1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-path-selector.h" 11 #include "dm-uevent.h" 12 13 #include <linux/ctype.h> 14 #include <linux/init.h> 15 #include <linux/mempool.h> 16 #include <linux/module.h> 17 #include <linux/pagemap.h> 18 #include <linux/slab.h> 19 #include <linux/time.h> 20 #include <linux/workqueue.h> 21 #include <scsi/scsi_dh.h> 22 #include <linux/atomic.h> 23 24 #define DM_MSG_PREFIX "multipath" 25 #define DM_PG_INIT_DELAY_MSECS 2000 26 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 27 28 /* Path properties */ 29 struct pgpath { 30 struct list_head list; 31 32 struct priority_group *pg; /* Owning PG */ 33 unsigned is_active; /* Path status */ 34 unsigned fail_count; /* Cumulative failure count */ 35 36 struct dm_path path; 37 struct delayed_work activate_path; 38 }; 39 40 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 41 42 /* 43 * Paths are grouped into Priority Groups and numbered from 1 upwards. 44 * Each has a path selector which controls which path gets used. 45 */ 46 struct priority_group { 47 struct list_head list; 48 49 struct multipath *m; /* Owning multipath instance */ 50 struct path_selector ps; 51 52 unsigned pg_num; /* Reference number */ 53 unsigned bypassed; /* Temporarily bypass this PG? */ 54 55 unsigned nr_pgpaths; /* Number of paths in PG */ 56 struct list_head pgpaths; 57 }; 58 59 /* Multipath context */ 60 struct multipath { 61 struct list_head list; 62 struct dm_target *ti; 63 64 spinlock_t lock; 65 66 const char *hw_handler_name; 67 char *hw_handler_params; 68 69 unsigned nr_priority_groups; 70 struct list_head priority_groups; 71 72 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 73 74 unsigned pg_init_required; /* pg_init needs calling? */ 75 unsigned pg_init_in_progress; /* Only one pg_init allowed at once */ 76 unsigned pg_init_delay_retry; /* Delay pg_init retry? */ 77 78 unsigned nr_valid_paths; /* Total number of usable paths */ 79 struct pgpath *current_pgpath; 80 struct priority_group *current_pg; 81 struct priority_group *next_pg; /* Switch to this PG if set */ 82 unsigned repeat_count; /* I/Os left before calling PS again */ 83 84 unsigned queue_io; /* Must we queue all I/O? */ 85 unsigned queue_if_no_path; /* Queue I/O if last path fails? */ 86 unsigned saved_queue_if_no_path;/* Saved state during suspension */ 87 unsigned pg_init_retries; /* Number of times to retry pg_init */ 88 unsigned pg_init_count; /* Number of times pg_init called */ 89 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 90 91 struct work_struct process_queued_ios; 92 struct list_head queued_ios; 93 unsigned queue_size; 94 95 struct work_struct trigger_event; 96 97 /* 98 * We must use a mempool of dm_mpath_io structs so that we 99 * can resubmit bios on error. 100 */ 101 mempool_t *mpio_pool; 102 103 struct mutex work_mutex; 104 }; 105 106 /* 107 * Context information attached to each bio we process. 108 */ 109 struct dm_mpath_io { 110 struct pgpath *pgpath; 111 size_t nr_bytes; 112 }; 113 114 typedef int (*action_fn) (struct pgpath *pgpath); 115 116 #define MIN_IOS 256 /* Mempool size */ 117 118 static struct kmem_cache *_mpio_cache; 119 120 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 121 static void process_queued_ios(struct work_struct *work); 122 static void trigger_event(struct work_struct *work); 123 static void activate_path(struct work_struct *work); 124 125 126 /*----------------------------------------------- 127 * Allocation routines 128 *-----------------------------------------------*/ 129 130 static struct pgpath *alloc_pgpath(void) 131 { 132 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 133 134 if (pgpath) { 135 pgpath->is_active = 1; 136 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path); 137 } 138 139 return pgpath; 140 } 141 142 static void free_pgpath(struct pgpath *pgpath) 143 { 144 kfree(pgpath); 145 } 146 147 static struct priority_group *alloc_priority_group(void) 148 { 149 struct priority_group *pg; 150 151 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 152 153 if (pg) 154 INIT_LIST_HEAD(&pg->pgpaths); 155 156 return pg; 157 } 158 159 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 160 { 161 struct pgpath *pgpath, *tmp; 162 struct multipath *m = ti->private; 163 164 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 165 list_del(&pgpath->list); 166 if (m->hw_handler_name) 167 scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev)); 168 dm_put_device(ti, pgpath->path.dev); 169 free_pgpath(pgpath); 170 } 171 } 172 173 static void free_priority_group(struct priority_group *pg, 174 struct dm_target *ti) 175 { 176 struct path_selector *ps = &pg->ps; 177 178 if (ps->type) { 179 ps->type->destroy(ps); 180 dm_put_path_selector(ps->type); 181 } 182 183 free_pgpaths(&pg->pgpaths, ti); 184 kfree(pg); 185 } 186 187 static struct multipath *alloc_multipath(struct dm_target *ti) 188 { 189 struct multipath *m; 190 191 m = kzalloc(sizeof(*m), GFP_KERNEL); 192 if (m) { 193 INIT_LIST_HEAD(&m->priority_groups); 194 INIT_LIST_HEAD(&m->queued_ios); 195 spin_lock_init(&m->lock); 196 m->queue_io = 1; 197 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 198 INIT_WORK(&m->process_queued_ios, process_queued_ios); 199 INIT_WORK(&m->trigger_event, trigger_event); 200 init_waitqueue_head(&m->pg_init_wait); 201 mutex_init(&m->work_mutex); 202 m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache); 203 if (!m->mpio_pool) { 204 kfree(m); 205 return NULL; 206 } 207 m->ti = ti; 208 