path(pgpath);
1543 }
1544 
1545 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1546 			    blk_status_t error, union map_info *map_context)
1547 {
1548 	struct dm_mpath_io *mpio = get_mpio(map_context);
1549 	struct pgpath *pgpath = mpio->pgpath;
1550 	int r = DM_ENDIO_DONE;
1551 
1552 	/*
1553 	 * We don't queue any clone request inside the multipath target
1554 	 * during end I/O handling, since those clone requests don't have
1555 	 * bio clones.  If we queue them inside the multipath target,
1556 	 * we need to make bio clones, that requires memory allocation.
1557 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1558 	 *  don't have bio clones.)
1559 	 * Instead of queueing the clone request here, we queue the original
1560 	 * request into dm core, which will remake a clone request and
1561 	 * clone bios for it and resubmit it later.
1562 	 */
1563 	if (error && blk_path_error(error)) {
1564 		struct multipath *m = ti->private;
1565 
1566 		if (error == BLK_STS_RESOURCE)
1567 			r = DM_ENDIO_DELAY_REQUEUE;
1568 		else
1569 			r = DM_ENDIO_REQUEUE;
1570 
1571 		if (pgpath)
1572 			fail_path(pgpath);
1573 
1574 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1575 		    !must_push_back_rq(m)) {
1576 			if (error == BLK_STS_IOERR)
1577 				dm_report_EIO(m);
1578 			/* complete with the original error */
1579 			r = DM_ENDIO_DONE;
1580 		}
1581 	}
1582 
1583 	if (pgpath) {
1584 		struct path_selector *ps = &pgpath->pg->ps;
1585 
1586 		if (ps->type->end_io)
1587 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1588 	}
1589 
1590 	return r;
1591 }
1592 
1593 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1594 				blk_status_t *error)
1595 {
1596 	struct multipath *m = ti->private;
1597 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1598 	struct pgpath *pgpath = mpio->pgpath;
1599 	unsigned long flags;
1600 	int r = DM_ENDIO_DONE;
1601 
1602 	if (!*error || !blk_path_error(*error))
1603 		goto done;
1604 
1605 	if (pgpath)
1606 		fail_path(pgpath);
1607 
1608 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1609 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1610 		if (must_push_back_bio(m)) {
1611 			r = DM_ENDIO_REQUEUE;
1612 		} else {
1613 			dm_report_EIO(m);
1614 			*error = BLK_STS_IOERR;
1615 		}
1616 		goto done;
1617 	}
1618 
1619 	spin_lock_irqsave(&m->lock, flags);
1620 	bio_list_add(&m->queued_bios, clone);
1621 	spin_unlock_irqrestore(&m->lock, flags);
1622 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1623 		queue_work(kmultipathd, &m->process_queued_bios);
1624 
1625 	r = DM_ENDIO_INCOMPLETE;
1626 done:
1627 	if (pgpath) {
1628 		struct path_selector *ps = &pgpath->pg->ps;
1629 
1630 		if (ps->type->end_io)
1631 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1632 	}
1633 
1634 	return r;
1635 }
1636 
1637 /*
1638  * Suspend can't complete until all the I/O is processed so if
1639  * the last path fails we must error any remaining I/O.
1640  * Note that if the freeze_bdev fails while suspending, the
1641  * queue_if_no_path state is lost - userspace should reset it.
1642  */
1643 static void multipath_presuspend(struct dm_target *ti)
1644 {
1645 	struct multipath *m = ti->private;
1646 
1647 	queue_if_no_path(m, false, true);
1648 }
1649 
1650 static void multipath_postsuspend(struct dm_target *ti)
1651 {
1652 	struct multipath *m = ti->private;
1653 
1654 	mutex_lock(&m->work_mutex);
1655 	flush_multipath_work(m);
1656 	mutex_unlock(&m->work_mutex);
1657 }
1658 
1659 /*
1660  * Restore the queue_if_no_path setting.
