1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 unsigned long flags; /* Multipath state flags */ 68 69 spinlock_t lock; 70 enum dm_queue_mode queue_mode; 71 72 struct pgpath *current_pgpath; 73 struct priority_group *current_pg; 74 struct priority_group *next_pg; /* Switch to this PG if set */ 75 76 atomic_t nr_valid_paths; /* Total number of usable paths */ 77 unsigned nr_priority_groups; 78 struct list_head priority_groups; 79 80 const char *hw_handler_name; 81 char *hw_handler_params; 82 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 83 unsigned pg_init_retries; /* Number of times to retry pg_init */ 84 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 85 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 86 atomic_t pg_init_count; /* Number of times pg_init called */ 87 88 struct mutex work_mutex; 89 struct work_struct trigger_event; 90 struct dm_target *ti; 91 92 struct work_struct process_queued_bios; 93 struct bio_list queued_bios; 94 }; 95 96 /* 97 * Context information attached to each io we process. 98 */ 99 struct dm_mpath_io { 100 struct pgpath *pgpath; 101 size_t nr_bytes; 102 }; 103 104 typedef int (*action_fn) (struct pgpath *pgpath); 105 106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 107 static void trigger_event(struct work_struct *work); 108 static void activate_or_offline_path(struct pgpath *pgpath); 109 static void activate_path_work(struct work_struct *work); 110 static void process_queued_bios(struct work_struct *work); 111 112 /*----------------------------------------------- 113 * Multipath state flags. 114 *-----------------------------------------------*/ 115 116 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 117 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 120 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 121 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 122 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 123 124 /*----------------------------------------------- 125 * Allocation routines 126 *-----------------------------------------------*/ 127 128 static struct pgpath *alloc_pgpath(void) 129 { 130 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 131 132 if (!pgpath) 133 return NULL; 134 135 pgpath->is_active = true; 136 137 return pgpath; 138 } 139 140 static void free_pgpath(struct pgpath *pgpath) 141 { 142 kfree(pgpath); 143 } 144 145 static struct priority_group *alloc_priority_group(void) 146 { 147 struct priority_group *pg; 148 149 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 150 151 if (pg) 152 INIT_LIST_HEAD(&pg->pgpaths); 153 154 return pg; 155 } 156 157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 158 { 159 struct pgpath *pgpath, *tmp; 160 161 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 162 list_del(&pgpath->list); 163 dm_put_device(ti, pgpath->path.dev); 164 free_pgpath(pgpath); 165 } 166 } 167 168 static void free_priority_group(struct priority_group *pg, 169 struct dm_target *ti) 170 { 171 struct path_selector *ps = &pg->ps; 172 173 if (ps->type) { 174 ps->type->destroy(ps); 175 dm_put_path_selector(ps->type); 176 } 177 178 free_pgpaths(&pg->pgpaths, ti); 179 kfree(pg); 180 } 181 182 static struct multipath *alloc_multipath(struct dm_target *ti) 183 { 184 struct multipath *m; 185 186 m = kzalloc(sizeof(*m), GFP_KERNEL); 187 if (m) { 188 INIT_LIST_HEAD(&m->priority_groups); 189 spin_lock_init(&m->lock); 190 atomic_set(&m->nr_valid_paths, 0); 191 INIT_WORK(&m->trigger_event, trigger_event); 192 mutex_init(&m->work_mutex); 193 194 m->queue_mode = DM_TYPE_NONE; 195 196 m->ti = ti; 197 ti->private = m; 198 } 199 200 return m; 201 } 202 203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 204 { 205 if (m->queue_mode == DM_TYPE_NONE) { 206 m->queue_mode = DM_TYPE_REQUEST_BASED; 207 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 208 INIT_WORK(&m->process_queued_bios, process_queued_bios); 209 /* 210 * bio-based doesn't support any direct scsi_dh management; 211 * it just discovers if a scsi_dh is attached. 212 */ 213 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 214 } 215 216 dm_table_set_type(ti->table, m->queue_mode); 217 218 /* 219 * Init fields that are only used when a scsi_dh is attached 220 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 221 */ 222 set_bit(MPATHF_QUEUE_IO, &m->flags); 223 atomic_set(&m->pg_init_in_progress, 0); 224 atomic_set(&m->pg_init_count, 0); 225 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 226 init_waitqueue_head(&m->pg_init_wait); 227 228 return 0; 229 } 230 231 static void free_multipath(struct multipath *m) 232 { 233 struct priority_group *pg, *tmp; 234 235 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 236 list_del(&pg->list); 237 free_priority_group(pg, m->ti); 238 } 239 240 kfree(m->hw_handler_name); 241 kfree(m->hw_handler_params); 242 mutex_destroy(&m->work_mutex); 243 kfree(m); 244 } 245 246 static struct dm_mpath_io *get_mpio(union map_info *info) 247 { 248 return info->ptr; 249 } 250 251 static size_t multipath_per_bio_data_size(void) 252 { 253 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 254 } 255 256 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 257 { 258 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 259 } 260 261 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 262 { 263 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 264 void *bio_details = mpio + 1; 265 return bio_details; 266 } 267 268 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 269 { 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 272 273 mpio->nr_bytes = bio->bi_iter.bi_size; 274 mpio->pgpath = NULL; 275 *mpio_p = mpio; 276 277 dm_bio_record(bio_details, bio); 278 } 279 280 /*----------------------------------------------- 281 * Path selection 282 *-----------------------------------------------*/ 283 284 static int __pg_init_all_paths(struct multipath *m) 285 { 286 struct pgpath *pgpath; 287 unsigned long pg_init_delay = 0; 288 289 lockdep_assert_held(&m->lock); 290 291 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 292 return 0; 293 294 atomic_inc(&m->pg_init_count); 295 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 296 297 /* Check here to reset pg_init_required */ 298 if (!m->current_pg) 299 return 0; 300 301 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 302 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 303 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 304 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 305 /* Skip failed paths */ 306 if (!pgpath->is_active) 307 continue; 308 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 309 pg_init_delay)) 310 atomic_inc(&m->pg_init_in_progress); 311 } 312 return atomic_read(&m->pg_init_in_progress); 313 } 314 315 static int pg_init_all_paths(struct multipath *m) 316 { 317 int ret; 318 unsigned long flags; 319 320 spin_lock_irqsave(&m->lock, flags); 321 ret = __pg_init_all_paths(m); 322 spin_unlock_irqrestore(&m->lock, flags); 323 324 return ret; 325 } 326 327 static void __switch_pg(struct multipath *m, struct priority_group *pg) 328 { 329 m->current_pg = pg; 330 331 /* Must we initialise the PG first, and queue I/O till it's ready? */ 332 if (m->hw_handler_name) { 333 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 334 set_bit(MPATHF_QUEUE_IO, &m->flags); 335 } else { 336 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 337 clear_bit(MPATHF_QUEUE_IO, &m->flags); 338 } 339 340 atomic_set(&m->pg_init_count, 0); 341 } 342 343 static struct pgpath *choose_path_in_pg(struct multipath *m, 344 struct priority_group *pg, 345 size_t nr_bytes) 346 { 347 unsigned long flags; 348 struct dm_path *path; 349 struct pgpath *pgpath; 350 351 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 352 if (!path) 353 return ERR_PTR(-ENXIO); 354 355 pgpath = path_to_pgpath(path); 356 357 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 358 /* Only update current_pgpath if pg changed */ 359 spin_lock_irqsave(&m->lock, flags); 360 m->current_pgpath = pgpath; 361 __switch_pg(m, pg); 362 spin_unlock_irqrestore(&m->lock, flags); 363 } 364 365 return pgpath; 366 } 367 368 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 369 { 370 unsigned long flags; 371 struct priority_group *pg; 372 struct pgpath *pgpath; 373 unsigned bypassed = 1; 374 375 if (!atomic_read(&m->nr_valid_paths)) { 376 clear_bit(MPATHF_QUEUE_IO, &m->flags); 377 goto failed; 378 } 379 380 /* Were we instructed to switch PG? */ 381 if (READ_ONCE(m->next_pg)) { 382 spin_lock_irqsave(&m->lock, flags); 383 pg = m->next_pg; 384 if (!pg) { 385 spin_unlock_irqrestore(&m->lock, flags); 386 goto check_current_pg; 387 } 388 m->next_pg = NULL; 389 spin_unlock_irqrestore(&m->lock, flags); 390 pgpath = choose_path_in_pg(m, pg, nr_bytes); 391 if (!IS_ERR_OR_NULL(pgpath)) 392 return pgpath; 393 } 394 395 /* Don't change PG until it has no remaining paths */ 396 check_current_pg: 397 pg = READ_ONCE(m->current_pg); 398 if (pg) { 399 pgpath = choose_path_in_pg(m, pg, nr_bytes); 400 if (!IS_ERR_OR_NULL(pgpath)) 401 return pgpath; 402 } 403 404 /* 405 * Loop through priority groups until we find a valid path. 406 * First time we skip PGs marked 'bypassed'. 407 * Second time we only try the ones we skipped, but set 408 * pg_init_delay_retry so we do not hammer controllers. 409 */ 410 do { 411 list_for_each_entry(pg, &m->priority_groups, list) { 412 if (pg->bypassed == !!bypassed) 413 continue; 414 pgpath = choose_path_in_pg(m, pg, nr_bytes); 415 if (!IS_ERR_OR_NULL(pgpath)) { 416 if (!bypassed) 417 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 418 return pgpath; 419 } 420 } 421 } while (bypassed--); 422 423 failed: 424 spin_lock_irqsave(&m->lock, flags); 425 m->current_pgpath = NULL; 426 m->current_pg = NULL; 427 spin_unlock_irqrestore(&m->lock, flags); 428 429 return NULL; 430 } 431 432 /* 433 * dm_report_EIO() is a macro instead of a function to make pr_debug() 434 * report the function name and line number of the function from which 435 * it has been invoked. 436 */ 437 #define dm_report_EIO(m) \ 438 do { \ 439 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 440 \ 441 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 442 dm_device_name(md), \ 443 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 444 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 445 dm_noflush_suspending((m)->ti)); \ 446 } while (0) 447 448 /* 449 * Check whether bios must be queued in the device-mapper core rather 450 * than here in the target. 451 * 452 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 453 * the same value then we are not between multipath_presuspend() 454 * and multipath_resume() calls and we have no need to check 455 * for the DMF_NOFLUSH_SUSPENDING flag. 456 */ 457 static bool __must_push_back(struct multipath *m, unsigned long flags) 458 { 459 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 460 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 461 dm_noflush_suspending(m->ti)); 462 } 463 464 /* 465 * Following functions use READ_ONCE to get atomic access to 466 * all m->flags to avoid taking spinlock 467 */ 468 static bool must_push_back_rq(struct multipath *m) 469 { 470 unsigned long flags = READ_ONCE(m->flags); 471 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 472 } 473 474 static bool must_push_back_bio(struct multipath *m) 475 { 476 unsigned long flags = READ_ONCE(m->flags); 477 return __must_push_back(m, flags); 478 } 479 480 /* 481 * Map cloned requests (request-based multipath) 482 */ 483 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 484 union map_info *map_context, 485 struct request **__clone) 486 { 487 struct multipath *m = ti->private; 488 size_t nr_bytes = blk_rq_bytes(rq); 489 struct pgpath *pgpath; 490 struct block_device *bdev; 491 struct dm_mpath_io *mpio = get_mpio(map_context); 492 struct request_queue *q; 493 struct request *clone; 494 495 /* Do we need to select a new pgpath? */ 496 pgpath = READ_ONCE(m->current_pgpath); 497 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 498 pgpath = choose_pgpath(m, nr_bytes); 499 500 if (!pgpath) { 501 if (must_push_back_rq(m)) 502 return DM_MAPIO_DELAY_REQUEUE; 503 dm_report_EIO(m); /* Failed */ 504 return DM_MAPIO_KILL; 505 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 506 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 507 pg_init_all_paths(m); 508 return DM_MAPIO_DELAY_REQUEUE; 509 } 510 511 mpio->pgpath = pgpath; 512 mpio->nr_bytes = nr_bytes; 513 514 bdev = pgpath->path.dev->bdev; 515 q = bdev_get_queue(bdev); 516 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, 517 BLK_MQ_REQ_NOWAIT); 518 if (IS_ERR(clone)) { 519 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 520 if (blk_queue_dying(q)) { 521 atomic_inc(&m->pg_init_in_progress); 522 activate_or_offline_path(pgpath); 523 return DM_MAPIO_DELAY_REQUEUE; 524 } 525 526 /* 527 * blk-mq's SCHED_RESTART can cover this requeue, so we 528 * needn't deal with it by DELAY_REQUEUE. More importantly, 529 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 530 * get the queue busy feedback (via BLK_STS_RESOURCE), 531 * otherwise I/O merging can suffer. 