xref: /openbmc/linux/drivers/md/dm-mpath.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		m->queue_mode = DM_TYPE_REQUEST_BASED;
207 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
208 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
209 		/*
210 		 * bio-based doesn't support any direct scsi_dh management;
211 		 * it just discovers if a scsi_dh is attached.
212 		 */
213 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
214 	}
215 
216 	dm_table_set_type(ti->table, m->queue_mode);
217 
218 	/*
219 	 * Init fields that are only used when a scsi_dh is attached
220 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
221 	 */
222 	set_bit(MPATHF_QUEUE_IO, &m->flags);
223 	atomic_set(&m->pg_init_in_progress, 0);
224 	atomic_set(&m->pg_init_count, 0);
225 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
226 	init_waitqueue_head(&m->pg_init_wait);
227 
228 	return 0;
229 }
230 
231 static void free_multipath(struct multipath *m)
232 {
233 	struct priority_group *pg, *tmp;
234 
235 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
236 		list_del(&pg->list);
237 		free_priority_group(pg, m->ti);
238 	}
239 
240 	kfree(m->hw_handler_name);
241 	kfree(m->hw_handler_params);
242 	mutex_destroy(&m->work_mutex);
243 	kfree(m);
244 }
245 
246 static struct dm_mpath_io *get_mpio(union map_info *info)
247 {
248 	return info->ptr;
249 }
250 
251 static size_t multipath_per_bio_data_size(void)
252 {
253 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
254 }
255 
256 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
257 {
258 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
259 }
260 
261 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
262 {
263 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
264 	void *bio_details = mpio + 1;
265 	return bio_details;
266 }
267 
268 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
269 {
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
272 
273 	mpio->nr_bytes = bio->bi_iter.bi_size;
274 	mpio->pgpath = NULL;
275 	*mpio_p = mpio;
276 
277 	dm_bio_record(bio_details, bio);
278 }
279 
280 /*-----------------------------------------------
281  * Path selection
282  *-----------------------------------------------*/
283 
284 static int __pg_init_all_paths(struct multipath *m)
285 {
286 	struct pgpath *pgpath;
287 	unsigned long pg_init_delay = 0;
288 
289 	lockdep_assert_held(&m->lock);
290 
291 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
292 		return 0;
293 
294 	atomic_inc(&m->pg_init_count);
295 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
296 
297 	/* Check here to reset pg_init_required */
298 	if (!m->current_pg)
299 		return 0;
300 
301 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
302 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
303 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
304 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
305 		/* Skip failed paths */
306 		if (!pgpath->is_active)
307 			continue;
308 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
309 				       pg_init_delay))
310 			atomic_inc(&m->pg_init_in_progress);
311 	}
312 	return atomic_read(&m->pg_init_in_progress);
313 }
314 
315 static int pg_init_all_paths(struct multipath *m)
316 {
317 	int ret;
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&m->lock, flags);
321 	ret = __pg_init_all_paths(m);
322 	spin_unlock_irqrestore(&m->lock, flags);
323 
324 	return ret;
325 }
326 
327 static void __switch_pg(struct multipath *m, struct priority_group *pg)
328 {
329 	m->current_pg = pg;
330 
331 	/* Must we initialise the PG first, and queue I/O till it's ready? */
332 	if (m->hw_handler_name) {
333 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
334 		set_bit(MPATHF_QUEUE_IO, &m->flags);
335 	} else {
336 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
337 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
338 	}
339 
340 	atomic_set(&m->pg_init_count, 0);
341 }
342 
343 static struct pgpath *choose_path_in_pg(struct multipath *m,
344 					struct priority_group *pg,
345 					size_t nr_bytes)
346 {
347 	unsigned long flags;
348 	struct dm_path *path;
349 	struct pgpath *pgpath;
350 
351 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
352 	if (!path)
353 		return ERR_PTR(-ENXIO);
354 
355 	pgpath = path_to_pgpath(path);
356 
357 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
358 		/* Only update current_pgpath if pg changed */
359 		spin_lock_irqsave(&m->lock, flags);
360 		m->current_pgpath = pgpath;
361 		__switch_pg(m, pg);
362 		spin_unlock_irqrestore(&m->lock, flags);
363 	}
364 
365 	return pgpath;
366 }
367 
368 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
369 {
370 	unsigned long flags;
371 	struct priority_group *pg;
372 	struct pgpath *pgpath;
373 	unsigned bypassed = 1;
374 
375 	if (!atomic_read(&m->nr_valid_paths)) {
376 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
377 		goto failed;
378 	}
379 
380 	/* Were we instructed to switch PG? */
381 	if (READ_ONCE(m->next_pg)) {
382 		spin_lock_irqsave(&m->lock, flags);
383 		pg = m->next_pg;
384 		if (!pg) {
385 			spin_unlock_irqrestore(&m->lock, flags);
386 			goto check_current_pg;
387 		}
388 		m->next_pg = NULL;
389 		spin_unlock_irqrestore(&m->lock, flags);
390 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
391 		if (!IS_ERR_OR_NULL(pgpath))
392 			return pgpath;
393 	}
394 
395 	/* Don't change PG until it has no remaining paths */
396 check_current_pg:
397 	pg = READ_ONCE(m->current_pg);
398 	if (pg) {
399 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
400 		if (!IS_ERR_OR_NULL(pgpath))
401 			return pgpath;
402 	}
403 
404 	/*
405 	 * Loop through priority groups until we find a valid path.
406 	 * First time we skip PGs marked 'bypassed'.
407 	 * Second time we only try the ones we skipped, but set
408 	 * pg_init_delay_retry so we do not hammer controllers.
409 	 */
410 	do {
411 		list_for_each_entry(pg, &m->priority_groups, list) {
412 			if (pg->bypassed == !!bypassed)
413 				continue;
414 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
415 			if (!IS_ERR_OR_NULL(pgpath)) {
416 				if (!bypassed)
417 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
418 				return pgpath;
419 			}
420 		}
421 	} while (bypassed--);
422 
423 failed:
424 	spin_lock_irqsave(&m->lock, flags);
425 	m->current_pgpath = NULL;
426 	m->current_pg = NULL;
427 	spin_unlock_irqrestore(&m->lock, flags);
428 
429 	return NULL;
430 }
431 
432 /*
433  * dm_report_EIO() is a macro instead of a function to make pr_debug()
434  * report the function name and line number of the function from which
435  * it has been invoked.
436  */
437 #define dm_report_EIO(m)						\
438 do {									\
439 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
440 									\
441 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
442 		 dm_device_name(md),					\
443 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
444 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
445 		 dm_noflush_suspending((m)->ti));			\
446 } while (0)
447 
448 /*
449  * Check whether bios must be queued in the device-mapper core rather
450  * than here in the target.
451  *
452  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
453  * the same value then we are not between multipath_presuspend()
454  * and multipath_resume() calls and we have no need to check
455  * for the DMF_NOFLUSH_SUSPENDING flag.
