xref: /openbmc/linux/drivers/md/dm-mpath.c (revision a01822e9)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/timer.h>
24 #include <linux/workqueue.h>
25 #include <linux/delay.h>
26 #include <scsi/scsi_dh.h>
27 #include <linux/atomic.h>
28 #include <linux/blk-mq.h>
29 
30 #define DM_MSG_PREFIX "multipath"
31 #define DM_PG_INIT_DELAY_MSECS 2000
32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0
34 
35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT;
36 
37 /* Path properties */
38 struct pgpath {
39 	struct list_head list;
40 
41 	struct priority_group *pg;	/* Owning PG */
42 	unsigned fail_count;		/* Cumulative failure count */
43 
44 	struct dm_path path;
45 	struct delayed_work activate_path;
46 
47 	bool is_active:1;		/* Path status */
48 };
49 
50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
51 
52 /*
53  * Paths are grouped into Priority Groups and numbered from 1 upwards.
54  * Each has a path selector which controls which path gets used.
55  */
56 struct priority_group {
57 	struct list_head list;
58 
59 	struct multipath *m;		/* Owning multipath instance */
60 	struct path_selector ps;
61 
62 	unsigned pg_num;		/* Reference number */
63 	unsigned nr_pgpaths;		/* Number of paths in PG */
64 	struct list_head pgpaths;
65 
66 	bool bypassed:1;		/* Temporarily bypass this PG? */
67 };
68 
69 /* Multipath context */
70 struct multipath {
71 	unsigned long flags;		/* Multipath state flags */
72 
73 	spinlock_t lock;
74 	enum dm_queue_mode queue_mode;
75 
76 	struct pgpath *current_pgpath;
77 	struct priority_group *current_pg;
78 	struct priority_group *next_pg;	/* Switch to this PG if set */
79 
80 	atomic_t nr_valid_paths;	/* Total number of usable paths */
81 	unsigned nr_priority_groups;
82 	struct list_head priority_groups;
83 
84 	const char *hw_handler_name;
85 	char *hw_handler_params;
86 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
87 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
88 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
89 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
90 	atomic_t pg_init_count;		/* Number of times pg_init called */
91 
92 	struct mutex work_mutex;
93 	struct work_struct trigger_event;
94 	struct dm_target *ti;
95 
96 	struct work_struct process_queued_bios;
97 	struct bio_list queued_bios;
98 
99 	struct timer_list nopath_timer;	/* Timeout for queue_if_no_path */
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 static void queue_if_no_path_timeout_work(struct timer_list *t);
118 
119 /*-----------------------------------------------
120  * Multipath state flags.
121  *-----------------------------------------------*/
122 
123 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
124 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
127 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
128 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
129 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
130 
131 /*-----------------------------------------------
132  * Allocation routines
133  *-----------------------------------------------*/
134 
135 static struct pgpath *alloc_pgpath(void)
136 {
137 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
138 
139 	if (!pgpath)
140 		return NULL;
141 
142 	pgpath->is_active = true;
143 
144 	return pgpath;
145 }
146 
147 static void free_pgpath(struct pgpath *pgpath)
148 {
149 	kfree(pgpath);
150 }
151 
152 static struct priority_group *alloc_priority_group(void)
153 {
154 	struct priority_group *pg;
155 
156 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
157 
158 	if (pg)
159 		INIT_LIST_HEAD(&pg->pgpaths);
160 
161 	return pg;
162 }
163 
164 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
165 {
166 	struct pgpath *pgpath, *tmp;
167 
168 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
169 		list_del(&pgpath->list);
170 		dm_put_device(ti, pgpath->path.dev);
171 		free_pgpath(pgpath);
172 	}
173 }
174 
175 static void free_priority_group(struct priority_group *pg,
176 				struct dm_target *ti)
177 {
178 	struct path_selector *ps = &pg->ps;
179 
180 	if (ps->type) {
181 		ps->type->destroy(ps);
182 		dm_put_path_selector(ps->type);
183 	}
184 
185 	free_pgpaths(&pg->pgpaths, ti);
186 	kfree(pg);
187 }
188 
189 static struct multipath *alloc_multipath(struct dm_target *ti)
190 {
191 	struct multipath *m;
192 
193 	m = kzalloc(sizeof(*m), GFP_KERNEL);
194 	if (m) {
195 		INIT_LIST_HEAD(&m->priority_groups);
196 		spin_lock_init(&m->lock);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		INIT_WORK(&m->trigger_event, trigger_event);
199 		mutex_init(&m->work_mutex);
200 
201 		m->queue_mode = DM_TYPE_NONE;
202 
203 		m->ti = ti;
204 		ti->private = m;
205 
206 		timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0);
207 	}
208 
209 	return m;
210 }
211 
212 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
213 {
214 	if (m->queue_mode == DM_TYPE_NONE) {
215 		m->queue_mode = DM_TYPE_REQUEST_BASED;
216 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
217 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
218 		/*
219 		 * bio-based doesn't support any direct scsi_dh management;
220 		 * it just discovers if a scsi_dh is attached.
221 		 */
222 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
223 	}
224 
225 	dm_table_set_type(ti->table, m->queue_mode);
226 
227 	/*
228 	 * Init fields that are only used when a scsi_dh is attached
229 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
230 	 */
231 	set_bit(MPATHF_QUEUE_IO, &m->flags);
232 	atomic_set(&m->pg_init_in_progress, 0);
233 	atomic_set(&m->pg_init_count, 0);
234 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
235 	init_waitqueue_head(&m->pg_init_wait);
236 
237 	return 0;
238 }
239 
240 static void free_multipath(struct multipath *m)
241 {
242 	struct priority_group *pg, *tmp;
243 
244 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
245 		list_del(&pg->list);
246 		free_priority_group(pg, m->ti);
247 	}
248 
249 	kfree(m->hw_handler_name);
250 	kfree(m->hw_handler_params);
251 	mutex_destroy(&m->work_mutex);
252 	kfree(m);
253 }
254 
255 static struct dm_mpath_io *get_mpio(union map_info *info)
256 {
257 	return info->ptr;
258 }
259 
260 static size_t multipath_per_bio_data_size(void)
261 {
262 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
263 }
264 
265 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
266 {
267 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
268 }
269 
270 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
271 {
272 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
273 	void *bio_details = mpio + 1;
274 	return bio_details;
275 }
276 
277 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
281 
282 	mpio->nr_bytes = bio->bi_iter.bi_size;
283 	mpio->pgpath = NULL;
284 	*mpio_p = mpio;
285 
286 	dm_bio_record(bio_details, bio);
287 }
288 
289 /*-----------------------------------------------
290  * Path selection
291  *-----------------------------------------------*/
292 
293 static int __pg_init_all_paths(struct multipath *m)
294 {
295 	struct pgpath *pgpath;
296 	unsigned long pg_init_delay = 0;
297 
298 	lockdep_assert_held(&m->lock);
299 
300 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
301 		return 0;
302 
303 	atomic_inc(&m->pg_init_count);
304 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
305 
306 	/* Check here to reset pg_init_required */
307 	if (!m->current_pg)
308 		return 0;
309 
310 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
311 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
312 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
313 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
314 		/* Skip failed paths */
315 		if (!pgpath->is_active)
316 			continue;
317 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
318 				       pg_init_delay))
319 			atomic_inc(&m->pg_init_in_progress);
320 	}
321 	return atomic_read(&m->pg_init_in_progress);
322 }
323 
324 static int pg_init_all_paths(struct multipath *m)
325 {
326 	int ret;
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(&m->lock, flags);
330 	ret = __pg_init_all_paths(m);
331 	spin_unlock_irqrestore(&m->lock, flags);
332 
333 	return ret;
334 }
335 
336 static void __switch_pg(struct multipath *m, struct priority_group *pg)
337 {
338 	m->current_pg = pg;
339 
340 	/* Must we initialise the PG first, and queue I/O till it's ready? */
341 	if (m->hw_handler_name) {
342 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
343 		set_bit(MPATHF_QUEUE_IO, &m->flags);
344 	} else {
345 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
347 	}
348 
349 	atomic_set(&m->pg_init_count, 0);
350 }
351 
352 static struct pgpath *choose_path_in_pg(struct multipath *m,
353 					struct priority_group *pg,
354 					size_t nr_bytes)
355 {
356 	unsigned long flags;
357 	struct dm_path *path;
358 	struct pgpath *pgpath;
359 
360 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
361 	if (!path)
362 		return ERR_PTR(-ENXIO);
363 
364 	pgpath = path_to_pgpath(path);
365 
366 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
367 		/* Only update current_pgpath if pg changed */
368 		spin_lock_irqsave(&m->lock, flags);
369 		m->current_pgpath = pgpath;
370 		__switch_pg(m, pg);
371 		spin_unlock_irqrestore(&m->lock, flags);
372 	}
373 
374 	return pgpath;
375 }
376 
377 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
378 {
379 	unsigned long flags;
380 	struct priority_group *pg;
381 	struct pgpath *pgpath;
382 	unsigned bypassed = 1;
383 
384 	if (!atomic_read(&m->nr_valid_paths)) {
385 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
386 		goto failed;
387 	}
388 
389 	/* Were we instructed to switch PG? */
390 	if (READ_ONCE(m->next_pg)) {
391 		spin_lock_irqsave(&m->lock, flags);
392 		pg = m->next_pg;
393 		if (!pg) {
394 			spin_unlock_irqrestore(&m->lock, flags);
395 			goto check_current_pg;
396 		}
397 		m->next_pg = NULL;
398 		spin_unlock_irqrestore(&m->lock, flags);
399 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
400 		if (!IS_ERR_OR_NULL(pgpath))
401 			return pgpath;
402 	}
403 
404 	/* Don't change PG until it has no remaining paths */
405 check_current_pg:
406 	pg = READ_ONCE(m->current_pg);
407 	if (pg) {
408 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
409 		if (!IS_ERR_OR_NULL(pgpath))
410 			return pgpath;
411 	}
412 
413 	/*
414 	 * Loop through priority groups until we find a valid path.