532 */ 533 return DM_MAPIO_REQUEUE; 534 } 535 clone->bio = clone->biotail = NULL; 536 clone->rq_disk = bdev->bd_disk; 537 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 538 *__clone = clone; 539 540 if (pgpath->pg->ps.type->start_io) 541 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 542 &pgpath->path, 543 nr_bytes); 544 return DM_MAPIO_REMAPPED; 545 } 546 547 static void multipath_release_clone(struct request *clone, 548 union map_info *map_context) 549 { 550 if (unlikely(map_context)) { 551 /* 552 * non-NULL map_context means caller is still map 553 * method; must undo multipath_clone_and_map() 554 */ 555 struct dm_mpath_io *mpio = get_mpio(map_context); 556 struct pgpath *pgpath = mpio->pgpath; 557 558 if (pgpath && pgpath->pg->ps.type->end_io) 559 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 560 &pgpath->path, 561 mpio->nr_bytes); 562 } 563 564 blk_put_request(clone); 565 } 566 567 /* 568 * Map cloned bios (bio-based multipath) 569 */ 570 571 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 572 { 573 struct pgpath *pgpath; 574 unsigned long flags; 575 bool queue_io; 576 577 /* Do we need to select a new pgpath? */ 578 pgpath = READ_ONCE(m->current_pgpath); 579 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 580 if (!pgpath || !queue_io) 581 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 582 583 if ((pgpath && queue_io) || 584 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 585 /* Queue for the daemon to resubmit */ 586 spin_lock_irqsave(&m->lock, flags); 587 bio_list_add(&m->queued_bios, bio); 588 spin_unlock_irqrestore(&m->lock, flags); 589 590 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 591 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 592 pg_init_all_paths(m); 593 else if (!queue_io) 594 queue_work(kmultipathd, &m->process_queued_bios); 595 596 return ERR_PTR(-EAGAIN); 597 } 598 599 return pgpath; 600 } 601 602 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 603 struct dm_mpath_io *mpio) 604 { 605 struct pgpath *pgpath = __map_bio(m, bio); 606 607 if (IS_ERR(pgpath)) 608 return DM_MAPIO_SUBMITTED; 609 610 if (!pgpath) { 611 if (must_push_back_bio(m)) 612 return DM_MAPIO_REQUEUE; 613 dm_report_EIO(m); 614 return DM_MAPIO_KILL; 615 } 616 617 mpio->pgpath = pgpath; 618 619 bio->bi_status = 0; 620 bio_set_dev(bio, pgpath->path.dev->bdev); 621 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 622 623 if (pgpath->pg->ps.type->start_io) 624 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 625 &pgpath->path, 626 mpio->nr_bytes); 627 return DM_MAPIO_REMAPPED; 628 } 629 630 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 631 { 632 struct multipath *m = ti->private; 633 struct dm_mpath_io *mpio = NULL; 634 635 multipath_init_per_bio_data(bio, &mpio); 636 return __multipath_map_bio(m, bio, mpio); 637 } 638 639 static void process_queued_io_list(struct multipath *m) 640 { 641 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 642 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 643 else if (m->queue_mode == DM_TYPE_BIO_BASED) 644 queue_work(kmultipathd, &m->process_queued_bios); 645 } 646 647 static void process_queued_bios(struct work_struct *work) 648 { 649 int r; 650 unsigned long flags; 651 struct bio *bio; 652 struct bio_list bios; 653 struct blk_plug plug; 654 struct multipath *m = 655 container_of(work, struct multipath, process_queued_bios); 656 657 bio_list_init(&bios); 658 659 spin_lock_irqsave(&m->lock, flags); 660 661 if (bio_list_empty(&m->queued_bios)) { 662 spin_unlock_irqrestore(&m->lock, flags); 663 return; 664 } 665 666 bio_list_merge(&bios, &m->queued_bios); 667 bio_list_init(&m->queued_bios); 668 669 spin_unlock_irqrestore(&m->lock, flags); 670 671 blk_start_plug(&plug); 672 while ((bio = bio_list_pop(&bios))) { 673 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 674 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 675 r = __multipath_map_bio(m, bio, mpio); 676 switch (r) { 677 case DM_MAPIO_KILL: 678 bio->bi_status = BLK_STS_IOERR; 679 bio_endio(bio); 680 break; 681 case DM_MAPIO_REQUEUE: 682 bio->bi_status = BLK_STS_DM_REQUEUE; 683 bio_endio(bio); 684 break; 685 case DM_MAPIO_REMAPPED: 686 generic_make_request(bio); 687 break; 688 case DM_MAPIO_SUBMITTED: 689 break; 690 default: 691 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 692 } 693 } 694 blk_finish_plug(&plug); 695 } 696 697 /* 698 * If we run out of usable paths, should we queue I/O or error it? 699 */ 700 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 701 bool save_old_value) 702 { 703 unsigned long flags; 704 705 spin_lock_irqsave(&m->lock, flags); 706 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 707 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 708 (!save_old_value && queue_if_no_path)); 709 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 710 spin_unlock_irqrestore(&m->lock, flags); 711 712 if (!queue_if_no_path) { 713 dm_table_run_md_queue_async(m->ti->table); 714 process_queued_io_list(m); 715 } 716 717 return 0; 718 } 719 720 /* 721 * An event is triggered whenever a path is taken out of use. 722 * Includes path failure and PG bypass. 723 */ 724 static void trigger_event(struct work_struct *work) 725 { 726 struct multipath *m = 727 container_of(work, struct multipath, trigger_event); 728 729 dm_table_event(m->ti->table); 730 } 731 732 /*----------------------------------------------------------------- 733 * Constructor/argument parsing: 734 * <#multipath feature args> [<arg>]* 735 * <#hw_handler args> [hw_handler [<arg>]*] 736 * <#priority groups> 737 * <initial priority group> 738 * [<selector> <#selector args> [<arg>]* 739 * <#paths> <#per-path selector args> 740 * [<path> [<arg>]* ]+ ]+ 741 *---------------------------------------------------------------*/ 742 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 743 struct dm_target *ti) 744 { 745 int r; 746 struct path_selector_type *pst; 747 unsigned ps_argc; 748 749 static const struct dm_arg _args[] = { 750 {0, 1024, "invalid number of path selector args"}, 751 }; 752 753 pst = dm_get_path_selector(dm_shift_arg(as)); 754 if (!pst) { 755 ti->error = "unknown path selector type"; 756 return -EINVAL; 757 } 758 759 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 760 if (r) { 761 dm_put_path_selector(pst); 762 return -EINVAL; 763 } 764 765 r = pst->create(&pg->ps, ps_argc, as->argv); 766 if (r) { 767 dm_put_path_selector(pst); 768 ti->error = "path selector constructor failed"; 769 return r; 770 } 771 772 pg->ps.type = pst; 773 dm_consume_args(as, ps_argc); 774 775 return 0; 776 } 777 778 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 779 const char **attached_handler_name, char **error) 780 { 781 struct request_queue *q = bdev_get_queue(bdev); 782 int r; 783 784 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 785 retain: 786 if (*attached_handler_name) { 787 /* 788 * Clear any hw_handler_params associated with a 789 * handler that isn't already attached. 