1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm.h" 11 #include "dm-path-selector.h" 12 #include "dm-uevent.h" 13 14 #include <linux/ctype.h> 15 #include <linux/init.h> 16 #include <linux/mempool.h> 17 #include <linux/module.h> 18 #include <linux/pagemap.h> 19 #include <linux/slab.h> 20 #include <linux/time.h> 21 #include <linux/workqueue.h> 22 #include <linux/delay.h> 23 #include <scsi/scsi_dh.h> 24 #include <linux/atomic.h> 25 26 #define DM_MSG_PREFIX "multipath" 27 #define DM_PG_INIT_DELAY_MSECS 2000 28 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 29 30 /* Path properties */ 31 struct pgpath { 32 struct list_head list; 33 34 struct priority_group *pg; /* Owning PG */ 35 unsigned is_active; /* Path status */ 36 unsigned fail_count; /* Cumulative failure count */ 37 38 struct dm_path path; 39 struct delayed_work activate_path; 40 }; 41 42 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 43 44 /* 45 * Paths are grouped into Priority Groups and numbered from 1 upwards. 46 * Each has a path selector which controls which path gets used. 47 */ 48 struct priority_group { 49 struct list_head list; 50 51 struct multipath *m; /* Owning multipath instance */ 52 struct path_selector ps; 53 54 unsigned pg_num; /* Reference number */ 55 unsigned bypassed; /* Temporarily bypass this PG? */ 56 57 unsigned nr_pgpaths; /* Number of paths in PG */ 58 struct list_head pgpaths; 59 }; 60 61 /* Multipath context */ 62 struct multipath { 63 struct list_head list; 64 struct dm_target *ti; 65 66 const char *hw_handler_name; 67 char *hw_handler_params; 68 69 spinlock_t lock; 70 71 unsigned nr_priority_groups; 72 struct list_head priority_groups; 73 74 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 75 76 unsigned pg_init_required; /* pg_init needs calling? */ 77 unsigned pg_init_in_progress; /* Only one pg_init allowed at once */ 78 unsigned pg_init_delay_retry; /* Delay pg_init retry? */ 79 80 unsigned nr_valid_paths; /* Total number of usable paths */ 81 struct pgpath *current_pgpath; 82 struct priority_group *current_pg; 83 struct priority_group *next_pg; /* Switch to this PG if set */ 84 unsigned repeat_count; /* I/Os left before calling PS again */ 85 86 unsigned queue_io:1; /* Must we queue all I/O? */ 87 unsigned queue_if_no_path:1; /* Queue I/O if last path fails? */ 88 unsigned saved_queue_if_no_path:1; /* Saved state during suspension */ 89 unsigned retain_attached_hw_handler:1; /* If there's already a hw_handler present, don't change it. */ 90 unsigned pg_init_disabled:1; /* pg_init is not currently allowed */ 91 92 unsigned pg_init_retries; /* Number of times to retry pg_init */ 93 unsigned pg_init_count; /* Number of times pg_init called */ 94 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 95 96 unsigned queue_size; 97 struct work_struct process_queued_ios; 98 struct list_head queued_ios; 99 100 struct work_struct trigger_event; 101 102 /* 103 * We must use a mempool of dm_mpath_io structs so that we 104 * can resubmit bios on error. 105 */ 106 mempool_t *mpio_pool; 107 108 struct mutex work_mutex; 109 }; 110 111 /* 112 * Context information attached to each bio we process. 113 */ 114 struct dm_mpath_io { 115 struct pgpath *pgpath; 116 size_t nr_bytes; 117 }; 118 119 typedef int (*action_fn) (struct pgpath *pgpath); 120 121 static struct kmem_cache *_mpio_cache; 122 123 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 124 static void process_queued_ios(struct work_struct *work); 125 static void trigger_event(struct work_struct *work); 126 static void activate_path(struct work_struct *work); 127 128 129 /*----------------------------------------------- 130 * Allocation routines 131 *-----------------------------------------------*/ 132 133 static struct pgpath *alloc_pgpath(void) 134 { 135 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 136 137 if (pgpath) { 138 pgpath->is_active = 1; 139 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path); 140 } 141 142 return pgpath; 143 } 144 145 static void free_pgpath(struct pgpath *pgpath) 146 { 147 kfree(pgpath); 148 } 149 150 static struct priority_group *alloc_priority_group(void) 151 { 152 struct priority_group *pg; 153 154 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 155 156 if (pg) 157 INIT_LIST_HEAD(&pg->pgpaths); 158 159 return pg; 160 } 161 162 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 163 { 164 struct pgpath *pgpath, *tmp; 165 struct multipath *m = ti->private; 166 167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 168 list_del(&pgpath->list); 169 if (m->hw_handler_name) 170 scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev)); 171 dm_put_device(ti, pgpath->path.dev); 172 free_pgpath(pgpath); 173 } 174 } 175 176 static void free_priority_group(struct priority_group *pg, 177 struct dm_target *ti) 178 { 179 struct path_selector *ps = &pg->ps; 180 181 if (ps->type) { 182 ps->type->destroy(ps); 183 dm_put_path_selector(ps->type); 184 } 185 186 free_pgpaths(&pg->pgpaths, ti); 187 kfree(pg); 188 } 189 190 static struct multipath *alloc_multipath(struct dm_target *ti) 191 { 192 struct multipath *m; 193 unsigned min_ios = dm_get_reserved_rq_based_ios(); 194 195 m = kzalloc(sizeof(*m), GFP_KERNEL); 196 if (m) { 197 INIT_LIST_HEAD(&m->priority_groups); 198 INIT_LIST_HEAD(&m->queued_ios); 199 spin_lock_init(&m->lock); 200 m->queue_io = 1; 201 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 202 INIT_WORK(&m->process_queued_ios, process_queued_ios); 203 INIT_WORK(&m->trigger_event, trigger_event); 204 init_waitqueue_head(&m->pg_init_wait); 205 mutex_init(&m->work_mutex); 206 m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache); 207 if (!m->mpio_pool) { 208 kfree(m); 209 return NULL; 210 } 211 m->ti = ti; 212 ti->private = m; 213 } 214 215 return m; 216 } 217 218 static void free_multipath(struct multipath *m) 219 { 220 struct priority_group *pg, *tmp; 221 222 