456  */
457 static bool __must_push_back(struct multipath *m, unsigned long flags)
458 {
459 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
460 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
461 		dm_noflush_suspending(m->ti));
462 }
463 
464 /*
465  * Following functions use READ_ONCE to get atomic access to
466  * all m->flags to avoid taking spinlock
467  */
468 static bool must_push_back_rq(struct multipath *m)
469 {
470 	unsigned long flags = READ_ONCE(m->flags);
471 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
472 }
473 
474 static bool must_push_back_bio(struct multipath *m)
475 {
476 	unsigned long flags = READ_ONCE(m->flags);
477 	return __must_push_back(m, flags);
478 }
479 
480 /*
481  * Map cloned requests (request-based multipath)
482  */
483 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
484 				   union map_info *map_context,
485 				   struct request **__clone)
486 {
487 	struct multipath *m = ti->private;
488 	size_t nr_bytes = blk_rq_bytes(rq);
489 	struct pgpath *pgpath;
490 	struct block_device *bdev;
491 	struct dm_mpath_io *mpio = get_mpio(map_context);
492 	struct request_queue *q;
493 	struct request *clone;
494 
495 	/* Do we need to select a new pgpath? */
496 	pgpath = READ_ONCE(m->current_pgpath);
497 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
498 		pgpath = choose_pgpath(m, nr_bytes);
499 
500 	if (!pgpath) {
501 		if (must_push_back_rq(m))
502 			return DM_MAPIO_DELAY_REQUEUE;
503 		dm_report_EIO(m);	/* Failed */
504 		return DM_MAPIO_KILL;
505 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
506 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
507 		pg_init_all_paths(m);
508 		return DM_MAPIO_DELAY_REQUEUE;
509 	}
510 
511 	mpio->pgpath = pgpath;
512 	mpio->nr_bytes = nr_bytes;
513 
514 	bdev = pgpath->path.dev->bdev;
515 	q = bdev_get_queue(bdev);
516 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
517 			BLK_MQ_REQ_NOWAIT);
518 	if (IS_ERR(clone)) {
519 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
520 		if (blk_queue_dying(q)) {
521 			atomic_inc(&m->pg_init_in_progress);
522 			activate_or_offline_path(pgpath);
523 			return DM_MAPIO_DELAY_REQUEUE;
524 		}
525 
526 		/*
527 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
528 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
529 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
530 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
531 		 * otherwise I/O merging can suffer.
532 		 */
533 		return DM_MAPIO_REQUEUE;
534 	}
535 	clone->bio = clone->biotail = NULL;
536 	clone->rq_disk = bdev->bd_disk;
537 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
538 	*__clone = clone;
539 
540 	if (pgpath->pg->ps.type->start_io)
541 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
542 					      &pgpath->path,
543 					      nr_bytes);
544 	return DM_MAPIO_REMAPPED;
545 }
546 
547 static void multipath_release_clone(struct request *clone,
548 				    union map_info *map_context)
549 {
550 	if (unlikely(map_context)) {
551 		/*
552 		 * non-NULL map_context means caller is still map
553 		 * method; must undo multipath_clone_and_map()
554 		 */
555 		struct dm_mpath_io *mpio = get_mpio(map_context);
556 		struct pgpath *pgpath = mpio->pgpath;
557 
558 		if (pgpath && pgpath->pg->ps.type->end_io)
559 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
560 						    &pgpath->path,
561 						    mpio->nr_bytes);
562 	}
563 
564 	blk_put_request(clone);
565 }
566 
567 /*
568  * Map cloned bios (bio-based multipath)
569  */
570 
571 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
572 {
573 	struct pgpath *pgpath;
574 	unsigned long flags;
575 	bool queue_io;
576 
577 	/* Do we need to select a new pgpath? */
578 	pgpath = READ_ONCE(m->current_pgpath);
579 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
580 	if (!pgpath || !queue_io)
581 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
582 
583 	if ((pgpath && queue_io) ||
584 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
585 		/* Queue for the daemon to resubmit */
586 		spin_lock_irqsave(&m->lock, flags);
587 		bio_list_add(&m->queued_bios, bio);
588 		spin_unlock_irqrestore(&m->lock, flags);
589 
590 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
591 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
592 			pg_init_all_paths(m);
593 		else if (!queue_io)
594 			queue_work(kmultipathd, &m->process_queued_bios);
595 
596 		return ERR_PTR(-EAGAIN);
597 	}
598 
599 	return pgpath;
600 }
601 
602 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
603 			       struct dm_mpath_io *mpio)
604 {
605 	struct pgpath *pgpath = __map_bio(m, bio);
606 
607 	if (IS_ERR(pgpath))
608 		return DM_MAPIO_SUBMITTED;
609 
610 	if (!pgpath) {
611 		if (must_push_back_bio(m))
612 			return DM_MAPIO_REQUEUE;
613 		dm_report_EIO(m);
614 		return DM_MAPIO_KILL;
615 	}
616 
617 	mpio->pgpath = pgpath;
618 
619 	bio->bi_status = 0;
620 	bio_set_dev(bio, pgpath->path.dev->bdev);
621 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
622 
623 	if (pgpath->pg->ps.type->start_io)
624 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
625 					      &pgpath->path,
626 					      mpio->nr_bytes);
627 	return DM_MAPIO_REMAPPED;
628 }
629 
630 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
631 {
632 	struct multipath *m = ti->private;
633 	struct dm_mpath_io *mpio = NULL;
634 
635 	multipath_init_per_bio_data(bio, &mpio);
636 	return __multipath_map_bio(m, bio, mpio);
637 }
638 
639 static void process_queued_io_list(struct multipath *m)
640 {
641 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
642 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
643 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
644 		queue_work(kmultipathd, &m->process_queued_bios);
645 }
646 
647 static void process_queued_bios(struct work_struct *work)
648 {
649 	int r;
650 	unsigned long flags;
651 	struct bio *bio;
652 	struct bio_list bios;
653 	struct blk_plug plug;
654 	struct multipath *m =
655 		container_of(work, struct multipath, process_queued_bios);
656 
657 	bio_list_init(&bios);
658 
659 	spin_lock_irqsave(&m->lock, flags);
660 
661 	if (bio_list_empty(&m->queued_bios)) {
662 		spin_unlock_irqrestore(&m->lock, flags);
663 		return;
664 	}
665 
666 	bio_list_merge(&bios, &m->queued_bios);
667 	bio_list_init(&m->queued_bios);
668 
669 	spin_unlock_irqrestore(&m->lock, flags);
670 
671 	blk_start_plug(&plug);
672 	while ((bio = bio_list_pop(&bios))) {
673 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
674 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
675 		r = __multipath_map_bio(m, bio, mpio);
676 		switch (r) {
677 		case DM_MAPIO_KILL:
678 			bio->bi_status = BLK_STS_IOERR;
679 			bio_endio(bio);
680 			break;
681 		case DM_MAPIO_REQUEUE:
682 			bio->bi_status = BLK_STS_DM_REQUEUE;
683 			bio_endio(bio);
684 			break;
685 		case DM_MAPIO_REMAPPED:
686 			generic_make_request(bio);
687 			break;
688 		case DM_MAPIO_SUBMITTED:
689 			break;
690 		default:
691 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
692 		}
693 	}
694 	blk_finish_plug(&plug);
695 }
696 
697 /*
698  * If we run out of usable paths, should we queue I/O or error it?
