1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 unsigned long flags; /* Multipath state flags */ 68 69 spinlock_t lock; 70 enum dm_queue_mode queue_mode; 71 72 struct pgpath *current_pgpath; 73 struct priority_group *current_pg; 74 struct priority_group *next_pg; /* Switch to this PG if set */ 75 76 atomic_t nr_valid_paths; /* Total number of usable paths */ 77 unsigned nr_priority_groups; 78 struct list_head priority_groups; 79 80 const char *hw_handler_name; 81 char *hw_handler_params; 82 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 83 unsigned pg_init_retries; /* Number of times to retry pg_init */ 84 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 85 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 86 atomic_t pg_init_count; /* Number of times pg_init called */ 87 88 struct mutex work_mutex; 89 struct work_struct trigger_event; 90 struct dm_target *ti; 91 92 struct work_struct process_queued_bios; 93 struct bio_list queued_bios; 94 }; 95 96 /* 97 * Context information attached to each io we process. 98 */ 99 struct dm_mpath_io { 100 struct pgpath *pgpath; 101 size_t nr_bytes; 102 }; 103 104 typedef int (*action_fn) (struct pgpath *pgpath); 105 106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 107 static void trigger_event(struct work_struct *work); 108 static void activate_or_offline_path(struct pgpath *pgpath); 109 static void activate_path_work(struct work_struct *work); 110 static void process_queued_bios(struct work_struct *work); 111 112 /*----------------------------------------------- 113 * Multipath state flags. 114 *-----------------------------------------------*/ 115 116 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 117 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 120 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 121 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 122 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 123 124 /*----------------------------------------------- 125 * Allocation routines 126 *-----------------------------------------------*/ 127 128 static struct pgpath *alloc_pgpath(void) 129 { 130 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 131 132 if (!pgpath) 133 return NULL; 134 135 pgpath->is_active = true; 136 137 return pgpath; 138 } 139 140 static void free_pgpath(struct pgpath *pgpath) 141 { 142 kfree(pgpath); 143 } 144 145 static struct priority_group *alloc_priority_group(void) 146 { 147 struct priority_group *pg; 148 149 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 150 151 if (pg) 152 INIT_LIST_HEAD(&pg->pgpaths); 153 154 return pg; 155 } 156 157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 158 { 159 struct pgpath *pgpath, *tmp; 160 161 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 162 list_del(&pgpath->list); 163 dm_put_device(ti, pgpath->path.dev); 164 free_pgpath(pgpath); 165 } 166 } 167 168 static void free_priority_group(struct priority_group *pg, 169 struct dm_target *ti) 170 { 171 struct path_selector *ps = &pg->ps; 172 173 if (ps->type) { 174 ps->type->destroy(ps); 175 dm_put_path_selector(ps->type); 176 } 177 178 free_pgpaths(&pg->pgpaths, ti); 179 kfree(pg); 180 } 181 182 static struct multipath *alloc_multipath(struct dm_target *ti) 183 { 184 struct multipath *m; 185 186 m = kzalloc(sizeof(*m), GFP_KERNEL); 187 if (m) { 188 INIT_LIST_HEAD(&m->priority_groups); 189 spin_lock_init(&m->lock); 190 atomic_set(&m->nr_valid_paths, 0); 191 INIT_WORK(&m->trigger_event, trigger_event); 192 mutex_init(&m->work_mutex); 193 194 m->queue_mode = DM_TYPE_NONE; 195 196 m->ti = ti; 197 ti->private = m; 198 } 199 200 return m; 201 } 202 203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 204 { 205 if (m->queue_mode == DM_TYPE_NONE) { 206 /* 207 * Default to request-based. 208 */ 209 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 210 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 211 else 212 m->queue_mode = DM_TYPE_REQUEST_BASED; 213 214 } else if (m->queue_mode == DM_TYPE_BIO_BASED || 215 m->queue_mode == DM_TYPE_NVME_BIO_BASED) { 216 INIT_WORK(&m->process_queued_bios, process_queued_bios); 217 218 if (m->queue_mode == DM_TYPE_BIO_BASED) { 219 /* 220 * bio-based doesn't support any direct scsi_dh management; 221 * it just discovers if a scsi_dh is attached. 222 */ 223 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 224 } 225 } 226 227 if (m->queue_mode != DM_TYPE_NVME_BIO_BASED) { 228 set_bit(MPATHF_QUEUE_IO, &m->flags); 229 atomic_set(&m->pg_init_in_progress, 0); 230 atomic_set(&m->pg_init_count, 0); 231 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 232 init_waitqueue_head(&m->pg_init_wait); 233 } 234 235 dm_table_set_type(ti->table, m->queue_mode); 236 237 return 0; 238 } 239 240 static void free_multipath(struct multipath *m) 241 { 242 struct priority_group *pg, *tmp; 243 244 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 245 list_del(&pg->list); 246 free_priority_group(pg, m->ti); 247 } 248 249 kfree(m->hw_handler_name); 250 kfree(m->hw_handler_params); 251 mutex_destroy(&m->work_mutex); 252 kfree(m); 253 } 254 255 static struct dm_mpath_io *get_mpio(union map_info *info) 256 { 257 return info->ptr; 258 } 259 260 static size_t multipath_per_bio_data_size(void) 261 { 262 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 263 } 264 265 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 266 { 267 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 268 } 269 270 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 271 { 272 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 273 void *bio_details = mpio + 1; 274 return bio_details; 275 } 276 277 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 281 282 mpio->nr_bytes = bio->bi_iter.bi_size; 283 mpio->pgpath = NULL; 284 *mpio_p = mpio; 285 286 dm_bio_record(bio_details, bio); 287 } 288 289 /*----------------------------------------------- 290 * Path selection 291 *-----------------------------------------------*/ 292 293 static int __pg_init_all_paths(struct multipath *m) 294 { 295 struct pgpath *pgpath; 296 unsigned long pg_init_delay = 0; 297 298 lockdep_assert_held(&m->lock); 299 300 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 301 return 0; 302 303 atomic_inc(&m->pg_init_count); 304 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 305 306 /* Check here to reset pg_init_required */ 307 if (!m->current_pg) 308 return 0; 309 310 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 311 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 312 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 313 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 314 /* Skip failed paths */ 315 if (!pgpath->is_active) 316 continue; 317 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 318 pg_init_delay)) 319 atomic_inc(&m->pg_init_in_progress); 320 } 321 return atomic_read(&m->pg_init_in_progress); 