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 223 list_del(&pg->list); 224 free_priority_group(pg, m->ti); 225 } 226 227 kfree(m->hw_handler_name); 228 kfree(m->hw_handler_params); 229 mempool_destroy(m->mpio_pool); 230 kfree(m); 231 } 232 233 static int set_mapinfo(struct multipath *m, union map_info *info) 234 { 235 struct dm_mpath_io *mpio; 236 237 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 238 if (!mpio) 239 return -ENOMEM; 240 241 memset(mpio, 0, sizeof(*mpio)); 242 info->ptr = mpio; 243 244 return 0; 245 } 246 247 static void clear_mapinfo(struct multipath *m, union map_info *info) 248 { 249 struct dm_mpath_io *mpio = info->ptr; 250 251 info->ptr = NULL; 252 mempool_free(mpio, m->mpio_pool); 253 } 254 255 /*----------------------------------------------- 256 * Path selection 257 *-----------------------------------------------*/ 258 259 static void __pg_init_all_paths(struct multipath *m) 260 { 261 struct pgpath *pgpath; 262 unsigned long pg_init_delay = 0; 263 264 m->pg_init_count++; 265 m->pg_init_required = 0; 266 if (m->pg_init_delay_retry) 267 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 268 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 269 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 270 /* Skip failed paths */ 271 if (!pgpath->is_active) 272 continue; 273 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 274 pg_init_delay)) 275 m->pg_init_in_progress++; 276 } 277 } 278 279 static void __switch_pg(struct multipath *m, struct pgpath *pgpath) 280 { 281 m->current_pg = pgpath->pg; 282 283 /* Must we initialise the PG first, and queue I/O till it's ready? */ 284 if (m->hw_handler_name) { 285 m->pg_init_required = 1; 286 m->queue_io = 1; 287 } else { 288 m->pg_init_required = 0; 289 m->queue_io = 0; 290 } 291 292 m->pg_init_count = 0; 293 } 294 295 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg, 296 size_t nr_bytes) 297 { 298 struct dm_path *path; 299 300 path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes); 301 if (!path) 302 return -ENXIO; 303 304 m->current_pgpath = path_to_pgpath(path); 305 306 if (m->current_pg != pg) 307 __switch_pg(m, m->current_pgpath); 308 309 return 0; 310 } 311 312 static void __choose_pgpath(struct multipath *m, size_t nr_bytes) 313 { 314 struct priority_group *pg; 315 unsigned bypassed = 1; 316 317 if (!m->nr_valid_paths) 318 goto failed; 319 320 /* Were we instructed to switch PG? */ 321 if (m->next_pg) { 322 pg = m->next_pg; 323 m->next_pg = NULL; 324 if (!__choose_path_in_pg(m, pg, nr_bytes)) 325 return; 326 } 327 328 /* Don't change PG until it has no remaining paths */ 329 if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes)) 330 return; 331 332 /* 333 * Loop through priority groups until we find a valid path. 334 * First time we skip PGs marked 'bypassed'. 335 * Second time we only try the ones we skipped, but set 336 * pg_init_delay_retry so we do not hammer controllers. 337 */ 338 do { 339 list_for_each_entry(pg, &m->priority_groups, list) { 340 if (pg->bypassed == bypassed) 341 continue; 342 if (!__choose_path_in_pg(m, pg, nr_bytes)) { 343 if (!bypassed) 344 m->pg_init_delay_retry = 1; 345 return; 346 } 347 } 348 } while (bypassed--); 349 350 failed: 351 m->current_pgpath = NULL; 352 m->current_pg = NULL; 353 } 354 355 /* 356 * Check whether bios must be queued in the device-mapper core rather 357 * than here in the target. 358 * 359 * m->lock must be held on entry. 360 * 361 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 362 * same value then we are not between multipath_presuspend() 363 * and multipath_resume() calls and we have no need to check 364 * for the DMF_NOFLUSH_SUSPENDING flag. 365 */ 366 static int __must_push_back(struct multipath *m) 367 { 368 return (m->queue_if_no_path != m->saved_queue_if_no_path && 369 dm_noflush_suspending(m->ti)); 370 } 371 372 static int map_io(struct multipath *m, struct request *clone, 373 union map_info *map_context, unsigned was_queued) 374 { 375 int r = DM_MAPIO_REMAPPED; 376 size_t nr_bytes = blk_rq_bytes(clone); 377 unsigned long flags; 378 struct pgpath *pgpath; 379 struct block_device *bdev; 380 struct dm_mpath_io *mpio = map_context->ptr; 381 382 spin_lock_irqsave(&m->lock, flags); 383 384 /* Do we need to select a new pgpath? */ 385 if (!m->current_pgpath || 386 (!m->queue_io && (m->repeat_count && --m->repeat_count == 0))) 387 __choose_pgpath(m, nr_bytes); 388 389 pgpath = m->current_pgpath; 390 391 if (was_queued) 392 m->queue_size--; 393 394 if (m->pg_init_required) { 395 if (!m->pg_init_in_progress) 396 queue_work(kmultipathd, &m->process_queued_ios); 397 r = DM_MAPIO_REQUEUE; 398 } else if ((pgpath && m->queue_io) || 399 (!pgpath && m->queue_if_no_path)) { 400 /* Queue for the daemon to resubmit */ 401 list_add_tail(&clone->queuelist, &m->queued_ios); 402 m->queue_size++; 403 if (!m->queue_io) 404 queue_work(kmultipathd, &m->process_queued_ios); 405 pgpath = NULL; 406 r = DM_MAPIO_SUBMITTED; 407 } else if (pgpath) { 408 bdev = pgpath->path.dev->bdev; 409 clone->q = bdev_get_queue(bdev); 410 clone->rq_disk = bdev->bd_disk; 411 } else if (__must_push_back(m)) 412 r = DM_MAPIO_REQUEUE; 413 else 414 r = -EIO; /* Failed */ 415 416 mpio->pgpath = pgpath; 417 mpio->nr_bytes = nr_bytes; 418 419 if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io) 420 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path, 421 nr_bytes); 422 423 spin_unlock_irqrestore(&m->lock, flags); 424 425 return r; 426 } 427 428 /* 429 * If we run out of usable paths, should we queue I/O or error it? 430 */ 431 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path, 432 unsigned save_old_value) 433 { 434 unsigned long flags; 435 436 spin_lock_irqsave(&m->lock, flags); 437 438 if (save_old_value) 439 m->saved_queue_if_no_path = m->queue_if_no_path; 440 else 441 m->saved_queue_if_no_path = queue_if_no_path; 442 m->queue_if_no_path = queue_if_no_path; 443 if (!m->queue_if_no_path && m->queue_size) 444 queue_work(kmultipathd, &m->process_queued_ios); 445 446 spin_unlock_irqrestore(&m->lock, flags); 447 448 return 0; 449 } 450 451 /*----------------------------------------------------------------- 452 * The multipath daemon is responsible for resubmitting queued ios. 453 *---------------------------------------------------------------*/ 454 455 static void dispatch_queued_ios(struct multipath *m) 456 { 457 int r; 458 unsigned long flags; 459 union map_info *info; 460 struct request *clone, *n; 461 LIST_HEAD(cl); 462 463 spin_lock_irqsave(&m->lock, flags); 464 list_splice_init(&m->queued_ios, &cl); 465 spin_unlock_irqrestore(&m->lock, flags); 466 467 list_for_each_entry_safe(clone, n, &cl, queuelist) { 468 list_del_init(&clone->queuelist); 469 470 info = dm_get_rq_mapinfo(clone); 471 472 r = map_io(m, clone, info, 1); 473 if (r < 0) { 474 clear_mapinfo(m, info); 475 dm_kill_unmapped_request(clone, r); 476 } else if (r == DM_MAPIO_REMAPPED) 477 dm_dispatch_request(clone); 478 else if (r == DM_MAPIO_REQUEUE) { 479 clear_mapinfo(m, info); 480 dm_requeue_unmapped_request(clone); 481 } 482 } 483 } 484 485 static void process_queued_ios(struct work_struct *work) 486 { 487 struct multipath *m = 488 container_of(work, struct multipath, process_queued_ios); 489 struct pgpath *pgpath = NULL; 490 unsigned must_queue = 1; 491 unsigned long flags; 492 493 spin_lock_irqsave(&m->lock, flags); 494 495 if (!m->current_pgpath) 496 __choose_pgpath(m, 0); 497 498 pgpath = m->current_pgpath; 499 500 if ((pgpath && !m->queue_io) || 501 (!pgpath && !m->queue_if_no_path)) 502 must_queue = 0; 503 504 if (m->pg_init_required && !m->pg_init_in_progress && pgpath && 505 !m->pg_init_disabled) 506 __pg_init_all_paths(m); 507 508 spin_unlock_irqrestore(&m->lock, flags); 509 if (!must_queue) 510 dispatch_queued_ios(m); 511 } 512 513 /* 514 * An event is triggered whenever a path is taken out of use. 515 * Includes path failure and PG bypass. 516 */ 517 static void trigger_event(struct work_struct *work) 518 { 519 struct multipath *m = 520 container_of(work, struct multipath, trigger_event); 521 522 dm_table_event(m->ti->table); 523 } 524 525 /*----------------------------------------------------------------- 526 * Constructor/argument parsing: 527 * <#multipath feature args> [<arg>]* 528 * <#hw_handler args> [hw_handler [<arg>]*] 529 * <#priority groups> 530 * <initial priority group> 531 * [<selector> <#selector args> [<arg>]* 532 * <#paths> <#per-path selector args> 533 * [<path> [<arg>]* ]+ ]+ 534 *---------------------------------------------------------------*/ 535 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 536 struct dm_target *ti) 537 { 538 int r; 539 struct path_selector_type *pst; 540 unsigned ps_argc; 541 542 static struct dm_arg _args[] = { 543 {0, 1024, "invalid number of path selector args"}, 544 }; 545 546 pst = dm_get_path_selector(dm_shift_arg(as)); 547 if (!pst) { 548 ti->error = "unknown path selector type"; 549 return -EINVAL; 550 } 551 552 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 553 if (r) { 554 dm_put_path_selector(pst); 555 return -EINVAL; 556 } 557 558 r = pst->create(&pg->ps, ps_argc, as->argv); 559 if (r) { 560 dm_put_path_selector(pst); 561 ti->error = "path selector constructor failed"; 562 return r; 563 } 564 565 pg->ps.type = pst; 566 dm_consume_args(as, ps_argc); 567 568 return 0; 569 } 570 571 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 572 struct dm_target *ti) 573 { 574 int r; 575 struct pgpath *p; 576 struct multipath *m = ti->private; 577 struct request_queue *q = NULL; 578 const char *attached_handler_name; 579 580 /* we need at least a path arg */ 581 if (as->argc < 1) { 582 ti->error = "no device given"; 583 return ERR_PTR(-EINVAL); 584 } 585 586 p = alloc_pgpath(); 587 if (!p) 588 return ERR_PTR(-ENOMEM); 589 590 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 591 &p->path.dev); 592 if (r) { 593 ti->error = "error getting device"; 594 goto bad; 595 } 596 597 if (m->retain_attached_hw_handler || m->hw_handler_name) 598 q = bdev_get_queue(p->path.dev->bdev); 599 600 if (m->retain_attached_hw_handler) { 601 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 602 if (attached_handler_name) { 603 /* 604 * Reset hw_handler_name to match the attached handler 605 * and clear any hw_handler_params associated with the 606 * ignored handler. 607 * 608 * NB. This modifies the table line to show the actual 609 * handler instead of the original table passed in. 610 */ 611 kfree(m->hw_handler_name); 612 m->hw_handler_name = attached_handler_name; 613 614 kfree(m->hw_handler_params); 615 m->hw_handler_params = NULL; 616 } 617 } 618 619 if (m->hw_handler_name) { 620 /* 621 * Increments scsi_dh reference, even when using an 622 * already-attached handler. 623 */ 624 r = scsi_dh_attach(q, m->hw_handler_name); 625 if (r == -EBUSY) { 626 /* 627 * Already attached to different hw_handler: 628 * try to reattach with correct one. 629 */ 630 scsi_dh_detach(q); 631 r = scsi_dh_attach(q, m->hw_handler_name); 632 } 633 634 if (r < 0) { 635 ti->error = "error attaching hardware handler"; 636 dm_put_device(ti, p->path.dev); 637 goto bad; 638 } 639 640 if (m->hw_handler_params) { 641 r = scsi_dh_set_params(q, m->hw_handler_params); 642 if (r < 0) { 643 ti->error = "unable to set hardware " 644 "handler parameters"; 645 scsi_dh_detach(q); 646 dm_put_device(ti, p->path.dev); 647 goto bad; 648 } 649 } 650 } 651 652 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 653 if (r) { 654 dm_put_device(ti, p->path.dev); 655 goto bad; 656 } 657 658 return p; 659 660 bad: 661 free_pgpath(p); 662 return ERR_PTR(r); 663 } 664 665 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 666 struct multipath *m) 667 { 668 static struct dm_arg _args[] = { 669 {1, 1024, "invalid number of paths"}, 670 {0, 1024, "invalid number of selector args"} 671 }; 672 673 int r; 674 unsigned