415 	 * First time we skip PGs marked 'bypassed'.
416 	 * Second time we only try the ones we skipped, but set
417 	 * pg_init_delay_retry so we do not hammer controllers.
418 	 */
419 	do {
420 		list_for_each_entry(pg, &m->priority_groups, list) {
421 			if (pg->bypassed == !!bypassed)
422 				continue;
423 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
424 			if (!IS_ERR_OR_NULL(pgpath)) {
425 				if (!bypassed)
426 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
427 				return pgpath;
428 			}
429 		}
430 	} while (bypassed--);
431 
432 failed:
433 	spin_lock_irqsave(&m->lock, flags);
434 	m->current_pgpath = NULL;
435 	m->current_pg = NULL;
436 	spin_unlock_irqrestore(&m->lock, flags);
437 
438 	return NULL;
439 }
440 
441 /*
442  * dm_report_EIO() is a macro instead of a function to make pr_debug()
443  * report the function name and line number of the function from which
444  * it has been invoked.
445  */
446 #define dm_report_EIO(m)						\
447 do {									\
448 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
449 									\
450 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
451 		 dm_device_name(md),					\
452 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
453 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
454 		 dm_noflush_suspending((m)->ti));			\
455 } while (0)
456 
457 /*
458  * Check whether bios must be queued in the device-mapper core rather
459  * than here in the target.
460  *
461  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
462  * the same value then we are not between multipath_presuspend()
463  * and multipath_resume() calls and we have no need to check
464  * for the DMF_NOFLUSH_SUSPENDING flag.
465  */
466 static bool __must_push_back(struct multipath *m, unsigned long flags)
467 {
468 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
469 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
470 		dm_noflush_suspending(m->ti));
471 }
472 
473 /*
474  * Following functions use READ_ONCE to get atomic access to
475  * all m->flags to avoid taking spinlock
476  */
477 static bool must_push_back_rq(struct multipath *m)
478 {
479 	unsigned long flags = READ_ONCE(m->flags);
480 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
481 }
482 
483 static bool must_push_back_bio(struct multipath *m)
484 {
485 	unsigned long flags = READ_ONCE(m->flags);
486 	return __must_push_back(m, flags);
487 }
488 
489 /*
490  * Map cloned requests (request-based multipath)
491  */
492 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
493 				   union map_info *map_context,
494 				   struct request **__clone)
495 {
496 	struct multipath *m = ti->private;
497 	size_t nr_bytes = blk_rq_bytes(rq);
498 	struct pgpath *pgpath;
499 	struct block_device *bdev;
500 	struct dm_mpath_io *mpio = get_mpio(map_context);
501 	struct request_queue *q;
502 	struct request *clone;
503 
504 	/* Do we need to select a new pgpath? */
505 	pgpath = READ_ONCE(m->current_pgpath);
506 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
507 		pgpath = choose_pgpath(m, nr_bytes);
508 
509 	if (!pgpath) {
510 		if (must_push_back_rq(m))
511 			return DM_MAPIO_DELAY_REQUEUE;
512 		dm_report_EIO(m);	/* Failed */
513 		return DM_MAPIO_KILL;
514 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
515 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
516 		pg_init_all_paths(m);
517 		return DM_MAPIO_DELAY_REQUEUE;
518 	}
519 
520 	mpio->pgpath = pgpath;
521 	mpio->nr_bytes = nr_bytes;
522 
523 	bdev = pgpath->path.dev->bdev;
524 	q = bdev_get_queue(bdev);
525 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
526 			BLK_MQ_REQ_NOWAIT);
527 	if (IS_ERR(clone)) {
528 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
529 		if (blk_queue_dying(q)) {
530 			atomic_inc(&m->pg_init_in_progress);
531 			activate_or_offline_path(pgpath);
532 			return DM_MAPIO_DELAY_REQUEUE;
533 		}
534 
535 		/*
536 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
537 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
538 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
539 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
540 		 * otherwise I/O merging can suffer.