1661  */
1662 static void multipath_resume(struct dm_target *ti)
1663 {
1664 	struct multipath *m = ti->private;
1665 	unsigned long flags;
1666 
1667 	spin_lock_irqsave(&m->lock, flags);
1668 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1669 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1670 	spin_unlock_irqrestore(&m->lock, flags);
1671 }
1672 
1673 /*
1674  * Info output has the following format:
1675  * num_multipath_feature_args [multipath_feature_args]*
1676  * num_handler_status_args [handler_status_args]*
1677  * num_groups init_group_number
1678  *            [A|D|E num_ps_status_args [ps_status_args]*
1679  *             num_paths num_selector_args
1680  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1681  *
1682  * Table output has the following format (identical to the constructor string):
1683  * num_feature_args [features_args]*
1684  * num_handler_args hw_handler [hw_handler_args]*
1685  * num_groups init_group_number
1686  *     [priority selector-name num_ps_args [ps_args]*
1687  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1688  */
1689 static void multipath_status(struct dm_target *ti, status_type_t type,
1690 			     unsigned status_flags, char *result, unsigned maxlen)
1691 {
1692 	int sz = 0;
1693 	unsigned long flags;
1694 	struct multipath *m = ti->private;
1695 	struct priority_group *pg;
1696 	struct pgpath *p;
1697 	unsigned pg_num;
1698 	char state;
1699 
1700 	spin_lock_irqsave(&m->lock, flags);
1701 
1702 	/* Features */
1703 	if (type == STATUSTYPE_INFO)
1704 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1705 		       atomic_read(&m->pg_init_count));
1706 	else {
1707 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1708 			      (m->pg_init_retries > 0) * 2 +
1709 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1710 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1711 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1712 
1713 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1714 			DMEMIT("queue_if_no_path ");
1715 		if (m->pg_init_retries)
1716 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1717 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1718 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1719 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1720 			DMEMIT("retain_attached_hw_handler ");
1721 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1722 			switch(m->queue_mode) {
1723 			case DM_TYPE_BIO_BASED:
1724 				DMEMIT("queue_mode bio ");
1725 				break;
1726 			case DM_TYPE_MQ_REQUEST_BASED:
1727 				DMEMIT("queue_mode mq ");
1728 				break;
1729 			default:
1730 				WARN_ON_ONCE(true);
1731 				break;
1732 			}
1733 		}
1734 	}
1735 
1736 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1737 		DMEMIT("0 ");
1738 	else
1739 		DMEMIT("1 %s ", m->hw_handler_name);
1740 
1741 	DMEMIT("%u ", m->nr_priority_groups);
1742 
1743 	if (m->next_pg)
1744 		pg_num = m->next_pg->pg_num;
1745 	else if (m->current_pg)
1746 		pg_num = m->current_pg->pg_num;
1747 	else
1748 		pg_num = (m->nr_priority_groups ? 1 : 0);
1749 
1750 	DMEMIT("%u ", pg_num);
1751 
1752 	switch (type) {
1753 	case STATUSTYPE_INFO:
1754 		list_for_each_entry(pg, &m->priority_groups, list) {
1755 			if (pg->bypassed)
1756 				state = 'D';	/* Disabled */
1757 			else if (pg == m->current_pg)
1758 				state = 'A';	/* Currently Active */
1759 			else
1760 				state = 'E';	/* Enabled */
1761 
1762 			DMEMIT("%c ", state);
1763 
1764 			if (pg->ps.type->status)
1765 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1766 							  result + sz,
1767 							  maxlen - sz);
1768 			else
1769 				DMEMIT("0 ");
1770 
1771 			DMEMIT("%u %u ", pg->nr_pgpaths,
1772 			       pg->ps.type->info_args);
1773 
1774 			list_for_each_entry(p, &pg->pgpaths, list) {
1775 				DMEMIT("%s %s %u ", p->path.dev->name,
1776 				       p->is_active ? "A" : "F",
1777 				       p->fail_count);
1778 				if (pg->ps.type->status)
1779 					sz += pg->ps.type->status(&pg->ps,
1780 					      &p->path, type, result + sz,
1781 					      maxlen - sz);
1782 			}
1783 		}
1784 		break;
1785 
1786 	case STATUSTYPE_TABLE:
1787 		list_for_each_entry(pg, &m->priority_groups, list) {
1788 			DMEMIT("%s ", pg->ps.type->name);
1789 
1790 			if (pg->ps.type->status)
1791 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1792 							  result + sz,
1793 							  maxlen - sz);
1794 			else
1795 				DMEMIT("0 ");
1796 
1797 			DMEMIT("%u %u ", pg->nr_pgpaths,