i, nr_selector_args, nr_args; 675 struct priority_group *pg; 676 struct dm_target *ti = m->ti; 677 678 if (as->argc < 2) { 679 as->argc = 0; 680 ti->error = "not enough priority group arguments"; 681 return ERR_PTR(-EINVAL); 682 } 683 684 pg = alloc_priority_group(); 685 if (!pg) { 686 ti->error = "couldn't allocate priority group"; 687 return ERR_PTR(-ENOMEM); 688 } 689 pg->m = m; 690 691 r = parse_path_selector(as, pg, ti); 692 if (r) 693 goto bad; 694 695 /* 696 * read the paths 697 */ 698 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 699 if (r) 700 goto bad; 701 702 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 703 if (r) 704 goto bad; 705 706 nr_args = 1 + nr_selector_args; 707 for (i = 0; i < pg->nr_pgpaths; i++) { 708 struct pgpath *pgpath; 709 struct dm_arg_set path_args; 710 711 if (as->argc < nr_args) { 712 ti->error = "not enough path parameters"; 713 r = -EINVAL; 714 goto bad; 715 } 716 717 path_args.argc = nr_args; 718 path_args.argv = as->argv; 719 720 pgpath = parse_path(&path_args, &pg->ps, ti); 721 if (IS_ERR(pgpath)) { 722 r = PTR_ERR(pgpath); 723 goto bad; 724 } 725 726 pgpath->pg = pg; 727 list_add_tail(&pgpath->list, &pg->pgpaths); 728 dm_consume_args(as, nr_args); 729 } 730 731 return pg; 732 733 bad: 734 free_priority_group(pg, ti); 735 return ERR_PTR(r); 736 } 737 738 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 739 { 740 unsigned hw_argc; 741 int ret; 742 struct dm_target *ti = m->ti; 743 744 static struct dm_arg _args[] = { 745 {0, 1024, "invalid number of hardware handler args"}, 746 }; 747 748 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 749 return -EINVAL; 750 751 if (!hw_argc) 752 return 0; 753 754 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 755 if (!try_then_request_module(scsi_dh_handler_exist(m->hw_handler_name), 756 "scsi_dh_%s", m->hw_handler_name)) { 757 ti->error = "unknown hardware handler type"; 758 ret = -EINVAL; 759 goto fail; 760 } 761 762 if (hw_argc > 1) { 763 char *p; 764 int i, j, len = 4; 765 766 for (i = 0; i <= hw_argc - 2; i++) 767 len += strlen(as->argv[i]) + 1; 768 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 769 if (!p) { 770 ti->error = "memory allocation failed"; 771 ret = -ENOMEM; 772 goto fail; 773 } 774 j = sprintf(p, "%d", hw_argc - 1); 775 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 776 j = sprintf(p, "%s", as->argv[i]); 777 } 778 dm_consume_args(as, hw_argc - 1); 779 780 return 0; 781 fail: 782 kfree(m->hw_handler_name); 783 m->hw_handler_name = NULL; 784 return ret; 785 } 786 787 static int parse_features(struct dm_arg_set *as, struct multipath *m) 788 { 789 int r; 790 unsigned argc; 791 struct dm_target *ti = m->ti; 792 const char *arg_name; 793 794 static struct dm_arg _args[] = { 795 {0, 6, "invalid number of feature args"}, 796 {1, 50, "pg_init_retries must be between 1 and 50"}, 797 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 798 }; 799 800 r = dm_read_arg_group(_args, as, &argc, &ti->error); 801 if (r) 802 return -EINVAL; 803 804 if (!argc) 805 return 0; 806 807 do { 808 arg_name = dm_shift_arg(as); 809 argc--; 810 811 if (!strcasecmp(arg_name, "queue_if_no_path")) { 812 r = queue_if_no_path(m, 1, 0); 813 continue; 814 } 815 816 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 817 m->retain_attached_hw_handler = 1; 818 continue; 819 } 820 821 if (!strcasecmp(arg_name, "pg_init_retries") && 822 (argc >= 1)) { 823 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 824 argc--; 825 continue; 826 } 827 828 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 829 (argc >= 1)) { 830 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 831 argc--; 832 continue; 833 } 834 835 ti->error = "Unrecognised multipath feature request"; 836 r = -EINVAL; 837 } while (argc && !r); 838 839 return r; 840 } 841 842 static int multipath_ctr(struct dm_target *ti, unsigned int argc, 843 char **argv) 844 { 845 /* target arguments */ 846 static struct dm_arg _args[] = { 847 {0, 1024, "invalid number of priority groups"}, 848 {0, 1024, "invalid initial priority group number"}, 849 }; 850 851 int r; 852 struct multipath *m; 853 struct dm_arg_set as; 854 unsigned pg_count = 0; 855 unsigned next_pg_num; 856 857 as.argc = argc; 858 as.argv = argv; 859 860 m = alloc_multipath(ti); 861 if (!m) { 862 ti->error = "can't allocate multipath"; 863 return -EINVAL; 864 } 865 866 r = parse_features(&as, m); 867 if (r) 868 goto bad; 869 870 r = parse_hw_handler(&as, m); 871 if (r) 872 goto bad; 873 874 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 875 if (r) 876 goto bad; 877 878 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 879 if (r) 880 goto bad; 881 882 if ((!m->nr_priority_groups && next_pg_num) || 883 (m->nr_priority_groups && !next_pg_num)) { 884 ti->error = "invalid initial priority group"; 885 r = -EINVAL; 886 goto bad; 887 } 888 889 /* parse the priority groups */ 890 while (as.argc) { 891 struct priority_group *pg; 892 893 pg = parse_priority_group(&as, m); 894 if (IS_ERR(pg)) { 895 r = PTR_ERR(pg); 896 goto bad; 897 } 898 899 m->nr_valid_paths += pg->nr_pgpaths; 900 list_add_tail(&pg->list, &m->priority_groups); 901 pg_count++; 902 pg->pg_num = pg_count; 903 if (!