541 		 */
542 		return DM_MAPIO_REQUEUE;
543 	}
544 	clone->bio = clone->biotail = NULL;
545 	clone->rq_disk = bdev->bd_disk;
546 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
547 	*__clone = clone;
548 
549 	if (pgpath->pg->ps.type->start_io)
550 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
551 					      &pgpath->path,
552 					      nr_bytes);
553 	return DM_MAPIO_REMAPPED;
554 }
555 
556 static void multipath_release_clone(struct request *clone,
557 				    union map_info *map_context)
558 {
559 	if (unlikely(map_context)) {
560 		/*
561 		 * non-NULL map_context means caller is still map
562 		 * method; must undo multipath_clone_and_map()
563 		 */
564 		struct dm_mpath_io *mpio = get_mpio(map_context);
565 		struct pgpath *pgpath = mpio->pgpath;
566 
567 		if (pgpath && pgpath->pg->ps.type->end_io)
568 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
569 						    &pgpath->path,
570 						    mpio->nr_bytes);
571 	}
572 
573 	blk_put_request(clone);
574 }
575 
576 /*
577  * Map cloned bios (bio-based multipath)
578  */
579 
580 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
581 {
582 	struct pgpath *pgpath;
583 	unsigned long flags;
584 	bool queue_io;
585 
586 	/* Do we need to select a new pgpath? */
587 	pgpath = READ_ONCE(m->current_pgpath);
588 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
589 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
590 
591 	/* MPATHF_QUEUE_IO might have been cleared by choose_pgpath. */
592 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
593 
594 	if ((pgpath && queue_io) ||
595 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
596 		/* Queue for the daemon to resubmit */
597 		spin_lock_irqsave(&m->lock, flags);
598 		bio_list_add(&m->queued_bios, bio);
599 		spin_unlock_irqrestore(&m->lock, flags);
600 
601 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
602 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
603 			pg_init_all_paths(m);
604 		else if (!queue_io)
605 			queue_work(kmultipathd, &m->process_queued_bios);
606 
607 		return ERR_PTR(-EAGAIN);
608 	}
609 
610 	return pgpath;
611 }
612 
613 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
614 			       struct dm_mpath_io *mpio)
615 {
616 	struct pgpath *pgpath = __map_bio(m, bio);
617 
618 	if (IS_ERR(pgpath))
619 		return DM_MAPIO_SUBMITTED;
620 
621 	if (!pgpath) {
622 		if (must_push_back_bio(m))
623 			return DM_MAPIO_REQUEUE;
624 		dm_report_EIO(m);
625 		return DM_MAPIO_KILL;
626 	}
627 
628 	mpio->pgpath = pgpath;
629 
630 	bio->bi_status = 0;
631 	bio_set_dev(bio, pgpath->path.dev->bdev);
632 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
633 
634 	if (pgpath->pg->ps.type->start_io)
635 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
636 					      &pgpath->path,
637 					      mpio->nr_bytes);
638 	return DM_MAPIO_REMAPPED;
639 }
640 
641 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
642 {
643 	struct multipath *m = ti->private;
644 	struct dm_mpath_io *mpio = NULL;
645 
646 	multipath_init_per_bio_data(bio, &mpio);
647 	return __multipath_map_bio(m, bio, mpio);
648 }
649 
650 static void process_queued_io_list(struct multipath *m)
651 {
652 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
653 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
654 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
655 		queue_work(kmultipathd, &m->process_queued_bios);
656 }
657 
658 static void process_queued_bios(struct work_struct *work)
659 {
660 	int r;
661 	unsigned long flags;
662 	struct bio *bio;
663 	struct bio_list bios;
664 	struct blk_plug plug;
665 	struct multipath *m =
666 		container_of(work, struct multipath, process_queued_bios);
667 
668 	bio_list_init(&bios);
669 
670 	spin_lock_irqsave(&m->lock, flags);
671 
672 	if (bio_list_empty(&m->queued_bios)) {
673 		spin_unlock_irqrestore(&m->lock, flags);
674 		return;
675 	}
676 
677 	bio_list_merge(&bios, &m->queued_bios);
678 	bio_list_init(&m->queued_bios);
679 
680 	spin_unlock_irqrestore(&m->lock, flags);
681 
682 	blk_start_plug(&plug);
683 	while ((bio = bio_list_pop(&bios))) {
684 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
685 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
686 		r = __multipath_map_bio(m, bio, mpio);
687 		switch (r) {
688 		case DM_MAPIO_KILL:
689 			bio->bi_status = BLK_STS_IOERR;
690 			bio_endio(bio);
691 			break;
692 		case DM_MAPIO_REQUEUE:
693 			bio->bi_status = BLK_STS_DM_REQUEUE;
694 			bio_endio(bio);
695 			break;
696 		case DM_MAPIO_REMAPPED:
697 			generic_make_request(bio);
698 			break;
699 		case DM_MAPIO_SUBMITTED:
700 			break;
701 		default:
702 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
703 		}
704 	}
705 	blk_finish_plug(&plug);
706 }
707 
708 /*
709  * If we run out of usable paths, should we queue I/O or error it?
710  */
711 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
712 			    bool save_old_value)
713 {
714 	unsigned long flags;
715 
716 	spin_lock_irqsave(&m->lock, flags);
717 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
718 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
719 		   (!save_old_value && queue_if_no_path));
720 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
721 	spin_unlock_irqrestore(&m->lock, flags);
722 
723 	if (!queue_if_no_path) {
724 		dm_table_run_md_queue_async(m->ti->table);
725 		process_queued_io_list(m);
726 	}
727 
728 	return 0;
729 }
730 
731 /*
732  * If the queue_if_no_path timeout fires, turn off queue_if_no_path and
733  * process any queued I/O.
734  */
735 static void queue_if_no_path_timeout_work(struct timer_list *t)
736 {
737 	struct multipath *m = from_timer(m, t, nopath_timer);
738 	struct mapped_device *md = dm_table_get_md(m->ti->table);
739 
740 	DMWARN("queue_if_no_path timeout on %s, failing queued IO", dm_device_name(md));
741 	queue_if_no_path(m, false, false);
742 }
743 
744 /*
745  * Enable the queue_if_no_path timeout if necessary.
746  * Called with m->lock held.
747  */
748 static void enable_nopath_timeout(struct multipath *m)
749 {
750 	unsigned long queue_if_no_path_timeout =
751 		READ_ONCE(queue_if_no_path_timeout_secs) * HZ;
752 
753 	lockdep_assert_held(&m->lock);
754 
755 	if (queue_if_no_path_timeout > 0 &&
756 	    atomic_read(&m->nr_valid_paths) == 0 &&
757 	    test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
758 		mod_timer(&m->nopath_timer,
759 			  jiffies + queue_if_no_path_timeout);
760 	}
761 }
762 
763 static void disable_nopath_timeout(struct multipath *m)
764 {
765 	del_timer_sync(&m->nopath_timer);
766 }
767 
768 /*
769  * An event is triggered whenever a path is taken out of use.
770  * Includes path failure and PG bypass.
771  */
772 static void trigger_event(struct work_struct *work)
773 {
774 	struct multipath *m =
775 		container_of(work, struct multipath, trigger_event);
776 
777 	dm_table_event(m->ti->table);
778 }
779 
780 /*-----------------------------------------------------------------
781  * Constructor/argument parsing:
782  * <#multipath feature args> [<arg>]*
783  * <#hw_handler args> [hw_handler [<arg>]*]
784  * <#priority groups>
785  * <initial priority group>
786  *     [<selector> <#selector args> [<arg>]*
787  *      <#paths> <#per-path selector args>
788  *         [<path> [<arg>]* ]+ ]+
789  *---------------------------------------------------------------*/
790 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
791 			       struct dm_target *ti)
792 {
793 	int r;
794 	struct path_selector_type *pst;
795 	unsigned ps_argc;
796 
797 	static const struct dm_arg _args[] = {
798 		{0, 1024, "invalid number of path selector args"},
799 	};
800 
801 	pst = dm_get_path_selector(dm_shift_arg(as));
802 	if (!pst) {
803 		ti->error = "unknown path selector type";
804 		return -EINVAL;
805 	}
806 
807 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
808 	if (r) {
809 		dm_put_path_selector(pst);
810 		return -EINVAL;
811 	}
812 
813 	r = pst->create(&pg->ps, ps_argc, as->argv);
814 	if (r) {
815 		dm_put_path_selector(pst);
816 		ti->error = "path selector constructor failed";
817 		return r;
818 	}
819 
820 	pg->ps.type = pst;
821 	dm_consume_args(as, ps_argc);
822 
823 	return 0;
824 }
825 
826 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
827 			 const char **attached_handler_name, char **error)
828 {
829 	struct request_queue *q = bdev_get_queue(bdev);
830 	int r;
831 
832 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
833 retain:
834 		if (*attached_handler_name) {
835 			/*
836 			 * Clear any hw_handler_params associated with a
837 			 * handler that isn't already attached.
838 			 */
839 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
840 				kfree(m->hw_handler_params);
841 				m->hw_handler_params = NULL;
842 			}
843 
844 			/*
845 			 * Reset hw_handler_name to match the attached handler
846 			 *
847 			 * NB. This modifies the table line to show the actual
848 			 * handler instead of the original table passed in.