322 } 323 324 static int pg_init_all_paths(struct multipath *m) 325 { 326 int ret; 327 unsigned long flags; 328 329 spin_lock_irqsave(&m->lock, flags); 330 ret = __pg_init_all_paths(m); 331 spin_unlock_irqrestore(&m->lock, flags); 332 333 return ret; 334 } 335 336 static void __switch_pg(struct multipath *m, struct priority_group *pg) 337 { 338 m->current_pg = pg; 339 340 if (m->queue_mode == DM_TYPE_NVME_BIO_BASED) 341 return; 342 343 /* Must we initialise the PG first, and queue I/O till it's ready? */ 344 if (m->hw_handler_name) { 345 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 set_bit(MPATHF_QUEUE_IO, &m->flags); 347 } else { 348 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 349 clear_bit(MPATHF_QUEUE_IO, &m->flags); 350 } 351 352 atomic_set(&m->pg_init_count, 0); 353 } 354 355 static struct pgpath *choose_path_in_pg(struct multipath *m, 356 struct priority_group *pg, 357 size_t nr_bytes) 358 { 359 unsigned long flags; 360 struct dm_path *path; 361 struct pgpath *pgpath; 362 363 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 364 if (!path) 365 return ERR_PTR(-ENXIO); 366 367 pgpath = path_to_pgpath(path); 368 369 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 370 /* Only update current_pgpath if pg changed */ 371 spin_lock_irqsave(&m->lock, flags); 372 m->current_pgpath = pgpath; 373 __switch_pg(m, pg); 374 spin_unlock_irqrestore(&m->lock, flags); 375 } 376 377 return pgpath; 378 } 379 380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 381 { 382 unsigned long flags; 383 struct priority_group *pg; 384 struct pgpath *pgpath; 385 unsigned bypassed = 1; 386 387 if (!atomic_read(&m->nr_valid_paths)) { 388 if (m->queue_mode != DM_TYPE_NVME_BIO_BASED) 389 clear_bit(MPATHF_QUEUE_IO, &m->flags); 390 goto failed; 391 } 392 393 /* Were we instructed to switch PG? */ 394 if (READ_ONCE(m->next_pg)) { 395 spin_lock_irqsave(&m->lock, flags); 396 pg = m->next_pg; 397 if (!pg) { 398 spin_unlock_irqrestore(&m->lock, flags); 399 goto check_current_pg; 400 } 401 m->next_pg = NULL; 402 spin_unlock_irqrestore(&m->lock, flags); 403 pgpath = choose_path_in_pg(m, pg, nr_bytes); 404 if (!IS_ERR_OR_NULL(pgpath)) 405 return pgpath; 406 } 407 408 /* Don't change PG until it has no remaining paths */ 409 check_current_pg: 410 pg = READ_ONCE(m->current_pg); 411 if (pg) { 412 pgpath = choose_path_in_pg(m, pg, nr_bytes); 413 if (!IS_ERR_OR_NULL(pgpath)) 414 return pgpath; 415 } 416 417 /* 418 * Loop through priority groups until we find a valid path. 419 * First time we skip PGs marked 'bypassed'. 420 * Second time we only try the ones we skipped, but set 421 * pg_init_delay_retry so we do not hammer controllers. 422 */ 423 do { 424 list_for_each_entry(pg, &m->priority_groups, list) { 425 if (pg->bypassed == !!bypassed) 426 continue; 427 pgpath = choose_path_in_pg(m, pg, nr_bytes); 428 if (!IS_ERR_OR_NULL(pgpath)) { 429 if (!bypassed) 430 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 431 return pgpath; 432 } 433 } 434 } while (bypassed--); 435 436 failed: 437 spin_lock_irqsave(&m->lock, flags); 438 m->current_pgpath = NULL; 439 m->current_pg = NULL; 440 spin_unlock_irqrestore(&m->lock, flags); 441 442 return NULL; 443 } 444 445 /* 446 * dm_report_EIO() is a macro instead of a function to make pr_debug() 447 * report the function name and line number of the function from which 448 * it has been invoked. 449 */ 450 #define dm_report_EIO(m) \ 451 do { \ 452 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 453 \ 454 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 455 dm_device_name(md), \ 456 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 457 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 458 dm_noflush_suspending((m)->ti)); \ 459 } while (0) 460 461 /* 462 * Check whether bios must be queued in the device-mapper core rather 463 * than here in the target. 464 * 465 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 466 * the same value then we are not between multipath_presuspend() 467 * and multipath_resume() calls and we have no need to check 468 * for the DMF_NOFLUSH_SUSPENDING flag. 469 */ 470 static bool __must_push_back(struct multipath *m, unsigned long flags) 471 { 472 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 473 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 474 dm_noflush_suspending(m->ti)); 475 } 476 477 /* 478 * Following functions use READ_ONCE to get atomic access to 479 * all m->flags to avoid taking spinlock 480 */ 481 static bool must_push_back_rq(struct multipath *m) 482 { 483 unsigned long flags = READ_ONCE(m->flags); 484 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 485 } 486 487 static bool must_push_back_bio(struct multipath *m) 488 { 489 unsigned long flags = READ_ONCE(m->flags); 490 return __must_push_back(m, flags); 491 } 492 493 /* 494 * Map cloned requests (request-based multipath) 495 */ 496 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 497 union map_info *map_context, 498 struct request **__clone) 499 { 500 struct multipath *m = ti->private; 501 size_t nr_bytes = blk_rq_bytes(rq); 502 struct pgpath *pgpath; 503 struct block_device *bdev; 504 struct dm_mpath_io *mpio = get_mpio(map_context); 505 struct request_queue *q; 506 struct request *clone; 507 508 /* Do we need to select a new pgpath? */ 509 pgpath = READ_ONCE(m->current_pgpath); 510 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 511 pgpath = choose_pgpath(m, nr_bytes); 512 513 if (!pgpath) { 514 if (must_push_back_rq(m)) 515 return DM_MAPIO_DELAY_REQUEUE; 516 dm_report_EIO(m); /* Failed */ 517 return DM_MAPIO_KILL; 518 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 519 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 520 pg_init_all_paths(m); 521 return DM_MAPIO_DELAY_REQUEUE; 522 } 523 524 mpio->pgpath = pgpath; 525 mpio->nr_bytes = nr_bytes; 526 527 bdev = pgpath->path.dev->bdev; 528 q = bdev_get_queue(bdev); 529 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 530 if (IS_ERR(clone)) { 531 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 532 if (blk_queue_dying(q)) { 533 atomic_inc(&m->pg_init_in_progress); 534 activate_or_offline_path(pgpath); 535 return DM_MAPIO_DELAY_REQUEUE; 536 } 537 538 /* 539 * blk-mq's SCHED_RESTART can cover this requeue, so we 540 * needn't deal with it by DELAY_REQUEUE. More importantly, 541 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 542 * get the queue busy feedback (via BLK_STS_RESOURCE), 543 * otherwise I/O merging can suffer. 