ti->private = m; 209 } 210 211 return m; 212 } 213 214 static void free_multipath(struct multipath *m) 215 { 216 struct priority_group *pg, *tmp; 217 218 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 219 list_del(&pg->list); 220 free_priority_group(pg, m->ti); 221 } 222 223 kfree(m->hw_handler_name); 224 kfree(m->hw_handler_params); 225 mempool_destroy(m->mpio_pool); 226 kfree(m); 227 } 228 229 230 /*----------------------------------------------- 231 * Path selection 232 *-----------------------------------------------*/ 233 234 static void __pg_init_all_paths(struct multipath *m) 235 { 236 struct pgpath *pgpath; 237 unsigned long pg_init_delay = 0; 238 239 m->pg_init_count++; 240 m->pg_init_required = 0; 241 if (m->pg_init_delay_retry) 242 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 243 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 244 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 245 /* Skip failed paths */ 246 if (!pgpath->is_active) 247 continue; 248 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 249 pg_init_delay)) 250 m->pg_init_in_progress++; 251 } 252 } 253 254 static void __switch_pg(struct multipath *m, struct pgpath *pgpath) 255 { 256 m->current_pg = pgpath->pg; 257 258 /* Must we initialise the PG first, and queue I/O till it's ready? */ 259 if (m->hw_handler_name) { 260 m->pg_init_required = 1; 261 m->queue_io = 1; 262 } else { 263 m->pg_init_required = 0; 264 m->queue_io = 0; 265 } 266 267 m->pg_init_count = 0; 268 } 269 270 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg, 271 size_t nr_bytes) 272 { 273 struct dm_path *path; 274 275 path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes); 276 if (!path) 277 return -ENXIO; 278 279 m->current_pgpath = path_to_pgpath(path); 280 281 if (m->current_pg != pg) 282 __switch_pg(m, m->current_pgpath); 283 284 return 0; 285 } 286 287 static void __choose_pgpath(struct multipath *m, size_t nr_bytes) 288 { 289 struct priority_group *pg; 290 unsigned bypassed = 1; 291 292 if (!m->nr_valid_paths) 293 goto failed; 294 295 /* Were we instructed to switch PG? */ 296 if (m->next_pg) { 297 pg = m->next_pg; 298 m->next_pg = NULL; 299 if (!__choose_path_in_pg(m, pg, nr_bytes)) 300 return; 301 } 302 303 /* Don't change PG until it has no remaining paths */ 304 if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes)) 305 return; 306 307 /* 308 * Loop through priority groups until we find a valid path. 309 * First time we skip PGs marked 'bypassed'. 310 * Second time we only try the ones we skipped. 311 */ 312 do { 313 list_for_each_entry(pg, &m->priority_groups, list) { 314 if (pg->bypassed == bypassed) 315 continue; 316 if (!__choose_path_in_pg(m, pg, nr_bytes)) 317 return; 318 } 319 } while (bypassed--); 320 321 failed: 322 m->current_pgpath = NULL; 323 m->current_pg = NULL; 324 } 325 326 /* 327 * Check whether bios must be queued in the device-mapper core rather 328 * than here in the target. 329 * 330 * m->lock must be held on entry. 331 * 332 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 333 * same value then we are not between multipath_presuspend() 334 * and multipath_resume() calls and we have no need to check 335 * for the DMF_NOFLUSH_SUSPENDING flag. 336 */ 337 static int __must_push_back(struct multipath *m) 338 { 339 return (m->queue_if_no_path != m->saved_queue_if_no_path && 340 dm_noflush_suspending(m->ti)); 341 } 342 343 static int map_io(struct multipath *m, struct request *clone, 344 struct dm_mpath_io *mpio, unsigned was_queued) 345 { 346 int r = DM_MAPIO_REMAPPED; 347 size_t nr_bytes = blk_rq_bytes(clone); 348 unsigned long flags; 349 struct pgpath *pgpath; 350 struct block_device *bdev; 351 352 spin_lock_irqsave(&m->lock, flags); 353 354 /* Do we need to select a new pgpath? */ 355 if (!m->current_pgpath || 356 (!m->queue_io && (m->repeat_count && --m->repeat_count == 0))) 357 __choose_pgpath(m, nr_bytes); 358 359 pgpath = m->current_pgpath; 360 361 if (was_queued) 362 m->queue_size--; 363 364 if ((pgpath && m->queue_io) || 365 (!pgpath && m->queue_if_no_path)) { 366 /* Queue for the daemon to resubmit */ 367 list_add_tail(&clone->queuelist, &m->queued_ios); 368 m->queue_size++; 369 if ((m->pg_init_required && !m->pg_init_in_progress) || 370 !m->queue_io) 371 queue_work(kmultipathd, &m->process_queued_ios); 372 pgpath = NULL; 373 r = DM_MAPIO_SUBMITTED; 374 } else if (pgpath) { 375 bdev = pgpath->path.dev->bdev; 376 clone->q = bdev_get_queue(bdev); 377 clone->rq_disk = bdev->bd_disk; 378 } else if (__must_push_back(m)) 379 r = DM_MAPIO_REQUEUE; 380 else 381 r = -EIO; /* Failed */ 382 383 mpio->pgpath = pgpath; 384 mpio->nr_bytes = nr_bytes; 385 386 if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io) 387 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path, 388 nr_bytes); 389 390 spin_unlock_irqrestore(&m->lock, flags); 391 392 return r; 393 } 394 395 /* 396 * If we run out of usable paths, should we queue I/O or error it? 397 */ 398 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path, 399 unsigned save_old_value) 400 { 401 unsigned long flags; 402 403 spin_lock_irqsave(&m->lock, flags); 404 405 if (save_old_value) 406 m->saved_queue_if_no_path = m->queue_if_no_path; 407 else 408 m->saved_queue_if_no_path = queue_if_no_path; 409 m->queue_if_no_path = queue_if_no_path; 410 if (!m->queue_if_no_path && m->queue_size) 411 queue_work(kmultipathd, &m->process_queued_ios); 412 413 spin_unlock_irqrestore(&m->lock, flags); 414 415 return 0; 416 } 417 