1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 unsigned long flags; /* Multipath state flags */ 68 69 spinlock_t lock; 70 enum dm_queue_mode queue_mode; 71 72 struct pgpath *current_pgpath; 73 struct priority_group *current_pg; 74 struct priority_group *next_pg; /* Switch to this PG if set */ 75 76 atomic_t nr_valid_paths; /* Total number of usable paths */ 77 unsigned nr_priority_groups; 78 struct list_head priority_groups; 79 80 const char *hw_handler_name; 81 char *hw_handler_params; 82 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 83 unsigned pg_init_retries; /* Number of times to retry pg_init */ 84 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 85 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 86 atomic_t pg_init_count; /* Number of times pg_init called */ 87 88 struct mutex work_mutex; 89 struct work_struct trigger_event; 90 struct dm_target *ti; 91 92 struct work_struct process_queued_bios; 93 struct bio_list queued_bios; 94 }; 95 96 /* 97 * Context information attached to each io we process. 98 */ 99 struct dm_mpath_io { 100 struct pgpath *pgpath; 101 size_t nr_bytes; 102 }; 103 104 typedef int (*action_fn) (struct pgpath *pgpath); 105 106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 107 static void trigger_event(struct work_struct *work); 108 static void activate_or_offline_path(struct pgpath *pgpath); 109 static void activate_path_work(struct work_struct *work); 110 static void process_queued_bios(struct work_struct *work); 111 112 /*----------------------------------------------- 113 * Multipath state flags. 114 *-----------------------------------------------*/ 115 116 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 117 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 120 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 121 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 122 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 123 124 /*----------------------------------------------- 125 * Allocation routines 126 *-----------------------------------------------*/ 127 128 static struct pgpath *alloc_pgpath(void) 129 { 130 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 131 132 if (!pgpath) 133 return NULL; 134 135 pgpath->is_active = true; 136 137 return pgpath; 138 } 139 140 static void free_pgpath(struct pgpath *pgpath) 141 { 142 kfree(pgpath); 143 } 144 145 static struct priority_group *alloc_priority_group(void) 146 { 147 struct priority_group *pg; 148 149 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 150 151 if (pg) 152 INIT_LIST_HEAD(&pg->pgpaths); 153 154 return pg; 155 } 156 157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 158 { 159 struct pgpath *pgpath, *tmp; 160 161 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 162 list_del(&pgpath->list); 163 dm_put_device(ti, pgpath->path.dev); 164 free_pgpath(pgpath); 165 } 166 } 167 168 static void free_priority_group(struct priority_group *pg, 169 struct dm_target *ti) 170 { 171 struct path_selector *ps = &pg->ps; 172 173 if (ps->type) { 174 ps->type->destroy(ps); 175 dm_put_path_selector(ps->type); 176 } 177 178 free_pgpaths(&pg->pgpaths, ti); 179 kfree(pg); 180 } 181 182 static struct multipath *alloc_multipath(struct dm_target *ti) 183 { 184 struct multipath *m; 185 186 m = kzalloc(sizeof(*m), GFP_KERNEL); 187 if (m) { 188 INIT_LIST_HEAD(&m->priority_groups); 189 spin_lock_init(&m->lock); 190 atomic_set(&m->nr_valid_paths, 0); 191 INIT_WORK(&m->trigger_event, trigger_event); 192 mutex_init(&m->work_mutex); 193 194 m->queue_mode = DM_TYPE_NONE; 195 196 m->ti = ti; 197 ti->private = m; 198 } 199 200 return m; 201 } 202 203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 204 { 205 if (m->queue_mode == DM_TYPE_NONE) { 206 /* 207 * Default to request-based. 208 */ 209 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 210 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 211 else 212 m->queue_mode = DM_TYPE_REQUEST_BASED; 213 214 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 215 INIT_WORK(&m->process_queued_bios, process_queued_bios); 216 /* 217 * bio-based doesn't support any direct scsi_dh management; 218 * it just discovers if a scsi_dh is attached. 219 */ 220 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 221 } 222 223 dm_table_set_type(ti->table, m->queue_mode); 224 225 /* 226 * Init fields that are only used when a scsi_dh is attached 227 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 228 */ 229 set_bit(MPATHF_QUEUE_IO, &m->flags); 230 atomic_set(&m->pg_init_in_progress, 0); 231 atomic_set(&m->pg_init_count, 0); 232 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 233 init_waitqueue_head(&m->pg_init_wait); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 mutex_destroy(&m->work_mutex); 250 kfree(m); 251 } 252 253 static struct dm_mpath_io *get_mpio(union map_info *info) 254 { 255 return info->ptr; 256 } 257 258 static size_t multipath_per_bio_data_size(void) 259 { 260 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 261 } 262 263 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 264 { 265 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 266 } 267 268 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 269 { 270 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 271 void *bio_details = mpio + 1; 272 return bio_details; 273 } 274 275 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 276 { 277 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 278 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 279 280 mpio->nr_bytes = bio->bi_iter.bi_size; 281 mpio->pgpath = NULL; 282 *mpio_p = mpio; 283 284 dm_bio_record(bio_details, bio); 285 } 286 287 /*----------------------------------------------- 288 * Path selection 289 *-----------------------------------------------*/ 290 291 static int __pg_init_all_paths(struct multipath *m) 292 { 293 struct pgpath *pgpath; 294 unsigned long pg_init_delay = 0; 295 296 lockdep_assert_held(&m->lock); 297 298 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 299 return 0; 300 301 atomic_inc(&m->pg_init_count); 302 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 303 304 /* Check here to reset pg_init_required */ 305 if (!m->current_pg) 306 return 0; 307 308 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 309 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 310 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 311 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 312 /* Skip failed paths */ 313 if (!pgpath->is_active) 314 continue; 315 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 316 pg_init_delay)) 317 atomic_inc(&m->pg_init_in_progress); 318 } 319 return atomic_read(&m->pg_init_in_progress); 320 } 321 322 static int pg_init_all_paths(struct multipath *m) 323 { 324 int ret; 325 unsigned long