--next_pg_num) 904 m->next_pg = pg; 905 } 906 907 if (pg_count != m->nr_priority_groups) { 908 ti->error = "priority group count mismatch"; 909 r = -EINVAL; 910 goto bad; 911 } 912 913 ti->num_flush_bios = 1; 914 ti->num_discard_bios = 1; 915 ti->num_write_same_bios = 1; 916 917 return 0; 918 919 bad: 920 free_multipath(m); 921 return r; 922 } 923 924 static void multipath_wait_for_pg_init_completion(struct multipath *m) 925 { 926 DECLARE_WAITQUEUE(wait, current); 927 unsigned long flags; 928 929 add_wait_queue(&m->pg_init_wait, &wait); 930 931 while (1) { 932 set_current_state(TASK_UNINTERRUPTIBLE); 933 934 spin_lock_irqsave(&m->lock, flags); 935 if (!m->pg_init_in_progress) { 936 spin_unlock_irqrestore(&m->lock, flags); 937 break; 938 } 939 spin_unlock_irqrestore(&m->lock, flags); 940 941 io_schedule(); 942 } 943 set_current_state(TASK_RUNNING); 944 945 remove_wait_queue(&m->pg_init_wait, &wait); 946 } 947 948 static void flush_multipath_work(struct multipath *m) 949 { 950 unsigned long flags; 951 952 spin_lock_irqsave(&m->lock, flags); 953 m->pg_init_disabled = 1; 954 spin_unlock_irqrestore(&m->lock, flags); 955 956 flush_workqueue(kmpath_handlerd); 957 multipath_wait_for_pg_init_completion(m); 958 flush_workqueue(kmultipathd); 959 flush_work(&m->trigger_event); 960 961 spin_lock_irqsave(&m->lock, flags); 962 m->pg_init_disabled = 0; 963 spin_unlock_irqrestore(&m->lock, flags); 964 } 965 966 static void multipath_dtr(struct dm_target *ti) 967 { 968 struct multipath *m = ti->private; 969 970 flush_multipath_work(m); 971 free_multipath(m); 972 } 973 974 /* 975 * Map cloned requests 976 */ 977 static int multipath_map(struct dm_target *ti, struct request *clone, 978 union map_info *map_context) 979 { 980 int r; 981 struct multipath *m = (struct multipath *) ti->private; 982 983 if (set_mapinfo(m, map_context) < 0) 984 /* ENOMEM, requeue */ 985 return DM_MAPIO_REQUEUE; 986 987 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 988 r = map_io(m, clone, map_context, 0); 989 if (r < 0 || r == DM_MAPIO_REQUEUE) 990 clear_mapinfo(m, map_context); 991 992 return r; 993 } 994 995 /* 996 * Take a path out of use. 997 */ 998 static int fail_path(struct pgpath *pgpath) 999 { 1000 unsigned long flags; 1001 struct multipath *m = pgpath->pg->m; 1002 1003 spin_lock_irqsave(&m->lock, flags); 1004 1005 if (!pgpath->is_active) 1006 goto out; 1007 1008 DMWARN("Failing path %s.", pgpath->path.dev->name); 1009 1010 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1011 pgpath->is_active = 0; 1012 pgpath->fail_count++; 1013 1014 m->nr_valid_paths--; 1015 1016 if (pgpath == m->current_pgpath) 1017 m->current_pgpath = NULL; 1018 1019 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1020 pgpath->path.dev->name, m->nr_valid_paths); 1021 1022 schedule_work(&m->trigger_event); 1023 1024 out: 1025 spin_unlock_irqrestore(&m->lock, flags); 1026 1027 return 0; 1028 } 1029 1030 /* 1031 * Reinstate a previously-failed path 1032 */ 1033 static int reinstate_path(struct pgpath *pgpath) 1034 { 1035 int r = 0; 1036 unsigned long flags; 1037 struct multipath *m = pgpath->pg->m; 1038 1039 spin_lock_irqsave(&m->lock, flags); 1040 1041 if (pgpath->is_active) 1042 goto out; 1043 1044 if (!pgpath->pg->ps.type->reinstate_path) { 1045 DMWARN("Reinstate path not supported by path selector %s", 1046 pgpath->pg->ps.type->name); 1047 r = -EINVAL; 1048 goto out; 1049 } 1050 1051 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1052 if (r) 1053 goto out; 1054 1055 pgpath->is_active = 1; 1056 1057 if (!m->nr_valid_paths++ && m->queue_size) { 1058 m->current_pgpath = NULL; 1059 queue_work(kmultipathd, &m->process_queued_ios); 1060 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1061 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1062 m->pg_init_in_progress++; 1063 } 1064 1065 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1066 pgpath->path.dev->name, m->nr_valid_paths); 1067 1068 schedule_work(&m->trigger_event); 1069 1070 out: 1071 spin_unlock_irqrestore(&m->lock, flags); 1072 1073 return r; 1074 } 1075 1076 /* 1077 * Fail or reinstate all paths that match the provided struct dm_dev. 1078 */ 1079 static int action_dev(struct multipath *m, struct dm_dev *dev, 1080 action_fn action) 1081 { 1082 int r = -EINVAL; 1083 struct pgpath *pgpath; 1084 struct priority_group *pg; 1085 1086 list_for_each_entry(pg, &m->priority_groups, list) { 1087 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1088 if (pgpath->path.dev == dev) 1089 r = action(pgpath); 1090 } 1091 } 1092 1093 return r; 1094 } 1095 1096 /* 1097 * Temporarily try to avoid having to use the specified PG 1098 */ 1099 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1100 int bypassed) 1101 { 1102 unsigned long flags; 1103 1104 spin_lock_irqsave(&m->lock, flags); 1105 1106 pg->bypassed = bypassed; 1107 m->current_pgpath = NULL; 1108 m->current_pg = NULL; 1109 1110 spin_unlock_irqrestore(&m->lock, flags); 1111 1112 schedule_work(&m->trigger_event); 1113 } 1114 1115 /* 1116 * Switch to using the specified PG from the next I/O that gets mapped 1117 */ 1118 static int switch_pg_num(struct multipath *m, const char *pgstr) 1119 { 1120 struct priority_group *pg; 1121 unsigned pgnum; 1122 unsigned long flags; 1123 char dummy; 1124 1125 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1126 (pgnum > m->nr_priority_groups)) { 1127 DMWARN("invalid PG number supplied to switch_pg_num"); 1128 return -EINVAL; 1129 } 1130 1131 spin_lock_irqsave(&m->lock, flags); 1132 list_for_each_entry(pg, &m->priority_groups, list) { 1133 pg->bypassed = 0; 1134 if (--pgnum) 1135 continue; 1136 1137 m->current_pgpath = NULL; 1138 m->current_pg = NULL; 1139 m->next_pg = pg; 1140 } 1141 spin_unlock_irqrestore(&m->lock, flags); 1142 1143 schedule_work(&m->trigger_event); 1144 return 0; 1145 } 1146 1147 /* 1148 * Set/clear bypassed status of a PG. 1149 * PGs are numbered upwards from 1 in the order they were declared. 1150 */ 1151 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed) 1152 { 1153 struct priority_group *pg; 1154 unsigned pgnum; 1155 char dummy; 1156 1157 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1158 (pgnum > m->nr_priority_groups)) { 1159 DMWARN("invalid PG number supplied to bypass_pg"); 1160 return -EINVAL; 1161 } 1162 1163 list_for_each_entry(pg, &m->priority_groups, list) { 1164 if (!--pgnum) 1165 break; 1166 } 1167 1168 bypass_pg(m, pg, bypassed); 1169 return 0; 1170 } 1171 1172 /* 1173 * Should we retry pg_init immediately? 