699  */
700 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
701 			    bool save_old_value)
702 {
703 	unsigned long flags;
704 
705 	spin_lock_irqsave(&m->lock, flags);
706 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
707 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
708 		   (!save_old_value && queue_if_no_path));
709 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
710 	spin_unlock_irqrestore(&m->lock, flags);
711 
712 	if (!queue_if_no_path) {
713 		dm_table_run_md_queue_async(m->ti->table);
714 		process_queued_io_list(m);
715 	}
716 
717 	return 0;
718 }
719 
720 /*
721  * An event is triggered whenever a path is taken out of use.
722  * Includes path failure and PG bypass.
723  */
724 static void trigger_event(struct work_struct *work)
725 {
726 	struct multipath *m =
727 		container_of(work, struct multipath, trigger_event);
728 
729 	dm_table_event(m->ti->table);
730 }
731 
732 /*-----------------------------------------------------------------
733  * Constructor/argument parsing:
734  * <#multipath feature args> [<arg>]*
735  * <#hw_handler args> [hw_handler [<arg>]*]
736  * <#priority groups>
737  * <initial priority group>
738  *     [<selector> <#selector args> [<arg>]*
739  *      <#paths> <#per-path selector args>
740  *         [<path> [<arg>]* ]+ ]+
741  *---------------------------------------------------------------*/
742 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
743 			       struct dm_target *ti)
744 {
745 	int r;
746 	struct path_selector_type *pst;
747 	unsigned ps_argc;
748 
749 	static const struct dm_arg _args[] = {
750 		{0, 1024, "invalid number of path selector args"},
751 	};
752 
753 	pst = dm_get_path_selector(dm_shift_arg(as));
754 	if (!pst) {
755 		ti->error = "unknown path selector type";
756 		return -EINVAL;
757 	}
758 
759 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
760 	if (r) {
761 		dm_put_path_selector(pst);
762 		return -EINVAL;
763 	}
764 
765 	r = pst->create(&pg->ps, ps_argc, as->argv);
766 	if (r) {
767 		dm_put_path_selector(pst);
768 		ti->error = "path selector constructor failed";
769 		return r;
770 	}
771 
772 	pg->ps.type = pst;
773 	dm_consume_args(as, ps_argc);
774 
775 	return 0;
776 }
777 
778 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
779 			 const char **attached_handler_name, char **error)
780 {
781 	struct request_queue *q = bdev_get_queue(bdev);
782 	int r;
783 
784 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
785 retain:
786 		if (*attached_handler_name) {
787 			/*
788 			 * Clear any hw_handler_params associated with a
789 			 * handler that isn't already attached.
790 			 */
791 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
792 				kfree(m->hw_handler_params);
793 				m->hw_handler_params = NULL;
794 			}
795 
796 			/*
797 			 * Reset hw_handler_name to match the attached handler
798 			 *
799 			 * NB. This modifies the table line to show the actual
800 			 * handler instead of the original table passed in.
801 			 */
802 			kfree(m->hw_handler_name);
803 			m->hw_handler_name = *attached_handler_name;
804 			*attached_handler_name = NULL;
805 		}
806 	}
807 
808 	if (m->hw_handler_name) {
809 		r = scsi_dh_attach(q, m->hw_handler_name);
810 		if (r == -EBUSY) {
811 			char b[BDEVNAME_SIZE];
812 
813 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
814 			       bdevname(bdev, b));
815 			goto retain;
816 		}
817 		if (r < 0) {
818 			*error = "error attaching hardware handler";
819 			return r;
820 		}
821 
822 		if (m->hw_handler_params) {
823 			r = scsi_dh_set_params(q, m->hw_handler_params);
824 			if (r < 0) {
825 				*error = "unable to set hardware handler parameters";
826 				return r;
827 			}
828 		}
829 	}
830 
831 	return 0;
832 }
833 
834 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
835 				 struct dm_target *ti)
836 {
837 	int r;
838 	struct pgpath *p;
839 	struct multipath *m = ti->private;
840 	struct request_queue *q;
841 	const char *attached_handler_name = NULL;
842 
843 	/* we need at least a path arg */
844 	if (as->argc < 1) {
845 		ti->error = "no device given";
846 		return ERR_PTR(-EINVAL);
847 	}
848 
849 	p = alloc_pgpath();
850 	if (!p)
851 		return ERR_PTR(-ENOMEM);
852 
853 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
854 			  &p->path.dev);
855 	if (r) {
856 		ti->error = "error getting device";
857 		goto bad;
858 	}
859 
860 	q = bdev_get_queue(p->path.dev->bdev);
861 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
862 	if (attached_handler_name || m->hw_handler_name) {
863 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
864 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
865 		kfree(attached_handler_name);
866 		if (r) {
867 			dm_put_device(ti, p->path.dev);
868 			goto bad;
869 		}
870 	}
871 
872 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
873 	if (r) {
874 		dm_put_device(ti, p->path.dev);
875 		goto bad;
876 	}
877 
878 	return p;
879  bad:
880 	free_pgpath(p);
881 	return ERR_PTR(r);
882 }
883 
884 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
885 						   struct multipath *m)
886 {
887 	static const struct dm_arg _args[] = {
888 		{1, 1024, "invalid number of paths"},
889 		{0, 1024, "invalid number of selector args"}
890 	};
891 
892 	int r;
893 	unsigned i, nr_selector_args, nr_args;
894 	struct priority_group *pg;
895 	struct dm_target *ti = m->ti;
896 
897 	if (as->argc < 2) {
898 		as->argc = 0;
899 		ti->error = "not enough priority group arguments";
900 		return ERR_PTR(-EINVAL);
901 	}
902 
903 	pg = alloc_priority_group();
904 	if (!pg) {
905 		ti->error = "couldn't allocate priority group";
906 		return ERR_PTR(-ENOMEM);
907 	}
908 	pg->m = m;
909 
910 	r = parse_path_selector(as, pg, ti);
911 	if (r)
912 		goto bad;
913 
914 	/*
915 	 * read the paths
916 	 */
917 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
918 	if (r)
919 		goto bad;
920 
921 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
922 	if (r)
923 		goto bad;
924 
925 	nr_args = 1 + nr_selector_args;
926 	for (i = 0; i < pg->nr_pgpaths; i++) {
927 		struct pgpath *pgpath;
928 		struct dm_arg_set path_args;
929 
930 		if (as->argc < nr_args) {
931 			ti->error = "not enough path parameters";
932 			r = -EINVAL;
933 			goto bad;
934 		}
935 
936 		path_args.argc = nr_args;
937 		path_args.argv = as->argv;
938 
939 		pgpath = parse_path(&path_args, &pg->ps, ti);
940 		if (IS_ERR(pgpath)) {
941 			r = PTR_ERR(pgpath);
942 			goto bad;
943 		}
944 
945 		pgpath->pg = pg;
946 		list_add_tail(&pgpath->list, &pg->pgpaths);
947 		dm_consume_args(as, nr_args);
948 	}
949 
950 	return pg;
951 
952  bad:
953 	free_priority_group(pg, ti);
954 	return ERR_PTR(r);
955 }
956 