flags; 326 327 spin_lock_irqsave(&m->lock, flags); 328 ret = __pg_init_all_paths(m); 329 spin_unlock_irqrestore(&m->lock, flags); 330 331 return ret; 332 } 333 334 static void __switch_pg(struct multipath *m, struct priority_group *pg) 335 { 336 m->current_pg = pg; 337 338 /* Must we initialise the PG first, and queue I/O till it's ready? */ 339 if (m->hw_handler_name) { 340 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 341 set_bit(MPATHF_QUEUE_IO, &m->flags); 342 } else { 343 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 344 clear_bit(MPATHF_QUEUE_IO, &m->flags); 345 } 346 347 atomic_set(&m->pg_init_count, 0); 348 } 349 350 static struct pgpath *choose_path_in_pg(struct multipath *m, 351 struct priority_group *pg, 352 size_t nr_bytes) 353 { 354 unsigned long flags; 355 struct dm_path *path; 356 struct pgpath *pgpath; 357 358 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 359 if (!path) 360 return ERR_PTR(-ENXIO); 361 362 pgpath = path_to_pgpath(path); 363 364 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 365 /* Only update current_pgpath if pg changed */ 366 spin_lock_irqsave(&m->lock, flags); 367 m->current_pgpath = pgpath; 368 __switch_pg(m, pg); 369 spin_unlock_irqrestore(&m->lock, flags); 370 } 371 372 return pgpath; 373 } 374 375 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 376 { 377 unsigned long flags; 378 struct priority_group *pg; 379 struct pgpath *pgpath; 380 unsigned bypassed = 1; 381 382 if (!atomic_read(&m->nr_valid_paths)) { 383 clear_bit(MPATHF_QUEUE_IO, &m->flags); 384 goto failed; 385 } 386 387 /* Were we instructed to switch PG? */ 388 if (READ_ONCE(m->next_pg)) { 389 spin_lock_irqsave(&m->lock, flags); 390 pg = m->next_pg; 391 if (!pg) { 392 spin_unlock_irqrestore(&m->lock, flags); 393 goto check_current_pg; 394 } 395 m->next_pg = NULL; 396 spin_unlock_irqrestore(&m->lock, flags); 397 pgpath = choose_path_in_pg(m, pg, nr_bytes); 398 if (!IS_ERR_OR_NULL(pgpath)) 399 return pgpath; 400 } 401 402 /* Don't change PG until it has no remaining paths */ 403 check_current_pg: 404 pg = READ_ONCE(m->current_pg); 405 if (pg) { 406 pgpath = choose_path_in_pg(m, pg, nr_bytes); 407 if (!IS_ERR_OR_NULL(pgpath)) 408 return pgpath; 409 } 410 411 /* 412 * Loop through priority groups until we find a valid path. 413 * First time we skip PGs marked 'bypassed'. 414 * Second time we only try the ones we skipped, but set 415 * pg_init_delay_retry so we do not hammer controllers. 416 */ 417 do { 418 list_for_each_entry(pg, &m->priority_groups, list) { 419 if (pg->bypassed == !!bypassed) 420 continue; 421 pgpath = choose_path_in_pg(m, pg, nr_bytes); 422 if (!IS_ERR_OR_NULL(pgpath)) { 423 if (!bypassed) 424 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 425 return pgpath; 426 } 427 } 428 } while (bypassed--); 429 430 failed: 431 spin_lock_irqsave(&m->lock, flags); 432 m->current_pgpath = NULL; 433 m->current_pg = NULL; 434 spin_unlock_irqrestore(&m->lock, flags); 435 436 return NULL; 437 } 438 439 /* 440 * dm_report_EIO() is a macro instead of a function to make pr_debug() 441 * report the function name and line number of the function from which 442 * it has been invoked. 443 */ 444 #define dm_report_EIO(m) \ 445 do { \ 446 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 447 \ 448 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 449 dm_device_name(md), \ 450 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 451 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 452 dm_noflush_suspending((m)->ti)); \ 453 } while (0) 454 455 /* 456 * Check whether bios must be queued in the device-mapper core rather 457 * than here in the target. 458 * 459 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 460 * the same value then we are not between multipath_presuspend() 461 * and multipath_resume() calls and we have no need to check 462 * for the DMF_NOFLUSH_SUSPENDING flag. 463 */ 464 static bool __must_push_back(struct multipath *m, unsigned long flags) 465 { 466 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 467 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 468 dm_noflush_suspending(m->ti)); 469 } 470 471 /* 472 * Following functions use READ_ONCE to get atomic access to 473 * all m->flags to avoid taking spinlock 474 */ 475 static bool must_push_back_rq(struct multipath *m) 476 { 477 unsigned long flags = READ_ONCE(m->flags); 478 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 479 } 480 481 static bool must_push_back_bio(struct multipath *m) 482 { 483 unsigned long flags = READ_ONCE(m->flags); 484 return __must_push_back(m, flags); 485 } 486 487 /* 488 * Map cloned requests (request-based multipath) 489 */ 490 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 491 union map_info *map_context, 492 struct request **__clone) 493 { 494 struct multipath *m = ti->private; 495 size_t nr_bytes = blk_rq_bytes(rq); 496 struct pgpath *pgpath; 497 struct block_device *bdev; 498 struct dm_mpath_io *mpio = get_mpio(map_context); 499 struct request_queue *q; 500 struct request *clone; 501 502 /* Do we need to select a new pgpath? */ 503 pgpath = READ_ONCE(m->current_pgpath); 504 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 505 pgpath = choose_pgpath(m, nr_bytes); 506 507 if (!pgpath) { 508 if (must_push_back_rq(m)) 509 return DM_MAPIO_DELAY_REQUEUE; 510 dm_report_EIO(m); /* Failed */ 511 return DM_MAPIO_KILL; 512 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 513 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 514 pg_init_all_paths(m); 515 return DM_MAPIO_DELAY_REQUEUE; 516 } 517 518 mpio->pgpath = pgpath; 519 mpio->nr_bytes = nr_bytes; 520 521 bdev = pgpath->path.dev->bdev; 522 q = bdev_get_queue(bdev); 523 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 524 if (IS_ERR(clone)) { 525 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 526 if (blk_queue_dying(q)) { 527 atomic_inc(&m->pg_init_in_progress); 528 activate_or_offline_path(pgpath); 529 return DM_MAPIO_DELAY_REQUEUE; 530 } 531 532 /* 533 * blk-mq's SCHED_RESTART can cover this requeue, so we 534 * needn't deal with it by DELAY_REQUEUE. More importantly, 535 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 536 * get the queue busy feedback (via BLK_STS_RESOURCE), 537 * otherwise I/O merging can suffer. 