1798 			       pg->ps.type->table_args);
1799 
1800 			list_for_each_entry(p, &pg->pgpaths, list) {
1801 				DMEMIT("%s ", p->path.dev->name);
1802 				if (pg->ps.type->status)
1803 					sz += pg->ps.type->status(&pg->ps,
1804 					      &p->path, type, result + sz,
1805 					      maxlen - sz);
1806 			}
1807 		}
1808 		break;
1809 	}
1810 
1811 	spin_unlock_irqrestore(&m->lock, flags);
1812 }
1813 
1814 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1815 {
1816 	int r = -EINVAL;
1817 	struct dm_dev *dev;
1818 	struct multipath *m = ti->private;
1819 	action_fn action;
1820 
1821 	mutex_lock(&m->work_mutex);
1822 
1823 	if (dm_suspended(ti)) {
1824 		r = -EBUSY;
1825 		goto out;
1826 	}
1827 
1828 	if (argc == 1) {
1829 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1830 			r = queue_if_no_path(m, true, false);
1831 			goto out;
1832 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1833 			r = queue_if_no_path(m, false, false);
1834 			goto out;
1835 		}
1836 	}
1837 
1838 	if (argc != 2) {
1839 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1840 		goto out;
1841 	}
1842 
1843 	if (!strcasecmp(argv[0], "disable_group")) {
1844 		r = bypass_pg_num(m, argv[1], true);
1845 		goto out;
1846 	} else if (!strcasecmp(argv[0], "enable_group")) {
1847 		r = bypass_pg_num(m, argv[1], false);
1848 		goto out;
1849 	} else if (!strcasecmp(argv[0], "switch_group")) {
1850 		r = switch_pg_num(m, argv[1]);
1851 		goto out;
1852 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1853 		action = reinstate_path;
1854 	else if (!strcasecmp(argv[0], "fail_path"))
1855 		action = fail_path;
1856 	else {
1857 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1858 		goto out;
1859 	}
1860 
1861 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1862 	if (r) {
1863 		DMWARN("message: error getting device %s",
1864 		       argv[1]);
1865 		goto out;
1866 	}
1867 
1868 	r = action_dev(m, dev, action);
1869 
1870 	dm_put_device(ti, dev);
1871 
1872 out:
1873 	mutex_unlock(&m->work_mutex);
1874 	return r;
1875 }
1876 
1877 static int multipath_prepare_ioctl(struct dm_target *ti,
1878 		struct block_device **bdev, fmode_t *mode)
1879 {
1880 	struct multipath *m = ti->private;
1881 	struct pgpath *current_pgpath;
1882 	int r;
1883 
1884 	current_pgpath = READ_ONCE(m->current_pgpath);
1885 	if (!current_pgpath)
1886 		current_pgpath = choose_pgpath(m, 0);
1887 
1888 	if (current_pgpath) {
1889 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1890 			*bdev = current_pgpath->path.dev->bdev;
1891 			*mode = current_pgpath->path.dev->mode;
1892 			r = 0;
1893 		} else {
1894 			/* pg_init has not started or completed */
1895 			r = -ENOTCONN;
1896 		}
1897 	} else {
1898 		/* No path is available */
1899 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1900 			r = -ENOTCONN;
1901 		else
1902 			r = -EIO;
1903 	}
1904 
1905 	if (r == -ENOTCONN) {
1906 		if (!READ_ONCE(m->current_pg)) {
1907 			/* Path status changed, redo selection */
1908 			(void) choose_pgpath(m, 0);
1909 		}
1910 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1911 			pg_init_all_paths(m);
1912 		dm_table_run_md_queue_async(m->ti->table);
1913 		process_queued_io_list(m);
1914 	}
1915 
1916 	/*
1917 	 * Only pass ioctls through if the device sizes match exactly.
1918 	 */
1919 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1920 		return 1;
1921 	return r;
1922 }
1923 
1924 static int multipath_iterate_devices(struct dm_target *ti,
1925 				     iterate_devices_callout_fn fn, void *data)
1926 {
1927 	struct multipath *m = ti->private;
1928 	struct priority_group *pg;
1929 	struct pgpath *p;
1930 	int ret = 0;
1931 
1932 	list_for_each_entry(pg, &m->priority_groups, list) {
1933 		list_for_each_entry(p, &pg->pgpaths, list) {
1934 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1935 			if (ret)
1936 				goto out;
1937 		}
1938 	}
1939 
1940 out:
1941 	return ret;
1942 }
1943 
1944 static int pgpath_busy(struct pgpath *pgpath)
1945 {
1946 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1947 
1948 	return blk_lld_busy(q);
1949 }
1950 
1951 /*
1952  * We return "busy", only when we can map I/Os but underlying devices
1953  * are busy (so even if we map I/Os now, the I/Os will wait on
1954  * the underlying queue).
1955  * In other words, if we want to kill I/Os or queue them inside us
1956  * due to map unavailability, we don't return "busy".  Otherwise,
1957  * dm core won't give us the I/Os and we can't do what we want.