418 /*----------------------------------------------------------------- 419 * The multipath daemon is responsible for resubmitting queued ios. 420 *---------------------------------------------------------------*/ 421 422 static void dispatch_queued_ios(struct multipath *m) 423 { 424 int r; 425 unsigned long flags; 426 struct dm_mpath_io *mpio; 427 union map_info *info; 428 struct request *clone, *n; 429 LIST_HEAD(cl); 430 431 spin_lock_irqsave(&m->lock, flags); 432 list_splice_init(&m->queued_ios, &cl); 433 spin_unlock_irqrestore(&m->lock, flags); 434 435 list_for_each_entry_safe(clone, n, &cl, queuelist) { 436 list_del_init(&clone->queuelist); 437 438 info = dm_get_rq_mapinfo(clone); 439 mpio = info->ptr; 440 441 r = map_io(m, clone, mpio, 1); 442 if (r < 0) { 443 mempool_free(mpio, m->mpio_pool); 444 dm_kill_unmapped_request(clone, r); 445 } else if (r == DM_MAPIO_REMAPPED) 446 dm_dispatch_request(clone); 447 else if (r == DM_MAPIO_REQUEUE) { 448 mempool_free(mpio, m->mpio_pool); 449 dm_requeue_unmapped_request(clone); 450 } 451 } 452 } 453 454 static void process_queued_ios(struct work_struct *work) 455 { 456 struct multipath *m = 457 container_of(work, struct multipath, process_queued_ios); 458 struct pgpath *pgpath = NULL; 459 unsigned must_queue = 1; 460 unsigned long flags; 461 462 spin_lock_irqsave(&m->lock, flags); 463 464 if (!m->queue_size) 465 goto out; 466 467 if (!m->current_pgpath) 468 __choose_pgpath(m, 0); 469 470 pgpath = m->current_pgpath; 471 472 if ((pgpath && !m->queue_io) || 473 (!pgpath && !m->queue_if_no_path)) 474 must_queue = 0; 475 476 if (m->pg_init_required && !m->pg_init_in_progress && pgpath) 477 __pg_init_all_paths(m); 478 479 out: 480 spin_unlock_irqrestore(&m->lock, flags); 481 if (!must_queue) 482 dispatch_queued_ios(m); 483 } 484 485 /* 486 * An event is triggered whenever a path is taken out of use. 487 * Includes path failure and PG bypass. 488 */ 489 static void trigger_event(struct work_struct *work) 490 { 491 struct multipath *m = 492 container_of(work, struct multipath, trigger_event); 493 494 dm_table_event(m->ti->table); 495 } 496 497 /*----------------------------------------------------------------- 498 * Constructor/argument parsing: 499 * <#multipath feature args> [<arg>]* 500 * <#hw_handler args> [hw_handler [<arg>]*] 501 * <#priority groups> 502 * <initial priority group> 503 * [<selector> <#selector args> [<arg>]* 504 * <#paths> <#per-path selector args> 505 * [<path> [<arg>]* ]+ ]+ 506 *---------------------------------------------------------------*/ 507 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 508 struct dm_target *ti) 509 { 510 int r; 511 struct path_selector_type *pst; 512 unsigned ps_argc; 513 514 static struct dm_arg _args[] = { 515 {0, 1024, "invalid number of path selector args"}, 516 }; 517 518 pst = dm_get_path_selector(dm_shift_arg(as)); 519 if (!pst) { 520 ti->error = "unknown path selector type"; 521 return -EINVAL; 522 } 523 524 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 525 if (r) { 526 dm_put_path_selector(pst); 527 return -EINVAL; 528 } 529 530 r = pst->create(&pg->ps, ps_argc, as->argv); 531 if (r) { 532 dm_put_path_selector(pst); 533 ti->error = "path selector constructor failed"; 534 return r; 535 } 536 537 pg->ps.type = pst; 538 dm_consume_args(as, ps_argc); 539 540 return 0; 541 } 542 543 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 544 struct dm_target *ti) 545 { 546 int r; 547 struct pgpath *p; 548 struct multipath *m = ti->private; 549 550 /* we need at least a path arg */ 551 if (as->argc < 1) { 552 ti->error = "no device given"; 553 return ERR_PTR(-EINVAL); 554 } 555 556 p = alloc_pgpath(); 557 if (!p) 558 return ERR_PTR(-ENOMEM); 559 560 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 561 &p->path.dev); 562 if (r) { 563 ti->error = "error getting device"; 564 goto bad; 565 } 566 567 if (m->hw_handler_name) { 568 struct request_queue *q = bdev_get_queue(p->path.dev->bdev); 569 570 r = scsi_dh_attach(q, m->hw_handler_name); 571 if (r == -EBUSY) { 572 /* 573 * Already attached to different hw_handler, 574 * try to reattach with correct one. 575 */ 576 scsi_dh_detach(q); 577 r = scsi_dh_attach(q, m->hw_handler_name); 578 } 579 580 if (r < 0) { 581 ti->error = "error attaching hardware handler"; 582 dm_put_device(ti, p->path.dev); 583 goto bad; 584 } 585 586 if (m->hw_handler_params) { 587 r = scsi_dh_set_params(q, m->hw_handler_params); 588 if (r < 0) { 589 ti->error = "unable to set hardware " 590 "handler parameters"; 591 scsi_dh_detach(q); 592 dm_put_device(ti, p->path.dev); 593 goto bad; 594 } 595 } 596 } 597 598 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 599 if (r) { 600 dm_put_device(ti, p->path.dev); 601 goto bad; 602 } 603 604 return p; 605 606 bad: 607 free_pgpath(p); 608 return ERR_PTR(r); 609 } 610 611 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 612 struct multipath *m) 613 { 614 static struct dm_arg _args[] = { 615 {1, 1024, "invalid number of paths"}, 616 {0, 1024, "invalid number of selector args"} 617 }; 618 619 int r; 620 unsigned i, nr_selector_args, nr_args; 621 struct priority_group *pg; 622 struct dm_target *ti = m->ti; 623 624 if (as->argc < 2) { 625 as->argc = 0; 626 ti->error = "not enough priority group arguments"; 627 return ERR_PTR(-EINVAL); 628 } 629 630 pg = alloc_priority_group(); 631 if (!pg) { 632 ti->error = "couldn't allocate priority group"; 633 return ERR_PTR(-ENOMEM); 634 } 635 pg->m = m; 636 637 r = parse_path_selector(as, pg, ti); 638 if (r) 639 goto bad; 640 641 /* 642 * read the paths 643 */ 644 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 645 if (r) 646 goto bad; 647 648 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 649 if (r) 650 goto bad; 651 652 nr_args = 1 + nr_selector_args; 653 for (i = 0; i < pg->nr_pgpaths; i++) { 654 struct pgpath *pgpath; 655 struct dm_arg_set path_args; 656 657 if (as->argc < nr_args) { 658 ti->error = "not enough path parameters"; 659 r = -EINVAL; 660 goto bad; 661 } 662 663 path_args.argc = nr_args; 664 path_args.argv = as->argv; 665 666 pgpath = parse_path(&path_args, &pg->ps, ti); 667 if (IS_ERR(pgpath)) { 668 r = PTR_ERR(pgpath); 669 goto bad; 670 } 671 672 pgpath->pg = pg; 673 list_add_tail(&pgpath->list, &pg->pgpaths); 674 dm_consume_args(as, nr_args); 675 } 676 677 return pg; 678 679 bad: 680 free_priority_group(pg, ti); 681 return ERR_PTR(r); 682 } 683 684 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 685 { 686 unsigned hw_argc; 687 int ret; 688 struct dm_target *ti = m->ti; 689 690 static struct dm_arg _args[] = { 691 {0, 1024, "invalid number of hardware handler args"}, 692 }; 693 694 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 695 return -EINVAL; 696 697 if (!hw_argc) 698 return 0; 699 700 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 701 request_module("scsi_dh_%s", m->hw_handler_name); 702 if (scsi_dh_handler_exist(m->hw_handler_name) == 0) { 703 ti->error = "unknown hardware handler type"; 704 ret = -EINVAL; 705 goto fail; 706 } 707 708 if (hw_argc > 1) { 709 char *p; 710 int i, j, len = 4; 711 712 for (i = 0; i <= hw_argc - 2; i++) 713 len += strlen(as->argv[i]) + 1; 714 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 715 if (!p) { 716 ti->error = "memory allocation failed"; 717 ret = -ENOMEM; 718 goto fail; 719 } 720 j = sprintf(p, "%d", hw_argc - 1); 721 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 722 j = sprintf(p, "%s", as->argv[i]); 723 } 724 dm_consume_args(as, hw_argc - 1); 725 726 return 0; 727 fail: 728 kfree(m->hw_handler_name); 729 m->hw_handler_name = NULL; 730 return ret; 731 } 732 733 static int parse_features(struct dm_arg_set *as, struct multipath *m) 734 { 735 int r; 736 unsigned argc; 737 struct dm_target *ti = m->ti; 738 const char *arg_name; 739 740 static struct dm_arg _args[] = { 741 {0, 5, "invalid number of feature args"}, 742 {1, 50, "pg_init_retries must be between 1 and 50"}, 743 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 744 }; 745 746 r = dm_read_arg_group(_args, as, &argc, &ti->error); 747 if (r) 748 return -EINVAL; 749 750 if (!argc) 751 return 0; 752 753 do { 754 arg_name = dm_shift_arg(as); 755 argc--; 756 757 if (!strcasecmp(arg_name, "queue_if_no_path")) { 758 r = queue_if_no_path(m, 1, 0); 759 continue; 760 } 761 762 if (!strcasecmp(arg_name, "pg_init_retries") && 763 (argc >= 1)) { 764 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 765 argc--; 766 continue; 767 } 768 769 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 770 (argc >= 1)) { 771 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 772 argc--; 773 continue; 774 } 775 776 ti->error = "Unrecognised multipath feature request"; 777 r = -EINVAL; 778 } while (argc && !r); 779 780 return r; 781 } 782 783 static int multipath_ctr(struct dm_target *ti, unsigned int argc, 784 char **argv) 785 { 786 /* target arguments */ 787 static struct dm_arg _args[] = { 788 {0, 1024, "invalid number of priority groups"}, 789 {0, 1024, "invalid initial priority group number"}, 790 }; 791 792 int r; 793 struct multipath *m; 794 struct dm_arg_set as; 795 unsigned pg_count = 0; 796 unsigned next_pg_num; 797 798 as.argc = argc; 799 as.argv = argv; 800 801 m = alloc_multipath(ti); 802 if (!m) { 803 ti->error = "can't allocate multipath"; 804 return -EINVAL; 805 } 806 807 r = parse_features(&as, m); 808 if (r) 809 goto bad; 810 811 r = parse_hw_handler(&as, m); 812 if (r) 813 goto bad; 814 815 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 816 if (r) 817 goto bad; 818 819 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 820 if (r) 821 goto bad; 822 823 if ((!m->nr_priority_groups && next_pg_num) || 824 (m->nr_priority_groups && !next_pg_num)) { 825 ti->error = "invalid initial priority group"; 826 r = -EINVAL; 827 goto bad; 828 } 829 830 /* parse the priority groups */ 831 while (as.argc) { 832 struct priority_group *pg; 833 834 pg = parse_priority_group(&as, m); 835 if (IS_ERR(pg)) { 836 r = PTR_ERR(pg); 837 goto bad; 838 } 839 840 m->nr_valid_paths += pg->nr_pgpaths; 841 list_add_tail(&pg->list, &m->priority_groups); 842 pg_count++; 843 pg->pg_num = pg_count; 844 if (!--next_pg_num) 845 m->next_pg = pg; 846 } 847 848 if (pg_count != m->nr_priority_groups) { 849 ti->error = "priority group count mismatch"; 850 r = -EINVAL; 851 goto bad; 852 } 853 854 ti->num_flush_requests = 1; 855 ti->num_discard_requests = 1; 856 857 return 0; 858 859 bad: 860 free_multipath(m); 861 return r; 862 } 863 864 static void multipath_wait_for_pg_init_completion(struct multipath *m) 865 { 866 DECLARE_WAITQUEUE(wait, current); 867 unsigned long flags; 868 869 add_wait_queue(&m->pg_init_wait, &wait); 870 871 while (1) { 872 set_current_state(TASK_UNINTERRUPTIBLE); 873 874 spin_lock_irqsave(&m->lock, flags); 875 if (!m->pg_init_in_progress) { 876 spin_unlock_irqrestore(&m->lock, flags); 877 break; 878 } 879 spin_unlock_irqrestore(&m->lock, flags); 880 881 io_schedule(); 882 } 883 set_current_state(TASK_RUNNING); 