538 */ 539 if (q->mq_ops) 540 return DM_MAPIO_REQUEUE; 541 else 542 return DM_MAPIO_DELAY_REQUEUE; 543 } 544 clone->bio = clone->biotail = NULL; 545 clone->rq_disk = bdev->bd_disk; 546 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 547 *__clone = clone; 548 549 if (pgpath->pg->ps.type->start_io) 550 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 551 &pgpath->path, 552 nr_bytes); 553 return DM_MAPIO_REMAPPED; 554 } 555 556 static void multipath_release_clone(struct request *clone) 557 { 558 blk_put_request(clone); 559 } 560 561 /* 562 * Map cloned bios (bio-based multipath) 563 */ 564 565 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 566 { 567 struct pgpath *pgpath; 568 unsigned long flags; 569 bool queue_io; 570 571 /* Do we need to select a new pgpath? */ 572 pgpath = READ_ONCE(m->current_pgpath); 573 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 574 if (!pgpath || !queue_io) 575 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 576 577 if ((pgpath && queue_io) || 578 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 579 /* Queue for the daemon to resubmit */ 580 spin_lock_irqsave(&m->lock, flags); 581 bio_list_add(&m->queued_bios, bio); 582 spin_unlock_irqrestore(&m->lock, flags); 583 584 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 585 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 586 pg_init_all_paths(m); 587 else if (!queue_io) 588 queue_work(kmultipathd, &m->process_queued_bios); 589 590 return ERR_PTR(-EAGAIN); 591 } 592 593 return pgpath; 594 } 595 596 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio) 597 { 598 struct pgpath *pgpath; 599 unsigned long flags; 600 601 /* Do we need to select a new pgpath? */ 602 /* 603 * FIXME: currently only switching path if no path (due to failure, etc) 604 * - which negates the point of using a path selector 605 */ 606 pgpath = READ_ONCE(m->current_pgpath); 607 if (!pgpath) 608 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 609 610 if (!pgpath) { 611 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 612 /* Queue for the daemon to resubmit */ 613 spin_lock_irqsave(&m->lock, flags); 614 bio_list_add(&m->queued_bios, bio); 615 spin_unlock_irqrestore(&m->lock, flags); 616 queue_work(kmultipathd, &m->process_queued_bios); 617 618 return ERR_PTR(-EAGAIN); 619 } 620 return NULL; 621 } 622 623 return pgpath; 624 } 625 626 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 627 struct dm_mpath_io *mpio) 628 { 629 struct pgpath *pgpath; 630 631 if (!m->hw_handler_name) 632 pgpath = __map_bio_fast(m, bio); 633 else 634 pgpath = __map_bio(m, bio); 635 636 if (IS_ERR(pgpath)) 637 return DM_MAPIO_SUBMITTED; 638 639 if (!pgpath) { 640 if (must_push_back_bio(m)) 641 return DM_MAPIO_REQUEUE; 642 dm_report_EIO(m); 643 return DM_MAPIO_KILL; 644 } 645 646 mpio->pgpath = pgpath; 647 648 bio->bi_status = 0; 649 bio_set_dev(bio, pgpath->path.dev->bdev); 650 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 651 652 if (pgpath->pg->ps.type->start_io) 653 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 654 &pgpath->path, 655 mpio->nr_bytes); 656 return DM_MAPIO_REMAPPED; 657 } 658 659 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 660 { 661 struct multipath *m = ti->private; 662 struct dm_mpath_io *mpio = NULL; 663 664 multipath_init_per_bio_data(bio, &mpio); 665 return __multipath_map_bio(m, bio, mpio); 666 } 667 668 static void process_queued_io_list(struct multipath *m) 669 { 670 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 671 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 672 else if (m->queue_mode == DM_TYPE_BIO_BASED) 673 queue_work(kmultipathd, &m->process_queued_bios); 674 } 675 676 static void process_queued_bios(struct work_struct *work) 677 { 678 int r; 679 unsigned long flags; 680 struct bio *bio; 681 struct bio_list bios; 682 struct blk_plug plug; 683 struct multipath *m = 684 container_of(work, struct multipath, process_queued_bios); 685 686 bio_list_init(&bios); 687 688 spin_lock_irqsave(&m->lock, flags); 689 690 if (bio_list_empty(&m->queued_bios)) { 691 spin_unlock_irqrestore(&m->lock, flags); 692 return; 693 } 694 695 bio_list_merge(&bios, &m->queued_bios); 696 bio_list_init(&m->queued_bios); 697 698 spin_unlock_irqrestore(&m->lock, flags); 699 700 blk_start_plug(&plug); 701 while ((bio = bio_list_pop(&bios))) { 702 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 703 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 704 r = __multipath_map_bio(m, bio, mpio); 705 switch (r) { 706 case DM_MAPIO_KILL: 707 bio->bi_status = BLK_STS_IOERR; 708 bio_endio(bio); 709 break; 710 case DM_MAPIO_REQUEUE: 711 bio->bi_status = BLK_STS_DM_REQUEUE; 712 bio_endio(bio); 713 break; 714 case DM_MAPIO_REMAPPED: 715 generic_make_request(bio); 716 break; 717 case 0: 718 break; 719 default: 720 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 721 } 722 } 723 blk_finish_plug(&plug); 724 } 725 726 /* 727 * If we run out of usable paths, should we queue I/O or error it? 728 */ 729 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 730 bool save_old_value) 731 { 732 unsigned long flags; 733 734 spin_lock_irqsave(&m->lock, flags); 735 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 736 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 737 (!save_old_value && queue_if_no_path)); 738 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 739 spin_unlock_irqrestore(&m->lock, flags); 740 741 if (!queue_if_no_path) { 742 dm_table_run_md_queue_async(m->ti->table); 743 process_queued_io_list(m); 744 } 745 746 return 0; 747 } 748 749 /* 750 * An event is triggered whenever a path is taken out of use. 751 * Includes path failure and PG bypass. 752 */ 753 static void trigger_event(struct work_struct *work) 754 { 755 struct multipath *m = 756 container_of(work, struct multipath, trigger_event); 757 758 dm_table_event(m->ti->table); 759 } 760 761 /*----------------------------------------------------------------- 762 * Constructor/argument parsing: 763 * <#multipath feature args> [<arg>]* 764 * <#hw_handler args> [hw_handler [<arg>]*] 765 * <#priority groups> 766 * <initial priority group> 767 * [<selector> <#selector args> [<arg>]* 768 * <#paths> <#per-path selector args> 769 * [<path> [<arg>]* ]+ ]+ 770 *---------------------------------------------------------------*/ 771 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 772 struct dm_target *ti) 773 { 774 int r; 775 struct path_selector_type *pst; 776 unsigned ps_argc; 777 778 static const struct dm_arg _args[] = { 779 {0, 1024, "invalid number of path selector args"}, 780 }; 781 782 pst = dm_get_path_selector(dm_shift_arg(as)); 783 if (!pst) { 784 ti->error = "unknown path selector type"; 785 return -EINVAL; 786 } 787 788 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 789 if (r) { 790 dm_put_path_selector(pst); 791 return -EINVAL; 792 } 793 794 r = pst->create(&pg->ps, ps_argc, as->argv); 795 if (r) { 796 dm_put_path_selector(pst); 797 ti->error = "path selector constructor failed"; 798 return r; 799 } 800 801 pg->ps.type = pst; 802 dm_consume_args(as, ps_argc); 803 804 return 0; 805 } 806 807 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 808 const char *attached_handler_name, char **error) 809 { 810 struct request_queue *q = bdev_get_queue(bdev); 811 int r; 812 813 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 814 retain: 815 if (attached_handler_name) { 816 /* 817 * Clear any hw_handler_params associated with a 818 * handler that isn't already attached. 