957 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
958 {
959 	unsigned hw_argc;
960 	int ret;
961 	struct dm_target *ti = m->ti;
962 
963 	static const struct dm_arg _args[] = {
964 		{0, 1024, "invalid number of hardware handler args"},
965 	};
966 
967 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
968 		return -EINVAL;
969 
970 	if (!hw_argc)
971 		return 0;
972 
973 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
974 		dm_consume_args(as, hw_argc);
975 		DMERR("bio-based multipath doesn't allow hardware handler args");
976 		return 0;
977 	}
978 
979 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
980 	if (!m->hw_handler_name)
981 		return -EINVAL;
982 
983 	if (hw_argc > 1) {
984 		char *p;
985 		int i, j, len = 4;
986 
987 		for (i = 0; i <= hw_argc - 2; i++)
988 			len += strlen(as->argv[i]) + 1;
989 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
990 		if (!p) {
991 			ti->error = "memory allocation failed";
992 			ret = -ENOMEM;
993 			goto fail;
994 		}
995 		j = sprintf(p, "%d", hw_argc - 1);
996 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
997 			j = sprintf(p, "%s", as->argv[i]);
998 	}
999 	dm_consume_args(as, hw_argc - 1);
1000 
1001 	return 0;
1002 fail:
1003 	kfree(m->hw_handler_name);
1004 	m->hw_handler_name = NULL;
1005 	return ret;
1006 }
1007 
1008 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1009 {
1010 	int r;
1011 	unsigned argc;
1012 	struct dm_target *ti = m->ti;
1013 	const char *arg_name;
1014 
1015 	static const struct dm_arg _args[] = {
1016 		{0, 8, "invalid number of feature args"},
1017 		{1, 50, "pg_init_retries must be between 1 and 50"},
1018 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1019 	};
1020 
1021 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1022 	if (r)
1023 		return -EINVAL;
1024 
1025 	if (!argc)
1026 		return 0;
1027 
1028 	do {
1029 		arg_name = dm_shift_arg(as);
1030 		argc--;
1031 
1032 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1033 			r = queue_if_no_path(m, true, false);
1034 			continue;
1035 		}
1036 
1037 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1038 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1039 			continue;
1040 		}
1041 
1042 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1043 		    (argc >= 1)) {
1044 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1045 			argc--;
1046 			continue;
1047 		}
1048 
1049 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1050 		    (argc >= 1)) {
1051 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1052 			argc--;
1053 			continue;
1054 		}
1055 
1056 		if (!strcasecmp(arg_name, "queue_mode") &&
1057 		    (argc >= 1)) {
1058 			const char *queue_mode_name = dm_shift_arg(as);
1059 
1060 			if (!strcasecmp(queue_mode_name, "bio"))
1061 				m->queue_mode = DM_TYPE_BIO_BASED;
1062 			else if (!strcasecmp(queue_mode_name, "rq") ||
1063 				 !strcasecmp(queue_mode_name, "mq"))
1064 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1065 			else {
1066 				ti->error = "Unknown 'queue_mode' requested";
1067 				r = -EINVAL;
1068 			}
1069 			argc--;
1070 			continue;
1071 		}
1072 
1073 		ti->error = "Unrecognised multipath feature request";
1074 		r = -EINVAL;
1075 	} while (argc && !r);
1076 
1077 	return r;
1078 }
1079 
1080 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1081 {
1082 	/* target arguments */
1083 	static const struct dm_arg _args[] = {
1084 		{0, 1024, "invalid number of priority groups"},
1085 		{0, 1024, "invalid initial priority group number"},
1086 	};
1087 
1088 	int r;
1089 	struct multipath *m;
1090 	struct dm_arg_set as;
1091 	unsigned pg_count = 0;
1092 	unsigned next_pg_num;
1093 
1094 	as.argc = argc;
1095 	as.argv = argv;
1096 
1097 	m = alloc_multipath(ti);
1098 	if (!m) {
1099 		ti->error = "can't allocate multipath";
1100 		return -EINVAL;
1101 	}
1102 
1103 	r = parse_features(&as, m);
1104 	if (r)
1105 		goto bad;
1106 
1107 	r = alloc_multipath_stage2(ti, m);
1108 	if (r)
1109 		goto bad;
1110 
1111 	r = parse_hw_handler(&as, m);
1112 	if (r)
1113 		goto bad;
1114 
1115 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1116 	if (r)
1117 		goto bad;
1118 
1119 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1120 	if (r)
1121 		goto bad;
1122 
1123 	if ((!m->nr_priority_groups && next_pg_num) ||
1124 	    (m->nr_priority_groups && !next_pg_num)) {
1125 		ti->error = "invalid initial priority group";
1126 		r = -EINVAL;
1127 		goto bad;
1128 	}
1129 
1130 	/* parse the priority groups */
1131 	while (as.argc) {
1132 		struct priority_group *pg;
1133 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1134 
1135 		pg = parse_priority_group(&as, m);
1136 		if (IS_ERR(pg)) {
1137 			r = PTR_ERR(pg);
1138 			goto bad;
1139 		}
1140 
1141 		nr_valid_paths += pg->nr_pgpaths;
1142 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1143 
1144 		list_add_tail(&pg->list, &m->priority_groups);
1145 		pg_count++;
1146 		pg->pg_num = pg_count;
1147 		if (!--next_pg_num)
1148 			m->next_pg = pg;
1149 	}
1150 
1151 	if (pg_count != m->nr_priority_groups) {
1152 		ti->error = "priority group count mismatch";
1153 		r = -EINVAL;
1154 		goto bad;
1155 	}
1156 
1157 	ti->num_flush_bios = 1;
1158 	ti->num_discard_bios = 1;
1159 	ti->num_write_same_bios = 1;
1160 	ti->num_write_zeroes_bios = 1;
1161 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1162 		ti->per_io_data_size = multipath_per_bio_data_size();
1163 	else
1164 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1165 
1166 	return 0;
1167 
1168  bad:
1169 	free_multipath(m);
1170 	return r;
1171 }
1172 
1173 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1174 {
1175 	DEFINE_WAIT(wait);
1176 
1177 	while (1) {
1178 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1179 
1180 		if (!atomic_read(&m->pg_init_in_progress))
1181 			break;
1182 
1183 		io_schedule();
1184 	}
1185 	finish_wait(&m->pg_init_wait, &wait);
1186 }
1187 
1188 static void flush_multipath_work(struct multipath *m)
1189 {
1190 	if (m->hw_handler_name) {
1191 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1192 		smp_mb__after_atomic();
1193 
1194 		if (atomic_read(&m->pg_init_in_progress))
1195 			flush_workqueue(kmpath_handlerd);
1196 		multipath_wait_for_pg_init_completion(m);
1197 
1198 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1199 		smp_mb__after_atomic();
1200 	}
1201 
1202 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1203 		flush_work(&m->process_queued_bios);
1204 	flush_work(&m->trigger_event);
1205 }
1206 
1207 static void multipath_dtr(struct dm_target *ti)
1208 {
1209 	struct multipath *m = ti->private;
1210 
1211 	flush_multipath_work(m);
1212 	free_multipath(m);
1213 }
1214 
1215 /*
1216  * Take a path out of use.