849 			 */
850 			kfree(m->hw_handler_name);
851 			m->hw_handler_name = *attached_handler_name;
852 			*attached_handler_name = NULL;
853 		}
854 	}
855 
856 	if (m->hw_handler_name) {
857 		r = scsi_dh_attach(q, m->hw_handler_name);
858 		if (r == -EBUSY) {
859 			char b[BDEVNAME_SIZE];
860 
861 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
862 			       bdevname(bdev, b));
863 			goto retain;
864 		}
865 		if (r < 0) {
866 			*error = "error attaching hardware handler";
867 			return r;
868 		}
869 
870 		if (m->hw_handler_params) {
871 			r = scsi_dh_set_params(q, m->hw_handler_params);
872 			if (r < 0) {
873 				*error = "unable to set hardware handler parameters";
874 				return r;
875 			}
876 		}
877 	}
878 
879 	return 0;
880 }
881 
882 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
883 				 struct dm_target *ti)
884 {
885 	int r;
886 	struct pgpath *p;
887 	struct multipath *m = ti->private;
888 	struct request_queue *q;
889 	const char *attached_handler_name = NULL;
890 
891 	/* we need at least a path arg */
892 	if (as->argc < 1) {
893 		ti->error = "no device given";
894 		return ERR_PTR(-EINVAL);
895 	}
896 
897 	p = alloc_pgpath();
898 	if (!p)
899 		return ERR_PTR(-ENOMEM);
900 
901 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
902 			  &p->path.dev);
903 	if (r) {
904 		ti->error = "error getting device";
905 		goto bad;
906 	}
907 
908 	q = bdev_get_queue(p->path.dev->bdev);
909 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
910 	if (attached_handler_name || m->hw_handler_name) {
911 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
912 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
913 		kfree(attached_handler_name);
914 		if (r) {
915 			dm_put_device(ti, p->path.dev);
916 			goto bad;
917 		}
918 	}
919 
920 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
921 	if (r) {
922 		dm_put_device(ti, p->path.dev);
923 		goto bad;
924 	}
925 
926 	return p;
927  bad:
928 	free_pgpath(p);
929 	return ERR_PTR(r);
930 }
931 
932 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
933 						   struct multipath *m)
934 {
935 	static const struct dm_arg _args[] = {
936 		{1, 1024, "invalid number of paths"},
937 		{0, 1024, "invalid number of selector args"}
938 	};
939 
940 	int r;
941 	unsigned i, nr_selector_args, nr_args;
942 	struct priority_group *pg;
943 	struct dm_target *ti = m->ti;
944 
945 	if (as->argc < 2) {
946 		as->argc = 0;
947 		ti->error = "not enough priority group arguments";
948 		return ERR_PTR(-EINVAL);
949 	}
950 
951 	pg = alloc_priority_group();
952 	if (!pg) {
953 		ti->error = "couldn't allocate priority group";
954 		return ERR_PTR(-ENOMEM);
955 	}
956 	pg->m = m;
957 
958 	r = parse_path_selector(as, pg, ti);
959 	if (r)
960 		goto bad;
961 
962 	/*
963 	 * read the paths
964 	 */
965 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
966 	if (r)
967 		goto bad;
968 
969 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
970 	if (r)
971 		goto bad;
972 
973 	nr_args = 1 + nr_selector_args;
974 	for (i = 0; i < pg->nr_pgpaths; i++) {
975 		struct pgpath *pgpath;
976 		struct dm_arg_set path_args;
977 
978 		if (as->argc < nr_args) {
979 			ti->error = "not enough path parameters";
980 			r = -EINVAL;
981 			goto bad;
982 		}
983 
984 		path_args.argc = nr_args;
985 		path_args.argv = as->argv;
986 
987 		pgpath = parse_path(&path_args, &pg->ps, ti);
988 		if (IS_ERR(pgpath)) {
989 			r = PTR_ERR(pgpath);
990 			goto bad;
991 		}
992 
993 		pgpath->pg = pg;
994 		list_add_tail(&pgpath->list, &pg->pgpaths);
995 		dm_consume_args(as, nr_args);
996 	}
997 
998 	return pg;
999 
1000  bad:
1001 	free_priority_group(pg, ti);
1002 	return ERR_PTR(r);
1003 }
1004 
1005 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
1006 {
1007 	unsigned hw_argc;
1008 	int ret;
1009 	struct dm_target *ti = m->ti;
1010 
1011 	static const struct dm_arg _args[] = {
1012 		{0, 1024, "invalid number of hardware handler args"},
1013 	};
1014 
1015 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
1016 		return -EINVAL;
1017 
1018 	if (!hw_argc)
1019 		return 0;
1020 
1021 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1022 		dm_consume_args(as, hw_argc);
1023 		DMERR("bio-based multipath doesn't allow hardware handler args");
1024 		return 0;
1025 	}
1026 
1027 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1028 	if (!m->hw_handler_name)
1029 		return -EINVAL;
1030 
1031 	if (hw_argc > 1) {
1032 		char *p;
1033 		int i, j, len = 4;
1034 
1035 		for (i = 0; i <= hw_argc - 2; i++)
1036 			len += strlen(as->argv[i]) + 1;
1037 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1038 		if (!p) {
1039 			ti->error = "memory allocation failed";
1040 			ret = -ENOMEM;
1041 			goto fail;
1042 		}
1043 		j = sprintf(p, "%d", hw_argc - 1);
1044 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1045 			j = sprintf(p, "%s", as->argv[i]);
1046 	}
1047 	dm_consume_args(as, hw_argc - 1);
1048 
1049 	return 0;
1050 fail:
1051 	kfree(m->hw_handler_name);
1052 	m->hw_handler_name = NULL;
1053 	return ret;
1054 }
1055 
1056 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1057 {
1058 	int r;
1059 	unsigned argc;
1060 	struct dm_target *ti = m->ti;
1061 	const char *arg_name;
1062 
1063 	static const struct dm_arg _args[] = {
1064 		{0, 8, "invalid number of feature args"},
1065 		{1, 50, "pg_init_retries must be between 1 and 50"},
1066 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1067 	};
1068 
1069 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1070 	if (r)
1071 		return -EINVAL;
1072 
1073 	if (!argc)
1074 		return 0;
1075 
1076 	do {
1077 		arg_name = dm_shift_arg(as);
1078 		argc--;
1079 
1080 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1081 			r = queue_if_no_path(m, true, false);
1082 			continue;
1083 		}
1084 
1085 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1086 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1087 			continue;
1088 		}
1089 
1090 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1091 		    (argc >= 1)) {
1092 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1093 			argc--;
1094 			continue;
1095 		}
1096 
1097 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1098 		    (argc >= 1)) {
1099 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1100 			argc--;
1101 			continue;
1102 		}
1103 
1104 		if (!strcasecmp(arg_name, "queue_mode") &&
1105 		    (argc >= 1)) {
1106 			const char *queue_mode_name = dm_shift_arg(as);
1107 
1108 			if (!strcasecmp(queue_mode_name, "bio"))
1109 				m->queue_mode = DM_TYPE_BIO_BASED;
1110 			else if (!strcasecmp(queue_mode_name, "rq") ||
1111 				 !strcasecmp(queue_mode_name, "mq"))
1112 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1113 			else {
1114 				ti->error = "Unknown 'queue_mode' requested";
1115 				r = -EINVAL;
1116 			}
1117 			argc--;
1118 			continue;
1119 		}
1120 
1121 		ti->error = "Unrecognised multipath feature request";
1122 		r = -EINVAL;
1123 	} while (argc && !r);
1124 
1125 	return r;
1126 }
1127 
1128 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1129 {
1130 	/* target arguments */
1131 	static const struct dm_arg _args[] = {
1132 		{0, 1024, "invalid number of priority groups"},
1133 		{0, 1024, "invalid initial priority group number"},
1134 	};
1135 
1136 	int r;
1137 	struct multipath *m;
1138 	struct dm_arg_set as;