819 */ 820 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 821 kfree(m->hw_handler_params); 822 m->hw_handler_params = NULL; 823 } 824 825 /* 826 * Reset hw_handler_name to match the attached handler 827 * 828 * NB. This modifies the table line to show the actual 829 * handler instead of the original table passed in. 830 */ 831 kfree(m->hw_handler_name); 832 m->hw_handler_name = attached_handler_name; 833 } 834 } 835 836 if (m->hw_handler_name) { 837 r = scsi_dh_attach(q, m->hw_handler_name); 838 if (r == -EBUSY) { 839 char b[BDEVNAME_SIZE]; 840 841 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 842 bdevname(bdev, b)); 843 goto retain; 844 } 845 if (r < 0) { 846 *error = "error attaching hardware handler"; 847 return r; 848 } 849 850 if (m->hw_handler_params) { 851 r = scsi_dh_set_params(q, m->hw_handler_params); 852 if (r < 0) { 853 *error = "unable to set hardware handler parameters"; 854 return r; 855 } 856 } 857 } 858 859 return 0; 860 } 861 862 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 863 struct dm_target *ti) 864 { 865 int r; 866 struct pgpath *p; 867 struct multipath *m = ti->private; 868 struct request_queue *q; 869 const char *attached_handler_name; 870 871 /* we need at least a path arg */ 872 if (as->argc < 1) { 873 ti->error = "no device given"; 874 return ERR_PTR(-EINVAL); 875 } 876 877 p = alloc_pgpath(); 878 if (!p) 879 return ERR_PTR(-ENOMEM); 880 881 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 882 &p->path.dev); 883 if (r) { 884 ti->error = "error getting device"; 885 goto bad; 886 } 887 888 q = bdev_get_queue(p->path.dev->bdev); 889 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 890 if (attached_handler_name || m->hw_handler_name) { 891 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 892 r = setup_scsi_dh(p->path.dev->bdev, m, attached_handler_name, &ti->error); 893 if (r) { 894 dm_put_device(ti, p->path.dev); 895 goto bad; 896 } 897 } 898 899 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 900 if (r) { 901 dm_put_device(ti, p->path.dev); 902 goto bad; 903 } 904 905 return p; 906 bad: 907 free_pgpath(p); 908 return ERR_PTR(r); 909 } 910 911 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 912 struct multipath *m) 913 { 914 static const struct dm_arg _args[] = { 915 {1, 1024, "invalid number of paths"}, 916 {0, 1024, "invalid number of selector args"} 917 }; 918 919 int r; 920 unsigned i, nr_selector_args, nr_args; 921 struct priority_group *pg; 922 struct dm_target *ti = m->ti; 923 924 if (as->argc < 2) { 925 as->argc = 0; 926 ti->error = "not enough priority group arguments"; 927 return ERR_PTR(-EINVAL); 928 } 929 930 pg = alloc_priority_group(); 931 if (!pg) { 932 ti->error = "couldn't allocate priority group"; 933 return ERR_PTR(-ENOMEM); 934 } 935 pg->m = m; 936 937 r = parse_path_selector(as, pg, ti); 938 if (r) 939 goto bad; 940 941 /* 942 * read the paths 943 */ 944 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 945 if (r) 946 goto bad; 947 948 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 949 if (r) 950 goto bad; 951 952 nr_args = 1 + nr_selector_args; 953 for (i = 0; i < pg->nr_pgpaths; i++) { 954 struct pgpath *pgpath; 955 struct dm_arg_set path_args; 956 957 if (as->argc < nr_args) { 958 ti->error = "not enough path parameters"; 959 r = -EINVAL; 960 goto bad; 961 } 962 963 path_args.argc = nr_args; 964 path_args.argv = as->argv; 965 966 pgpath = parse_path(&path_args, &pg->ps, ti); 967 if (IS_ERR(pgpath)) { 968 r = PTR_ERR(pgpath); 969 goto bad; 970 } 971 972 pgpath->pg = pg; 973 list_add_tail(&pgpath->list, &pg->pgpaths); 974 dm_consume_args(as, nr_args); 975 } 976 977 return pg; 978 979 bad: 980 free_priority_group(pg, ti); 981 return ERR_PTR(r); 982 } 983 984 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 985 { 986 unsigned hw_argc; 987 int ret; 988 struct dm_target *ti = m->ti; 989 990 static const struct dm_arg _args[] = { 991 {0, 1024, "invalid number of hardware handler args"}, 992 }; 993 994 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 995 return -EINVAL; 996 997 if (!hw_argc) 998 return 0; 999 1000 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1001 dm_consume_args(as, hw_argc); 1002 DMERR("bio-based multipath doesn't allow hardware handler args"); 1003 return 0; 1004 } 1005 1006 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1007 if (!m->hw_handler_name) 1008 return -EINVAL; 1009 1010 if (hw_argc > 1) { 1011 char *p; 1012 int i, j, len = 4; 1013 1014 for (i = 0; i <= hw_argc - 2; i++) 1015 len += strlen(as->argv[i]) + 1; 1016 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1017 if (!p) { 1018 ti->error = "memory allocation failed"; 1019 ret = -ENOMEM; 1020 goto fail; 1021 } 1022 j = sprintf(p, "%d", hw_argc - 1); 1023 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1024 j = sprintf(p, "%s", as->argv[i]); 1025 } 1026 dm_consume_args(as, hw_argc - 1); 1027 1028 return 0; 1029 fail: 1030 kfree(m->hw_handler_name); 1031 m->hw_handler_name = NULL; 1032 return ret; 1033 } 1034 1035 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1036 { 1037 int r; 1038 unsigned argc; 1039 struct dm_target *ti = m->ti; 1040 const char *arg_name; 1041 1042 static const struct dm_arg _args[] = { 1043 {0, 8, "invalid number of feature args"}, 1044 {1, 50, "pg_init_retries must be between 1 and 50"}, 1045 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1046 }; 1047 1048 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1049 if (r) 1050 return -EINVAL; 1051 1052 if (!argc) 1053 return 0; 1054 1055 do { 1056 arg_name = dm_shift_arg(as); 1057 argc--; 1058 1059 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1060 r = queue_if_no_path(m, true, false); 1061 continue; 1062 } 1063 1064 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1065 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1066 continue; 1067 } 1068 1069 if (!strcasecmp(arg_name, "pg_init_retries") && 1070 (argc >= 1)) { 1071 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1072 argc--; 1073 continue; 1074 } 1075 1076 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1077 (argc >= 1)) { 1078 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1079 argc--; 1080 continue; 1081 } 1082 1083 if (!strcasecmp(arg_name, "queue_mode") && 1084 (argc >= 1)) { 1085 const char *queue_mode_name = dm_shift_arg(as); 1086 1087 if (!strcasecmp(queue_mode_name, "bio")) 1088 m->queue_mode = DM_TYPE_BIO_BASED; 1089 else if (!strcasecmp(queue_mode_name, "rq")) 1090 m->queue_mode = DM_TYPE_REQUEST_BASED; 1091 else if (!strcasecmp(queue_mode_name, "mq")) 1092 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1093 else { 1094 