544 */ 545 if (q->mq_ops) 546 return DM_MAPIO_REQUEUE; 547 else 548 return DM_MAPIO_DELAY_REQUEUE; 549 } 550 clone->bio = clone->biotail = NULL; 551 clone->rq_disk = bdev->bd_disk; 552 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 553 *__clone = clone; 554 555 if (pgpath->pg->ps.type->start_io) 556 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 557 &pgpath->path, 558 nr_bytes); 559 return DM_MAPIO_REMAPPED; 560 } 561 562 static void multipath_release_clone(struct request *clone) 563 { 564 blk_put_request(clone); 565 } 566 567 /* 568 * Map cloned bios (bio-based multipath) 569 */ 570 571 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 572 { 573 struct pgpath *pgpath; 574 unsigned long flags; 575 bool queue_io; 576 577 /* Do we need to select a new pgpath? */ 578 pgpath = READ_ONCE(m->current_pgpath); 579 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 580 if (!pgpath || !queue_io) 581 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 582 583 if ((pgpath && queue_io) || 584 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 585 /* Queue for the daemon to resubmit */ 586 spin_lock_irqsave(&m->lock, flags); 587 bio_list_add(&m->queued_bios, bio); 588 spin_unlock_irqrestore(&m->lock, flags); 589 590 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 591 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 592 pg_init_all_paths(m); 593 else if (!queue_io) 594 queue_work(kmultipathd, &m->process_queued_bios); 595 596 return ERR_PTR(-EAGAIN); 597 } 598 599 return pgpath; 600 } 601 602 static struct pgpath *__map_bio_nvme(struct multipath *m, struct bio *bio) 603 { 604 struct pgpath *pgpath; 605 unsigned long flags; 606 607 /* Do we need to select a new pgpath? */ 608 /* 609 * FIXME: currently only switching path if no path (due to failure, etc) 610 * - which negates the point of using a path selector 611 */ 612 pgpath = READ_ONCE(m->current_pgpath); 613 if (!pgpath) 614 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 615 616 if (!pgpath) { 617 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 618 /* Queue for the daemon to resubmit */ 619 spin_lock_irqsave(&m->lock, flags); 620 bio_list_add(&m->queued_bios, bio); 621 spin_unlock_irqrestore(&m->lock, flags); 622 queue_work(kmultipathd, &m->process_queued_bios); 623 624 return ERR_PTR(-EAGAIN); 625 } 626 return NULL; 627 } 628 629 return pgpath; 630 } 631 632 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 633 struct dm_mpath_io *mpio) 634 { 635 struct pgpath *pgpath; 636 637 if (m->queue_mode == DM_TYPE_NVME_BIO_BASED) 638 pgpath = __map_bio_nvme(m, bio); 639 else 640 pgpath = __map_bio(m, bio); 641 642 if (IS_ERR(pgpath)) 643 return DM_MAPIO_SUBMITTED; 644 645 if (!pgpath) { 646 if (must_push_back_bio(m)) 647 return DM_MAPIO_REQUEUE; 648 dm_report_EIO(m); 649 return DM_MAPIO_KILL; 650 } 651 652 mpio->pgpath = pgpath; 653 654 bio->bi_status = 0; 655 bio_set_dev(bio, pgpath->path.dev->bdev); 656 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 657 658 if (pgpath->pg->ps.type->start_io) 659 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 660 &pgpath->path, 661 mpio->nr_bytes); 662 return DM_MAPIO_REMAPPED; 663 } 664 665 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 666 { 667 struct multipath *m = ti->private; 668 struct dm_mpath_io *mpio = NULL; 669 670 multipath_init_per_bio_data(bio, &mpio); 671 return __multipath_map_bio(m, bio, mpio); 672 } 673 674 static void process_queued_io_list(struct multipath *m) 675 { 676 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 677 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 678 else if (m->queue_mode == DM_TYPE_BIO_BASED || 679 m->queue_mode == DM_TYPE_NVME_BIO_BASED) 680 queue_work(kmultipathd, &m->process_queued_bios); 681 } 682 683 static void process_queued_bios(struct work_struct *work) 684 { 685 int r; 686 unsigned long flags; 687 struct bio *bio; 688 struct bio_list bios; 689 struct blk_plug plug; 690 struct multipath *m = 691 container_of(work, struct multipath, process_queued_bios); 692 693 bio_list_init(&bios); 694 695 spin_lock_irqsave(&m->lock, flags); 696 697 if (bio_list_empty(&m->queued_bios)) { 698 spin_unlock_irqrestore(&m->lock, flags); 699 return; 700 } 701 702 bio_list_merge(&bios, &m->queued_bios); 703 bio_list_init(&m->queued_bios); 704 705 spin_unlock_irqrestore(&m->lock, flags); 706 707 blk_start_plug(&plug); 708 while ((bio = bio_list_pop(&bios))) { 709 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 710 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 711 r = __multipath_map_bio(m, bio, mpio); 712 switch (r) { 713 case DM_MAPIO_KILL: 714 bio->bi_status = BLK_STS_IOERR; 715 bio_endio(bio); 716 break; 717 case DM_MAPIO_REQUEUE: 718 bio->bi_status = BLK_STS_DM_REQUEUE; 719 bio_endio(bio); 720 break; 721 case DM_MAPIO_REMAPPED: 722 generic_make_request(bio); 723 break; 724 case 0: 725 break; 726 default: 727 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 728 } 729 } 730 blk_finish_plug(&plug); 731 } 732 733 /* 734 * If we run out of usable paths, should we queue I/O or error it? 735 */ 736 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 737 bool save_old_value) 738 { 739 unsigned long flags; 740 741 spin_lock_irqsave(&m->lock, flags); 742 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 743 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 744 (!save_old_value && queue_if_no_path)); 745 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 746 spin_unlock_irqrestore(&m->lock, flags); 747 748 if (!queue_if_no_path) { 749 dm_table_run_md_queue_async(m->ti->table); 750 process_queued_io_list(m); 751 } 752 753 return 0; 754 } 755 756 /* 757 * An event is triggered whenever a path is taken out of use. 758 * Includes path failure and PG bypass. 759 */ 760 static void trigger_event(struct work_struct *work) 761 { 762 struct multipath *m = 763 container_of(work, struct multipath, trigger_event); 764 765 dm_table_event(m->ti->table); 766 } 767 768 /*----------------------------------------------------------------- 769 * Constructor/argument parsing: 770 * <#multipath feature args> [<arg>]* 771 * <#hw_handler args> [hw_handler [<arg>]*] 772 * <#priority groups> 773 * <initial priority group> 774 * [<selector> <#selector args> [<arg>]* 775 * <#paths> <#per-path selector args> 776 * [<path> [<arg>]* ]+ ]+ 777 *---------------------------------------------------------------*/ 778 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 779 struct dm_target *ti) 780 { 781 int r; 782 struct path_selector_type *pst; 783 unsigned ps_argc; 784 785 static const struct dm_arg _args[] = { 786 {0, 1024, "invalid number of path selector args"}, 787 }; 788 789 pst = dm_get_path_selector(dm_shift_arg(as)); 790 if (!pst) { 791 ti->error = "unknown path selector type"; 792 return -EINVAL; 793 } 794 795 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 796 if (r) { 797 dm_put_path_selector(pst); 798 return -EINVAL; 799 } 800 801 r = pst->create(&pg->ps, ps_argc, as->argv); 802 if (r) { 803 dm_put_path_selector(pst); 804 ti->error = "path selector constructor failed"; 805 return r; 806 } 807 808 pg->ps.type = pst; 809 dm_consume_args(as, ps_argc); 810 811 return 0; 812 } 813 814 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, char **error) 815 { 816 struct request_queue *q = bdev_get_queue(bdev); 817 const char *attached_handler_name; 818 int r; 819 820 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 821 retain: 822 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 823 if (attached_handler_name) { 824 /* 825 * Clear any hw_handler_params associated with a 826 * handler that isn't already attached. 