1139 	unsigned pg_count = 0;
1140 	unsigned next_pg_num;
1141 	unsigned long flags;
1142 
1143 	as.argc = argc;
1144 	as.argv = argv;
1145 
1146 	m = alloc_multipath(ti);
1147 	if (!m) {
1148 		ti->error = "can't allocate multipath";
1149 		return -EINVAL;
1150 	}
1151 
1152 	r = parse_features(&as, m);
1153 	if (r)
1154 		goto bad;
1155 
1156 	r = alloc_multipath_stage2(ti, m);
1157 	if (r)
1158 		goto bad;
1159 
1160 	r = parse_hw_handler(&as, m);
1161 	if (r)
1162 		goto bad;
1163 
1164 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1165 	if (r)
1166 		goto bad;
1167 
1168 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1169 	if (r)
1170 		goto bad;
1171 
1172 	if ((!m->nr_priority_groups && next_pg_num) ||
1173 	    (m->nr_priority_groups && !next_pg_num)) {
1174 		ti->error = "invalid initial priority group";
1175 		r = -EINVAL;
1176 		goto bad;
1177 	}
1178 
1179 	/* parse the priority groups */
1180 	while (as.argc) {
1181 		struct priority_group *pg;
1182 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1183 
1184 		pg = parse_priority_group(&as, m);
1185 		if (IS_ERR(pg)) {
1186 			r = PTR_ERR(pg);
1187 			goto bad;
1188 		}
1189 
1190 		nr_valid_paths += pg->nr_pgpaths;
1191 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1192 
1193 		list_add_tail(&pg->list, &m->priority_groups);
1194 		pg_count++;
1195 		pg->pg_num = pg_count;
1196 		if (!--next_pg_num)
1197 			m->next_pg = pg;
1198 	}
1199 
1200 	if (pg_count != m->nr_priority_groups) {
1201 		ti->error = "priority group count mismatch";
1202 		r = -EINVAL;
1203 		goto bad;
1204 	}
1205 
1206 	spin_lock_irqsave(&m->lock, flags);
1207 	enable_nopath_timeout(m);
1208 	spin_unlock_irqrestore(&m->lock, flags);
1209 
1210 	ti->num_flush_bios = 1;
1211 	ti->num_discard_bios = 1;
1212 	ti->num_write_same_bios = 1;
1213 	ti->num_write_zeroes_bios = 1;
1214 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1215 		ti->per_io_data_size = multipath_per_bio_data_size();
1216 	else
1217 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1218 
1219 	return 0;
1220 
1221  bad:
1222 	free_multipath(m);
1223 	return r;
1224 }
1225 
1226 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1227 {
1228 	DEFINE_WAIT(wait);
1229 
1230 	while (1) {
1231 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1232 
1233 		if (!atomic_read(&m->pg_init_in_progress))
1234 			break;
1235 
1236 		io_schedule();
1237 	}
1238 	finish_wait(&m->pg_init_wait, &wait);
1239 }
1240 
1241 static void flush_multipath_work(struct multipath *m)
1242 {
1243 	if (m->hw_handler_name) {
1244 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1245 		smp_mb__after_atomic();
1246 
1247 		if (atomic_read(&m->pg_init_in_progress))
1248 			flush_workqueue(kmpath_handlerd);
1249 		multipath_wait_for_pg_init_completion(m);
1250 
1251 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1252 		smp_mb__after_atomic();
1253 	}
1254 
1255 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1256 		flush_work(&m->process_queued_bios);
1257 	flush_work(&m->trigger_event);
1258 }
1259 
1260 static void multipath_dtr(struct dm_target *ti)
1261 {
1262 	struct multipath *m = ti->private;
1263 
1264 	disable_nopath_timeout(m);
1265 	flush_multipath_work(m);
1266 	free_multipath(m);
1267 }
1268 
1269 /*
1270  * Take a path out of use.
1271  */
1272 static int fail_path(struct pgpath *pgpath)
1273 {
1274 	unsigned long flags;
1275 	struct multipath *m = pgpath->pg->m;
1276 
1277 	spin_lock_irqsave(&m->lock, flags);
1278 
1279 	if (!pgpath->is_active)
1280 		goto out;
1281 
1282 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1283 
1284 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1285 	pgpath->is_active = false;
1286 	pgpath->fail_count++;
1287 
1288 	atomic_dec(&m->nr_valid_paths);
1289 
1290 	if (pgpath == m->current_pgpath)
1291 		m->current_pgpath = NULL;
1292 
1293 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1294 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1295 
1296 	schedule_work(&m->trigger_event);
1297 
1298 	enable_nopath_timeout(m);
1299 
1300 out:
1301 	spin_unlock_irqrestore(&m->lock, flags);
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Reinstate a previously-failed path
1308  */
1309 static int reinstate_path(struct pgpath *pgpath)
1310 {
1311 	int r = 0, run_queue = 0;
1312 	unsigned long flags;
1313 	struct multipath *m = pgpath->pg->m;
1314 	unsigned nr_valid_paths;
1315 
1316 	spin_lock_irqsave(&m->lock, flags);
1317 
1318 	if (pgpath->is_active)
1319 		goto out;
1320 
1321 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1322 
1323 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1324 	if (r)
1325 		goto out;
1326 
1327 	pgpath->is_active = true;
1328 
1329 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1330 	if (nr_valid_paths == 1) {
1331 		m->current_pgpath = NULL;
1332 		run_queue = 1;
1333 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1334 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1335 			atomic_inc(&m->pg_init_in_progress);
1336 	}
1337 
1338 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1339 		       pgpath->path.dev->name, nr_valid_paths);
1340 
1341 	schedule_work(&m->trigger_event);
1342 
1343 out:
1344 	spin_unlock_irqrestore(&m->lock, flags);
1345 	if (run_queue) {
1346 		dm_table_run_md_queue_async(m->ti->table);
1347 		process_queued_io_list(m);
1348 	}
1349 
1350 	if (pgpath->is_active)
1351 		disable_nopath_timeout(m);
1352 
1353 	return r;
1354 }
1355 
1356 /*
1357  * Fail or reinstate all paths that match the provided struct dm_dev.
1358  */
1359 static int action_dev(struct multipath *m, struct dm_dev *dev,
1360 		      action_fn action)
1361 {
1362 	int r = -EINVAL;
1363 	struct pgpath *pgpath;
1364 	struct priority_group *pg;
1365 
1366 	list_for_each_entry(pg, &m->priority_groups, list) {
1367 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1368 			if (pgpath->path.dev == dev)
1369 				r = action(pgpath);
1370 		}
1371 	}
1372 
1373 	return r;
1374 }
1375 
1376 /*
1377  * Temporarily try to avoid having to use the specified PG
1378  */
1379 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1380 		      bool bypassed)
1381 {
1382 	unsigned long flags;
1383 
1384 	spin_lock_irqsave(&m->lock, flags);
1385 
1386 	pg->bypassed = bypassed;
1387 	m->current_pgpath = NULL;
1388 	m->current_pg = NULL;
1389 
1390 	spin_unlock_irqrestore(&m->lock, flags);
1391 
1392 	schedule_work(&m->trigger_event);
1393 }
1394 
1395 /*
1396  * Switch to using the specified PG from the next I/O that gets mapped
1397  */
1398 static int switch_pg_num(struct multipath *m, const char *pgstr)
1399 {
1400 	struct priority_group *pg;
1401 	unsigned pgnum;
1402 	unsigned long flags;
1403 	char dummy;
1404 
1405 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1406 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1407 		DMWARN("invalid PG number supplied to switch_pg_num");
1408 		return -EINVAL;
1409 	}
1410 
1411 	spin_lock_irqsave(&m->lock, flags);
1412 	list_for_each_entry(pg, &m->priority_groups, list) {
1413 		pg->bypassed = false;
1414 		if (--pgnum)
1415 			continue;
1416 
1417 		m->current_pgpath = NULL;
1418 		m->current_pg = NULL;
1419 		m->next_pg = pg;
1420 	}
1421 	spin_unlock_irqrestore(&m->lock, flags);
1422 
1423 	schedule_work(&m->trigger_event);
1424 	return 0;
1425 }
1426 
1427 /*
1428  * Set/clear bypassed status of a PG.