ti->error = "Unknown 'queue_mode' requested"; 1095 r = -EINVAL; 1096 } 1097 argc--; 1098 continue; 1099 } 1100 1101 ti->error = "Unrecognised multipath feature request"; 1102 r = -EINVAL; 1103 } while (argc && !r); 1104 1105 return r; 1106 } 1107 1108 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1109 { 1110 /* target arguments */ 1111 static const struct dm_arg _args[] = { 1112 {0, 1024, "invalid number of priority groups"}, 1113 {0, 1024, "invalid initial priority group number"}, 1114 }; 1115 1116 int r; 1117 struct multipath *m; 1118 struct dm_arg_set as; 1119 unsigned pg_count = 0; 1120 unsigned next_pg_num; 1121 1122 as.argc = argc; 1123 as.argv = argv; 1124 1125 m = alloc_multipath(ti); 1126 if (!m) { 1127 ti->error = "can't allocate multipath"; 1128 return -EINVAL; 1129 } 1130 1131 r = parse_features(&as, m); 1132 if (r) 1133 goto bad; 1134 1135 r = alloc_multipath_stage2(ti, m); 1136 if (r) 1137 goto bad; 1138 1139 r = parse_hw_handler(&as, m); 1140 if (r) 1141 goto bad; 1142 1143 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1144 if (r) 1145 goto bad; 1146 1147 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1148 if (r) 1149 goto bad; 1150 1151 if ((!m->nr_priority_groups && next_pg_num) || 1152 (m->nr_priority_groups && !next_pg_num)) { 1153 ti->error = "invalid initial priority group"; 1154 r = -EINVAL; 1155 goto bad; 1156 } 1157 1158 /* parse the priority groups */ 1159 while (as.argc) { 1160 struct priority_group *pg; 1161 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1162 1163 pg = parse_priority_group(&as, m); 1164 if (IS_ERR(pg)) { 1165 r = PTR_ERR(pg); 1166 goto bad; 1167 } 1168 1169 nr_valid_paths += pg->nr_pgpaths; 1170 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1171 1172 list_add_tail(&pg->list, &m->priority_groups); 1173 pg_count++; 1174 pg->pg_num = pg_count; 1175 if (!--next_pg_num) 1176 m->next_pg = pg; 1177 } 1178 1179 if (pg_count != m->nr_priority_groups) { 1180 ti->error = "priority group count mismatch"; 1181 r = -EINVAL; 1182 goto bad; 1183 } 1184 1185 ti->num_flush_bios = 1; 1186 ti->num_discard_bios = 1; 1187 ti->num_write_same_bios = 1; 1188 ti->num_write_zeroes_bios = 1; 1189 if (m->queue_mode == DM_TYPE_BIO_BASED) 1190 ti->per_io_data_size = multipath_per_bio_data_size(); 1191 else 1192 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1193 1194 return 0; 1195 1196 bad: 1197 free_multipath(m); 1198 return r; 1199 } 1200 1201 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1202 { 1203 DEFINE_WAIT(wait); 1204 1205 while (1) { 1206 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1207 1208 if (!atomic_read(&m->pg_init_in_progress)) 1209 break; 1210 1211 io_schedule(); 1212 } 1213 finish_wait(&m->pg_init_wait, &wait); 1214 } 1215 1216 static void flush_multipath_work(struct multipath *m) 1217 { 1218 if (m->hw_handler_name) { 1219 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1220 smp_mb__after_atomic(); 1221 1222 flush_workqueue(kmpath_handlerd); 1223 multipath_wait_for_pg_init_completion(m); 1224 1225 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1226 smp_mb__after_atomic(); 1227 } 1228 1229 flush_workqueue(kmultipathd); 1230 flush_work(&m->trigger_event); 1231 } 1232 1233 static void multipath_dtr(struct dm_target *ti) 1234 { 1235 struct multipath *m = ti->private; 1236 1237 flush_multipath_work(m); 1238 free_multipath(m); 1239 } 1240 1241 /* 1242 * Take a path out of use. 1243 */ 1244 static int fail_path(struct pgpath *pgpath) 1245 { 1246 unsigned long flags; 1247 struct multipath *m = pgpath->pg->m; 1248 1249 spin_lock_irqsave(&m->lock, flags); 1250 1251 if (!pgpath->is_active) 1252 goto out; 1253 1254 DMWARN("Failing path %s.", pgpath->path.dev->name); 1255 1256 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1257 pgpath->is_active = false; 1258 pgpath->fail_count++; 1259 1260 atomic_dec(&m->nr_valid_paths); 1261 1262 if (pgpath == m->current_pgpath) 1263 m->current_pgpath = NULL; 1264 1265 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1266 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1267 1268 schedule_work(&m->trigger_event); 1269 1270 out: 1271 spin_unlock_irqrestore(&m->lock, flags); 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * Reinstate a previously-failed path 1278 */ 1279 static int reinstate_path(struct pgpath *pgpath) 1280 { 1281 int r = 0, run_queue = 0; 1282 unsigned long flags; 1283 struct multipath *m = pgpath->pg->m; 1284 unsigned nr_valid_paths; 1285 1286 spin_lock_irqsave(&m->lock, flags); 1287 1288 if (pgpath->is_active) 1289 goto out; 1290 1291 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1292 1293 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1294 if (r) 1295 goto out; 1296 1297 pgpath->is_active = true; 1298 1299 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1300 if (nr_valid_paths == 1) { 1301 m->current_pgpath = NULL; 1302 run_queue = 1; 1303 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1304 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1305 atomic_inc(&m->pg_init_in_progress); 1306 } 1307 1308 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1309 pgpath->path.dev->name, nr_valid_paths); 1310 1311 schedule_work(&m->trigger_event); 1312 1313 out: 1314 spin_unlock_irqrestore(&m->lock, flags); 1315 if (run_queue) { 1316 dm_table_run_md_queue_async(m->ti->table); 1317 process_queued_io_list(m); 1318 } 1319 1320 return r; 1321 } 1322 1323 /* 1324 * Fail or reinstate all paths that match the provided struct dm_dev. 1325 */ 1326 static int action_dev(struct multipath *m, struct dm_dev *dev, 1327 action_fn action) 1328 { 1329 int r = -EINVAL; 1330 struct pgpath *pgpath; 1331 struct priority_group *pg; 1332 1333 list_for_each_entry(pg, &m->priority_groups, list) { 1334 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1335 if (pgpath->path.dev == dev) 1336 r = action(pgpath); 1337 } 1338 } 1339 1340 return r; 1341 } 1342 1343 /* 1344 * Temporarily try to avoid having to use the specified PG 1345 */ 1346 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1347 bool bypassed) 1348 { 1349 unsigned long flags; 1350 1351 spin_lock_irqsave(&m->lock, flags); 1352 1353 pg->bypassed = bypassed; 1354 m->current_pgpath = NULL; 1355 m->current_pg = NULL; 1356 1357 spin_unlock_irqrestore(&m->lock, flags); 1358 1359 schedule_work(&m->trigger_event); 1360 } 1361 1362 /* 1363 * Switch to using the specified PG from the next I/O that gets mapped 1364 */ 1365 static int switch_pg_num(struct multipath *m, const char *pgstr) 1366 { 1367 struct priority_group *pg; 1368 unsigned pgnum; 1369 unsigned long flags; 1370 char dummy; 1371 1372 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1373 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1374 DMWARN("invalid PG number supplied to switch_pg_num"); 1375 return -EINVAL; 1376 } 1377 1378 spin_lock_irqsave(&m->lock, flags); 1379 list_for_each_entry(pg, &m->priority_groups, list) { 1380 pg->bypassed = false; 1381 if (--pgnum) 1382 continue; 1383 1384 m->current_pgpath = NULL; 1385 m->current_pg = NULL; 1386 m->next_pg = pg; 1387 } 1388 spin_unlock_irqrestore(&m->lock, flags); 1389 1390 schedule_work(&m->trigger_event); 1391 return 0; 1392 } 1393 1394 /* 1395 * Set/clear bypassed status of a PG. 1396 * PGs are numbered upwards from 1 in the order they were declared. 