827 */ 828 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 829 kfree(m->hw_handler_params); 830 m->hw_handler_params = NULL; 831 } 832 833 /* 834 * Reset hw_handler_name to match the attached handler 835 * 836 * NB. This modifies the table line to show the actual 837 * handler instead of the original table passed in. 838 */ 839 kfree(m->hw_handler_name); 840 m->hw_handler_name = attached_handler_name; 841 } 842 } 843 844 if (m->hw_handler_name) { 845 r = scsi_dh_attach(q, m->hw_handler_name); 846 if (r == -EBUSY) { 847 char b[BDEVNAME_SIZE]; 848 849 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 850 bdevname(bdev, b)); 851 goto retain; 852 } 853 if (r < 0) { 854 *error = "error attaching hardware handler"; 855 return r; 856 } 857 858 if (m->hw_handler_params) { 859 r = scsi_dh_set_params(q, m->hw_handler_params); 860 if (r < 0) { 861 *error = "unable to set hardware handler parameters"; 862 return r; 863 } 864 } 865 } 866 867 return 0; 868 } 869 870 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 871 struct dm_target *ti) 872 { 873 int r; 874 struct pgpath *p; 875 struct multipath *m = ti->private; 876 877 /* we need at least a path arg */ 878 if (as->argc < 1) { 879 ti->error = "no device given"; 880 return ERR_PTR(-EINVAL); 881 } 882 883 p = alloc_pgpath(); 884 if (!p) 885 return ERR_PTR(-ENOMEM); 886 887 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 888 &p->path.dev); 889 if (r) { 890 ti->error = "error getting device"; 891 goto bad; 892 } 893 894 if (m->queue_mode != DM_TYPE_NVME_BIO_BASED) { 895 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 896 r = setup_scsi_dh(p->path.dev->bdev, m, &ti->error); 897 if (r) { 898 dm_put_device(ti, p->path.dev); 899 goto bad; 900 } 901 } 902 903 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 904 if (r) { 905 dm_put_device(ti, p->path.dev); 906 goto bad; 907 } 908 909 return p; 910 bad: 911 free_pgpath(p); 912 return ERR_PTR(r); 913 } 914 915 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 916 struct multipath *m) 917 { 918 static const struct dm_arg _args[] = { 919 {1, 1024, "invalid number of paths"}, 920 {0, 1024, "invalid number of selector args"} 921 }; 922 923 int r; 924 unsigned i, nr_selector_args, nr_args; 925 struct priority_group *pg; 926 struct dm_target *ti = m->ti; 927 928 if (as->argc < 2) { 929 as->argc = 0; 930 ti->error = "not enough priority group arguments"; 931 return ERR_PTR(-EINVAL); 932 } 933 934 pg = alloc_priority_group(); 935 if (!pg) { 936 ti->error = "couldn't allocate priority group"; 937 return ERR_PTR(-ENOMEM); 938 } 939 pg->m = m; 940 941 r = parse_path_selector(as, pg, ti); 942 if (r) 943 goto bad; 944 945 /* 946 * read the paths 947 */ 948 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 949 if (r) 950 goto bad; 951 952 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 953 if (r) 954 goto bad; 955 956 nr_args = 1 + nr_selector_args; 957 for (i = 0; i < pg->nr_pgpaths; i++) { 958 struct pgpath *pgpath; 959 struct dm_arg_set path_args; 960 961 if (as->argc < nr_args) { 962 ti->error = "not enough path parameters"; 963 r = -EINVAL; 964 goto bad; 965 } 966 967 path_args.argc = nr_args; 968 path_args.argv = as->argv; 969 970 pgpath = parse_path(&path_args, &pg->ps, ti); 971 if (IS_ERR(pgpath)) { 972 r = PTR_ERR(pgpath); 973 goto bad; 974 } 975 976 pgpath->pg = pg; 977 list_add_tail(&pgpath->list, &pg->pgpaths); 978 dm_consume_args(as, nr_args); 979 } 980 981 return pg; 982 983 bad: 984 free_priority_group(pg, ti); 985 return ERR_PTR(r); 986 } 987 988 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 989 { 990 unsigned hw_argc; 991 int ret; 992 struct dm_target *ti = m->ti; 993 994 static const struct dm_arg _args[] = { 995 {0, 1024, "invalid number of hardware handler args"}, 996 }; 997 998 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 999 return -EINVAL; 1000 1001 if (!hw_argc) 1002 return 0; 1003 1004 if (m->queue_mode == DM_TYPE_BIO_BASED || 1005 m->queue_mode == DM_TYPE_NVME_BIO_BASED) { 1006 dm_consume_args(as, hw_argc); 1007 DMERR("bio-based multipath doesn't allow hardware handler args"); 1008 return 0; 1009 } 1010 1011 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1012 if (!m->hw_handler_name) 1013 return -EINVAL; 1014 1015 if (hw_argc > 1) { 1016 char *p; 1017 int i, j, len = 4; 1018 1019 for (i = 0; i <= hw_argc - 2; i++) 1020 len += strlen(as->argv[i]) + 1; 1021 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1022 if (!p) { 1023 ti->error = "memory allocation failed"; 1024 ret = -ENOMEM; 1025 goto fail; 1026 } 1027 j = sprintf(p, "%d", hw_argc - 1); 1028 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1029 j = sprintf(p, "%s", as->argv[i]); 1030 } 1031 dm_consume_args(as, hw_argc - 1); 1032 1033 return 0; 1034 fail: 1035 kfree(m->hw_handler_name); 1036 m->hw_handler_name = NULL; 1037 return ret; 1038 } 1039 1040 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1041 { 1042 int r; 1043 unsigned argc; 1044 struct dm_target *ti = m->ti; 1045 const char *arg_name; 1046 1047 static const struct dm_arg _args[] = { 1048 {0, 8, "invalid number of feature args"}, 1049 {1, 50, "pg_init_retries must be between 1 and 50"}, 1050 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1051 }; 1052 1053 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1054 if (r) 1055 return -EINVAL; 1056 1057 if (!argc) 1058 return 0; 1059 1060 do { 1061 arg_name = dm_shift_arg(as); 1062 argc--; 1063 1064 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1065 r = queue_if_no_path(m, true, false); 1066 continue; 1067 } 1068 1069 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1070 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1071 continue; 1072 } 1073 1074 if (!strcasecmp(arg_name, "pg_init_retries") && 1075 (argc >= 1)) { 1076 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1077 argc--; 1078 continue; 1079 } 1080 1081 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1082 (argc >= 1)) { 1083 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1084 argc--; 1085 continue; 1086 } 1087 1088 if (!strcasecmp(arg_name, "queue_mode") && 1089 (argc >= 1)) { 1090 const char *queue_mode_name = dm_shift_arg(as); 1091 1092 if (!strcasecmp(queue_mode_name, "bio")) 1093 m->queue_mode = DM_TYPE_BIO_BASED; 1094 else if (!strcasecmp(queue_mode_name, "nvme")) 1095 m->queue_mode = DM_TYPE_NVME_BIO_BASED; 1096 else if (!strcasecmp(queue_mode_name, "rq")) 1097 m->queue_mode = DM_TYPE_REQUEST_BASED; 