1429  * PGs are numbered upwards from 1 in the order they were declared.
1430  */
1431 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1432 {
1433 	struct priority_group *pg;
1434 	unsigned pgnum;
1435 	char dummy;
1436 
1437 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1438 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1439 		DMWARN("invalid PG number supplied to bypass_pg");
1440 		return -EINVAL;
1441 	}
1442 
1443 	list_for_each_entry(pg, &m->priority_groups, list) {
1444 		if (!--pgnum)
1445 			break;
1446 	}
1447 
1448 	bypass_pg(m, pg, bypassed);
1449 	return 0;
1450 }
1451 
1452 /*
1453  * Should we retry pg_init immediately?
1454  */
1455 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1456 {
1457 	unsigned long flags;
1458 	bool limit_reached = false;
1459 
1460 	spin_lock_irqsave(&m->lock, flags);
1461 
1462 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1463 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1464 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1465 	else
1466 		limit_reached = true;
1467 
1468 	spin_unlock_irqrestore(&m->lock, flags);
1469 
1470 	return limit_reached;
1471 }
1472 
1473 static void pg_init_done(void *data, int errors)
1474 {
1475 	struct pgpath *pgpath = data;
1476 	struct priority_group *pg = pgpath->pg;
1477 	struct multipath *m = pg->m;
1478 	unsigned long flags;
1479 	bool delay_retry = false;
1480 
1481 	/* device or driver problems */
1482 	switch (errors) {
1483 	case SCSI_DH_OK:
1484 		break;
1485 	case SCSI_DH_NOSYS:
1486 		if (!m->hw_handler_name) {
1487 			errors = 0;
1488 			break;
1489 		}
1490 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1491 		      "Error %d.", m->hw_handler_name, errors);
1492 		/*
1493 		 * Fail path for now, so we do not ping pong
1494 		 */
1495 		fail_path(pgpath);
1496 		break;
1497 	case SCSI_DH_DEV_TEMP_BUSY:
1498 		/*
1499 		 * Probably doing something like FW upgrade on the
1500 		 * controller so try the other pg.
1501 		 */
1502 		bypass_pg(m, pg, true);
1503 		break;
1504 	case SCSI_DH_RETRY:
1505 		/* Wait before retrying. */
1506 		delay_retry = true;
1507 		/* fall through */
1508 	case SCSI_DH_IMM_RETRY:
1509 	case SCSI_DH_RES_TEMP_UNAVAIL:
1510 		if (pg_init_limit_reached(m, pgpath))
1511 			fail_path(pgpath);
1512 		errors = 0;
1513 		break;
1514 	case SCSI_DH_DEV_OFFLINED:
1515 	default:
1516 		/*
1517 		 * We probably do not want to fail the path for a device
1518 		 * error, but this is what the old dm did. In future
1519 		 * patches we can do more advanced handling.
1520 		 */
1521 		fail_path(pgpath);
1522 	}
1523 
1524 	spin_lock_irqsave(&m->lock, flags);
1525 	if (errors) {
1526 		if (pgpath == m->current_pgpath) {
1527 			DMERR("Could not failover device. Error %d.", errors);
1528 			m->current_pgpath = NULL;
1529 			m->current_pg = NULL;
1530 		}
1531 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1532 		pg->bypassed = false;
1533 
1534 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1535 		/* Activations of other paths are still on going */
1536 		goto out;
1537 
1538 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1539 		if (delay_retry)
1540 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1541 		else
1542 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1543 
1544 		if (__pg_init_all_paths(m))
1545 			goto out;
1546 	}
1547 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1548 
1549 	process_queued_io_list(m);
1550 
1551 	/*
1552 	 * Wake up any thread waiting to suspend.
1553 	 */
1554 	wake_up(&m->pg_init_wait);
1555 
1556 out:
1557 	spin_unlock_irqrestore(&m->lock, flags);
1558 }
1559 
1560 static void activate_or_offline_path(struct pgpath *pgpath)
1561 {
1562 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1563 
1564 	if (pgpath->is_active && !blk_queue_dying(q))
1565 		scsi_dh_activate(q, pg_init_done, pgpath);
1566 	else
1567 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1568 }
1569 
1570 static void activate_path_work(struct work_struct *work)
1571 {
1572 	struct pgpath *pgpath =
1573 		container_of(work, struct pgpath, activate_path.work);
1574 
1575 	activate_or_offline_path(pgpath);
1576 }
1577 
1578 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1579 			    blk_status_t error, union map_info *map_context)
1580 {
1581 	struct dm_mpath_io *mpio = get_mpio(map_context);
1582 	struct pgpath *pgpath = mpio->pgpath;
1583 	int r = DM_ENDIO_DONE;
1584 
1585 	/*
1586 	 * We don't queue any clone request inside the multipath target
1587 	 * during end I/O handling, since those clone requests don't have
1588 	 * bio clones.  If we queue them inside the multipath target,
1589 	 * we need to make bio clones, that requires memory allocation.
1590 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1591 	 *  don't have bio clones.)
1592 	 * Instead of queueing the clone request here, we queue the original
1593 	 * request into dm core, which will remake a clone request and
1594 	 * clone bios for it and resubmit it later.
1595 	 */
1596 	if (error && blk_path_error(error)) {
1597 		struct multipath *m = ti->private;
1598 
1599 		if (error == BLK_STS_RESOURCE)
1600 			r = DM_ENDIO_DELAY_REQUEUE;
1601 		else
1602 			r = DM_ENDIO_REQUEUE;
1603 
1604 		if (pgpath)
1605 			fail_path(pgpath);
1606 
1607 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1608 		    !must_push_back_rq(m)) {
1609 			if (error == BLK_STS_IOERR)
1610 				dm_report_EIO(m);
1611 			/* complete with the original error */
1612 			r = DM_ENDIO_DONE;
1613 		}
1614 	}
1615 
1616 	if (pgpath) {
1617 		struct path_selector *ps = &pgpath->pg->ps;
1618 
1619 		if (ps->type->end_io)
1620 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1621 	}
1622 
1623 	return r;
1624 }
1625 
1626 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1627 				blk_status_t *error)
1628 {
1629 	struct multipath *m = ti->private;
1630 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1631 	struct pgpath *pgpath = mpio->pgpath;
1632 	unsigned long flags;
1633 	int r = DM_ENDIO_DONE;
1634 
1635 	if (!*error || !blk_path_error(*error))
1636 		goto done;
1637 
1638 	if (pgpath)
1639 		fail_path(pgpath);
1640 
1641 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1642 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1643 		if (must_push_back_bio(m)) {
1644 			r = DM_ENDIO_REQUEUE;
1645 		} else {
1646 			dm_report_EIO(m);
1647 			*error = BLK_STS_IOERR;
1648 		}
1649 		goto done;
1650 	}
1651 
1652 	spin_lock_irqsave(&m->lock, flags);
1653 	bio_list_add(&m->queued_bios, clone);
1654 	spin_unlock_irqrestore(&m->lock, flags);
1655 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1656 		queue_work(kmultipathd, &m->process_queued_bios);
1657 
1658 	r = DM_ENDIO_INCOMPLETE;
1659 done:
1660 	if (pgpath) {
1661 		struct path_selector *ps = &pgpath->pg->ps;
1662 
1663 		if (ps->type->end_io)
1664 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1665 	}
1666 
1667 	return r;
1668 }
1669 
1670 /*
1671  * Suspend can't complete until all the I/O is processed so if
1672  * the last path fails we must error any remaining I/O.