1217  */
1218 static int fail_path(struct pgpath *pgpath)
1219 {
1220 	unsigned long flags;
1221 	struct multipath *m = pgpath->pg->m;
1222 
1223 	spin_lock_irqsave(&m->lock, flags);
1224 
1225 	if (!pgpath->is_active)
1226 		goto out;
1227 
1228 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1229 
1230 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1231 	pgpath->is_active = false;
1232 	pgpath->fail_count++;
1233 
1234 	atomic_dec(&m->nr_valid_paths);
1235 
1236 	if (pgpath == m->current_pgpath)
1237 		m->current_pgpath = NULL;
1238 
1239 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1240 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1241 
1242 	schedule_work(&m->trigger_event);
1243 
1244 out:
1245 	spin_unlock_irqrestore(&m->lock, flags);
1246 
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Reinstate a previously-failed path
1252  */
1253 static int reinstate_path(struct pgpath *pgpath)
1254 {
1255 	int r = 0, run_queue = 0;
1256 	unsigned long flags;
1257 	struct multipath *m = pgpath->pg->m;
1258 	unsigned nr_valid_paths;
1259 
1260 	spin_lock_irqsave(&m->lock, flags);
1261 
1262 	if (pgpath->is_active)
1263 		goto out;
1264 
1265 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1266 
1267 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1268 	if (r)
1269 		goto out;
1270 
1271 	pgpath->is_active = true;
1272 
1273 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1274 	if (nr_valid_paths == 1) {
1275 		m->current_pgpath = NULL;
1276 		run_queue = 1;
1277 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1278 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1279 			atomic_inc(&m->pg_init_in_progress);
1280 	}
1281 
1282 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1283 		       pgpath->path.dev->name, nr_valid_paths);
1284 
1285 	schedule_work(&m->trigger_event);
1286 
1287 out:
1288 	spin_unlock_irqrestore(&m->lock, flags);
1289 	if (run_queue) {
1290 		dm_table_run_md_queue_async(m->ti->table);
1291 		process_queued_io_list(m);
1292 	}
1293 
1294 	return r;
1295 }
1296 
1297 /*
1298  * Fail or reinstate all paths that match the provided struct dm_dev.
1299  */
1300 static int action_dev(struct multipath *m, struct dm_dev *dev,
1301 		      action_fn action)
1302 {
1303 	int r = -EINVAL;
1304 	struct pgpath *pgpath;
1305 	struct priority_group *pg;
1306 
1307 	list_for_each_entry(pg, &m->priority_groups, list) {
1308 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1309 			if (pgpath->path.dev == dev)
1310 				r = action(pgpath);
1311 		}
1312 	}
1313 
1314 	return r;
1315 }
1316 
1317 /*
1318  * Temporarily try to avoid having to use the specified PG
1319  */
1320 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1321 		      bool bypassed)
1322 {
1323 	unsigned long flags;
1324 
1325 	spin_lock_irqsave(&m->lock, flags);
1326 
1327 	pg->bypassed = bypassed;
1328 	m->current_pgpath = NULL;
1329 	m->current_pg = NULL;
1330 
1331 	spin_unlock_irqrestore(&m->lock, flags);
1332 
1333 	schedule_work(&m->trigger_event);
1334 }
1335 
1336 /*
1337  * Switch to using the specified PG from the next I/O that gets mapped
1338  */
1339 static int switch_pg_num(struct multipath *m, const char *pgstr)
1340 {
1341 	struct priority_group *pg;
1342 	unsigned pgnum;
1343 	unsigned long flags;
1344 	char dummy;
1345 
1346 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1347 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1348 		DMWARN("invalid PG number supplied to switch_pg_num");
1349 		return -EINVAL;
1350 	}
1351 
1352 	spin_lock_irqsave(&m->lock, flags);
1353 	list_for_each_entry(pg, &m->priority_groups, list) {
1354 		pg->bypassed = false;
1355 		if (--pgnum)
1356 			continue;
1357 
1358 		m->current_pgpath = NULL;
1359 		m->current_pg = NULL;
1360 		m->next_pg = pg;
1361 	}
1362 	spin_unlock_irqrestore(&m->lock, flags);
1363 
1364 	schedule_work(&m->trigger_event);
1365 	return 0;
1366 }
1367 
1368 /*
1369  * Set/clear bypassed status of a PG.
1370  * PGs are numbered upwards from 1 in the order they were declared.
1371  */
1372 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1373 {
1374 	struct priority_group *pg;
1375 	unsigned pgnum;
1376 	char dummy;
1377 
1378 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1379 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1380 		DMWARN("invalid PG number supplied to bypass_pg");
1381 		return -EINVAL;
1382 	}
1383 
1384 	list_for_each_entry(pg, &m->priority_groups, list) {
1385 		if (!--pgnum)
1386 			break;
1387 	}
1388 
1389 	bypass_pg(m, pg, bypassed);
1390 	return 0;
1391 }
1392 
1393 /*
1394  * Should we retry pg_init immediately?
1395  */
1396 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1397 {
1398 	unsigned long flags;
1399 	bool limit_reached = false;
1400 
1401 	spin_lock_irqsave(&m->lock, flags);
1402 
1403 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1404 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1405 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1406 	else
1407 		limit_reached = true;
1408 
1409 	spin_unlock_irqrestore(&m->lock, flags);
1410 
1411 	return limit_reached;
1412 }
1413 
1414 static void pg_init_done(void *data, int errors)
1415 {
1416 	struct pgpath *pgpath = data;
1417 	struct priority_group *pg = pgpath->pg;
1418 	struct multipath *m = pg->m;
1419 	unsigned long flags;
1420 	bool delay_retry = false;
1421 
1422 	/* device or driver problems */
1423 	switch (errors) {
1424 	case SCSI_DH_OK:
1425 		break;
1426 	case SCSI_DH_NOSYS:
1427 		if (!m->hw_handler_name) {
1428 			errors = 0;
1429 			break;
1430 		}
1431 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1432 		      "Error %d.", m->hw_handler_name, errors);
1433 		/*
1434 		 * Fail path for now, so we do not ping pong
1435 		 */
1436 		fail_path(pgpath);
1437 		break;
1438 	case SCSI_DH_DEV_TEMP_BUSY:
1439 		/*
1440 		 * Probably doing something like FW upgrade on the
1441 		 * controller so try the other pg.