884 885 remove_wait_queue(&m->pg_init_wait, &wait); 886 } 887 888 static void flush_multipath_work(struct multipath *m) 889 { 890 flush_workqueue(kmpath_handlerd); 891 multipath_wait_for_pg_init_completion(m); 892 flush_workqueue(kmultipathd); 893 flush_work_sync(&m->trigger_event); 894 } 895 896 static void multipath_dtr(struct dm_target *ti) 897 { 898 struct multipath *m = ti->private; 899 900 flush_multipath_work(m); 901 free_multipath(m); 902 } 903 904 /* 905 * Map cloned requests 906 */ 907 static int multipath_map(struct dm_target *ti, struct request *clone, 908 union map_info *map_context) 909 { 910 int r; 911 struct dm_mpath_io *mpio; 912 struct multipath *m = (struct multipath *) ti->private; 913 914 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 915 if (!mpio) 916 /* ENOMEM, requeue */ 917 return DM_MAPIO_REQUEUE; 918 memset(mpio, 0, sizeof(*mpio)); 919 920 map_context->ptr = mpio; 921 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 922 r = map_io(m, clone, mpio, 0); 923 if (r < 0 || r == DM_MAPIO_REQUEUE) 924 mempool_free(mpio, m->mpio_pool); 925 926 return r; 927 } 928 929 /* 930 * Take a path out of use. 931 */ 932 static int fail_path(struct pgpath *pgpath) 933 { 934 unsigned long flags; 935 struct multipath *m = pgpath->pg->m; 936 937 spin_lock_irqsave(&m->lock, flags); 938 939 if (!pgpath->is_active) 940 goto out; 941 942 DMWARN("Failing path %s.", pgpath->path.dev->name); 943 944 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 945 pgpath->is_active = 0; 946 pgpath->fail_count++; 947 948 m->nr_valid_paths--; 949 950 if (pgpath == m->current_pgpath) 951 m->current_pgpath = NULL; 952 953 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 954 pgpath->path.dev->name, m->nr_valid_paths); 955 956 schedule_work(&m->trigger_event); 957 958 out: 959 spin_unlock_irqrestore(&m->lock, flags); 960 961 return 0; 962 } 963 964 /* 965 * Reinstate a previously-failed path 966 */ 967 static int reinstate_path(struct pgpath *pgpath) 968 { 969 int r = 0; 970 unsigned long flags; 971 struct multipath *m = pgpath->pg->m; 972 973 spin_lock_irqsave(&m->lock, flags); 974 975 if (pgpath->is_active) 976 goto out; 977 978 if (!pgpath->pg->ps.type->reinstate_path) { 979 DMWARN("Reinstate path not supported by path selector %s", 980 pgpath->pg->ps.type->name); 981 r = -EINVAL; 982 goto out; 983 } 984 985 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 986 if (r) 987 goto out; 988 989 pgpath->is_active = 1; 990 991 if (!m->nr_valid_paths++ && m->queue_size) { 992 m->current_pgpath = NULL; 993 queue_work(kmultipathd, &m->process_queued_ios); 994 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 995 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 996 m->pg_init_in_progress++; 997 } 998 999 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1000 pgpath->path.dev->name, m->nr_valid_paths); 1001 1002 schedule_work(&m->trigger_event); 1003 1004 out: 1005 spin_unlock_irqrestore(&m->lock, flags); 1006 1007 return r; 1008 } 1009 1010 /* 1011 * Fail or reinstate all paths that match the provided struct dm_dev. 1012 */ 1013 static int action_dev(struct multipath *m, struct dm_dev *dev, 1014 action_fn action) 1015 { 1016 int r = -EINVAL; 1017 struct pgpath *pgpath; 1018 struct priority_group *pg; 1019 1020 list_for_each_entry(pg, &m->priority_groups, list) { 1021 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1022 if (pgpath->path.dev == dev) 1023 r = action(pgpath); 1024 } 1025 } 1026 1027 return r; 1028 } 1029 1030 /* 1031 * Temporarily try to avoid having to use the specified PG 1032 */ 1033 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1034 int bypassed) 1035 { 1036 unsigned long flags; 1037 1038 spin_lock_irqsave(&m->lock, flags); 1039 1040 pg->bypassed = bypassed; 1041 m->current_pgpath = NULL; 1042 m->current_pg = NULL; 1043 1044 spin_unlock_irqrestore(&m->lock, flags); 1045 1046 schedule_work(&m->trigger_event); 1047 } 1048 1049 /* 1050 * Switch to using the specified PG from the next I/O that gets mapped 1051 */ 1052 static int switch_pg_num(struct multipath *m, const char *pgstr) 1053 { 1054 struct priority_group *pg; 1055 unsigned pgnum; 1056 unsigned long flags; 1057 1058 if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum || 1059 (pgnum > m->nr_priority_groups)) { 1060 DMWARN("invalid PG number supplied to switch_pg_num"); 1061 return -EINVAL; 1062 } 1063 1064 spin_lock_irqsave(&m->lock, flags); 1065 list_for_each_entry(pg, &m->priority_groups, list) { 1066 pg->bypassed = 0; 1067 if (--pgnum) 1068 continue; 1069 1070 m->current_pgpath = NULL; 1071 m->current_pg = NULL; 1072 m->next_pg = pg; 1073 } 1074 spin_unlock_irqrestore(&m->lock, flags); 1075 1076 schedule_work(&m->trigger_event); 1077 return 0; 1078 } 1079 1080 /* 1081 * Set/clear bypassed status of a PG. 1082 * PGs are numbered upwards from 1 in the order they were declared. 1083 */ 1084 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed) 1085 { 1086 struct priority_group *pg; 1087 unsigned pgnum; 1088 1089 if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum || 1090 (pgnum > m->nr_priority_groups)) { 1091 DMWARN("invalid PG number supplied to bypass_pg"); 1092 return -EINVAL; 1093 } 1094 1095 list_for_each_entry(pg, &m->priority_groups, list) { 1096 if (!--pgnum) 1097 break; 1098 } 1099 1100 bypass_pg(m, pg, bypassed); 1101 return 0; 1102 } 1103 1104 /* 1105 * Should we retry pg_init immediately? 