1673  * Note that if the freeze_bdev fails while suspending, the
1674  * queue_if_no_path state is lost - userspace should reset it.
1675  */
1676 static void multipath_presuspend(struct dm_target *ti)
1677 {
1678 	struct multipath *m = ti->private;
1679 
1680 	queue_if_no_path(m, false, true);
1681 }
1682 
1683 static void multipath_postsuspend(struct dm_target *ti)
1684 {
1685 	struct multipath *m = ti->private;
1686 
1687 	mutex_lock(&m->work_mutex);
1688 	flush_multipath_work(m);
1689 	mutex_unlock(&m->work_mutex);
1690 }
1691 
1692 /*
1693  * Restore the queue_if_no_path setting.
1694  */
1695 static void multipath_resume(struct dm_target *ti)
1696 {
1697 	struct multipath *m = ti->private;
1698 	unsigned long flags;
1699 
1700 	spin_lock_irqsave(&m->lock, flags);
1701 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1702 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1703 	spin_unlock_irqrestore(&m->lock, flags);
1704 }
1705 
1706 /*
1707  * Info output has the following format:
1708  * num_multipath_feature_args [multipath_feature_args]*
1709  * num_handler_status_args [handler_status_args]*
1710  * num_groups init_group_number
1711  *            [A|D|E num_ps_status_args [ps_status_args]*
1712  *             num_paths num_selector_args
1713  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1714  *
1715  * Table output has the following format (identical to the constructor string):
1716  * num_feature_args [features_args]*
1717  * num_handler_args hw_handler [hw_handler_args]*
1718  * num_groups init_group_number
1719  *     [priority selector-name num_ps_args [ps_args]*
1720  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1721  */
1722 static void multipath_status(struct dm_target *ti, status_type_t type,
1723 			     unsigned status_flags, char *result, unsigned maxlen)
1724 {
1725 	int sz = 0;
1726 	unsigned long flags;
1727 	struct multipath *m = ti->private;
1728 	struct priority_group *pg;
1729 	struct pgpath *p;
1730 	unsigned pg_num;
1731 	char state;
1732 
1733 	spin_lock_irqsave(&m->lock, flags);
1734 
1735 	/* Features */
1736 	if (type == STATUSTYPE_INFO)
1737 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1738 		       atomic_read(&m->pg_init_count));
1739 	else {
1740 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1741 			      (m->pg_init_retries > 0) * 2 +
1742 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1743 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1744 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1745 
1746 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1747 			DMEMIT("queue_if_no_path ");
1748 		if (m->pg_init_retries)
1749 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1750 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1751 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1752 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1753 			DMEMIT("retain_attached_hw_handler ");
1754 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1755 			switch(m->queue_mode) {
1756 			case DM_TYPE_BIO_BASED:
1757 				DMEMIT("queue_mode bio ");
1758 				break;
1759 			default:
1760 				WARN_ON_ONCE(true);
1761 				break;
1762 			}
1763 		}
1764 	}
1765 
1766 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1767 		DMEMIT("0 ");
1768 	else
1769 		DMEMIT("1 %s ", m->hw_handler_name);
1770 
1771 	DMEMIT("%u ", m->nr_priority_groups);
1772 
1773 	if (m->next_pg)
1774 		pg_num = m->next_pg->pg_num;
1775 	else if (m->current_pg)
1776 		pg_num = m->current_pg->pg_num;
1777 	else
1778 		pg_num = (m->nr_priority_groups ? 1 : 0);
1779 
1780 	DMEMIT("%u ", pg_num);
1781 
1782 	switch (type) {
1783 	case STATUSTYPE_INFO:
1784 		list_for_each_entry(pg, &m->priority_groups, list) {
1785 			if (pg->bypassed)
1786 				state = 'D';	/* Disabled */
1787 			else if (pg == m->current_pg)
1788 				state = 'A';	/* Currently Active */
1789 			else
1790 				state = 'E';	/* Enabled */
1791 
1792 			DMEMIT("%c ", state);
1793 
1794 			if (pg->ps.type->status)
1795 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1796 							  result + sz,
1797 							  maxlen - sz);
1798 			else
1799 				DMEMIT("0 ");
1800 
1801 			DMEMIT("%u %u ", pg->nr_pgpaths,
1802 			       pg->ps.type->info_args);
1803 
1804 			list_for_each_entry(p, &pg->pgpaths, list) {
1805 				DMEMIT("%s %s %u ", p->path.dev->name,
1806 				       p->is_active ? "A" : "F",
1807 				       p->fail_count);
1808 				if (pg->ps.type->status)
1809 					sz += pg->ps.type->status(&pg->ps,
1810 					      &p->path, type, result + sz,
1811 					      maxlen - sz);
1812 			}
1813 		}
1814 		break;
1815 
1816 	case STATUSTYPE_TABLE:
1817 		list_for_each_entry(pg, &m->priority_groups, list) {
1818 			DMEMIT("%s ", pg->ps.type->name);
1819 
1820 			if (pg->ps.type->status)
1821 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1822 							  result + sz,
1823 							  maxlen - sz);
1824 			else
1825 				DMEMIT("0 ");
1826 
1827 			DMEMIT("%u %u ", pg->nr_pgpaths,
1828 			       pg->ps.type->table_args);
1829 
1830 			list_for_each_entry(p, &pg->pgpaths, list) {
1831 				DMEMIT("%s ", p->path.dev->name);
1832 				if (pg->ps.type->status)
1833 					sz += pg->ps.type->status(&pg->ps,
1834 					      &p->path, type, result + sz,
1835 					      maxlen - sz);
1836 			}
1837 		}
1838 		break;
1839 	}
1840 
1841 	spin_unlock_irqrestore(&m->lock, flags);
1842 }
1843 
1844 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1845 			     char *result, unsigned maxlen)
1846 {
1847 	int r = -EINVAL;
1848 	struct dm_dev *dev;
1849 	struct multipath *m = ti->private;
1850 	action_fn action;
1851 	unsigned long flags;
1852 
1853 	mutex_lock(&m->work_mutex);
1854 
1855 	if (dm_suspended(ti)) {
1856 		r = -EBUSY;
1857 		goto out;
1858 	}
1859 
1860 	if (argc == 1) {
1861 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1862 			r = queue_if_no_path(m, true, false);
1863 			spin_lock_irqsave(&m->lock, flags);
1864 			enable_nopath_timeout(m);
1865 			spin_unlock_irqrestore(&m->lock, flags);
1866 			goto out;
1867 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1868 			r = queue_if_no_path(m, false, false);
1869 			disable_nopath_timeout(m);
1870 			goto out;
1871 		}
1872 	}
1873 
1874 	if (argc != 2) {
1875 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1876 		goto out;
1877 	}
1878 
1879 	if (!strcasecmp(argv[0], "disable_group")) {
1880 		r = bypass_pg_num(m, argv[1], true);
1881 		goto out;
1882 	} else if (!strcasecmp(argv[0], "enable_group")) {
1883 		r = bypass_pg_num(m, argv[1], false);
1884 		goto out;
1885 	} else if (!strcasecmp(argv[0], "switch_group")) {
1886 		r = switch_pg_num(m, argv[1]);
1887 		goto out;
1888 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1889 		action = reinstate_path;
1890 	else if (!strcasecmp(argv[0], "fail_path"))
1891 		action = fail_path;
1892 	else {
1893 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1894 		goto out;
1895 	}
1896 
1897 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1898 	if (r) {
1899 		DMWARN("message: error getting device %s",
1900 		       argv[1]);
1901 		goto out;
1902 	}
1903 
1904 	r = action_dev(m, dev, action);
1905 
1906 	dm_put_device(ti, dev);
1907 
1908 out:
1909 	mutex_unlock(&m->work_mutex);
1910 	return r;
1911 }
1912 
1913 static int multipath_prepare_ioctl(struct dm_target *ti,
1914 				   struct block_device **bdev)
1915 {
1916 	struct multipath *m = ti->private;
1917 	struct pgpath *current_pgpath;
1918 	int r;
1919 
1920 	current_pgpath = READ_ONCE(m->current_pgpath);
1921 	if (!current_pgpath)
1922 		current_pgpath = choose_pgpath(m, 0);
1923 
1924 	if (current_pgpath) {
1925 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1926 			*bdev = current_pgpath->path.dev->bdev;
1927 			r = 0;
1928 		} else {
1929 			/* pg_init has not started or completed */
1930 			r = -ENOTCONN;
1931 		}
1932 	} else {
1933 		/* No path is available */
1934 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1935 			r = -ENOTCONN;
1936 		else
1937 			r = -EIO;
1938 	}
1939 
1940 	if (r == -ENOTCONN) {
1941 		if (!READ_ONCE(m->current_pg)) {
1942 			/* Path status changed, redo selection */
1943 			(void) choose_pgpath(m, 0);
1944 		}
1945 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1946 			pg_init_all_paths(m);
1947 		dm_table_run_md_queue_async(m->ti->table);
1948 		process_queued_io_list(m);
1949 	}
1950 
1951 	/*
1952 	 * Only pass ioctls through if the device sizes match exactly.