1174 */ 1175 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1176 { 1177 unsigned long flags; 1178 int limit_reached = 0; 1179 1180 spin_lock_irqsave(&m->lock, flags); 1181 1182 if (m->pg_init_count <= m->pg_init_retries && !m->pg_init_disabled) 1183 m->pg_init_required = 1; 1184 else 1185 limit_reached = 1; 1186 1187 spin_unlock_irqrestore(&m->lock, flags); 1188 1189 return limit_reached; 1190 } 1191 1192 static void pg_init_done(void *data, int errors) 1193 { 1194 struct pgpath *pgpath = data; 1195 struct priority_group *pg = pgpath->pg; 1196 struct multipath *m = pg->m; 1197 unsigned long flags; 1198 unsigned delay_retry = 0; 1199 1200 /* device or driver problems */ 1201 switch (errors) { 1202 case SCSI_DH_OK: 1203 break; 1204 case SCSI_DH_NOSYS: 1205 if (!m->hw_handler_name) { 1206 errors = 0; 1207 break; 1208 } 1209 DMERR("Could not failover the device: Handler scsi_dh_%s " 1210 "Error %d.", m->hw_handler_name, errors); 1211 /* 1212 * Fail path for now, so we do not ping pong 1213 */ 1214 fail_path(pgpath); 1215 break; 1216 case SCSI_DH_DEV_TEMP_BUSY: 1217 /* 1218 * Probably doing something like FW upgrade on the 1219 * controller so try the other pg. 1220 */ 1221 bypass_pg(m, pg, 1); 1222 break; 1223 case SCSI_DH_RETRY: 1224 /* Wait before retrying. */ 1225 delay_retry = 1; 1226 case SCSI_DH_IMM_RETRY: 1227 case SCSI_DH_RES_TEMP_UNAVAIL: 1228 if (pg_init_limit_reached(m, pgpath)) 1229 fail_path(pgpath); 1230 errors = 0; 1231 break; 1232 default: 1233 /* 1234 * We probably do not want to fail the path for a device 1235 * error, but this is what the old dm did. In future 1236 * patches we can do more advanced handling. 1237 */ 1238 fail_path(pgpath); 1239 } 1240 1241 spin_lock_irqsave(&m->lock, flags); 1242 if (errors) { 1243 if (pgpath == m->current_pgpath) { 1244 DMERR("Could not failover device. Error %d.", errors); 1245 m->current_pgpath = NULL; 1246 m->current_pg = NULL; 1247 } 1248 } else if (!m->pg_init_required) 1249 pg->bypassed = 0; 1250 1251 if (--m->pg_init_in_progress) 1252 /* Activations of other paths are still on going */ 1253 goto out; 1254 1255 if (!m->pg_init_required) 1256 m->queue_io = 0; 1257 1258 m->pg_init_delay_retry = delay_retry; 1259 queue_work(kmultipathd, &m->process_queued_ios); 1260 1261 /* 1262 * Wake up any thread waiting to suspend. 1263 */ 1264 wake_up(&m->pg_init_wait); 1265 1266 out: 1267 spin_unlock_irqrestore(&m->lock, flags); 1268 } 1269 1270 static void activate_path(struct work_struct *work) 1271 { 1272 struct pgpath *pgpath = 1273 container_of(work, struct pgpath, activate_path.work); 1274 1275 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), 1276 pg_init_done, pgpath); 1277 } 1278 1279 static int noretry_error(int error) 1280 { 1281 switch (error) { 1282 case -EOPNOTSUPP: 1283 case -EREMOTEIO: 1284 case -EILSEQ: 1285 case -ENODATA: 1286 case -ENOSPC: 1287 return 1; 1288 } 1289 1290 /* Anything else could be a path failure, so should be retried */ 1291 return 0; 1292 } 1293 1294 /* 1295 * end_io handling 1296 */ 1297 static int do_end_io(struct multipath *m, struct request *clone, 1298 int error, struct dm_mpath_io *mpio) 1299 { 1300 /* 1301 * We don't queue any clone request inside the multipath target 1302 * during end I/O handling, since those clone requests don't have 1303 * bio clones. If we queue them inside the multipath target, 1304 * we need to make bio clones, that requires memory allocation. 1305 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests 1306 * don't have bio clones.) 1307 * Instead of queueing the clone request here, we queue the original 1308 * request into dm core, which will remake a clone request and 1309 * clone bios for it and resubmit it later. 1310 */ 1311 int r = DM_ENDIO_REQUEUE; 1312 unsigned long flags; 1313 1314 if (!error && !clone->errors) 1315 return 0; /* I/O complete */ 1316 1317 if (noretry_error(error)) { 1318 if ((clone->cmd_flags & REQ_WRITE_SAME) && 1319 !clone->q->limits.max_write_same_sectors) { 1320 struct queue_limits *limits; 1321 1322 /* device doesn't really support WRITE SAME, disable it */ 1323 limits = dm_get_queue_limits(dm_table_get_md(m->ti->table)); 1324 limits->max_write_same_sectors = 0; 1325 } 1326 return error; 1327 } 1328 1329 if (mpio->pgpath) 1330 fail_path(mpio->pgpath); 1331 1332 spin_lock_irqsave(&m->lock, flags); 1333 if (!m->nr_valid_paths) { 1334 if (!m->queue_if_no_path) { 1335 if (!__must_push_back(m)) 1336 r = -EIO; 1337 } else { 1338 if (error == -EBADE) 1339 r = error; 1340 } 1341 } 1342 spin_unlock_irqrestore(&m->lock, flags); 1343 1344 return r; 1345 } 1346 1347 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1348 int error, union map_info *map_context) 1349 { 1350 struct multipath *m = ti->private; 1351 struct dm_mpath_io *mpio = map_context->ptr; 1352 struct pgpath *pgpath; 1353 struct path_selector *ps; 1354 int r; 1355 1356 BUG_ON(!mpio); 1357 1358 r = do_end_io(m, clone, error, mpio); 1359 pgpath = mpio->pgpath; 1360 if (pgpath) { 1361 ps = &pgpath->pg->ps; 1362 if (ps->type->end_io) 1363 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1364 } 1365 clear_mapinfo(m, map_context); 1366 1367 return r; 1368 } 1369 1370 /* 1371 * Suspend can't complete until all the I/O is processed so if 1372 * the last path fails we must error any remaining I/O. 1373 * Note that if the freeze_bdev fails while suspending, the 1374 * queue_if_no_path state is lost - userspace should reset it. 1375 */ 1376 static void multipath_presuspend(struct dm_target *ti) 1377 { 1378 struct multipath *m = (struct multipath *) ti->private; 1379 1380 queue_if_no_path(m, 0, 1); 1381 } 1382 1383 static void multipath_postsuspend(struct dm_target *ti) 1384 { 1385 struct multipath *m = ti->private; 1386 1387 mutex_lock(&m->work_mutex); 1388 flush_multipath_work(m); 1389 mutex_unlock(&m->work_mutex); 1390 } 1391 1392 /* 1393 * Restore the queue_if_no_path setting. 