1098 else if (!strcasecmp(queue_mode_name, "mq")) 1099 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1100 else { 1101 ti->error = "Unknown 'queue_mode' requested"; 1102 r = -EINVAL; 1103 } 1104 argc--; 1105 continue; 1106 } 1107 1108 ti->error = "Unrecognised multipath feature request"; 1109 r = -EINVAL; 1110 } while (argc && !r); 1111 1112 return r; 1113 } 1114 1115 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1116 { 1117 /* target arguments */ 1118 static const struct dm_arg _args[] = { 1119 {0, 1024, "invalid number of priority groups"}, 1120 {0, 1024, "invalid initial priority group number"}, 1121 }; 1122 1123 int r; 1124 struct multipath *m; 1125 struct dm_arg_set as; 1126 unsigned pg_count = 0; 1127 unsigned next_pg_num; 1128 1129 as.argc = argc; 1130 as.argv = argv; 1131 1132 m = alloc_multipath(ti); 1133 if (!m) { 1134 ti->error = "can't allocate multipath"; 1135 return -EINVAL; 1136 } 1137 1138 r = parse_features(&as, m); 1139 if (r) 1140 goto bad; 1141 1142 r = alloc_multipath_stage2(ti, m); 1143 if (r) 1144 goto bad; 1145 1146 r = parse_hw_handler(&as, m); 1147 if (r) 1148 goto bad; 1149 1150 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1151 if (r) 1152 goto bad; 1153 1154 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1155 if (r) 1156 goto bad; 1157 1158 if ((!m->nr_priority_groups && next_pg_num) || 1159 (m->nr_priority_groups && !next_pg_num)) { 1160 ti->error = "invalid initial priority group"; 1161 r = -EINVAL; 1162 goto bad; 1163 } 1164 1165 /* parse the priority groups */ 1166 while (as.argc) { 1167 struct priority_group *pg; 1168 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1169 1170 pg = parse_priority_group(&as, m); 1171 if (IS_ERR(pg)) { 1172 r = PTR_ERR(pg); 1173 goto bad; 1174 } 1175 1176 nr_valid_paths += pg->nr_pgpaths; 1177 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1178 1179 list_add_tail(&pg->list, &m->priority_groups); 1180 pg_count++; 1181 pg->pg_num = pg_count; 1182 if (!--next_pg_num) 1183 m->next_pg = pg; 1184 } 1185 1186 if (pg_count != m->nr_priority_groups) { 1187 ti->error = "priority group count mismatch"; 1188 r = -EINVAL; 1189 goto bad; 1190 } 1191 1192 ti->num_flush_bios = 1; 1193 ti->num_discard_bios = 1; 1194 ti->num_write_same_bios = 1; 1195 ti->num_write_zeroes_bios = 1; 1196 if (m->queue_mode == DM_TYPE_BIO_BASED || m->queue_mode == DM_TYPE_NVME_BIO_BASED) 1197 ti->per_io_data_size = multipath_per_bio_data_size(); 1198 else 1199 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1200 1201 return 0; 1202 1203 bad: 1204 free_multipath(m); 1205 return r; 1206 } 1207 1208 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1209 { 1210 DEFINE_WAIT(wait); 1211 1212 while (1) { 1213 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1214 1215 if (!atomic_read(&m->pg_init_in_progress)) 1216 break; 1217 1218 io_schedule(); 1219 } 1220 finish_wait(&m->pg_init_wait, &wait); 1221 } 1222 1223 static void flush_multipath_work(struct multipath *m) 1224 { 1225 if (m->hw_handler_name) { 1226 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1227 smp_mb__after_atomic(); 1228 1229 flush_workqueue(kmpath_handlerd); 1230 multipath_wait_for_pg_init_completion(m); 1231 1232 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1233 smp_mb__after_atomic(); 1234 } 1235 1236 flush_workqueue(kmultipathd); 1237 flush_work(&m->trigger_event); 1238 } 1239 1240 static void multipath_dtr(struct dm_target *ti) 1241 { 1242 struct multipath *m = ti->private; 1243 1244 flush_multipath_work(m); 1245 free_multipath(m); 1246 } 1247 1248 /* 1249 * Take a path out of use. 1250 */ 1251 static int fail_path(struct pgpath *pgpath) 1252 { 1253 unsigned long flags; 1254 struct multipath *m = pgpath->pg->m; 1255 1256 spin_lock_irqsave(&m->lock, flags); 1257 1258 if (!pgpath->is_active) 1259 goto out; 1260 1261 DMWARN("Failing path %s.", pgpath->path.dev->name); 1262 1263 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1264 pgpath->is_active = false; 1265 pgpath->fail_count++; 1266 1267 atomic_dec(&m->nr_valid_paths); 1268 1269 if (pgpath == m->current_pgpath) 1270 m->current_pgpath = NULL; 1271 1272 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1273 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1274 1275 schedule_work(&m->trigger_event); 1276 1277 out: 1278 spin_unlock_irqrestore(&m->lock, flags); 1279 1280 return 0; 1281 } 1282 1283 /* 1284 * Reinstate a previously-failed path 1285 */ 1286 static int reinstate_path(struct pgpath *pgpath) 1287 { 1288 int r = 0, run_queue = 0; 1289 unsigned long flags; 1290 struct multipath *m = pgpath->pg->m; 1291 unsigned nr_valid_paths; 1292 1293 spin_lock_irqsave(&m->lock, flags); 1294 1295 if (pgpath->is_active) 1296 goto out; 1297 1298 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1299 1300 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1301 if (r) 1302 goto out; 1303 1304 pgpath->is_active = true; 1305 1306 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1307 if (nr_valid_paths == 1) { 1308 m->current_pgpath = NULL; 1309 run_queue = 1; 1310 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1311 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1312 atomic_inc(&m->pg_init_in_progress); 1313 } 1314 1315 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1316 pgpath->path.dev->name, nr_valid_paths); 1317 1318 schedule_work(&m->trigger_event); 1319 1320 out: 1321 spin_unlock_irqrestore(&m->lock, flags); 1322 if (run_queue) { 1323 dm_table_run_md_queue_async(m->ti->table); 1324 process_queued_io_list(m); 1325 } 1326 1327 return r; 1328 } 1329 1330 /* 1331 * Fail or reinstate all paths that match the provided struct dm_dev. 1332 */ 1333 static int action_dev(struct multipath *m, struct dm_dev *dev, 1334 action_fn action) 1335 { 1336 int r = -EINVAL; 1337 struct pgpath *pgpath; 1338 struct priority_group *pg; 1339 1340 list_for_each_entry(pg, &m->priority_groups, list) { 1341 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1342 if (pgpath->path.dev == dev) 1343 r = action(pgpath); 1344 } 1345 } 1346 1347 return r; 1348 } 1349 1350 /* 1351 * Temporarily try to avoid having to use the specified PG 1352 */ 1353 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1354 bool bypassed) 1355 { 1356 unsigned long flags; 1357 1358 spin_lock_irqsave(&m->lock, flags); 1359 1360 pg->bypassed = bypassed; 1361 m->current_pgpath = NULL; 1362 m->current_pg = NULL; 1363 1364 spin_unlock_irqrestore(&m->lock, flags); 1365 1366 schedule_work(&m->trigger_event); 1367 } 1368 1369 /* 1370 * Switch to using the specified PG from the next I/O that gets mapped 1371 */ 1372 static int switch_pg_num(struct multipath *m, const char *pgstr) 1373 { 1374 struct priority_group *pg; 1375 unsigned pgnum; 1376 unsigned long flags; 1377 char dummy; 1378 1379 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1380 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1381 DMWARN("invalid PG number supplied to switch_pg_num"); 1382 return -EINVAL; 1383 } 1384 1385 spin_lock_irqsave(&m->lock, flags); 1386 list_for_each_entry(pg, &m->priority_groups, list) { 1387 pg->bypassed = false; 1388 if (--pgnum) 1389 continue; 1390 1391 m->current_pgpath = NULL; 1392 m->current_pg = NULL; 1393 m->next_pg = pg; 1394 } 1395 spin_unlock_irqrestore(&m->lock, flags); 1396 1397 schedule_work(&m->trigger_event); 1398 return 0; 1399 } 1400 1401 /* 1402 * Set/clear bypassed status of a PG. 1403 * PGs are numbered upwards from 1 in the order they were declared. 