1442 		 */
1443 		bypass_pg(m, pg, true);
1444 		break;
1445 	case SCSI_DH_RETRY:
1446 		/* Wait before retrying. */
1447 		delay_retry = 1;
1448 		/* fall through */
1449 	case SCSI_DH_IMM_RETRY:
1450 	case SCSI_DH_RES_TEMP_UNAVAIL:
1451 		if (pg_init_limit_reached(m, pgpath))
1452 			fail_path(pgpath);
1453 		errors = 0;
1454 		break;
1455 	case SCSI_DH_DEV_OFFLINED:
1456 	default:
1457 		/*
1458 		 * We probably do not want to fail the path for a device
1459 		 * error, but this is what the old dm did. In future
1460 		 * patches we can do more advanced handling.
1461 		 */
1462 		fail_path(pgpath);
1463 	}
1464 
1465 	spin_lock_irqsave(&m->lock, flags);
1466 	if (errors) {
1467 		if (pgpath == m->current_pgpath) {
1468 			DMERR("Could not failover device. Error %d.", errors);
1469 			m->current_pgpath = NULL;
1470 			m->current_pg = NULL;
1471 		}
1472 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1473 		pg->bypassed = false;
1474 
1475 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1476 		/* Activations of other paths are still on going */
1477 		goto out;
1478 
1479 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1480 		if (delay_retry)
1481 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1482 		else
1483 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1484 
1485 		if (__pg_init_all_paths(m))
1486 			goto out;
1487 	}
1488 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1489 
1490 	process_queued_io_list(m);
1491 
1492 	/*
1493 	 * Wake up any thread waiting to suspend.
1494 	 */
1495 	wake_up(&m->pg_init_wait);
1496 
1497 out:
1498 	spin_unlock_irqrestore(&m->lock, flags);
1499 }
1500 
1501 static void activate_or_offline_path(struct pgpath *pgpath)
1502 {
1503 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1504 
1505 	if (pgpath->is_active && !blk_queue_dying(q))
1506 		scsi_dh_activate(q, pg_init_done, pgpath);
1507 	else
1508 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1509 }
1510 
1511 static void activate_path_work(struct work_struct *work)
1512 {
1513 	struct pgpath *pgpath =
1514 		container_of(work, struct pgpath, activate_path.work);
1515 
1516 	activate_or_offline_path(pgpath);
1517 }
1518 
1519 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1520 			    blk_status_t error, union map_info *map_context)
1521 {
1522 	struct dm_mpath_io *mpio = get_mpio(map_context);
1523 	struct pgpath *pgpath = mpio->pgpath;
1524 	int r = DM_ENDIO_DONE;
1525 
1526 	/*
1527 	 * We don't queue any clone request inside the multipath target
1528 	 * during end I/O handling, since those clone requests don't have
1529 	 * bio clones.  If we queue them inside the multipath target,
1530 	 * we need to make bio clones, that requires memory allocation.
1531 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1532 	 *  don't have bio clones.)
1533 	 * Instead of queueing the clone request here, we queue the original
1534 	 * request into dm core, which will remake a clone request and
1535 	 * clone bios for it and resubmit it later.
1536 	 */
1537 	if (error && blk_path_error(error)) {
1538 		struct multipath *m = ti->private;
1539 
1540 		if (error == BLK_STS_RESOURCE)
1541 			r = DM_ENDIO_DELAY_REQUEUE;
1542 		else
1543 			r = DM_ENDIO_REQUEUE;
1544 
1545 		if (pgpath)
1546 			fail_path(pgpath);
1547 
1548 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1549 		    !must_push_back_rq(m)) {
1550 			if (error == BLK_STS_IOERR)
1551 				dm_report_EIO(m);
1552 			/* complete with the original error */
1553 			r = DM_ENDIO_DONE;
1554 		}
1555 	}
1556 
1557 	if (pgpath) {
1558 		struct path_selector *ps = &pgpath->pg->ps;
1559 
1560 		if (ps->type->end_io)
1561 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1562 	}
1563 
1564 	return r;
1565 }
1566 
1567 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1568 				blk_status_t *error)
1569 {
1570 	struct multipath *m = ti->private;
1571 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1572 	struct pgpath *pgpath = mpio->pgpath;
1573 	unsigned long flags;
1574 	int r = DM_ENDIO_DONE;
1575 
1576 	if (!*error || !blk_path_error(*error))
1577 		goto done;
1578 
1579 	if (pgpath)
1580 		fail_path(pgpath);
1581 
1582 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1583 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1584 		if (must_push_back_bio(m)) {
1585 			r = DM_ENDIO_REQUEUE;
1586 		} else {
1587 			dm_report_EIO(m);
1588 			*error = BLK_STS_IOERR;
1589 		}
1590 		goto done;
1591 	}
1592 
1593 	spin_lock_irqsave(&m->lock, flags);
1594 	bio_list_add(&m->queued_bios, clone);
1595 	spin_unlock_irqrestore(&m->lock, flags);
1596 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1597 		queue_work(kmultipathd, &m->process_queued_bios);
1598 
1599 	r = DM_ENDIO_INCOMPLETE;
1600 done:
1601 	if (pgpath) {
1602 		struct path_selector *ps = &pgpath->pg->ps;
1603 
1604 		if (ps->type->end_io)
1605 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1606 	}
1607 
1608 	return r;
1609 }
1610 
1611 /*
1612  * Suspend can't complete until all the I/O is processed so if
1613  * the last path fails we must error any remaining I/O.
1614  * Note that if the freeze_bdev fails while suspending, the
1615  * queue_if_no_path state is lost - userspace should reset it.
1616  */
1617 static void multipath_presuspend(struct dm_target *ti)
1618 {
1619 	struct multipath *m = ti->private;
1620 
1621 	queue_if_no_path(m, false, true);
1622 }
1623 
1624 static void multipath_postsuspend(struct dm_target *ti)
1625 {
1626 	struct multipath *m = ti->private;
1627 
1628 	mutex_lock(&m->work_mutex);
1629 	flush_multipath_work(m);
1630 	mutex_unlock(&m->work_mutex);
1631 }
1632 
1633 /*
1634  * Restore the queue_if_no_path setting.