790 */ 791 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 792 kfree(m->hw_handler_params); 793 m->hw_handler_params = NULL; 794 } 795 796 /* 797 * Reset hw_handler_name to match the attached handler 798 * 799 * NB. This modifies the table line to show the actual 800 * handler instead of the original table passed in. 801 */ 802 kfree(m->hw_handler_name); 803 m->hw_handler_name = *attached_handler_name; 804 *attached_handler_name = NULL; 805 } 806 } 807 808 if (m->hw_handler_name) { 809 r = scsi_dh_attach(q, m->hw_handler_name); 810 if (r == -EBUSY) { 811 char b[BDEVNAME_SIZE]; 812 813 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 814 bdevname(bdev, b)); 815 goto retain; 816 } 817 if (r < 0) { 818 *error = "error attaching hardware handler"; 819 return r; 820 } 821 822 if (m->hw_handler_params) { 823 r = scsi_dh_set_params(q, m->hw_handler_params); 824 if (r < 0) { 825 *error = "unable to set hardware handler parameters"; 826 return r; 827 } 828 } 829 } 830 831 return 0; 832 } 833 834 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 835 struct dm_target *ti) 836 { 837 int r; 838 struct pgpath *p; 839 struct multipath *m = ti->private; 840 struct request_queue *q; 841 const char *attached_handler_name = NULL; 842 843 /* we need at least a path arg */ 844 if (as->argc < 1) { 845 ti->error = "no device given"; 846 return ERR_PTR(-EINVAL); 847 } 848 849 p = alloc_pgpath(); 850 if (!p) 851 return ERR_PTR(-ENOMEM); 852 853 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 854 &p->path.dev); 855 if (r) { 856 ti->error = "error getting device"; 857 goto bad; 858 } 859 860 q = bdev_get_queue(p->path.dev->bdev); 861 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 862 if (attached_handler_name || m->hw_handler_name) { 863 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 864 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 865 kfree(attached_handler_name); 866 if (r) { 867 dm_put_device(ti, p->path.dev); 868 goto bad; 869 } 870 } 871 872 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 873 if (r) { 874 dm_put_device(ti, p->path.dev); 875 goto bad; 876 } 877 878 return p; 879 bad: 880 free_pgpath(p); 881 return ERR_PTR(r); 882 } 883 884 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 885 struct multipath *m) 886 { 887 static const struct dm_arg _args[] = { 888 {1, 1024, "invalid number of paths"}, 889 {0, 1024, "invalid number of selector args"} 890 }; 891 892 int r; 893 unsigned i, nr_selector_args, nr_args; 894 struct priority_group *pg; 895 struct dm_target *ti = m->ti; 896 897 if (as->argc < 2) { 898 as->argc = 0; 899 ti->error = "not enough priority group arguments"; 900 return ERR_PTR(-EINVAL); 901 } 902 903 pg = alloc_priority_group(); 904 if (!pg) { 905 ti->error = "couldn't allocate priority group"; 906 return ERR_PTR(-ENOMEM); 907 } 908 pg->m = m; 909 910 r = parse_path_selector(as, pg, ti); 911 if (r) 912 goto bad; 913 914 /* 915 * read the paths 916 */ 917 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 918 if (r) 919 goto bad; 920 921 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 922 if (r) 923 goto bad; 924 925 nr_args = 1 + nr_selector_args; 926 for (i = 0; i < pg->nr_pgpaths; i++) { 927 struct pgpath *pgpath; 928 struct dm_arg_set path_args; 929 930 if (as->argc < nr_args) { 931 ti->error = "not enough path parameters"; 932 r = -EINVAL; 933 goto bad; 934 } 935 936 path_args.argc = nr_args; 937 path_args.argv = as->argv; 938 939 pgpath = parse_path(&path_args, &pg->ps, ti); 940 if (IS_ERR(pgpath)) { 941 r = PTR_ERR(pgpath); 942 goto bad; 943 } 944 945 pgpath->pg = pg; 946 list_add_tail(&pgpath->list, &pg->pgpaths); 947 dm_consume_args(as, nr_args); 948 } 949 950 return pg; 951 952 bad: 953 free_priority_group(pg, ti); 954 return ERR_PTR(r); 955 } 956 957 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 958 { 959 unsigned hw_argc; 960 int ret; 961 struct dm_target *ti = m->ti; 962 963 static const struct dm_arg _args[] = { 964 {0, 1024, "invalid number of hardware handler args"}, 965 }; 966 967 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 968 return -EINVAL; 969 970 if (!hw_argc) 971 return 0; 972 973 if (m->queue_mode == DM_TYPE_BIO_BASED) { 974 dm_consume_args(as, hw_argc); 975 DMERR("bio-based multipath doesn't allow hardware handler args"); 976 return 0; 977 } 978 979 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 980 if (!m->hw_handler_name) 981 return -EINVAL; 982 983 if (hw_argc > 1) { 984 char *p; 985 int i, j, len = 4; 986 987 for (i = 0; i <= hw_argc - 2; i++) 988 len += strlen(as->argv[i]) + 1; 989 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 990 if (!p) { 991 ti->error = "memory allocation failed"; 992 ret = -ENOMEM; 993 goto fail; 994 } 995 j = sprintf(p, "%d", hw_argc - 1); 996 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 997 j = sprintf(p, "%s", as->argv[i]); 998 } 999 dm_consume_args(as, hw_argc - 1); 1000 1001 return 0; 1002 fail: 1003 kfree(m->hw_handler_name); 1004 m->hw_handler_name = NULL; 1005 return ret; 1006 } 1007 1008 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1009 { 1010 int r; 1011 unsigned argc; 1012 struct dm_target *ti = m->ti; 1013 const char *arg_name; 1014 1015 static const struct dm_arg _args[] = { 1016 {0, 8, "invalid number of feature args"}, 1017 {1, 50, "pg_init_retries must be between 1 and 50"}, 1018 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1019 }; 1020 1021 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1022 if (r) 1023 return -EINVAL; 1024 1025 if (!argc) 1026 return 0; 1027 1028 do { 1029 arg_name = dm_shift_arg(as); 1030 argc--; 1031 1032 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1033 r = queue_if_no_path(m, true, false); 1034 continue; 1035 } 1036 1037 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1038 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1039 continue; 1040 } 1041 1042 if (!strcasecmp(arg_name, "pg_init_retries") && 1043 (argc >= 1)) { 1044 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1045 argc--; 1046 continue; 1047 } 1048 1049 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1050 (argc >= 1)) { 1051 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1052 argc--; 1053 continue; 1054 } 1055 1056 if (!strcasecmp(arg_name, "queue_mode") && 1057 (argc >= 1)) { 1058 const char *queue_mode_name = dm_shift_arg(as); 1059 1060 if (!strcasecmp(queue_mode_name, "bio")) 1061 m->queue_mode = DM_TYPE_BIO_BASED; 1062 else if (!strcasecmp(queue_mode_name, "rq") || 1063 !strcasecmp(queue_mode_name, "mq")) 1064 m->queue_mode = DM_TYPE_REQUEST_BASED; 1065 else { 1066 ti->error = "Unknown 'queue_mode' requested"; 1067 r = -EINVAL; 1068 } 1069 argc--; 1070 continue; 1071 } 1072 1073 ti->error = "Unrecognised multipath feature request"; 1074 r = -EINVAL; 1075 } while (argc && !r); 1076 1077 return r; 1078 } 1079 1080 