1404 */ 1405 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1406 { 1407 struct priority_group *pg; 1408 unsigned pgnum; 1409 char dummy; 1410 1411 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1412 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1413 DMWARN("invalid PG number supplied to bypass_pg"); 1414 return -EINVAL; 1415 } 1416 1417 list_for_each_entry(pg, &m->priority_groups, list) { 1418 if (!--pgnum) 1419 break; 1420 } 1421 1422 bypass_pg(m, pg, bypassed); 1423 return 0; 1424 } 1425 1426 /* 1427 * Should we retry pg_init immediately? 1428 */ 1429 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1430 { 1431 unsigned long flags; 1432 bool limit_reached = false; 1433 1434 spin_lock_irqsave(&m->lock, flags); 1435 1436 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1437 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1438 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1439 else 1440 limit_reached = true; 1441 1442 spin_unlock_irqrestore(&m->lock, flags); 1443 1444 return limit_reached; 1445 } 1446 1447 static void pg_init_done(void *data, int errors) 1448 { 1449 struct pgpath *pgpath = data; 1450 struct priority_group *pg = pgpath->pg; 1451 struct multipath *m = pg->m; 1452 unsigned long flags; 1453 bool delay_retry = false; 1454 1455 /* device or driver problems */ 1456 switch (errors) { 1457 case SCSI_DH_OK: 1458 break; 1459 case SCSI_DH_NOSYS: 1460 if (!m->hw_handler_name) { 1461 errors = 0; 1462 break; 1463 } 1464 DMERR("Could not failover the device: Handler scsi_dh_%s " 1465 "Error %d.", m->hw_handler_name, errors); 1466 /* 1467 * Fail path for now, so we do not ping pong 1468 */ 1469 fail_path(pgpath); 1470 break; 1471 case SCSI_DH_DEV_TEMP_BUSY: 1472 /* 1473 * Probably doing something like FW upgrade on the 1474 * controller so try the other pg. 1475 */ 1476 bypass_pg(m, pg, true); 1477 break; 1478 case SCSI_DH_RETRY: 1479 /* Wait before retrying. */ 1480 delay_retry = 1; 1481 /* fall through */ 1482 case SCSI_DH_IMM_RETRY: 1483 case SCSI_DH_RES_TEMP_UNAVAIL: 1484 if (pg_init_limit_reached(m, pgpath)) 1485 fail_path(pgpath); 1486 errors = 0; 1487 break; 1488 case SCSI_DH_DEV_OFFLINED: 1489 default: 1490 /* 1491 * We probably do not want to fail the path for a device 1492 * error, but this is what the old dm did. In future 1493 * patches we can do more advanced handling. 1494 */ 1495 fail_path(pgpath); 1496 } 1497 1498 spin_lock_irqsave(&m->lock, flags); 1499 if (errors) { 1500 if (pgpath == m->current_pgpath) { 1501 DMERR("Could not failover device. Error %d.", errors); 1502 m->current_pgpath = NULL; 1503 m->current_pg = NULL; 1504 } 1505 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1506 pg->bypassed = false; 1507 1508 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1509 /* Activations of other paths are still on going */ 1510 goto out; 1511 1512 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1513 if (delay_retry) 1514 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1515 else 1516 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1517 1518 if (__pg_init_all_paths(m)) 1519 goto out; 1520 } 1521 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1522 1523 process_queued_io_list(m); 1524 1525 /* 1526 * Wake up any thread waiting to suspend. 1527 */ 1528 wake_up(&m->pg_init_wait); 1529 1530 out: 1531 spin_unlock_irqrestore(&m->lock, flags); 1532 } 1533 1534 static void activate_or_offline_path(struct pgpath *pgpath) 1535 { 1536 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1537 1538 if (pgpath->is_active && !blk_queue_dying(q)) 1539 scsi_dh_activate(q, pg_init_done, pgpath); 1540 else 1541 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1542 } 1543 1544 static void activate_path_work(struct work_struct *work) 1545 { 1546 struct pgpath *pgpath = 1547 container_of(work, struct pgpath, activate_path.work); 1548 1549 activate_or_offline_path(pgpath); 1550 } 1551 1552 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1553 blk_status_t error, union map_info *map_context) 1554 { 1555 struct dm_mpath_io *mpio = get_mpio(map_context); 1556 struct pgpath *pgpath = mpio->pgpath; 1557 int r = DM_ENDIO_DONE; 1558 1559 /* 1560 * We don't queue any clone request inside the multipath target 1561 * during end I/O handling, since those clone requests don't have 1562 * bio clones. If we queue them inside the multipath target, 1563 * we need to make bio clones, that requires memory allocation. 1564 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1565 * don't have bio clones.) 1566 * Instead of queueing the clone request here, we queue the original 1567 * request into dm core, which will remake a clone request and 1568 * clone bios for it and resubmit it later. 1569 */ 1570 if (error && blk_path_error(error)) { 1571 struct multipath *m = ti->private; 1572 1573 if (error == BLK_STS_RESOURCE) 1574 r = DM_ENDIO_DELAY_REQUEUE; 1575 else 1576 r = DM_ENDIO_REQUEUE; 1577 1578 if (pgpath) 1579 fail_path(pgpath); 1580 1581 if (atomic_read(&m->nr_valid_paths) == 0 && 1582 !must_push_back_rq(m)) { 1583 if (error == BLK_STS_IOERR) 1584 dm_report_EIO(m); 1585 /* complete with the original error */ 1586 r = DM_ENDIO_DONE; 1587 } 1588 } 1589 1590 if (pgpath) { 1591 struct path_selector *ps = &pgpath->pg->ps; 1592 1593 if (ps->type->end_io) 1594 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1595 } 1596 1597 return r; 1598 } 1599 1600 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1601 blk_status_t *error) 1602 { 1603 struct multipath *m = ti->private; 1604 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1605 struct pgpath *pgpath = mpio->pgpath; 1606 unsigned long flags; 1607 int r = DM_ENDIO_DONE; 1608 1609 if (!