1635  */
1636 static void multipath_resume(struct dm_target *ti)
1637 {
1638 	struct multipath *m = ti->private;
1639 	unsigned long flags;
1640 
1641 	spin_lock_irqsave(&m->lock, flags);
1642 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1643 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1644 	spin_unlock_irqrestore(&m->lock, flags);
1645 }
1646 
1647 /*
1648  * Info output has the following format:
1649  * num_multipath_feature_args [multipath_feature_args]*
1650  * num_handler_status_args [handler_status_args]*
1651  * num_groups init_group_number
1652  *            [A|D|E num_ps_status_args [ps_status_args]*
1653  *             num_paths num_selector_args
1654  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1655  *
1656  * Table output has the following format (identical to the constructor string):
1657  * num_feature_args [features_args]*
1658  * num_handler_args hw_handler [hw_handler_args]*
1659  * num_groups init_group_number
1660  *     [priority selector-name num_ps_args [ps_args]*
1661  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1662  */
1663 static void multipath_status(struct dm_target *ti, status_type_t type,
1664 			     unsigned status_flags, char *result, unsigned maxlen)
1665 {
1666 	int sz = 0;
1667 	unsigned long flags;
1668 	struct multipath *m = ti->private;
1669 	struct priority_group *pg;
1670 	struct pgpath *p;
1671 	unsigned pg_num;
1672 	char state;
1673 
1674 	spin_lock_irqsave(&m->lock, flags);
1675 
1676 	/* Features */
1677 	if (type == STATUSTYPE_INFO)
1678 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1679 		       atomic_read(&m->pg_init_count));
1680 	else {
1681 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1682 			      (m->pg_init_retries > 0) * 2 +
1683 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1684 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1685 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1686 
1687 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1688 			DMEMIT("queue_if_no_path ");
1689 		if (m->pg_init_retries)
1690 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1691 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1692 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1693 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1694 			DMEMIT("retain_attached_hw_handler ");
1695 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1696 			switch(m->queue_mode) {
1697 			case DM_TYPE_BIO_BASED:
1698 				DMEMIT("queue_mode bio ");
1699 				break;
1700 			default:
1701 				WARN_ON_ONCE(true);
1702 				break;
1703 			}
1704 		}
1705 	}
1706 
1707 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1708 		DMEMIT("0 ");
1709 	else
1710 		DMEMIT("1 %s ", m->hw_handler_name);
1711 
1712 	DMEMIT("%u ", m->nr_priority_groups);
1713 
1714 	if (m->next_pg)
1715 		pg_num = m->next_pg->pg_num;
1716 	else if (m->current_pg)
1717 		pg_num = m->current_pg->pg_num;
1718 	else
1719 		pg_num = (m->nr_priority_groups ? 1 : 0);
1720 
1721 	DMEMIT("%u ", pg_num);
1722 
1723 	switch (type) {
1724 	case STATUSTYPE_INFO:
1725 		list_for_each_entry(pg, &m->priority_groups, list) {
1726 			if (pg->bypassed)
1727 				state = 'D';	/* Disabled */
1728 			else if (pg == m->current_pg)
1729 				state = 'A';	/* Currently Active */
1730 			else
1731 				state = 'E';	/* Enabled */
1732 
1733 			DMEMIT("%c ", state);
1734 
1735 			if (pg->ps.type->status)
1736 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1737 							  result + sz,
1738 							  maxlen - sz);
1739 			else
1740 				DMEMIT("0 ");
1741 
1742 			DMEMIT("%u %u ", pg->nr_pgpaths,
1743 			       pg->ps.type->info_args);
1744 
1745 			list_for_each_entry(p, &pg->pgpaths, list) {
1746 				DMEMIT("%s %s %u ", p->path.dev->name,
1747 				       p->is_active ? "A" : "F",
1748 				       p->fail_count);
1749 				if (pg->ps.type->status)
1750 					sz += pg->ps.type->status(&pg->ps,
1751 					      &p->path, type, result + sz,
1752 					      maxlen - sz);
1753 			}
1754 		}
1755 		break;
1756 
1757 	case STATUSTYPE_TABLE:
1758 		list_for_each_entry(pg, &m->priority_groups, list) {
1759 			DMEMIT("%s ", pg->ps.type->name);
1760 
1761 			if (pg->ps.type->status)
1762 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1763 							  result + sz,
1764 							  maxlen - sz);
1765 			else
1766 				DMEMIT("0 ");
1767 
1768 			DMEMIT("%u %u ", pg->nr_pgpaths,
1769 			       pg->ps.type->table_args);
1770 
1771 			list_for_each_entry(p, &pg->pgpaths, list) {
1772 				DMEMIT("%s ", p->path.dev->name);
1773 				if (pg->ps.type->status)
1774 					sz += pg->ps.type->status(&pg->ps,
1775 					      &p->path, type, result + sz,
1776 					      maxlen - sz);
1777 			}
1778 		}
1779 		break;
1780 	}
1781 
1782 	spin_unlock_irqrestore(&m->lock, flags);
1783 }
1784 
1785 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1786 			     char *result, unsigned maxlen)
1787 {
1788 	int r = -EINVAL;
1789 	struct dm_dev *dev;
1790 	struct multipath *m = ti->private;
1791 	action_fn action;
1792 
1793 	mutex_lock(&m->work_mutex);
1794 
1795 	if (dm_suspended(ti)) {
1796 		r = -EBUSY;
1797 		goto out;
1798 	}
1799 
1800 	if (argc == 1) {
1801 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1802 			r = queue_if_no_path(m, true, false);
1803 			goto out;
1804 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1805 			r = queue_if_no_path(m, false, false);
1806 			goto out;
1807 		}
1808 	}
1809 
1810 	if (argc != 2) {
1811 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1812 		goto out;
1813 	}
1814 
1815 	if (!strcasecmp(argv[0], "disable_group")) {
1816 		r = bypass_pg_num(m, argv[1], true);
1817 		goto out;
1818 	} else if (!strcasecmp(argv[0], "enable_group")) {
1819 		r = bypass_pg_num(m, argv[1], false);
1820 		goto out;
1821 	} else if (!strcasecmp(argv[0], "switch_group")) {
1822 		r = switch_pg_num(m, argv[1]);
1823 		goto out;
1824 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1825 		action = reinstate_path;
1826 	else if (!strcasecmp(argv[0], "fail_path"))
1827 		action = fail_path;
1828 	else {
1829 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1830 		goto out;
1831 	}
1832 
1833 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1834 	if (r) {
1835 		DMWARN("message: error getting device %s",
1836 		       argv[1]);
1837 		goto out;
1838 	}
1839 
1840 	r = action_dev(m, dev, action);
1841 
1842 	dm_put_device(ti, dev);
1843 
1844 out:
1845 	mutex_unlock(&m->work_mutex);
1846 	return r;
1847 }
1848 
1849 static int multipath_prepare_ioctl(struct dm_target *ti,
1850 				   struct block_device **bdev)
1851 {
1852 	struct multipath *m = ti->private;
1853 	struct pgpath *current_pgpath;
1854 	int r;
1855 
1856 	current_pgpath = READ_ONCE(m->current_pgpath);
1857 	if (!current_pgpath)
1858 		current_pgpath = choose_pgpath(m, 0);
1859 
1860 	if (current_pgpath) {
1861 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1862 			*bdev = current_pgpath->path.dev->bdev;
1863 			r = 0;
1864 		} else {
1865 			/* pg_init has not started or completed */
1866 			r = -ENOTCONN;
1867 		}
1868 	} else {
1869 		/* No path is available */
1870 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1871 			r = -ENOTCONN;
1872 		else
1873 			r = -EIO;
1874 	}
1875 
1876 	if (r == -ENOTCONN) {
1877 		if (!READ_ONCE(m->current_pg)) {
1878 			/* Path status changed, redo selection */
1879 			(void) choose_pgpath(m, 0);
1880 		}
1881 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1882 			pg_init_all_paths(m);
1883 		dm_table_run_md_queue_async(m->ti->table);
1884 		process_queued_io_list(m);
1885 	}
1886 
1887 	/*
1888 	 * Only pass ioctls through if the device sizes match exactly.