1394 */ 1395 static void multipath_resume(struct dm_target *ti) 1396 { 1397 struct multipath *m = (struct multipath *) ti->private; 1398 unsigned long flags; 1399 1400 spin_lock_irqsave(&m->lock, flags); 1401 m->queue_if_no_path = m->saved_queue_if_no_path; 1402 spin_unlock_irqrestore(&m->lock, flags); 1403 } 1404 1405 /* 1406 * Info output has the following format: 1407 * num_multipath_feature_args [multipath_feature_args]* 1408 * num_handler_status_args [handler_status_args]* 1409 * num_groups init_group_number 1410 * [A|D|E num_ps_status_args [ps_status_args]* 1411 * num_paths num_selector_args 1412 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1413 * 1414 * Table output has the following format (identical to the constructor string): 1415 * num_feature_args [features_args]* 1416 * num_handler_args hw_handler [hw_handler_args]* 1417 * num_groups init_group_number 1418 * [priority selector-name num_ps_args [ps_args]* 1419 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1420 */ 1421 static void multipath_status(struct dm_target *ti, status_type_t type, 1422 unsigned status_flags, char *result, unsigned maxlen) 1423 { 1424 int sz = 0; 1425 unsigned long flags; 1426 struct multipath *m = (struct multipath *) ti->private; 1427 struct priority_group *pg; 1428 struct pgpath *p; 1429 unsigned pg_num; 1430 char state; 1431 1432 spin_lock_irqsave(&m->lock, flags); 1433 1434 /* Features */ 1435 if (type == STATUSTYPE_INFO) 1436 DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count); 1437 else { 1438 DMEMIT("%u ", m->queue_if_no_path + 1439 (m->pg_init_retries > 0) * 2 + 1440 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1441 m->retain_attached_hw_handler); 1442 if (m->queue_if_no_path) 1443 DMEMIT("queue_if_no_path "); 1444 if (m->pg_init_retries) 1445 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1446 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1447 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1448 if (m->retain_attached_hw_handler) 1449 DMEMIT("retain_attached_hw_handler "); 1450 } 1451 1452 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1453 DMEMIT("0 "); 1454 else 1455 DMEMIT("1 %s ", m->hw_handler_name); 1456 1457 DMEMIT("%u ", m->nr_priority_groups); 1458 1459 if (m->next_pg) 1460 pg_num = m->next_pg->pg_num; 1461 else if (m->current_pg) 1462 pg_num = m->current_pg->pg_num; 1463 else 1464 pg_num = (m->nr_priority_groups ? 1 : 0); 1465 1466 DMEMIT("%u ", pg_num); 1467 1468 switch (type) { 1469 case STATUSTYPE_INFO: 1470 list_for_each_entry(pg, &m->priority_groups, list) { 1471 if (pg->bypassed) 1472 state = 'D'; /* Disabled */ 1473 else if (pg == m->current_pg) 1474 state = 'A'; /* Currently Active */ 1475 else 1476 state = 'E'; /* Enabled */ 1477 1478 DMEMIT("%c ", state); 1479 1480 if (pg->ps.type->status) 1481 sz += pg->ps.type->status(&pg->ps, NULL, type, 1482 result + sz, 1483 maxlen - sz); 1484 else 1485 DMEMIT("0 "); 1486 1487 DMEMIT("%u %u ", pg->nr_pgpaths, 1488 pg->ps.type->info_args); 1489 1490 list_for_each_entry(p, &pg->pgpaths, list) { 1491 DMEMIT("%s %s %u ", p->path.dev->name, 1492 p->is_active ? "A" : "F", 1493 p->fail_count); 1494 if (pg->ps.type->status) 1495 sz += pg->ps.type->status(&pg->ps, 1496 &p->path, type, result + sz, 1497 maxlen - sz); 1498 } 1499 } 1500 break; 1501 1502 case STATUSTYPE_TABLE: 1503 list_for_each_entry(pg, &m->priority_groups, list) { 1504 DMEMIT("%s ", pg->ps.type->name); 1505 1506 if (pg->ps.type->status) 1507 sz += pg->ps.type->status(&pg->ps, NULL, type, 1508 result + sz, 1509 maxlen - sz); 1510 else 1511 DMEMIT("0 "); 1512 1513 DMEMIT("%u %u ", pg->nr_pgpaths, 1514 pg->ps.type->table_args); 1515 1516 list_for_each_entry(p, &pg->pgpaths, list) { 1517 DMEMIT("%s ", p->path.dev->name); 1518 if (pg->ps.type->status) 1519 sz += pg->ps.type->status(&pg->ps, 1520 &p->path, type, result + sz, 1521 maxlen - sz); 1522 } 1523 } 1524 break; 1525 } 1526 1527 spin_unlock_irqrestore(&m->lock, flags); 1528 } 1529 1530 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1531 { 1532 int r = -EINVAL; 1533 struct dm_dev *dev; 1534 struct multipath *m = (struct multipath *) ti->private; 1535 action_fn action; 1536 1537 mutex_lock(&m->work_mutex); 1538 1539 if (dm_suspended(ti)) { 1540 r = -EBUSY; 1541 goto out; 1542 } 1543 1544 if (argc == 1) { 1545 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1546 r = queue_if_no_path(m, 1, 0); 1547 goto out; 1548 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1549 r = queue_if_no_path(m, 0, 0); 1550 goto out; 1551 } 1552 } 1553 1554 if (argc != 2) { 1555 DMWARN("Unrecognised multipath message received."); 1556 goto out; 1557 } 1558 1559 if (!strcasecmp(argv[0], "disable_group")) { 1560 r = bypass_pg_num(m, argv[1], 1); 1561 goto out; 1562 } else if (!strcasecmp(argv[0], "enable_group")) { 1563 r = bypass_pg_num(m, argv[1], 0); 1564 goto out; 1565 } else if (!strcasecmp(argv[0], "switch_group")) { 1566 r = switch_pg_num(m, argv[1]); 1567 goto out; 1568 } else if (!strcasecmp(argv[0], "reinstate_path")) 1569 action = reinstate_path; 1570 else if (!strcasecmp(argv[0], "fail_path")) 1571 action = fail_path; 1572 else { 1573 DMWARN("Unrecognised multipath message received."); 1574 goto out; 1575 } 1576 1577 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1578 if (r) { 1579 DMWARN("message: error getting device %s", 1580 argv[1]); 1581 goto out; 1582 } 1583 1584 r = action_dev(m, dev, action); 1585 1586 dm_put_device(ti, dev); 1587 1588 out: 1589 mutex_unlock(&m->work_mutex); 1590 return r; 1591 } 1592 1593 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd, 1594 unsigned long arg) 1595 { 1596 struct multipath *m = ti->private; 1597 struct pgpath *pgpath; 1598 struct block_device *bdev; 1599 fmode_t mode; 1600 unsigned long flags; 1601 int r; 1602 1603 bdev = NULL; 1604 mode = 0; 1605 r = 0; 1606 1607 spin_lock_irqsave(&m->lock, flags); 1608 1609 if (!m->current_pgpath) 1610 __choose_pgpath(m, 0); 1611 1612 pgpath = m->current_pgpath; 1613 1614 if (pgpath) { 1615 bdev = pgpath->path.dev->bdev; 1616 mode = pgpath->path.dev->mode; 1617 } 1618 1619 if ((pgpath && m->queue_io) || (!pgpath && m->queue_if_no_path)) 1620 r = -ENOTCONN; 1621 else if (!bdev) 1622 r = -EIO; 1623 1624 spin_unlock_irqrestore(&m->lock, flags); 1625 1626 /* 1627 * Only pass ioctls through if the device sizes match exactly. 