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1081 { 1082 /* target arguments */ 1083 static const struct dm_arg _args[] = { 1084 {0, 1024, "invalid number of priority groups"}, 1085 {0, 1024, "invalid initial priority group number"}, 1086 }; 1087 1088 int r; 1089 struct multipath *m; 1090 struct dm_arg_set as; 1091 unsigned pg_count = 0; 1092 unsigned next_pg_num; 1093 1094 as.argc = argc; 1095 as.argv = argv; 1096 1097 m = alloc_multipath(ti); 1098 if (!m) { 1099 ti->error = "can't allocate multipath"; 1100 return -EINVAL; 1101 } 1102 1103 r = parse_features(&as, m); 1104 if (r) 1105 goto bad; 1106 1107 r = alloc_multipath_stage2(ti, m); 1108 if (r) 1109 goto bad; 1110 1111 r = parse_hw_handler(&as, m); 1112 if (r) 1113 goto bad; 1114 1115 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1116 if (r) 1117 goto bad; 1118 1119 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1120 if (r) 1121 goto bad; 1122 1123 if ((!m->nr_priority_groups && next_pg_num) || 1124 (m->nr_priority_groups && !next_pg_num)) { 1125 ti->error = "invalid initial priority group"; 1126 r = -EINVAL; 1127 goto bad; 1128 } 1129 1130 /* parse the priority groups */ 1131 while (as.argc) { 1132 struct priority_group *pg; 1133 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1134 1135 pg = parse_priority_group(&as, m); 1136 if (IS_ERR(pg)) { 1137 r = PTR_ERR(pg); 1138 goto bad; 1139 } 1140 1141 nr_valid_paths += pg->nr_pgpaths; 1142 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1143 1144 list_add_tail(&pg->list, &m->priority_groups); 1145 pg_count++; 1146 pg->pg_num = pg_count; 1147 if (!--next_pg_num) 1148 m->next_pg = pg; 1149 } 1150 1151 if (pg_count != m->nr_priority_groups) { 1152 ti->error = "priority group count mismatch"; 1153 r = -EINVAL; 1154 goto bad; 1155 } 1156 1157 ti->num_flush_bios = 1; 1158 ti->num_discard_bios = 1; 1159 ti->num_write_same_bios = 1; 1160 ti->num_write_zeroes_bios = 1; 1161 if (m->queue_mode == DM_TYPE_BIO_BASED) 1162 ti->per_io_data_size = multipath_per_bio_data_size(); 1163 else 1164 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1165 1166 return 0; 1167 1168 bad: 1169 free_multipath(m); 1170 return r; 1171 } 1172 1173 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1174 { 1175 DEFINE_WAIT(wait); 1176 1177 while (1) { 1178 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1179 1180 if (!atomic_read(&m->pg_init_in_progress)) 1181 break; 1182 1183 io_schedule(); 1184 } 1185 finish_wait(&m->pg_init_wait, &wait); 1186 } 1187 1188 static void flush_multipath_work(struct multipath *m) 1189 { 1190 if (m->hw_handler_name) { 1191 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1192 smp_mb__after_atomic(); 1193 1194 if (atomic_read(&m->pg_init_in_progress)) 1195 flush_workqueue(kmpath_handlerd); 1196 multipath_wait_for_pg_init_completion(m); 1197 1198 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1199 smp_mb__after_atomic(); 1200 } 1201 1202 if (m->queue_mode == DM_TYPE_BIO_BASED) 1203 flush_work(&m->process_queued_bios); 1204 flush_work(&m->trigger_event); 1205 } 1206 1207 static void multipath_dtr(struct dm_target *ti) 1208 { 1209 struct multipath *m = ti->private; 1210 1211 flush_multipath_work(m); 1212 free_multipath(m); 1213 } 1214 1215 /* 1216 * Take a path out of use. 1217 */ 1218 static int fail_path(struct pgpath *pgpath) 1219 { 1220 unsigned long flags; 1221 struct multipath *m = pgpath->pg->m; 1222 1223 spin_lock_irqsave(&m->lock, flags); 1224 1225 if (!pgpath->is_active) 1226 goto out; 1227 1228 DMWARN("Failing path %s.", pgpath->path.dev->name); 1229 1230 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1231 pgpath->is_active = false; 1232 pgpath->fail_count++; 1233 1234 atomic_dec(&m->nr_valid_paths); 1235 1236 if (pgpath == m->current_pgpath) 1237 m->current_pgpath = NULL; 1238 1239 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1240 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1241 1242 schedule_work(&m->trigger_event); 1243 1244 out: 1245 spin_unlock_irqrestore(&m->lock, flags); 1246 1247 return 0; 1248 } 1249 1250 /* 1251 * Reinstate a previously-failed path 1252 */ 1253 static int reinstate_path(struct pgpath *pgpath) 1254 { 1255 int r = 0, run_queue = 0; 1256 unsigned long flags; 1257 struct multipath *m = pgpath->pg->m; 1258 unsigned nr_valid_paths; 1259 1260 spin_lock_irqsave(&m->lock, flags); 1261 1262 if (pgpath->is_active) 1263 goto out; 1264 1265 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1266 1267 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1268 if (r) 1269 goto out; 1270 1271 pgpath->is_active = true; 1272 1273 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1274 if (nr_valid_paths == 1) { 1275 m->current_pgpath = NULL; 1276 run_queue = 1; 1277 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1278 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1279 atomic_inc(&m->pg_init_in_progress); 1280 } 1281 1282 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1283 pgpath->path.dev->name, nr_valid_paths); 1284 1285 schedule_work(&m->trigger_event); 1286 1287 out: 1288 spin_unlock_irqrestore(&m->lock, flags); 1289 if (run_queue) { 1290 dm_table_run_md_queue_async(m->ti->table); 1291 process_queued_io_list(m); 1292 } 1293 1294 return r; 1295 } 1296 1297 /* 1298 * Fail or reinstate all paths that match the provided struct dm_dev. 1299 */ 1300 static int action_dev(struct multipath *m, struct dm_dev *dev, 1301 action_fn action) 1302 { 1303 int r = -EINVAL; 1304 struct pgpath *pgpath; 1305 struct priority_group *pg; 1306 1307 list_for_each_entry(pg, &m->priority_groups, list) { 1308 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1309 if (pgpath->path.dev == dev) 1310 r = action(pgpath); 1311 } 1312 } 1313 1314 return r; 1315 } 1316 1317 /* 1318 * Temporarily try to avoid having to use the specified PG 1319 */ 1320 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1321 bool bypassed) 1322 { 1323 unsigned long flags; 1324 1325 spin_lock_irqsave(&m->lock, flags); 1326 1327 pg->bypassed = bypassed; 1328 m->current_pgpath = NULL; 1329 m->current_pg = NULL; 1330 1331 spin_unlock_irqrestore(&m->lock, flags); 1332 1333 schedule_work(&m->trigger_event); 1334 } 1335 1336 /* 1337 * Switch to using the specified PG from the next I/O that gets mapped 1338 */ 1339 static int switch_pg_num(struct multipath *m, const char *pgstr) 1340 { 1341 struct priority_group *pg; 1342 unsigned pgnum; 1343 unsigned long flags; 1344 char dummy; 1345 1346 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1347 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1348 DMWARN("invalid PG number supplied to switch_pg_num"); 1349 return -EINVAL; 1350 } 1351 1352 spin_lock_irqsave(&m->lock, flags); 1353 list_for_each_entry(pg, &m->priority_groups, list) { 1354 pg->bypassed = false; 1355 if (--pgnum) 1356 continue; 1357 1358 m->current_pgpath = NULL; 1359 m->current_pg = NULL; 1360 m->next_pg = pg; 1361 } 1362 spin_unlock_irqrestore(&m->lock, flags); 1363 1364 schedule_work(&m->trigger_event); 1365 return 0; 1366 } 1367 1368 /* 1369 * Set/clear bypassed status of a PG. 1370 * PGs are numbered upwards from 1 in the order they were declared. 