1889 	 */
1890 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1891 		return 1;
1892 	return r;
1893 }
1894 
1895 static int multipath_iterate_devices(struct dm_target *ti,
1896 				     iterate_devices_callout_fn fn, void *data)
1897 {
1898 	struct multipath *m = ti->private;
1899 	struct priority_group *pg;
1900 	struct pgpath *p;
1901 	int ret = 0;
1902 
1903 	list_for_each_entry(pg, &m->priority_groups, list) {
1904 		list_for_each_entry(p, &pg->pgpaths, list) {
1905 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1906 			if (ret)
1907 				goto out;
1908 		}
1909 	}
1910 
1911 out:
1912 	return ret;
1913 }
1914 
1915 static int pgpath_busy(struct pgpath *pgpath)
1916 {
1917 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1918 
1919 	return blk_lld_busy(q);
1920 }
1921 
1922 /*
1923  * We return "busy", only when we can map I/Os but underlying devices
1924  * are busy (so even if we map I/Os now, the I/Os will wait on
1925  * the underlying queue).
1926  * In other words, if we want to kill I/Os or queue them inside us
1927  * due to map unavailability, we don't return "busy".  Otherwise,
1928  * dm core won't give us the I/Os and we can't do what we want.
1929  */
1930 static int multipath_busy(struct dm_target *ti)
1931 {
1932 	bool busy = false, has_active = false;
1933 	struct multipath *m = ti->private;
1934 	struct priority_group *pg, *next_pg;
1935 	struct pgpath *pgpath;
1936 
1937 	/* pg_init in progress */
1938 	if (atomic_read(&m->pg_init_in_progress))
1939 		return true;
1940 
1941 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1942 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1943 		return (m->queue_mode != DM_TYPE_REQUEST_BASED);
1944 
1945 	/* Guess which priority_group will be used at next mapping time */
1946 	pg = READ_ONCE(m->current_pg);
1947 	next_pg = READ_ONCE(m->next_pg);
1948 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1949 		pg = next_pg;
1950 
1951 	if (!pg) {
1952 		/*
1953 		 * We don't know which pg will be used at next mapping time.
1954 		 * We don't call choose_pgpath() here to avoid to trigger
1955 		 * pg_init just by busy checking.
1956 		 * So we don't know whether underlying devices we will be using
1957 		 * at next mapping time are busy or not. Just try mapping.
1958 		 */
1959 		return busy;
1960 	}
1961 
1962 	/*
1963 	 * If there is one non-busy active path at least, the path selector
1964 	 * will be able to select it. So we consider such a pg as not busy.
1965 	 */
1966 	busy = true;
1967 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1968 		if (pgpath->is_active) {
1969 			has_active = true;
1970 			if (!pgpath_busy(pgpath)) {
1971 				busy = false;
1972 				break;
1973 			}
1974 		}
1975 	}
1976 
1977 	if (!has_active) {
1978 		/*
1979 		 * No active path in this pg, so this pg won't be used and
1980 		 * the current_pg will be changed at next mapping time.
1981 		 * We need to try mapping to determine it.
1982 		 */
1983 		busy = false;
1984 	}
1985 
1986 	return busy;
1987 }
1988 
1989 /*-----------------------------------------------------------------
1990  * Module setup
1991  *---------------------------------------------------------------*/
1992 static struct target_type multipath_target = {
1993 	.name = "multipath",
1994 	.version = {1, 13, 0},
1995 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
1996 		    DM_TARGET_PASSES_INTEGRITY,
1997 	.module = THIS_MODULE,
1998 	.ctr = multipath_ctr,
1999 	.dtr = multipath_dtr,
2000 	.clone_and_map_rq = multipath_clone_and_map,
2001 	.release_clone_rq = multipath_release_clone,
2002 	.rq_end_io = multipath_end_io,
2003 	.map = multipath_map_bio,
2004 	.end_io = multipath_end_io_bio,
2005 	.presuspend = multipath_presuspend,
2006 	.postsuspend = multipath_postsuspend,
2007 	.resume = multipath_resume,
2008 	.status = multipath_status,
2009 	.message = multipath_message,
2010 	.prepare_ioctl = multipath_prepare_ioctl,
2011 	.iterate_devices = multipath_iterate_devices,
2012 	.busy = multipath_busy,
2013 };
2014 
2015 static int __init dm_multipath_init(void)
2016 {
2017 	int r;
2018 
2019 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2020 	if (!kmultipathd) {
2021 		DMERR("failed to create workqueue kmpathd");
2022 		r = -ENOMEM;
2023 		goto bad_alloc_kmultipathd;
2024 	}
2025 
2026 	/*
2027 	 * A separate workqueue is used to handle the device handlers
2028 	 * to avoid overloading existing workqueue. Overloading the
2029 	 * old workqueue would also create a bottleneck in the
2030 	 * path of the storage hardware device activation.
2031 	 */
2032 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2033 						  WQ_MEM_RECLAIM);
2034 	if (!kmpath_handlerd) {
2035 		DMERR("failed to create workqueue kmpath_handlerd");
2036 		r = -ENOMEM;
2037 		goto bad_alloc_kmpath_handlerd;
2038 	}
2039 
2040 	r = dm_register_target(&multipath_target);
2041 	if (r < 0) {
2042 		DMERR("request-based register failed %d", r);
2043 		r = -EINVAL;
2044 		goto bad_register_target;
2045 	}
2046 
2047 	return 0;
2048 
2049 bad_register_target:
2050 	destroy_workqueue(kmpath_handlerd);
2051 bad_alloc_kmpath_handlerd:
2052 	destroy_workqueue(kmultipathd);
2053 bad_alloc_kmultipathd:
2054 	return r;
2055 }
2056 
2057 static void __exit dm_multipath_exit(void)
2058 {
2059 	destroy_workqueue(kmpath_handlerd);
2060 	destroy_workqueue(kmultipathd);
2061 
2062 	dm_unregister_target(&multipath_target);
2063 }
2064 
2065 module_init(dm_multipath_init);
2066 module_exit(dm_multipath_exit);
2067 
2068 MODULE_DESCRIPTION(DM_NAME " multipath target");
2069 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2070 MODULE_LICENSE("GPL");
2071