1397 */ 1398 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1399 { 1400 struct priority_group *pg; 1401 unsigned pgnum; 1402 char dummy; 1403 1404 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1405 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1406 DMWARN("invalid PG number supplied to bypass_pg"); 1407 return -EINVAL; 1408 } 1409 1410 list_for_each_entry(pg, &m->priority_groups, list) { 1411 if (!--pgnum) 1412 break; 1413 } 1414 1415 bypass_pg(m, pg, bypassed); 1416 return 0; 1417 } 1418 1419 /* 1420 * Should we retry pg_init immediately? 1421 */ 1422 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1423 { 1424 unsigned long flags; 1425 bool limit_reached = false; 1426 1427 spin_lock_irqsave(&m->lock, flags); 1428 1429 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1430 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1431 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1432 else 1433 limit_reached = true; 1434 1435 spin_unlock_irqrestore(&m->lock, flags); 1436 1437 return limit_reached; 1438 } 1439 1440 static void pg_init_done(void *data, int errors) 1441 { 1442 struct pgpath *pgpath = data; 1443 struct priority_group *pg = pgpath->pg; 1444 struct multipath *m = pg->m; 1445 unsigned long flags; 1446 bool delay_retry = false; 1447 1448 /* device or driver problems */ 1449 switch (errors) { 1450 case SCSI_DH_OK: 1451 break; 1452 case SCSI_DH_NOSYS: 1453 if (!m->hw_handler_name) { 1454 errors = 0; 1455 break; 1456 } 1457 DMERR("Could not failover the device: Handler scsi_dh_%s " 1458 "Error %d.", m->hw_handler_name, errors); 1459 /* 1460 * Fail path for now, so we do not ping pong 1461 */ 1462 fail_path(pgpath); 1463 break; 1464 case SCSI_DH_DEV_TEMP_BUSY: 1465 /* 1466 * Probably doing something like FW upgrade on the 1467 * controller so try the other pg. 1468 */ 1469 bypass_pg(m, pg, true); 1470 break; 1471 case SCSI_DH_RETRY: 1472 /* Wait before retrying. */ 1473 delay_retry = 1; 1474 /* fall through */ 1475 case SCSI_DH_IMM_RETRY: 1476 case SCSI_DH_RES_TEMP_UNAVAIL: 1477 if (pg_init_limit_reached(m, pgpath)) 1478 fail_path(pgpath); 1479 errors = 0; 1480 break; 1481 case SCSI_DH_DEV_OFFLINED: 1482 default: 1483 /* 1484 * We probably do not want to fail the path for a device 1485 * error, but this is what the old dm did. In future 1486 * patches we can do more advanced handling. 1487 */ 1488 fail_path(pgpath); 1489 } 1490 1491 spin_lock_irqsave(&m->lock, flags); 1492 if (errors) { 1493 if (pgpath == m->current_pgpath) { 1494 DMERR("Could not failover device. Error %d.", errors); 1495 m->current_pgpath = NULL; 1496 m->current_pg = NULL; 1497 } 1498 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1499 pg->bypassed = false; 1500 1501 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1502 /* Activations of other paths are still on going */ 1503 goto out; 1504 1505 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1506 if (delay_retry) 1507 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1508 else 1509 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1510 1511 if (__pg_init_all_paths(m)) 1512 goto out; 1513 } 1514 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1515 1516 process_queued_io_list(m); 1517 1518 /* 1519 * Wake up any thread waiting to suspend. 1520 */ 1521 wake_up(&m->pg_init_wait); 1522 1523 out: 1524 spin_unlock_irqrestore(&m->lock, flags); 1525 } 1526 1527 static void activate_or_offline_path(struct pgpath *pgpath) 1528 { 1529 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1530 1531 if (pgpath->is_active && !blk_queue_dying(q)) 1532 scsi_dh_activate(q, pg_init_done, pgpath); 1533 else 1534 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1535 } 1536 1537 static void activate_path_work(struct work_struct *work) 1538 { 1539 struct pgpath *pgpath = 1540 container_of(work, struct pgpath, activate_path.work); 1541 1542 activate_or_offline_path(pgpath); 1543 } 1544 1545 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1546 blk_status_t error, union map_info *map_context) 1547 { 1548 struct dm_mpath_io *mpio = get_mpio(map_context); 1549 struct pgpath *pgpath = mpio->pgpath; 1550 int r = DM_ENDIO_DONE; 1551 1552 /* 1553 * We don't queue any clone request inside the multipath target 1554 * during end I/O handling, since those clone requests don't have 1555 * bio clones. If we queue them inside the multipath target, 1556 * we need to make bio clones, that requires memory allocation. 1557 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1558 * don't have bio clones.) 1559 * Instead of queueing the clone request here, we queue the original 1560 * request into dm core, which will remake a clone request and 1561 * clone bios for it and resubmit it later. 1562 */ 1563 if (error && blk_path_error(error)) { 1564 struct multipath *m = ti->private; 1565 1566 if (error == BLK_STS_RESOURCE) 1567 r = DM_ENDIO_DELAY_REQUEUE; 1568 else 1569 r = DM_ENDIO_REQUEUE; 1570 1571 if (pgpath) 1572 fail_path(pgpath); 1573 1574 if (atomic_read(&m->nr_valid_paths) == 0 && 1575 !must_push_back_rq(m)) { 1576 if (error == BLK_STS_IOERR) 1577 dm_report_EIO(m); 1578 /* complete with the original error */ 1579 r = DM_ENDIO_DONE; 1580 } 1581 } 1582 1583 if (pgpath) { 1584 struct path_selector *ps = &pgpath->pg->ps; 1585 1586 if (ps->type->end_io) 1587 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1588 } 1589 1590 return r; 1591 } 1592 1593 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1594 blk_status_t *error) 1595 { 1596 struct multipath *m = ti->private; 1597 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1598 struct pgpath *pgpath = mpio->pgpath; 1599 unsigned long flags; 1600 int r = DM_ENDIO_DONE; 1601 1602 if (!