1958  */
1959 static int multipath_busy(struct dm_target *ti)
1960 {
1961 	bool busy = false, has_active = false;
1962 	struct multipath *m = ti->private;
1963 	struct priority_group *pg, *next_pg;
1964 	struct pgpath *pgpath;
1965 
1966 	/* pg_init in progress */
1967 	if (atomic_read(&m->pg_init_in_progress))
1968 		return true;
1969 
1970 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1971 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1972 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1973 
1974 	/* Guess which priority_group will be used at next mapping time */
1975 	pg = READ_ONCE(m->current_pg);
1976 	next_pg = READ_ONCE(m->next_pg);
1977 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1978 		pg = next_pg;
1979 
1980 	if (!pg) {
1981 		/*
1982 		 * We don't know which pg will be used at next mapping time.
1983 		 * We don't call choose_pgpath() here to avoid to trigger
1984 		 * pg_init just by busy checking.
1985 		 * So we don't know whether underlying devices we will be using
1986 		 * at next mapping time are busy or not. Just try mapping.
1987 		 */
1988 		return busy;
1989 	}
1990 
1991 	/*
1992 	 * If there is one non-busy active path at least, the path selector
1993 	 * will be able to select it. So we consider such a pg as not busy.
1994 	 */
1995 	busy = true;
1996 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1997 		if (pgpath->is_active) {
1998 			has_active = true;
1999 			if (!pgpath_busy(pgpath)) {
2000 				busy = false;
2001 				break;
2002 			}
2003 		}
2004 	}
2005 
2006 	if (!has_active) {
2007 		/*
2008 		 * No active path in this pg, so this pg won't be used and
2009 		 * the current_pg will be changed at next mapping time.
2010 		 * We need to try mapping to determine it.
2011 		 */
2012 		busy = false;
2013 	}
2014 
2015 	return busy;
2016 }
2017 
2018 /*-----------------------------------------------------------------
2019  * Module setup
2020  *---------------------------------------------------------------*/
2021 static struct target_type multipath_target = {
2022 	.name = "multipath",
2023 	.version = {1, 13, 0},
2024 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2025 		    DM_TARGET_PASSES_INTEGRITY,
2026 	.module = THIS_MODULE,
2027 	.ctr = multipath_ctr,
2028 	.dtr = multipath_dtr,
2029 	.clone_and_map_rq = multipath_clone_and_map,
2030 	.release_clone_rq = multipath_release_clone,
2031 	.rq_end_io = multipath_end_io,
2032 	.map = multipath_map_bio,
2033 	.end_io = multipath_end_io_bio,
2034 	.presuspend = multipath_presuspend,
2035 	.postsuspend = multipath_postsuspend,
2036 	.resume = multipath_resume,
2037 	.status = multipath_status,
2038 	.message = multipath_message,
2039 	.prepare_ioctl = multipath_prepare_ioctl,
2040 	.iterate_devices = multipath_iterate_devices,
2041 	.busy = multipath_busy,
2042 };
2043 
2044 static int __init dm_multipath_init(void)
2045 {
2046 	int r;
2047 
2048 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2049 	if (!kmultipathd) {
2050 		DMERR("failed to create workqueue kmpathd");
2051 		r = -ENOMEM;
2052 		goto bad_alloc_kmultipathd;
2053 	}
2054 
2055 	/*
2056 	 * A separate workqueue is used to handle the device handlers
2057 	 * to avoid overloading existing workqueue. Overloading the
2058 	 * old workqueue would also create a bottleneck in the
2059 	 * path of the storage hardware device activation.
2060 	 */
2061 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2062 						  WQ_MEM_RECLAIM);
2063 	if (!kmpath_handlerd) {
2064 		DMERR("failed to create workqueue kmpath_handlerd");
2065 		r = -ENOMEM;
2066 		goto bad_alloc_kmpath_handlerd;
2067 	}
2068 
2069 	r = dm_register_target(&multipath_target);
2070 	if (r < 0) {
2071 		DMERR("request-based register failed %d", r);
2072 		r = -EINVAL;
2073 		goto bad_register_target;
2074 	}
2075 
2076 	return 0;
2077 
2078 bad_register_target:
2079 	destroy_workqueue(kmpath_handlerd);
2080 bad_alloc_kmpath_handlerd:
2081 	destroy_workqueue(kmultipathd);
2082 bad_alloc_kmultipathd:
2083 	return r;
2084 }
2085 
2086 static void __exit dm_multipath_exit(void)
2087 {
2088 	destroy_workqueue(kmpath_handlerd);
2089 	destroy_workqueue(kmultipathd);
2090 
2091 	dm_unregister_target(&multipath_target);
2092 }
2093 
2094 module_init(dm_multipath_init);
2095 module_exit(dm_multipath_exit);
2096 
2097 MODULE_DESCRIPTION(DM_NAME " multipath target");
2098 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2099 MODULE_LICENSE("GPL");
2100