1371 */ 1372 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1373 { 1374 struct priority_group *pg; 1375 unsigned pgnum; 1376 char dummy; 1377 1378 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1379 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1380 DMWARN("invalid PG number supplied to bypass_pg"); 1381 return -EINVAL; 1382 } 1383 1384 list_for_each_entry(pg, &m->priority_groups, list) { 1385 if (!--pgnum) 1386 break; 1387 } 1388 1389 bypass_pg(m, pg, bypassed); 1390 return 0; 1391 } 1392 1393 /* 1394 * Should we retry pg_init immediately? 1395 */ 1396 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1397 { 1398 unsigned long flags; 1399 bool limit_reached = false; 1400 1401 spin_lock_irqsave(&m->lock, flags); 1402 1403 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1404 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1405 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1406 else 1407 limit_reached = true; 1408 1409 spin_unlock_irqrestore(&m->lock, flags); 1410 1411 return limit_reached; 1412 } 1413 1414 static void pg_init_done(void *data, int errors) 1415 { 1416 struct pgpath *pgpath = data; 1417 struct priority_group *pg = pgpath->pg; 1418 struct multipath *m = pg->m; 1419 unsigned long flags; 1420 bool delay_retry = false; 1421 1422 /* device or driver problems */ 1423 switch (errors) { 1424 case SCSI_DH_OK: 1425 break; 1426 case SCSI_DH_NOSYS: 1427 if (!m->hw_handler_name) { 1428 errors = 0; 1429 break; 1430 } 1431 DMERR("Could not failover the device: Handler scsi_dh_%s " 1432 "Error %d.", m->hw_handler_name, errors); 1433 /* 1434 * Fail path for now, so we do not ping pong 1435 */ 1436 fail_path(pgpath); 1437 break; 1438 case SCSI_DH_DEV_TEMP_BUSY: 1439 /* 1440 * Probably doing something like FW upgrade on the 1441 * controller so try the other pg. 1442 */ 1443 bypass_pg(m, pg, true); 1444 break; 1445 case SCSI_DH_RETRY: 1446 /* Wait before retrying. */ 1447 delay_retry = 1; 1448 /* fall through */ 1449 case SCSI_DH_IMM_RETRY: 1450 case SCSI_DH_RES_TEMP_UNAVAIL: 1451 if (pg_init_limit_reached(m, pgpath)) 1452 fail_path(pgpath); 1453 errors = 0; 1454 break; 1455 case SCSI_DH_DEV_OFFLINED: 1456 default: 1457 /* 1458 * We probably do not want to fail the path for a device 1459 * error, but this is what the old dm did. In future 1460 * patches we can do more advanced handling. 1461 */ 1462 fail_path(pgpath); 1463 } 1464 1465 spin_lock_irqsave(&m->lock, flags); 1466 if (errors) { 1467 if (pgpath == m->current_pgpath) { 1468 DMERR("Could not failover device. Error %d.", errors); 1469 m->current_pgpath = NULL; 1470 m->current_pg = NULL; 1471 } 1472 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1473 pg->bypassed = false; 1474 1475 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1476 /* Activations of other paths are still on going */ 1477 goto out; 1478 1479 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1480 if (delay_retry) 1481 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1482 else 1483 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1484 1485 if (__pg_init_all_paths(m)) 1486 goto out; 1487 } 1488 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1489 1490 process_queued_io_list(m); 1491 1492 /* 1493 * Wake up any thread waiting to suspend. 1494 */ 1495 wake_up(&m->pg_init_wait); 1496 1497 out: 1498 spin_unlock_irqrestore(&m->lock, flags); 1499 } 1500 1501 static void activate_or_offline_path(struct pgpath *pgpath) 1502 { 1503 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1504 1505 if (pgpath->is_active && !blk_queue_dying(q)) 1506 scsi_dh_activate(q, pg_init_done, pgpath); 1507 else 1508 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1509 } 1510 1511 static void activate_path_work(struct work_struct *work) 1512 { 1513 struct pgpath *pgpath = 1514 container_of(work, struct pgpath, activate_path.work); 1515 1516 activate_or_offline_path(pgpath); 1517 } 1518 1519 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1520 blk_status_t error, union map_info *map_context) 1521 { 1522 struct dm_mpath_io *mpio = get_mpio(map_context); 1523 struct pgpath *pgpath = mpio->pgpath; 1524 int r = DM_ENDIO_DONE; 1525 1526 /* 1527 * We don't queue any clone request inside the multipath target 1528 * during end I/O handling, since those clone requests don't have 1529 * bio clones. If we queue them inside the multipath target, 1530 * we need to make bio clones, that requires memory allocation. 1531 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1532 * don't have bio clones.) 1533 * Instead of queueing the clone request here, we queue the original 1534 * request into dm core, which will remake a clone request and 1535 * clone bios for it and resubmit it later. 1536 */ 1537 if (error && blk_path_error(error)) { 1538 struct multipath *m = ti->private; 1539 1540 if (error == BLK_STS_RESOURCE) 1541 r = DM_ENDIO_DELAY_REQUEUE; 1542 else 1543 r = DM_ENDIO_REQUEUE; 1544 1545 if (pgpath) 1546 fail_path(pgpath); 1547 1548 if (atomic_read(&m->nr_valid_paths) == 0 && 1549 !must_push_back_rq(m)) { 1550 if (error == BLK_STS_IOERR) 1551 dm_report_EIO(m); 1552 /* complete with the original error */ 1553 r = DM_ENDIO_DONE; 1554 } 1555 } 1556 1557 if (pgpath) { 1558 struct path_selector *ps = &pgpath->pg->ps; 1559 1560 if (ps->type->end_io) 1561 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1562 } 1563 1564 return r; 1565 } 1566 1567 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1568 blk_status_t *error) 1569 { 1570 struct multipath *m = ti->private; 1571 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1572 struct pgpath *pgpath = mpio->pgpath; 1573 unsigned long flags; 1574 int r = DM_ENDIO_DONE; 1575 1576 if (!