*error || !blk_path_error(*error)) 1610 goto done; 1611 1612 if (pgpath) 1613 fail_path(pgpath); 1614 1615 if (atomic_read(&m->nr_valid_paths) == 0 && 1616 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1617 if (must_push_back_bio(m)) { 1618 r = DM_ENDIO_REQUEUE; 1619 } else { 1620 dm_report_EIO(m); 1621 *error = BLK_STS_IOERR; 1622 } 1623 goto done; 1624 } 1625 1626 spin_lock_irqsave(&m->lock, flags); 1627 bio_list_add(&m->queued_bios, clone); 1628 spin_unlock_irqrestore(&m->lock, flags); 1629 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1630 queue_work(kmultipathd, &m->process_queued_bios); 1631 1632 r = DM_ENDIO_INCOMPLETE; 1633 done: 1634 if (pgpath) { 1635 struct path_selector *ps = &pgpath->pg->ps; 1636 1637 if (ps->type->end_io) 1638 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1639 } 1640 1641 return r; 1642 } 1643 1644 /* 1645 * Suspend can't complete until all the I/O is processed so if 1646 * the last path fails we must error any remaining I/O. 1647 * Note that if the freeze_bdev fails while suspending, the 1648 * queue_if_no_path state is lost - userspace should reset it. 1649 */ 1650 static void multipath_presuspend(struct dm_target *ti) 1651 { 1652 struct multipath *m = ti->private; 1653 1654 queue_if_no_path(m, false, true); 1655 } 1656 1657 static void multipath_postsuspend(struct dm_target *ti) 1658 { 1659 struct multipath *m = ti->private; 1660 1661 mutex_lock(&m->work_mutex); 1662 flush_multipath_work(m); 1663 mutex_unlock(&m->work_mutex); 1664 } 1665 1666 /* 1667 * Restore the queue_if_no_path setting. 1668 */ 1669 static void multipath_resume(struct dm_target *ti) 1670 { 1671 struct multipath *m = ti->private; 1672 unsigned long flags; 1673 1674 spin_lock_irqsave(&m->lock, flags); 1675 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1676 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1677 spin_unlock_irqrestore(&m->lock, flags); 1678 } 1679 1680 /* 1681 * Info output has the following format: 1682 * num_multipath_feature_args [multipath_feature_args]* 1683 * num_handler_status_args [handler_status_args]* 1684 * num_groups init_group_number 1685 * [A|D|E num_ps_status_args [ps_status_args]* 1686 * num_paths num_selector_args 1687 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1688 * 1689 * Table output has the following format (identical to the constructor string): 1690 * num_feature_args [features_args]* 1691 * num_handler_args hw_handler [hw_handler_args]* 1692 * num_groups init_group_number 1693 * [priority selector-name num_ps_args [ps_args]* 1694 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1695 */ 1696 static void multipath_status(struct dm_target *ti, status_type_t type, 1697 unsigned status_flags, char *result, unsigned maxlen) 1698 { 1699 int sz = 0; 1700 unsigned long flags; 1701 struct multipath *m = ti->private; 1702 struct priority_group *pg; 1703 struct pgpath *p; 1704 unsigned pg_num; 1705 char state; 1706 1707 spin_lock_irqsave(&m->lock, flags); 1708 1709 /* Features */ 1710 if (type == STATUSTYPE_INFO) 1711 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1712 atomic_read(&m->pg_init_count)); 1713 else { 1714 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1715 (m->pg_init_retries > 0) * 2 + 1716 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1717 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1718 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1719 1720 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1721 DMEMIT("queue_if_no_path "); 1722 if (m->pg_init_retries) 1723 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1724 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1725 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1726 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1727 DMEMIT("retain_attached_hw_handler "); 1728 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1729 switch(m->queue_mode) { 1730 case DM_TYPE_BIO_BASED: 1731 DMEMIT("queue_mode bio "); 1732 break; 1733 case DM_TYPE_NVME_BIO_BASED: 1734 DMEMIT("queue_mode nvme "); 1735 break; 1736 case DM_TYPE_MQ_REQUEST_BASED: 1737 DMEMIT("queue_mode mq "); 1738 break; 1739 default: 1740 WARN_ON_ONCE(true); 1741 break; 1742 } 1743 } 1744 } 1745 1746 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1747 DMEMIT("0 "); 1748 else 1749 DMEMIT("1 %s ", m->hw_handler_name); 1750 1751 DMEMIT("%u ", m->nr_priority_groups); 1752 1753 if (m->next_pg) 1754 pg_num = m->next_pg->pg_num; 1755 else if (m->current_pg) 1756 pg_num = m->current_pg->pg_num; 1757 else 1758 pg_num = (m->nr_priority_groups ? 1 : 0); 1759 1760 DMEMIT("%u ", pg_num); 1761 1762 switch (type) { 1763 case STATUSTYPE_INFO: 1764 list_for_each_entry(pg, &m->priority_groups, list) { 1765 if (pg->bypassed) 1766 state = 'D'; /* Disabled */ 1767 else if (pg == m->current_pg) 1768 state = 'A'; /* Currently Active */ 1769 else 1770 state = 'E'; /* Enabled */ 1771 1772 DMEMIT("%c ", state); 1773 1774 if (pg->ps.type->status) 1775 sz += pg->ps.type->status(&pg->ps, NULL, type, 1776 result + sz, 1777 maxlen - sz); 1778 else 1779 DMEMIT("0 "); 1780 1781 DMEMIT("%u %u ", pg->nr_pgpaths, 1782 pg->ps.type->info_args); 1783 1784 list_for_each_entry(p, &pg->pgpaths, list) { 1785 DMEMIT("%s %s %u ", p->path.dev->name, 1786 p->is_active ? "A" : "F", 1787 p->fail_count); 1788 if (pg->ps.type->status) 1789 sz += pg->ps.type->status(&pg->ps, 1790 &p->path, type, result + sz, 1791 maxlen - sz); 1792 } 1793 } 1794 break; 1795 1796 case STATUSTYPE_TABLE: 1797 list_for_each_entry(pg, &m->priority_groups, list) { 1798 DMEMIT("%s ", pg->ps.type->name); 1799 1800 if (pg->ps.type->status) 1801 sz += pg->ps.type->status(&pg->ps, NULL, type, 1802 result + sz, 1803 maxlen - sz); 1804 else 1805 DMEMIT("0 "); 1806 1807 DMEMIT("%u %u ", pg->nr_pgpaths, 1808 pg->ps.type->table_args); 1809 1810 list_for_each_entry(p, &pg->pgpaths, list) { 1811 DMEMIT("%s ", p->path.dev->name); 1812 if (pg->ps.type->status) 1813 sz += pg->ps.type->status(&pg->ps, 1814 &p->path, type, result + sz, 1815 maxlen - sz); 1816 } 1817 } 1818 break; 1819 } 1820 1821 spin_unlock_irqrestore(&m->lock, flags); 1822 } 1823 1824 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1825 { 1826 int r = -EINVAL; 1827 struct dm_dev *dev; 1828 struct multipath *m = ti->private; 1829 action_fn action; 1830 1831 mutex_lock(&m->work_mutex); 1832 1833 if (dm_suspended(ti)) { 1834 r = -EBUSY; 1835 goto out; 1836 } 1837 1838 if (argc == 1) { 1839 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1840 r = queue_if_no_path(m, true, false); 1841 goto out; 1842 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1843 r = queue_if_no_path(m, false, false); 1844 goto out; 1845 } 1846 } 1847 1848 if (argc != 2) { 1849 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1850 goto out; 1851 } 1852 1853 if (!strcasecmp(argv[0], "disable_group")) { 1854 r = bypass_pg_num(m, argv[1], true); 1855 goto out; 1856 } else if (!strcasecmp(argv[0], "enable_group")) { 1857 r = bypass_pg_num(m, argv[1], false); 1858 goto out; 1859 } else if (!strcasecmp(argv[0], "switch_group")) { 1860 r = switch_pg_num(m, argv[1]); 1861 goto out; 1862 } else if (!strcasecmp(argv[0], "reinstate_path")) 1863 action = reinstate_path; 1864 else if (!strcasecmp(argv[0], "fail_path")) 1865 action = fail_path; 1866 else { 1867 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1868 goto out; 1869 } 1870 1871 