*error || !blk_path_error(*error)) 1603 goto done; 1604 1605 if (pgpath) 1606 fail_path(pgpath); 1607 1608 if (atomic_read(&m->nr_valid_paths) == 0 && 1609 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1610 if (must_push_back_bio(m)) { 1611 r = DM_ENDIO_REQUEUE; 1612 } else { 1613 dm_report_EIO(m); 1614 *error = BLK_STS_IOERR; 1615 } 1616 goto done; 1617 } 1618 1619 spin_lock_irqsave(&m->lock, flags); 1620 bio_list_add(&m->queued_bios, clone); 1621 spin_unlock_irqrestore(&m->lock, flags); 1622 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1623 queue_work(kmultipathd, &m->process_queued_bios); 1624 1625 r = DM_ENDIO_INCOMPLETE; 1626 done: 1627 if (pgpath) { 1628 struct path_selector *ps = &pgpath->pg->ps; 1629 1630 if (ps->type->end_io) 1631 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1632 } 1633 1634 return r; 1635 } 1636 1637 /* 1638 * Suspend can't complete until all the I/O is processed so if 1639 * the last path fails we must error any remaining I/O. 1640 * Note that if the freeze_bdev fails while suspending, the 1641 * queue_if_no_path state is lost - userspace should reset it. 1642 */ 1643 static void multipath_presuspend(struct dm_target *ti) 1644 { 1645 struct multipath *m = ti->private; 1646 1647 queue_if_no_path(m, false, true); 1648 } 1649 1650 static void multipath_postsuspend(struct dm_target *ti) 1651 { 1652 struct multipath *m = ti->private; 1653 1654 mutex_lock(&m->work_mutex); 1655 flush_multipath_work(m); 1656 mutex_unlock(&m->work_mutex); 1657 } 1658 1659 /* 1660 * Restore the queue_if_no_path setting. 1661 */ 1662 static void multipath_resume(struct dm_target *ti) 1663 { 1664 struct multipath *m = ti->private; 1665 unsigned long flags; 1666 1667 spin_lock_irqsave(&m->lock, flags); 1668 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1669 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1670 spin_unlock_irqrestore(&m->lock, flags); 1671 } 1672 1673 /* 1674 * Info output has the following format: 1675 * num_multipath_feature_args [multipath_feature_args]* 1676 * num_handler_status_args [handler_status_args]* 1677 * num_groups init_group_number 1678 * [A|D|E num_ps_status_args [ps_status_args]* 1679 * num_paths num_selector_args 1680 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1681 * 1682 * Table output has the following format (identical to the constructor string): 1683 * num_feature_args [features_args]* 1684 * num_handler_args hw_handler [hw_handler_args]* 1685 * num_groups init_group_number 1686 * [priority selector-name num_ps_args [ps_args]* 1687 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1688 */ 1689 static void multipath_status(struct dm_target *ti, status_type_t type, 1690 unsigned status_flags, char *result, unsigned maxlen) 1691 { 1692 int sz = 0; 1693 unsigned long flags; 1694 struct multipath *m = ti->private; 1695 struct priority_group *pg; 1696 struct pgpath *p; 1697 unsigned pg_num; 1698 char state; 1699 1700 spin_lock_irqsave(&m->lock, flags); 1701 1702 /* Features */ 1703 if (type == STATUSTYPE_INFO) 1704 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1705 atomic_read(&m->pg_init_count)); 1706 else { 1707 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1708 (m->pg_init_retries > 0) * 2 + 1709 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1710 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1711 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1712 1713 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1714 DMEMIT("queue_if_no_path "); 1715 if (m->pg_init_retries) 1716 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1717 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1718 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1719 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1720 DMEMIT("retain_attached_hw_handler "); 1721 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1722 switch(m->queue_mode) { 1723 case DM_TYPE_BIO_BASED: 1724 DMEMIT("queue_mode bio "); 1725 break; 1726 case DM_TYPE_MQ_REQUEST_BASED: 1727 DMEMIT("queue_mode mq "); 1728 break; 1729 default: 1730 WARN_ON_ONCE(true); 1731 break; 1732 } 1733 } 1734 } 1735 1736 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1737 DMEMIT("0 "); 1738 else 1739 DMEMIT("1 %s ", m->hw_handler_name); 1740 1741 DMEMIT("%u ", m->nr_priority_groups); 1742 1743 if (m->next_pg) 1744 pg_num = m->next_pg->pg_num; 1745 else if (m->current_pg) 1746 pg_num = m->current_pg->pg_num; 1747 else 1748 pg_num = (m->nr_priority_groups ? 1 : 0); 1749 1750 DMEMIT("%u ", pg_num); 1751 1752 switch (type) { 1753 case STATUSTYPE_INFO: 1754 list_for_each_entry(pg, &m->priority_groups, list) { 1755 if (pg->bypassed) 1756 state = 'D'; /* Disabled */ 1757 else if (pg == m->current_pg) 1758 state = 'A'; /* Currently Active */ 1759 else 1760 state = 'E'; /* Enabled */ 1761 1762 DMEMIT("%c ", state); 1763 1764 if (pg->ps.type->status) 1765 sz += pg->ps.type->status(&pg->ps, NULL, type, 1766 result + sz, 1767 maxlen - sz); 1768 else 1769 DMEMIT("0 "); 1770 1771 DMEMIT("%u %u ", pg->nr_pgpaths, 1772 pg->ps.type->info_args); 1773 1774 list_for_each_entry(p, &pg->pgpaths, list) { 1775 DMEMIT("%s %s %u ", p->path.dev->name, 1776 p->is_active ? "A" : "F", 1777 p->fail_count); 1778 if (pg->ps.type->status) 1779 sz += pg->ps.type->status(&pg->ps, 1780 &p->path, type, result + sz, 1781 maxlen - sz); 1782 } 1783 } 1784 break; 1785 1786 case STATUSTYPE_TABLE: 1787 list_for_each_entry(pg, &m->priority_groups, list) { 1788 DMEMIT("%s ", pg->ps.type->name); 1789 1790 if (pg->ps.type->status) 1791 sz += pg->ps.type->status(&pg->ps, NULL, type, 1792 result + sz, 1793 maxlen - sz); 1794 else 1795 DMEMIT("0 "); 1796 1797 DMEMIT("%u %u ", pg->nr_pgpaths, 1798 pg->ps.type->table_args); 1799 1800 list_for_each_entry(p, &pg->pgpaths, list) { 1801 DMEMIT("%s ", p->path.dev->name); 1802 if (pg->ps.type->status) 1803 sz += pg->ps.type->status(&pg->ps, 1804 &p->path, type, result + sz, 1805 maxlen - sz); 1806 } 1807 } 1808 break; 1809 } 1810 1811 spin_unlock_irqrestore(&m->lock, flags); 1812 } 1813 1814 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1815 { 1816 int r = -EINVAL; 1817 struct dm_dev *dev; 1818 struct multipath *m = ti->private; 1819 action_fn action; 1820 1821 mutex_lock(&m->work_mutex); 1822 1823 if (dm_suspended(ti)) { 1824 r = -EBUSY; 1825 goto out; 1826 } 1827 1828 if (argc == 1) { 1829 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1830 r = queue_if_no_path(m, true, false); 1831 goto out; 1832 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1833 r = queue_if_no_path(m, false, false); 1834 goto out; 1835 } 1836 } 1837 1838 if (argc != 2) { 1839 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1840 goto out; 1841 } 1842 1843 if (!strcasecmp(argv[0], "disable_group")) { 1844 r = bypass_pg_num(m, argv[1], true); 1845 goto out; 1846 } else if (!strcasecmp(argv[0], "enable_group")) { 1847 r = bypass_pg_num(m, argv[1], false); 1848 goto out; 1849 } else if (!strcasecmp(argv[0], "switch_group")) { 1850 r = switch_pg_num(m, argv[1]); 1851 goto out; 1852 } else if (!strcasecmp(argv[0], "reinstate_path")) 1853 action = reinstate_path; 1854 else if (!strcasecmp(argv[0], "fail_path")) 1855 action = fail_path; 1856 else { 1857 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1858 goto out; 1859 } 1860 1861 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1862 if (r) { 1863 DMWARN("message: error getting device %s", 1864 argv[1]); 1865 goto out; 1866 } 1867 1868 r = action_dev(m, dev, action); 1869 1870 dm_put_device(ti, dev); 1871 1872 out: 1873 mutex_unlock(&m->work_mutex); 1874 return r; 1875 } 1876 1877 static int multipath_prepare_ioctl(struct dm_target *ti, 1878 struct block_device **bdev, fmode_t *mode) 1879 { 1880 struct multipath *m = ti->private; 1881 struct pgpath *current_pgpath; 1882 int r; 1883 1884 current_pgpath = READ_ONCE(m->current_pgpath); 1885 if (!current_pgpath) 1886 current_pgpath = choose_pgpath(m, 0); 1887 1888 if (current_pgpath) { 1889 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1890 *bdev = current_pgpath->path.dev->bdev; 1891 *mode = current_pgpath->path.dev->mode; 1892 r = 0; 1893 } else { 1894 /* pg_init has not started or completed */ 1895 r = -ENOTCONN; 1896 } 1897 } else { 1898 /* No path is available */ 1899 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1900 r = -ENOTCONN; 1901 else 1902 r = -EIO; 1903 } 1904 1905 if (r == -ENOTCONN) { 1906 if (!READ_ONCE(m->current_pg)) { 1907 /* Path status changed, redo selection */ 1908 (void) choose_pgpath(m, 0); 1909 } 1910 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1911 pg_init_all_paths(m); 1912 dm_table_run_md_queue_async(m->ti->table); 1913 process_queued_io_list(m); 1914 } 1915 1916 /* 1917 * Only pass ioctls through if the device sizes match exactly. 1918 */ 1919 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1920 return 1; 1921 return r; 1922 } 1923 1924 static int multipath_iterate_devices(struct dm_target *ti, 1925 iterate_devices_callout_fn fn, void *data) 1926 { 1927 struct multipath *m = ti->private; 1928 struct priority_group *pg; 1929 struct pgpath *p; 1930 int ret = 0; 1931 1932 list_for_each_entry(pg, &m->priority_groups, list) { 1933 list_for_each_entry(p, &pg->pgpaths, list) { 1934 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1935 if (ret) 1936 goto out; 1937 } 1938 } 1939 1940 out: 1941 return ret; 1942 } 1943 1944 static int pgpath_busy(struct pgpath *pgpath) 1945 { 1946 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1947 1948 return blk_lld_busy(q); 1949 } 1950 1951 /* 1952 * We return "busy", only when we can map I/Os but underlying devices 1953 * are busy (so even if we map I/Os now, the I/Os will wait on 1954 * the underlying queue). 1955 * In other words, if we want to kill I/Os or queue them inside us 1956 * due to map unavailability, we don't return "busy". Otherwise, 1957 * dm core won't give us the I/Os and we can't do what we want. 1958 */ 1959 static int multipath_busy(struct dm_target *ti) 1960 { 1961 bool busy = false, has_active = false; 1962 struct multipath *m = ti->private; 1963 struct priority_group *pg, *next_pg; 1964 struct pgpath *pgpath; 1965 1966 /* pg_init in progress */ 1967 if (atomic_read(&m->pg_init_in_progress)) 1968 return true; 1969 1970 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1971 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1972 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1973 1974 /* Guess which priority_group will be used at next mapping time */ 1975 pg = READ_ONCE(m->current_pg); 1976 next_pg = READ_ONCE(m->next_pg); 1977 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1978 pg = next_pg; 1979 1980 if (!pg) { 1981 /* 1982 * We don't know which pg will be used at next mapping time. 1983 * We don't call choose_pgpath() here to avoid to trigger 1984 * pg_init just by busy checking. 1985 * So we don't know whether underlying devices we will be using 1986 * at next mapping time are busy or not. Just try mapping. 1987 */ 1988 return busy; 1989 } 1990 1991 /* 1992 * If there is one non-busy active path at least, the path selector 1993 * will be able to select it. So we consider such a pg as not busy. 1994 */ 1995 busy = true; 1996 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1997 if (pgpath->is_active) { 1998 has_active = true; 1999 if (!pgpath_busy(pgpath)) { 2000 busy = false; 2001 break; 2002 } 2003 } 2004 } 2005 2006 if (!has_active) { 2007 /* 2008 * No active path in this pg, so this pg won't be used and 2009 * the current_pg will be changed at next mapping time. 2010 * We need to try mapping to determine it. 2011 */ 2012 busy = false; 2013 } 2014 2015 return busy; 2016 } 2017 2018 /*----------------------------------------------------------------- 2019 * Module setup 2020 *---------------------------------------------------------------*/ 2021 static struct target_type multipath_target = { 2022 .name = "multipath", 2023 .version = {1, 13, 0}, 2024 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2025 DM_TARGET_PASSES_INTEGRITY, 2026 .module = THIS_MODULE, 2027 .ctr = multipath_ctr, 2028 .dtr = multipath_dtr, 2029 .clone_and_map_rq = multipath_clone_and_map, 2030 .release_clone_rq = multipath_release_clone, 2031 .rq_end_io = multipath_end_io, 2032 .map = multipath_map_bio, 2033 .end_io = multipath_end_io_bio, 2034 .presuspend = multipath_presuspend, 2035 .postsuspend = multipath_postsuspend, 2036 .resume = multipath_resume, 2037 .status = multipath_status, 2038 .message = multipath_message, 2039 .prepare_ioctl = multipath_prepare_ioctl, 2040 .iterate_devices = multipath_iterate_devices, 2041 .busy = multipath_busy, 2042 }; 2043 2044 static int __init dm_multipath_init(void) 2045 { 2046 int r; 2047 2048 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2049 if (!kmultipathd) { 2050 DMERR("failed to create workqueue kmpathd"); 2051 r = -ENOMEM; 2052 goto bad_alloc_kmultipathd; 2053 } 2054 2055 /* 2056 * A separate workqueue is used to handle the device handlers 2057 * to avoid overloading existing workqueue. Overloading the 2058 * old workqueue would also create a bottleneck in the 2059 * path of the storage hardware device activation. 2060 */ 2061 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2062 WQ_MEM_RECLAIM); 2063 if (!kmpath_handlerd) { 2064 DMERR("failed to create workqueue kmpath_handlerd"); 2065 r = -ENOMEM; 2066 goto bad_alloc_kmpath_handlerd; 2067 } 2068 2069 r = dm_register_target(&multipath_target); 2070 if (r < 0) { 2071 DMERR("request-based register failed %d", r); 2072 r = -EINVAL; 2073 goto bad_register_target; 2074 } 2075 2076 return 0; 2077 2078 bad_register_target: 2079 destroy_workqueue(kmpath_handlerd); 2080 bad_alloc_kmpath_handlerd: 2081 destroy_workqueue(kmultipathd); 2082 bad_alloc_kmultipathd: 2083 return r; 2084 } 2085 2086 static void __exit dm_multipath_exit(void) 2087 { 2088 destroy_workqueue(kmpath_handlerd); 2089 destroy_workqueue(kmultipathd); 2090 2091 dm_unregister_target(&multipath_target); 2092 } 2093 2094 module_init(dm_multipath_init); 2095 module_exit(dm_multipath_exit); 2096 2097 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2098 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2099 MODULE_LICENSE("GPL"); 2100