*error || !blk_path_error(*error)) 1577 goto done; 1578 1579 if (pgpath) 1580 fail_path(pgpath); 1581 1582 if (atomic_read(&m->nr_valid_paths) == 0 && 1583 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1584 if (must_push_back_bio(m)) { 1585 r = DM_ENDIO_REQUEUE; 1586 } else { 1587 dm_report_EIO(m); 1588 *error = BLK_STS_IOERR; 1589 } 1590 goto done; 1591 } 1592 1593 spin_lock_irqsave(&m->lock, flags); 1594 bio_list_add(&m->queued_bios, clone); 1595 spin_unlock_irqrestore(&m->lock, flags); 1596 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1597 queue_work(kmultipathd, &m->process_queued_bios); 1598 1599 r = DM_ENDIO_INCOMPLETE; 1600 done: 1601 if (pgpath) { 1602 struct path_selector *ps = &pgpath->pg->ps; 1603 1604 if (ps->type->end_io) 1605 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1606 } 1607 1608 return r; 1609 } 1610 1611 /* 1612 * Suspend can't complete until all the I/O is processed so if 1613 * the last path fails we must error any remaining I/O. 1614 * Note that if the freeze_bdev fails while suspending, the 1615 * queue_if_no_path state is lost - userspace should reset it. 1616 */ 1617 static void multipath_presuspend(struct dm_target *ti) 1618 { 1619 struct multipath *m = ti->private; 1620 1621 queue_if_no_path(m, false, true); 1622 } 1623 1624 static void multipath_postsuspend(struct dm_target *ti) 1625 { 1626 struct multipath *m = ti->private; 1627 1628 mutex_lock(&m->work_mutex); 1629 flush_multipath_work(m); 1630 mutex_unlock(&m->work_mutex); 1631 } 1632 1633 /* 1634 * Restore the queue_if_no_path setting. 1635 */ 1636 static void multipath_resume(struct dm_target *ti) 1637 { 1638 struct multipath *m = ti->private; 1639 unsigned long flags; 1640 1641 spin_lock_irqsave(&m->lock, flags); 1642 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1643 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1644 spin_unlock_irqrestore(&m->lock, flags); 1645 } 1646 1647 /* 1648 * Info output has the following format: 1649 * num_multipath_feature_args [multipath_feature_args]* 1650 * num_handler_status_args [handler_status_args]* 1651 * num_groups init_group_number 1652 * [A|D|E num_ps_status_args [ps_status_args]* 1653 * num_paths num_selector_args 1654 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1655 * 1656 * Table output has the following format (identical to the constructor string): 1657 * num_feature_args [features_args]* 1658 * num_handler_args hw_handler [hw_handler_args]* 1659 * num_groups init_group_number 1660 * [priority selector-name num_ps_args [ps_args]* 1661 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1662 */ 1663 static void multipath_status(struct dm_target *ti, status_type_t type, 1664 unsigned status_flags, char *result, unsigned maxlen) 1665 { 1666 int sz = 0; 1667 unsigned long flags; 1668 struct multipath *m = ti->private; 1669 struct priority_group *pg; 1670 struct pgpath *p; 1671 unsigned pg_num; 1672 char state; 1673 1674 spin_lock_irqsave(&m->lock, flags); 1675 1676 /* Features */ 1677 if (type == STATUSTYPE_INFO) 1678 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1679 atomic_read(&m->pg_init_count)); 1680 else { 1681 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1682 (m->pg_init_retries > 0) * 2 + 1683 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1684 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1685 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1686 1687 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1688 DMEMIT("queue_if_no_path "); 1689 if (m->pg_init_retries) 1690 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1691 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1692 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1693 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1694 DMEMIT("retain_attached_hw_handler "); 1695 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1696 switch(m->queue_mode) { 1697 case DM_TYPE_BIO_BASED: 1698 DMEMIT("queue_mode bio "); 1699 break; 1700 default: 1701 WARN_ON_ONCE(true); 1702 break; 1703 } 1704 } 1705 } 1706 1707 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1708 DMEMIT("0 "); 1709 else 1710 DMEMIT("1 %s ", m->hw_handler_name); 1711 1712 DMEMIT("%u ", m->nr_priority_groups); 1713 1714 if (m->next_pg) 1715 pg_num = m->next_pg->pg_num; 1716 else if (m->current_pg) 1717 pg_num = m->current_pg->pg_num; 1718 else 1719 pg_num = (m->nr_priority_groups ? 1 : 0); 1720 1721 DMEMIT("%u ", pg_num); 1722 1723 switch (type) { 1724 case STATUSTYPE_INFO: 1725 list_for_each_entry(pg, &m->priority_groups, list) { 1726 if (pg->bypassed) 1727 state = 'D'; /* Disabled */ 1728 else if (pg == m->current_pg) 1729 state = 'A'; /* Currently Active */ 1730 else 1731 state = 'E'; /* Enabled */ 1732 1733 DMEMIT("%c ", state); 1734 1735 if (pg->ps.type->status) 1736 sz += pg->ps.type->status(&pg->ps, NULL, type, 1737 result + sz, 1738 maxlen - sz); 1739 else 1740 DMEMIT("0 "); 1741 1742 DMEMIT("%u %u ", pg->nr_pgpaths, 1743 pg->ps.type->info_args); 1744 1745 list_for_each_entry(p, &pg->pgpaths, list) { 1746 DMEMIT("%s %s %u ", p->path.dev->name, 1747 p->is_active ? "A" : "F", 1748 p->fail_count); 1749 if (pg->ps.type->status) 1750 sz += pg->ps.type->status(&pg->ps, 1751 &p->path, type, result + sz, 1752 maxlen - sz); 1753 } 1754 } 1755 break; 1756 1757 case STATUSTYPE_TABLE: 1758 list_for_each_entry(pg, &m->priority_groups, list) { 1759 DMEMIT("%s ", pg->ps.type->name); 1760 1761 if (pg->ps.type->status) 1762 sz += pg->ps.type->status(&pg->ps, NULL, type, 1763 result + sz, 1764 maxlen - sz); 1765 else 1766 DMEMIT("0 "); 1767 1768 DMEMIT("%u %u ", pg->nr_pgpaths, 1769 pg->ps.type->table_args); 1770 1771 list_for_each_entry(p, &pg->pgpaths, list) { 1772 DMEMIT("%s ", p->path.dev->name); 1773 if (pg->ps.type->status) 1774 sz += pg->ps.type->status(&pg->ps, 1775 &p->path, type, result + sz, 1776 maxlen - sz); 1777 } 1778 } 1779 break; 1780 } 1781 1782 spin_unlock_irqrestore(&m->lock, flags); 1783 } 1784 1785 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1786 char *result, unsigned maxlen) 1787 { 1788 int r = -EINVAL; 1789 struct dm_dev *dev; 1790 struct multipath *m = ti->private; 1791 action_fn action; 1792 1793 mutex_lock(&m->work_mutex); 1794 1795 if (dm_suspended(ti)) { 1796 r = -EBUSY; 1797 goto out; 1798 } 1799 1800 if (argc == 1) { 1801 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1802 r = queue_if_no_path(m, true, false); 1803 goto out; 1804 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1805 r = queue_if_no_path(m, false, false); 1806 goto out; 1807 } 1808 } 1809 1810 if (argc != 2) { 1811 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1812 goto out; 1813 } 1814 1815 if (!strcasecmp(argv[0], "disable_group")) { 1816 r = bypass_pg_num(m, argv[1], true); 1817 goto out; 1818 } else if (!strcasecmp(argv[0], "enable_group")) { 1819 r = bypass_pg_num(m, argv[1], false); 1820 goto out; 1821 } else if (!strcasecmp(argv[0], "switch_group")) { 1822 r = switch_pg_num(m, argv[1]); 1823 goto out; 1824 } else if (!strcasecmp(argv[0], "reinstate_path")) 1825 action = reinstate_path; 1826 else if (!strcasecmp(argv[0], "fail_path")) 1827 action = fail_path; 1828 else { 1829 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1830 goto out; 1831 } 1832 1833 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1834 if (r) { 1835 DMWARN("message: error getting device %s", 1836 