1106 */ 1107 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1108 { 1109 unsigned long flags; 1110 int limit_reached = 0; 1111 1112 spin_lock_irqsave(&m->lock, flags); 1113 1114 if (m->pg_init_count <= m->pg_init_retries) 1115 m->pg_init_required = 1; 1116 else 1117 limit_reached = 1; 1118 1119 spin_unlock_irqrestore(&m->lock, flags); 1120 1121 return limit_reached; 1122 } 1123 1124 static void pg_init_done(void *data, int errors) 1125 { 1126 struct pgpath *pgpath = data; 1127 struct priority_group *pg = pgpath->pg; 1128 struct multipath *m = pg->m; 1129 unsigned long flags; 1130 unsigned delay_retry = 0; 1131 1132 /* device or driver problems */ 1133 switch (errors) { 1134 case SCSI_DH_OK: 1135 break; 1136 case SCSI_DH_NOSYS: 1137 if (!m->hw_handler_name) { 1138 errors = 0; 1139 break; 1140 } 1141 DMERR("Could not failover the device: Handler scsi_dh_%s " 1142 "Error %d.", m->hw_handler_name, errors); 1143 /* 1144 * Fail path for now, so we do not ping pong 1145 */ 1146 fail_path(pgpath); 1147 break; 1148 case SCSI_DH_DEV_TEMP_BUSY: 1149 /* 1150 * Probably doing something like FW upgrade on the 1151 * controller so try the other pg. 1152 */ 1153 bypass_pg(m, pg, 1); 1154 break; 1155 case SCSI_DH_RETRY: 1156 /* Wait before retrying. */ 1157 delay_retry = 1; 1158 case SCSI_DH_IMM_RETRY: 1159 case SCSI_DH_RES_TEMP_UNAVAIL: 1160 if (pg_init_limit_reached(m, pgpath)) 1161 fail_path(pgpath); 1162 errors = 0; 1163 break; 1164 default: 1165 /* 1166 * We probably do not want to fail the path for a device 1167 * error, but this is what the old dm did. In future 1168 * patches we can do more advanced handling. 1169 */ 1170 fail_path(pgpath); 1171 } 1172 1173 spin_lock_irqsave(&m->lock, flags); 1174 if (errors) { 1175 if (pgpath == m->current_pgpath) { 1176 DMERR("Could not failover device. Error %d.", errors); 1177 m->current_pgpath = NULL; 1178 m->current_pg = NULL; 1179 } 1180 } else if (!m->pg_init_required) 1181 pg->bypassed = 0; 1182 1183 if (--m->pg_init_in_progress) 1184 /* Activations of other paths are still on going */ 1185 goto out; 1186 1187 if (!m->pg_init_required) 1188 m->queue_io = 0; 1189 1190 m->pg_init_delay_retry = delay_retry; 1191 queue_work(kmultipathd, &m->process_queued_ios); 1192 1193 /* 1194 * Wake up any thread waiting to suspend. 1195 */ 1196 wake_up(&m->pg_init_wait); 1197 1198 out: 1199 spin_unlock_irqrestore(&m->lock, flags); 1200 } 1201 1202 static void activate_path(struct work_struct *work) 1203 { 1204 struct pgpath *pgpath = 1205 container_of(work, struct pgpath, activate_path.work); 1206 1207 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), 1208 pg_init_done, pgpath); 1209 } 1210 1211 /* 1212 * end_io handling 1213 */ 1214 static int do_end_io(struct multipath *m, struct request *clone, 1215 int error, struct dm_mpath_io *mpio) 1216 { 1217 /* 1218 * We don't queue any clone request inside the multipath target 1219 * during end I/O handling, since those clone requests don't have 1220 * bio clones. If we queue them inside the multipath target, 1221 * we need to make bio clones, that requires memory allocation. 1222 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests 1223 * don't have bio clones.) 1224 * Instead of queueing the clone request here, we queue the original 1225 * request into dm core, which will remake a clone request and 1226 * clone bios for it and resubmit it later. 1227 */ 1228 int r = DM_ENDIO_REQUEUE; 1229 unsigned long flags; 1230 1231 if (!error && !clone->errors) 1232 return 0; /* I/O complete */ 1233 1234 if (error == -EOPNOTSUPP || error == -EREMOTEIO || error == -EILSEQ) 1235 return error; 1236 1237 if (mpio->pgpath) 1238 fail_path(mpio->pgpath); 1239 1240 spin_lock_irqsave(&m->lock, flags); 1241 if (!m->nr_valid_paths) { 1242 if (!m->queue_if_no_path) { 1243 if (!__must_push_back(m)) 1244 r = -EIO; 1245 } else { 1246 if (error == -EBADE) 1247 r = error; 1248 } 1249 } 1250 spin_unlock_irqrestore(&m->lock, flags); 1251 1252 return r; 1253 } 1254 1255 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1256 int error, union map_info *map_context) 1257 { 1258 struct multipath *m = ti->private; 1259 struct dm_mpath_io *mpio = map_context->ptr; 1260 struct pgpath *pgpath = mpio->pgpath; 1261 struct path_selector *ps; 1262 int r; 1263 1264 r = do_end_io(m, clone, error, mpio); 1265 if (pgpath) { 1266 ps = &pgpath->pg->ps; 1267 if (ps->type->end_io) 1268 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1269 } 1270 mempool_free(mpio, m->mpio_pool); 1271 1272 return r; 1273 } 1274 1275 /* 1276 * Suspend can't complete until all the I/O is processed so if 1277 * the last path fails we must error any remaining I/O. 1278 * Note that if the freeze_bdev fails while suspending, the 1279 * queue_if_no_path state is lost - userspace should reset it. 1280 */ 1281 static void multipath_presuspend(struct dm_target *ti) 1282 { 1283 struct multipath *m = (struct multipath *) ti->private; 1284 1285 queue_if_no_path(m, 0, 1); 1286 } 1287 1288 static void multipath_postsuspend(struct dm_target *ti) 1289 { 1290 struct multipath *m = ti->private; 1291 1292 mutex_lock(&m->work_mutex); 1293 flush_multipath_work(m); 1294 mutex_unlock(&m->work_mutex); 1295 } 1296 1297 /* 1298 * Restore the queue_if_no_path setting. 