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1872 if (r) { 1873 DMWARN("message: error getting device %s", 1874 argv[1]); 1875 goto out; 1876 } 1877 1878 r = action_dev(m, dev, action); 1879 1880 dm_put_device(ti, dev); 1881 1882 out: 1883 mutex_unlock(&m->work_mutex); 1884 return r; 1885 } 1886 1887 static int multipath_prepare_ioctl(struct dm_target *ti, 1888 struct block_device **bdev, fmode_t *mode) 1889 { 1890 struct multipath *m = ti->private; 1891 struct pgpath *current_pgpath; 1892 int r; 1893 1894 current_pgpath = READ_ONCE(m->current_pgpath); 1895 if (!current_pgpath) 1896 current_pgpath = choose_pgpath(m, 0); 1897 1898 if (current_pgpath) { 1899 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1900 *bdev = current_pgpath->path.dev->bdev; 1901 *mode = current_pgpath->path.dev->mode; 1902 r = 0; 1903 } else { 1904 /* pg_init has not started or completed */ 1905 r = -ENOTCONN; 1906 } 1907 } else { 1908 /* No path is available */ 1909 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1910 r = -ENOTCONN; 1911 else 1912 r = -EIO; 1913 } 1914 1915 if (r == -ENOTCONN) { 1916 if (!READ_ONCE(m->current_pg)) { 1917 /* Path status changed, redo selection */ 1918 (void) choose_pgpath(m, 0); 1919 } 1920 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1921 pg_init_all_paths(m); 1922 dm_table_run_md_queue_async(m->ti->table); 1923 process_queued_io_list(m); 1924 } 1925 1926 /* 1927 * Only pass ioctls through if the device sizes match exactly. 1928 */ 1929 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1930 return 1; 1931 return r; 1932 } 1933 1934 static int multipath_iterate_devices(struct dm_target *ti, 1935 iterate_devices_callout_fn fn, void *data) 1936 { 1937 struct multipath *m = ti->private; 1938 struct priority_group *pg; 1939 struct pgpath *p; 1940 int ret = 0; 1941 1942 list_for_each_entry(pg, &m->priority_groups, list) { 1943 list_for_each_entry(p, &pg->pgpaths, list) { 1944 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1945 if (ret) 1946 goto out; 1947 } 1948 } 1949 1950 out: 1951 return ret; 1952 } 1953 1954 static int pgpath_busy(struct pgpath *pgpath) 1955 { 1956 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1957 1958 return blk_lld_busy(q); 1959 } 1960 1961 /* 1962 * We return "busy", only when we can map I/Os but underlying devices 1963 * are busy (so even if we map I/Os now, the I/Os will wait on 1964 * the underlying queue). 1965 * In other words, if we want to kill I/Os or queue them inside us 1966 * due to map unavailability, we don't return "busy". Otherwise, 1967 * dm core won't give us the I/Os and we can't do what we want. 1968 */ 1969 static int multipath_busy(struct dm_target *ti) 1970 { 1971 bool busy = false, has_active = false; 1972 struct multipath *m = ti->private; 1973 struct priority_group *pg, *next_pg; 1974 struct pgpath *pgpath; 1975 1976 /* pg_init in progress */ 1977 if (atomic_read(&m->pg_init_in_progress)) 1978 return true; 1979 1980 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1981 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1982 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1983 1984 /* Guess which priority_group will be used at next mapping time */ 1985 pg = READ_ONCE(m->current_pg); 1986 next_pg = READ_ONCE(m->next_pg); 1987 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1988 pg = next_pg; 1989 1990 if (!pg) { 1991 /* 1992 * We don't know which pg will be used at next mapping time. 1993 * We don't call choose_pgpath() here to avoid to trigger 1994 * pg_init just by busy checking. 1995 * So we don't know whether underlying devices we will be using 1996 * at next mapping time are busy or not. Just try mapping. 1997 */ 1998 return busy; 1999 } 2000 2001 /* 2002 * If there is one non-busy active path at least, the path selector 2003 * will be able to select it. So we consider such a pg as not busy. 2004 */ 2005 busy = true; 2006 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2007 if (pgpath->is_active) { 2008 has_active = true; 2009 if (!pgpath_busy(pgpath)) { 2010 busy = false; 2011 break; 2012 } 2013 } 2014 } 2015 2016 if (!has_active) { 2017 /* 2018 * No active path in this pg, so this pg won't be used and 2019 * the current_pg will be changed at next mapping time. 2020 * We need to try mapping to determine it. 2021 */ 2022 busy = false; 2023 } 2024 2025 return busy; 2026 } 2027 2028 /*----------------------------------------------------------------- 2029 * Module setup 2030 *---------------------------------------------------------------*/ 2031 static struct target_type multipath_target = { 2032 .name = "multipath", 2033 .version = {1, 12, 0}, 2034 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 2035 .module = THIS_MODULE, 2036 .ctr = multipath_ctr, 2037 .dtr = multipath_dtr, 2038 .clone_and_map_rq = multipath_clone_and_map, 2039 .release_clone_rq = multipath_release_clone, 2040 .rq_end_io = multipath_end_io, 2041 .map = multipath_map_bio, 2042 .end_io = multipath_end_io_bio, 2043 .presuspend = multipath_presuspend, 2044 .postsuspend = multipath_postsuspend, 2045 .resume = multipath_resume, 2046 .status = multipath_status, 2047 .message = multipath_message, 2048 .prepare_ioctl = multipath_prepare_ioctl, 2049 .iterate_devices = multipath_iterate_devices, 2050 .busy = multipath_busy, 2051 }; 2052 2053 static int __init dm_multipath_init(void) 2054 { 2055 int r; 2056 2057 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2058 if (!kmultipathd) { 2059 DMERR("failed to create workqueue kmpathd"); 2060 r = -ENOMEM; 2061 goto bad_alloc_kmultipathd; 2062 } 2063 2064 /* 2065 * A separate workqueue is used to handle the device handlers 2066 * to avoid overloading existing workqueue. Overloading the 2067 * old workqueue would also create a bottleneck in the 2068 * path of the storage hardware device activation. 2069 */ 2070 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2071 WQ_MEM_RECLAIM); 2072 if (!kmpath_handlerd) { 2073 DMERR("failed to create workqueue kmpath_handlerd"); 2074 r = -ENOMEM; 2075 goto bad_alloc_kmpath_handlerd; 2076 } 2077 2078 r = dm_register_target(&multipath_target); 2079 if (r < 0) { 2080 DMERR("request-based register failed %d", r); 2081 r = -EINVAL; 2082 goto bad_register_target; 2083 } 2084 2085 return 0; 2086 2087 bad_register_target: 2088 destroy_workqueue(kmpath_handlerd); 2089 bad_alloc_kmpath_handlerd: 2090 destroy_workqueue(kmultipathd); 2091 bad_alloc_kmultipathd: 2092 return r; 2093 } 2094 2095 static void __exit dm_multipath_exit(void) 2096 { 2097 destroy_workqueue(kmpath_handlerd); 2098 destroy_workqueue(kmultipathd); 2099 2100 dm_unregister_target(&multipath_target); 2101 } 2102 2103 module_init(dm_multipath_init); 2104 module_exit(dm_multipath_exit); 2105 2106 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2107 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2108 MODULE_LICENSE("GPL"); 2109