argv[1]); 1837 goto out; 1838 } 1839 1840 r = action_dev(m, dev, action); 1841 1842 dm_put_device(ti, dev); 1843 1844 out: 1845 mutex_unlock(&m->work_mutex); 1846 return r; 1847 } 1848 1849 static int multipath_prepare_ioctl(struct dm_target *ti, 1850 struct block_device **bdev) 1851 { 1852 struct multipath *m = ti->private; 1853 struct pgpath *current_pgpath; 1854 int r; 1855 1856 current_pgpath = READ_ONCE(m->current_pgpath); 1857 if (!current_pgpath) 1858 current_pgpath = choose_pgpath(m, 0); 1859 1860 if (current_pgpath) { 1861 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1862 *bdev = current_pgpath->path.dev->bdev; 1863 r = 0; 1864 } else { 1865 /* pg_init has not started or completed */ 1866 r = -ENOTCONN; 1867 } 1868 } else { 1869 /* No path is available */ 1870 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1871 r = -ENOTCONN; 1872 else 1873 r = -EIO; 1874 } 1875 1876 if (r == -ENOTCONN) { 1877 if (!READ_ONCE(m->current_pg)) { 1878 /* Path status changed, redo selection */ 1879 (void) choose_pgpath(m, 0); 1880 } 1881 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1882 pg_init_all_paths(m); 1883 dm_table_run_md_queue_async(m->ti->table); 1884 process_queued_io_list(m); 1885 } 1886 1887 /* 1888 * Only pass ioctls through if the device sizes match exactly. 1889 */ 1890 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1891 return 1; 1892 return r; 1893 } 1894 1895 static int multipath_iterate_devices(struct dm_target *ti, 1896 iterate_devices_callout_fn fn, void *data) 1897 { 1898 struct multipath *m = ti->private; 1899 struct priority_group *pg; 1900 struct pgpath *p; 1901 int ret = 0; 1902 1903 list_for_each_entry(pg, &m->priority_groups, list) { 1904 list_for_each_entry(p, &pg->pgpaths, list) { 1905 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1906 if (ret) 1907 goto out; 1908 } 1909 } 1910 1911 out: 1912 return ret; 1913 } 1914 1915 static int pgpath_busy(struct pgpath *pgpath) 1916 { 1917 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1918 1919 return blk_lld_busy(q); 1920 } 1921 1922 /* 1923 * We return "busy", only when we can map I/Os but underlying devices 1924 * are busy (so even if we map I/Os now, the I/Os will wait on 1925 * the underlying queue). 1926 * In other words, if we want to kill I/Os or queue them inside us 1927 * due to map unavailability, we don't return "busy". Otherwise, 1928 * dm core won't give us the I/Os and we can't do what we want. 1929 */ 1930 static int multipath_busy(struct dm_target *ti) 1931 { 1932 bool busy = false, has_active = false; 1933 struct multipath *m = ti->private; 1934 struct priority_group *pg, *next_pg; 1935 struct pgpath *pgpath; 1936 1937 /* pg_init in progress */ 1938 if (atomic_read(&m->pg_init_in_progress)) 1939 return true; 1940 1941 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1942 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1943 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 1944 1945 /* Guess which priority_group will be used at next mapping time */ 1946 pg = READ_ONCE(m->current_pg); 1947 next_pg = READ_ONCE(m->next_pg); 1948 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1949 pg = next_pg; 1950 1951 if (!pg) { 1952 /* 1953 * We don't know which pg will be used at next mapping time. 1954 * We don't call choose_pgpath() here to avoid to trigger 1955 * pg_init just by busy checking. 1956 * So we don't know whether underlying devices we will be using 1957 * at next mapping time are busy or not. Just try mapping. 1958 */ 1959 return busy; 1960 } 1961 1962 /* 1963 * If there is one non-busy active path at least, the path selector 1964 * will be able to select it. So we consider such a pg as not busy. 1965 */ 1966 busy = true; 1967 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1968 if (pgpath->is_active) { 1969 has_active = true; 1970 if (!pgpath_busy(pgpath)) { 1971 busy = false; 1972 break; 1973 } 1974 } 1975 } 1976 1977 if (!has_active) { 1978 /* 1979 * No active path in this pg, so this pg won't be used and 1980 * the current_pg will be changed at next mapping time. 1981 * We need to try mapping to determine it. 1982 */ 1983 busy = false; 1984 } 1985 1986 return busy; 1987 } 1988 1989 /*----------------------------------------------------------------- 1990 * Module setup 1991 *---------------------------------------------------------------*/ 1992 static struct target_type multipath_target = { 1993 .name = "multipath", 1994 .version = {1, 13, 0}, 1995 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 1996 DM_TARGET_PASSES_INTEGRITY, 1997 .module = THIS_MODULE, 1998 .ctr = multipath_ctr, 1999 .dtr = multipath_dtr, 2000 .clone_and_map_rq = multipath_clone_and_map, 2001 .release_clone_rq = multipath_release_clone, 2002 .rq_end_io = multipath_end_io, 2003 .map = multipath_map_bio, 2004 .end_io = multipath_end_io_bio, 2005 .presuspend = multipath_presuspend, 2006 .postsuspend = multipath_postsuspend, 2007 .resume = multipath_resume, 2008 .status = multipath_status, 2009 .message = multipath_message, 2010 .prepare_ioctl = multipath_prepare_ioctl, 2011 .iterate_devices = multipath_iterate_devices, 2012 .busy = multipath_busy, 2013 }; 2014 2015 static int __init dm_multipath_init(void) 2016 { 2017 int r; 2018 2019 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2020 if (!kmultipathd) { 2021 DMERR("failed to create workqueue kmpathd"); 2022 r = -ENOMEM; 2023 goto bad_alloc_kmultipathd; 2024 } 2025 2026 /* 2027 * A separate workqueue is used to handle the device handlers 2028 * to avoid overloading existing workqueue. Overloading the 2029 * old workqueue would also create a bottleneck in the 2030 * path of the storage hardware device activation. 2031 */ 2032 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2033 WQ_MEM_RECLAIM); 2034 if (!kmpath_handlerd) { 2035 DMERR("failed to create workqueue kmpath_handlerd"); 2036 r = -ENOMEM; 2037 goto bad_alloc_kmpath_handlerd; 2038 } 2039 2040 r = dm_register_target(&multipath_target); 2041 if (r < 0) { 2042 DMERR("request-based register failed %d", r); 2043 r = -EINVAL; 2044 goto bad_register_target; 2045 } 2046 2047 return 0; 2048 2049 bad_register_target: 2050 destroy_workqueue(kmpath_handlerd); 2051 bad_alloc_kmpath_handlerd: 2052 destroy_workqueue(kmultipathd); 2053 bad_alloc_kmultipathd: 2054 return r; 2055 } 2056 2057 static void __exit dm_multipath_exit(void) 2058 { 2059 destroy_workqueue(kmpath_handlerd); 2060 destroy_workqueue(kmultipathd); 2061 2062 dm_unregister_target(&multipath_target); 2063 } 2064 2065 module_init(dm_multipath_init); 2066 module_exit(dm_multipath_exit); 2067 2068 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2069 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2070 MODULE_LICENSE("GPL"); 2071