1628 */ 1629 if (!bdev || ti->len != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT) { 1630 int err = scsi_verify_blk_ioctl(NULL, cmd); 1631 if (err) 1632 r = err; 1633 } 1634 1635 if (r == -ENOTCONN && !fatal_signal_pending(current)) 1636 queue_work(kmultipathd, &m->process_queued_ios); 1637 1638 return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg); 1639 } 1640 1641 static int multipath_iterate_devices(struct dm_target *ti, 1642 iterate_devices_callout_fn fn, void *data) 1643 { 1644 struct multipath *m = ti->private; 1645 struct priority_group *pg; 1646 struct pgpath *p; 1647 int ret = 0; 1648 1649 list_for_each_entry(pg, &m->priority_groups, list) { 1650 list_for_each_entry(p, &pg->pgpaths, list) { 1651 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1652 if (ret) 1653 goto out; 1654 } 1655 } 1656 1657 out: 1658 return ret; 1659 } 1660 1661 static int __pgpath_busy(struct pgpath *pgpath) 1662 { 1663 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1664 1665 return dm_underlying_device_busy(q); 1666 } 1667 1668 /* 1669 * We return "busy", only when we can map I/Os but underlying devices 1670 * are busy (so even if we map I/Os now, the I/Os will wait on 1671 * the underlying queue). 1672 * In other words, if we want to kill I/Os or queue them inside us 1673 * due to map unavailability, we don't return "busy". Otherwise, 1674 * dm core won't give us the I/Os and we can't do what we want. 1675 */ 1676 static int multipath_busy(struct dm_target *ti) 1677 { 1678 int busy = 0, has_active = 0; 1679 struct multipath *m = ti->private; 1680 struct priority_group *pg; 1681 struct pgpath *pgpath; 1682 unsigned long flags; 1683 1684 spin_lock_irqsave(&m->lock, flags); 1685 1686 /* pg_init in progress, requeue until done */ 1687 if (m->pg_init_in_progress) { 1688 busy = 1; 1689 goto out; 1690 } 1691 /* Guess which priority_group will be used at next mapping time */ 1692 if (unlikely(!m->current_pgpath && m->next_pg)) 1693 pg = m->next_pg; 1694 else if (likely(m->current_pg)) 1695 pg = m->current_pg; 1696 else 1697 /* 1698 * We don't know which pg will be used at next mapping time. 1699 * We don't call __choose_pgpath() here to avoid to trigger 1700 * pg_init just by busy checking. 1701 * So we don't know whether underlying devices we will be using 1702 * at next mapping time are busy or not. Just try mapping. 1703 */ 1704 goto out; 1705 1706 /* 1707 * If there is one non-busy active path at least, the path selector 1708 * will be able to select it. So we consider such a pg as not busy. 1709 */ 1710 busy = 1; 1711 list_for_each_entry(pgpath, &pg->pgpaths, list) 1712 if (pgpath->is_active) { 1713 has_active = 1; 1714 1715 if (!__pgpath_busy(pgpath)) { 1716 busy = 0; 1717 break; 1718 } 1719 } 1720 1721 if (!has_active) 1722 /* 1723 * No active path in this pg, so this pg won't be used and 1724 * the current_pg will be changed at next mapping time. 1725 * We need to try mapping to determine it. 1726 */ 1727 busy = 0; 1728 1729 out: 1730 spin_unlock_irqrestore(&m->lock, flags); 1731 1732 return busy; 1733 } 1734 1735 /*----------------------------------------------------------------- 1736 * Module setup 1737 *---------------------------------------------------------------*/ 1738 static struct target_type multipath_target = { 1739 .name = "multipath", 1740 .version = {1, 6, 0}, 1741 .module = THIS_MODULE, 1742 .ctr = multipath_ctr, 1743 .dtr = multipath_dtr, 1744 .map_rq = multipath_map, 1745 .rq_end_io = multipath_end_io, 1746 .presuspend = multipath_presuspend, 1747 .postsuspend = multipath_postsuspend, 1748 .resume = multipath_resume, 1749 .status = multipath_status, 1750 .message = multipath_message, 1751 .ioctl = multipath_ioctl, 1752 .iterate_devices = multipath_iterate_devices, 1753 .busy = multipath_busy, 1754 }; 1755 1756 static int __init dm_multipath_init(void) 1757 { 1758 int r; 1759 1760 /* allocate a slab for the dm_ios */ 1761 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 1762 if (!_mpio_cache) 1763 return -ENOMEM; 1764 1765 r = dm_register_target(&multipath_target); 1766 if (r < 0) { 1767 DMERR("register failed %d", r); 1768 kmem_cache_destroy(_mpio_cache); 1769 return -EINVAL; 1770 } 1771 1772 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1773 if (!kmultipathd) { 1774 DMERR("failed to create workqueue kmpathd"); 1775 dm_unregister_target(&multipath_target); 1776 kmem_cache_destroy(_mpio_cache); 1777 return -ENOMEM; 1778 } 1779 1780 /* 1781 * A separate workqueue is used to handle the device handlers 1782 * to avoid overloading existing workqueue. Overloading the 1783 * old workqueue would also create a bottleneck in the 1784 * path of the storage hardware device activation. 1785 */ 1786 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1787 WQ_MEM_RECLAIM); 1788 if (!kmpath_handlerd) { 1789 DMERR("failed to create workqueue kmpath_handlerd"); 1790 destroy_workqueue(kmultipathd); 1791 dm_unregister_target(&multipath_target); 1792 kmem_cache_destroy(_mpio_cache); 1793 return -ENOMEM; 1794 } 1795 1796 DMINFO("version %u.%u.%u loaded", 1797 multipath_target.version[0], multipath_target.version[1], 1798 multipath_target.version[2]); 1799 1800 return r; 1801 } 1802 1803 static void __exit dm_multipath_exit(void) 1804 { 1805 destroy_workqueue(kmpath_handlerd); 1806 destroy_workqueue(kmultipathd); 1807 1808 dm_unregister_target(&multipath_target); 1809 kmem_cache_destroy(_mpio_cache); 1810 } 1811 1812 module_init(dm_multipath_init); 1813 module_exit(dm_multipath_exit); 1814 1815 MODULE_DESCRIPTION(DM_NAME " multipath target"); 1816 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 1817 MODULE_LICENSE("GPL"); 1818