1299 */ 1300 static void multipath_resume(struct dm_target *ti) 1301 { 1302 struct multipath *m = (struct multipath *) ti->private; 1303 unsigned long flags; 1304 1305 spin_lock_irqsave(&m->lock, flags); 1306 m->queue_if_no_path = m->saved_queue_if_no_path; 1307 spin_unlock_irqrestore(&m->lock, flags); 1308 } 1309 1310 /* 1311 * Info output has the following format: 1312 * num_multipath_feature_args [multipath_feature_args]* 1313 * num_handler_status_args [handler_status_args]* 1314 * num_groups init_group_number 1315 * [A|D|E num_ps_status_args [ps_status_args]* 1316 * num_paths num_selector_args 1317 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1318 * 1319 * Table output has the following format (identical to the constructor string): 1320 * num_feature_args [features_args]* 1321 * num_handler_args hw_handler [hw_handler_args]* 1322 * num_groups init_group_number 1323 * [priority selector-name num_ps_args [ps_args]* 1324 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1325 */ 1326 static int multipath_status(struct dm_target *ti, status_type_t type, 1327 char *result, unsigned int maxlen) 1328 { 1329 int sz = 0; 1330 unsigned long flags; 1331 struct multipath *m = (struct multipath *) ti->private; 1332 struct priority_group *pg; 1333 struct pgpath *p; 1334 unsigned pg_num; 1335 char state; 1336 1337 spin_lock_irqsave(&m->lock, flags); 1338 1339 /* Features */ 1340 if (type == STATUSTYPE_INFO) 1341 DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count); 1342 else { 1343 DMEMIT("%u ", m->queue_if_no_path + 1344 (m->pg_init_retries > 0) * 2 + 1345 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2); 1346 if (m->queue_if_no_path) 1347 DMEMIT("queue_if_no_path "); 1348 if (m->pg_init_retries) 1349 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1350 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1351 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1352 } 1353 1354 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1355 DMEMIT("0 "); 1356 else 1357 DMEMIT("1 %s ", m->hw_handler_name); 1358 1359 DMEMIT("%u ", m->nr_priority_groups); 1360 1361 if (m->next_pg) 1362 pg_num = m->next_pg->pg_num; 1363 else if (m->current_pg) 1364 pg_num = m->current_pg->pg_num; 1365 else 1366 pg_num = (m->nr_priority_groups ? 1 : 0); 1367 1368 DMEMIT("%u ", pg_num); 1369 1370 switch (type) { 1371 case STATUSTYPE_INFO: 1372 list_for_each_entry(pg, &m->priority_groups, list) { 1373 if (pg->bypassed) 1374 state = 'D'; /* Disabled */ 1375 else if (pg == m->current_pg) 1376 state = 'A'; /* Currently Active */ 1377 else 1378 state = 'E'; /* Enabled */ 1379 1380 DMEMIT("%c ", state); 1381 1382 if (pg->ps.type->status) 1383 sz += pg->ps.type->status(&pg->ps, NULL, type, 1384 result + sz, 1385 maxlen - sz); 1386 else 1387 DMEMIT("0 "); 1388 1389 DMEMIT("%u %u ", pg->nr_pgpaths, 1390 pg->ps.type->info_args); 1391 1392 list_for_each_entry(p, &pg->pgpaths, list) { 1393 DMEMIT("%s %s %u ", p->path.dev->name, 1394 p->is_active ? "A" : "F", 1395 p->fail_count); 1396 if (pg->ps.type->status) 1397 sz += pg->ps.type->status(&pg->ps, 1398 &p->path, type, result + sz, 1399 maxlen - sz); 1400 } 1401 } 1402 break; 1403 1404 case STATUSTYPE_TABLE: 1405 list_for_each_entry(pg, &m->priority_groups, list) { 1406 DMEMIT("%s ", pg->ps.type->name); 1407 1408 if (pg->ps.type->status) 1409 sz += pg->ps.type->status(&pg->ps, NULL, type, 1410 result + sz, 1411 maxlen - sz); 1412 else 1413 DMEMIT("0 "); 1414 1415 DMEMIT("%u %u ", pg->nr_pgpaths, 1416 pg->ps.type->table_args); 1417 1418 list_for_each_entry(p, &pg->pgpaths, list) { 1419 DMEMIT("%s ", p->path.dev->name); 1420 if (pg->ps.type->status) 1421 sz += pg->ps.type->status(&pg->ps, 1422 &p->path, type, result + sz, 1423 maxlen - sz); 1424 } 1425 } 1426 break; 1427 } 1428 1429 spin_unlock_irqrestore(&m->lock, flags); 1430 1431 return 0; 1432 } 1433 1434 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1435 { 1436 int r = -EINVAL; 1437 struct dm_dev *dev; 1438 struct multipath *m = (struct multipath *) ti->private; 1439 action_fn action; 1440 1441 mutex_lock(&m->work_mutex); 1442 1443 if (dm_suspended(ti)) { 1444 r = -EBUSY; 1445 goto out; 1446 } 1447 1448 if (argc == 1) { 1449 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1450 r = queue_if_no_path(m, 1, 0); 1451 goto out; 1452 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1453 r = queue_if_no_path(m, 0, 0); 1454 goto out; 1455 } 1456 } 1457 1458 if (argc != 2) { 1459 DMWARN("Unrecognised multipath message received."); 1460 goto out; 1461 } 1462 1463 if (!strcasecmp(argv[0], "disable_group")) { 1464 r = bypass_pg_num(m, argv[1], 1); 1465 goto out; 1466 } else if (!strcasecmp(argv[0], "enable_group")) { 1467 r = bypass_pg_num(m, argv[1], 0); 1468 goto out; 1469 } else if (!strcasecmp(argv[0], "switch_group")) { 1470 r = switch_pg_num(m, argv[1]); 1471 goto out; 1472 } else if (!strcasecmp(argv[0], "reinstate_path")) 1473 action = reinstate_path; 1474 else if (!strcasecmp(argv[0], "fail_path")) 1475 action = fail_path; 1476 else { 1477 DMWARN("Unrecognised multipath message received."); 1478 goto out; 1479 } 1480 1481 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1482 if (r) { 1483 DMWARN("message: error getting device %s", 1484 argv[1]); 1485 goto out; 1486 } 1487 1488 r = action_dev(m, dev, action); 1489 1490 dm_put_device(ti, dev); 1491 1492 out: 1493 mutex_unlock(&m->work_mutex); 1494 return r; 1495 } 1496 1497 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd, 1498 unsigned long arg) 1499 { 1500 struct multipath *m = (struct multipath *) ti->private; 1501 struct block_device *bdev = NULL; 1502 fmode_t mode = 0; 1503 unsigned long flags; 1504 int r = 0; 1505 1506 spin_lock_irqsave(&m->lock, flags); 1507 1508 if (!m->current_pgpath) 1509 __choose_pgpath(m, 0); 1510 1511 if (m->current_pgpath) { 1512 bdev = m->current_pgpath->path.dev->bdev; 1513 mode = m->current_pgpath->path.dev->mode; 1514 } 1515 1516 if (m->queue_io) 1517 r = -EAGAIN; 1518 else if (!bdev) 1519 r = -EIO; 1520 1521 spin_unlock_irqrestore(&m->lock, flags); 1522 1523 return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg); 1524 } 1525 1526 static int multipath_iterate_devices(struct dm_target *ti, 1527 iterate_devices_callout_fn fn, void *data) 1528 { 1529 struct multipath *m = ti->private; 1530 struct priority_group *pg; 1531 struct pgpath *p; 1532 int ret = 0; 1533 1534 list_for_each_entry(pg, &m->priority_groups, list) { 1535 list_for_each_entry(p, &pg->pgpaths, list) { 1536 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1537 if (ret) 1538 goto out; 1539 } 1540 } 1541 1542 out: 1543 return ret; 1544 } 1545 1546 static int __pgpath_busy(struct pgpath *pgpath) 1547 { 1548 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1549 1550 return dm_underlying_device_busy(q); 1551 } 1552 1553 /* 1554 * We return "busy", only when we can map I/Os but underlying devices 1555 * are busy (so even if we map I/Os now, the I/Os will wait on 1556 * the underlying queue). 1557 * In other words, if we want to kill I/Os or queue them inside us 1558 * due to map unavailability, we don't return "busy". Otherwise, 1559 * dm core won't give us the I/Os and we can't do what we want. 1560 */ 1561 static int multipath_busy(struct dm_target *ti) 1562 { 1563 int busy = 0, has_active = 0; 1564 struct multipath *m = ti->private; 1565 struct priority_group *pg; 1566 struct pgpath *pgpath; 1567 unsigned long flags; 1568 1569 spin_lock_irqsave(&m->lock, flags); 1570 1571 /* Guess which priority_group will be used at next mapping time */ 1572 if (unlikely(!m->current_pgpath && m->next_pg)) 1573 pg = m->next_pg; 1574 else if (likely(m->current_pg)) 1575 pg = m->current_pg; 1576 else 1577 /* 1578 * We don't know which pg will be used at next mapping time. 1579 * We don't call __choose_pgpath() here to avoid to trigger 1580 * pg_init just by busy checking. 1581 * So we don't know whether underlying devices we will be using 1582 * at next mapping time are busy or not. Just try mapping. 1583 */ 1584 goto out; 1585 1586 /* 1587 * If there is one non-busy active path at least, the path selector 1588 * will be able to select it. So we consider such a pg as not busy. 1589 */ 1590 busy = 1; 1591 list_for_each_entry(pgpath, &pg->pgpaths, list) 1592 if (pgpath->is_active) { 1593 has_active = 1; 1594 1595 if (!__pgpath_busy(pgpath)) { 1596 busy = 0; 1597 break; 1598 } 1599 } 1600 1601 if (!has_active) 1602 /* 1603 * No active path in this pg, so this pg won't be used and 1604 * the current_pg will be changed at next mapping time. 1605 * We need to try mapping to determine it. 1606 */ 1607 busy = 0; 1608 1609 out: 1610 spin_unlock_irqrestore(&m->lock, flags); 1611 1612 return busy; 1613 } 1614 1615 /*----------------------------------------------------------------- 1616 * Module setup 1617 *---------------------------------------------------------------*/ 1618 static struct target_type multipath_target = { 1619 .name = "multipath", 1620 .version = {1, 3, 0}, 1621 .module = THIS_MODULE, 1622 .ctr = multipath_ctr, 1623 .dtr = multipath_dtr, 1624 .map_rq = multipath_map, 1625 .rq_end_io = multipath_end_io, 1626 .presuspend = multipath_presuspend, 1627 .postsuspend = multipath_postsuspend, 1628 .resume = multipath_resume, 1629 .status = multipath_status, 1630 .message = multipath_message, 1631 .ioctl = multipath_ioctl, 1632 .iterate_devices = multipath_iterate_devices, 1633 .busy = multipath_busy, 1634 }; 1635 1636 static int __init dm_multipath_init(void) 1637 { 1638 int r; 1639 1640 /* allocate a slab for the dm_ios */ 1641 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 1642 if (!_mpio_cache) 1643 return -ENOMEM; 1644 1645 r = dm_register_target(&multipath_target); 1646 if (r < 0) { 1647 DMERR("register failed %d", r); 1648 kmem_cache_destroy(_mpio_cache); 1649 return -EINVAL; 1650 } 1651 1652 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1653 if (!kmultipathd) { 1654 DMERR("failed to create workqueue kmpathd"); 1655 dm_unregister_target(&multipath_target); 1656 kmem_cache_destroy(_mpio_cache); 1657 return -ENOMEM; 1658 } 1659 1660 /* 1661 * A separate workqueue is used to handle the device handlers 1662 * to avoid overloading existing workqueue. Overloading the 1663 * old workqueue would also create a bottleneck in the 1664 * path of the storage hardware device activation. 1665 */ 1666 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1667 WQ_MEM_RECLAIM); 1668 if (!kmpath_handlerd) { 1669 DMERR("failed to create workqueue kmpath_handlerd"); 1670 destroy_workqueue(kmultipathd); 1671 dm_unregister_target(&multipath_target); 1672 kmem_cache_destroy(_mpio_cache); 1673 return -ENOMEM; 1674 } 1675 1676 DMINFO("version %u.%u.%u loaded", 1677 multipath_target.version[0], multipath_target.version[1], 1678 multipath_target.version[2]); 1679 1680 return r; 1681 } 1682 1683 static void __exit dm_multipath_exit(void) 1684 { 1685 destroy_workqueue(kmpath_handlerd); 1686 destroy_workqueue(kmultipathd); 1687 1688 dm_unregister_target(&multipath_target); 1689 kmem_cache_destroy(_mpio_cache); 1690 } 1691 1692 module_init(dm_multipath_init); 1693 module_exit(dm_multipath_exit); 1694 1695 MODULE_DESCRIPTION(DM_NAME " multipath target"); 1696 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 1697 MODULE_LICENSE("GPL"); 1698