1953 	 */
1954 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1955 		return 1;
1956 	return r;
1957 }
1958 
1959 static int multipath_iterate_devices(struct dm_target *ti,
1960 				     iterate_devices_callout_fn fn, void *data)
1961 {
1962 	struct multipath *m = ti->private;
1963 	struct priority_group *pg;
1964 	struct pgpath *p;
1965 	int ret = 0;
1966 
1967 	list_for_each_entry(pg, &m->priority_groups, list) {
1968 		list_for_each_entry(p, &pg->pgpaths, list) {
1969 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1970 			if (ret)
1971 				goto out;
1972 		}
1973 	}
1974 
1975 out:
1976 	return ret;
1977 }
1978 
1979 static int pgpath_busy(struct pgpath *pgpath)
1980 {
1981 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1982 
1983 	return blk_lld_busy(q);
1984 }
1985 
1986 /*
1987  * We return "busy", only when we can map I/Os but underlying devices
1988  * are busy (so even if we map I/Os now, the I/Os will wait on
1989  * the underlying queue).
1990  * In other words, if we want to kill I/Os or queue them inside us
1991  * due to map unavailability, we don't return "busy".  Otherwise,
1992  * dm core won't give us the I/Os and we can't do what we want.
1993  */
1994 static int multipath_busy(struct dm_target *ti)
1995 {
1996 	bool busy = false, has_active = false;
1997 	struct multipath *m = ti->private;
1998 	struct priority_group *pg, *next_pg;
1999 	struct pgpath *pgpath;
2000 
2001 	/* pg_init in progress */
2002 	if (atomic_read(&m->pg_init_in_progress))
2003 		return true;
2004 
2005 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
2006 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
2007 		return (m->queue_mode != DM_TYPE_REQUEST_BASED);
2008 
2009 	/* Guess which priority_group will be used at next mapping time */
2010 	pg = READ_ONCE(m->current_pg);
2011 	next_pg = READ_ONCE(m->next_pg);
2012 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
2013 		pg = next_pg;
2014 
2015 	if (!pg) {
2016 		/*
2017 		 * We don't know which pg will be used at next mapping time.
2018 		 * We don't call choose_pgpath() here to avoid to trigger
2019 		 * pg_init just by busy checking.
2020 		 * So we don't know whether underlying devices we will be using
2021 		 * at next mapping time are busy or not. Just try mapping.
2022 		 */
2023 		return busy;
2024 	}
2025 
2026 	/*
2027 	 * If there is one non-busy active path at least, the path selector
2028 	 * will be able to select it. So we consider such a pg as not busy.
2029 	 */
2030 	busy = true;
2031 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2032 		if (pgpath->is_active) {
2033 			has_active = true;
2034 			if (!pgpath_busy(pgpath)) {
2035 				busy = false;
2036 				break;
2037 			}
2038 		}
2039 	}
2040 
2041 	if (!has_active) {
2042 		/*
2043 		 * No active path in this pg, so this pg won't be used and
2044 		 * the current_pg will be changed at next mapping time.
2045 		 * We need to try mapping to determine it.
2046 		 */
2047 		busy = false;
2048 	}
2049 
2050 	return busy;
2051 }
2052 
2053 /*-----------------------------------------------------------------
2054  * Module setup
2055  *---------------------------------------------------------------*/
2056 static struct target_type multipath_target = {
2057 	.name = "multipath",
2058 	.version = {1, 14, 0},
2059 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2060 		    DM_TARGET_PASSES_INTEGRITY,
2061 	.module = THIS_MODULE,
2062 	.ctr = multipath_ctr,
2063 	.dtr = multipath_dtr,
2064 	.clone_and_map_rq = multipath_clone_and_map,
2065 	.release_clone_rq = multipath_release_clone,
2066 	.rq_end_io = multipath_end_io,
2067 	.map = multipath_map_bio,
2068 	.end_io = multipath_end_io_bio,
2069 	.presuspend = multipath_presuspend,
2070 	.postsuspend = multipath_postsuspend,
2071 	.resume = multipath_resume,
2072 	.status = multipath_status,
2073 	.message = multipath_message,
2074 	.prepare_ioctl = multipath_prepare_ioctl,
2075 	.iterate_devices = multipath_iterate_devices,
2076 	.busy = multipath_busy,
2077 };
2078 
2079 static int __init dm_multipath_init(void)
2080 {
2081 	int r;
2082 
2083 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2084 	if (!kmultipathd) {
2085 		DMERR("failed to create workqueue kmpathd");
2086 		r = -ENOMEM;
2087 		goto bad_alloc_kmultipathd;
2088 	}
2089 
2090 	/*
2091 	 * A separate workqueue is used to handle the device handlers
2092 	 * to avoid overloading existing workqueue. Overloading the
2093 	 * old workqueue would also create a bottleneck in the
2094 	 * path of the storage hardware device activation.
2095 	 */
2096 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2097 						  WQ_MEM_RECLAIM);
2098 	if (!kmpath_handlerd) {
2099 		DMERR("failed to create workqueue kmpath_handlerd");
2100 		r = -ENOMEM;
2101 		goto bad_alloc_kmpath_handlerd;
2102 	}
2103 
2104 	r = dm_register_target(&multipath_target);
2105 	if (r < 0) {
2106 		DMERR("request-based register failed %d", r);
2107 		r = -EINVAL;
2108 		goto bad_register_target;
2109 	}
2110 
2111 	return 0;
2112 
2113 bad_register_target:
2114 	destroy_workqueue(kmpath_handlerd);
2115 bad_alloc_kmpath_handlerd:
2116 	destroy_workqueue(kmultipathd);
2117 bad_alloc_kmultipathd:
2118 	return r;
2119 }
2120 
2121 static void __exit dm_multipath_exit(void)
2122 {
2123 	destroy_workqueue(kmpath_handlerd);
2124 	destroy_workqueue(kmultipathd);
2125 
2126 	dm_unregister_target(&multipath_target);
2127 }
2128 
2129 module_init(dm_multipath_init);
2130 module_exit(dm_multipath_exit);
2131 
2132 module_param_named(queue_if_no_path_timeout_secs,
2133 		   queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR);
2134 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds");
2135 
2136 MODULE_DESCRIPTION(DM_NAME " multipath target");
2137 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2138 MODULE_LICENSE("GPL");
2139