xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 930c429a)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_dh.h>
27 #include <linux/atomic.h>
28 #include <linux/blk-mq.h>
29 
30 #define DM_MSG_PREFIX "multipath"
31 #define DM_PG_INIT_DELAY_MSECS 2000
32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
33 
34 /* Path properties */
35 struct pgpath {
36 	struct list_head list;
37 
38 	struct priority_group *pg;	/* Owning PG */
39 	unsigned fail_count;		/* Cumulative failure count */
40 
41 	struct dm_path path;
42 	struct delayed_work activate_path;
43 
44 	bool is_active:1;		/* Path status */
45 };
46 
47 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
48 
49 /*
50  * Paths are grouped into Priority Groups and numbered from 1 upwards.
51  * Each has a path selector which controls which path gets used.
52  */
53 struct priority_group {
54 	struct list_head list;
55 
56 	struct multipath *m;		/* Owning multipath instance */
57 	struct path_selector ps;
58 
59 	unsigned pg_num;		/* Reference number */
60 	unsigned nr_pgpaths;		/* Number of paths in PG */
61 	struct list_head pgpaths;
62 
63 	bool bypassed:1;		/* Temporarily bypass this PG? */
64 };
65 
66 /* Multipath context */
67 struct multipath {
68 	unsigned long flags;		/* Multipath state flags */
69 
70 	spinlock_t lock;
71 	enum dm_queue_mode queue_mode;
72 
73 	struct pgpath *current_pgpath;
74 	struct priority_group *current_pg;
75 	struct priority_group *next_pg;	/* Switch to this PG if set */
76 
77 	atomic_t nr_valid_paths;	/* Total number of usable paths */
78 	unsigned nr_priority_groups;
79 	struct list_head priority_groups;
80 
81 	const char *hw_handler_name;
82 	char *hw_handler_params;
83 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
84 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
85 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
86 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
87 	atomic_t pg_init_count;		/* Number of times pg_init called */
88 
89 	struct mutex work_mutex;
90 	struct work_struct trigger_event;
91 	struct dm_target *ti;
92 
93 	struct work_struct process_queued_bios;
94 	struct bio_list queued_bios;
95 };
96 
97 /*
98  * Context information attached to each io we process.
99  */
100 struct dm_mpath_io {
101 	struct pgpath *pgpath;
102 	size_t nr_bytes;
103 };
104 
105 typedef int (*action_fn) (struct pgpath *pgpath);
106 
107 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
108 static void trigger_event(struct work_struct *work);
109 static void activate_or_offline_path(struct pgpath *pgpath);
110 static void activate_path_work(struct work_struct *work);
111 static void process_queued_bios(struct work_struct *work);
112 
113 /*-----------------------------------------------
114  * Multipath state flags.
115  *-----------------------------------------------*/
116 
117 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
118 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
119 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
120 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
121 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
122 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
123 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
124 
125 /*-----------------------------------------------
126  * Allocation routines
127  *-----------------------------------------------*/
128 
129 static struct pgpath *alloc_pgpath(void)
130 {
131 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
132 
133 	if (!pgpath)
134 		return NULL;
135 
136 	pgpath->is_active = true;
137 
138 	return pgpath;
139 }
140 
141 static void free_pgpath(struct pgpath *pgpath)
142 {
143 	kfree(pgpath);
144 }
145 
146 static struct priority_group *alloc_priority_group(void)
147 {
148 	struct priority_group *pg;
149 
150 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
151 
152 	if (pg)
153 		INIT_LIST_HEAD(&pg->pgpaths);
154 
155 	return pg;
156 }
157 
158 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
159 {
160 	struct pgpath *pgpath, *tmp;
161 
162 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
163 		list_del(&pgpath->list);
164 		dm_put_device(ti, pgpath->path.dev);
165 		free_pgpath(pgpath);
166 	}
167 }
168 
169 static void free_priority_group(struct priority_group *pg,
170 				struct dm_target *ti)
171 {
172 	struct path_selector *ps = &pg->ps;
173 
174 	if (ps->type) {
175 		ps->type->destroy(ps);
176 		dm_put_path_selector(ps->type);
177 	}
178 
179 	free_pgpaths(&pg->pgpaths, ti);
180 	kfree(pg);
181 }
182 
183 static struct multipath *alloc_multipath(struct dm_target *ti)
184 {
185 	struct multipath *m;
186 
187 	m = kzalloc(sizeof(*m), GFP_KERNEL);
188 	if (m) {
189 		INIT_LIST_HEAD(&m->priority_groups);
190 		spin_lock_init(&m->lock);
191 		atomic_set(&m->nr_valid_paths, 0);
192 		INIT_WORK(&m->trigger_event, trigger_event);
193 		mutex_init(&m->work_mutex);
194 
195 		m->queue_mode = DM_TYPE_NONE;
196 
197 		m->ti = ti;
198 		ti->private = m;
199 	}
200 
201 	return m;
202 }
203 
204 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
205 {
206 	if (m->queue_mode == DM_TYPE_NONE) {
207 		/*
208 		 * Default to request-based.
209 		 */
210 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
211 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
212 		else
213 			m->queue_mode = DM_TYPE_REQUEST_BASED;
214 
215 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
216 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
217 		/*
218 		 * bio-based doesn't support any direct scsi_dh management;
219 		 * it just discovers if a scsi_dh is attached.
220 		 */
221 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
222 	}
223 
224 	dm_table_set_type(ti->table, m->queue_mode);
225 
226 	return 0;
227 }
228 
229 static void free_multipath(struct multipath *m)
230 {
231 	struct priority_group *pg, *tmp;
232 
233 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
234 		list_del(&pg->list);
235 		free_priority_group(pg, m->ti);
236 	}
237 
238 	kfree(m->hw_handler_name);
239 	kfree(m->hw_handler_params);
240 	mutex_destroy(&m->work_mutex);
241 	kfree(m);
242 }
243 
244 static struct dm_mpath_io *get_mpio(union map_info *info)
245 {
246 	return info->ptr;
247 }
248 
249 static size_t multipath_per_bio_data_size(void)
250 {
251 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
252 }
253 
254 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
255 {
256 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
257 }
258 
259 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
260 {
261 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
262 	void *bio_details = mpio + 1;
263 	return bio_details;
264 }
265 
266 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
267 {
268 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
269 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
270 
271 	mpio->nr_bytes = bio->bi_iter.bi_size;
272 	mpio->pgpath = NULL;
273 	*mpio_p = mpio;
274 
275 	dm_bio_record(bio_details, bio);
276 }
277 
278 /*-----------------------------------------------
279  * Path selection
280  *-----------------------------------------------*/
281 
282 static int __pg_init_all_paths(struct multipath *m)
283 {
284 	struct pgpath *pgpath;
285 	unsigned long pg_init_delay = 0;
286 
287 	lockdep_assert_held(&m->lock);
288 
289 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
290 		return 0;
291 
292 	atomic_inc(&m->pg_init_count);
293 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
294 
295 	/* Check here to reset pg_init_required */
296 	if (!m->current_pg)
297 		return 0;
298 
299 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
300 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
301 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
302 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
303 		/* Skip failed paths */
304 		if (!pgpath->is_active)
305 			continue;
306 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
307 				       pg_init_delay))
308 			atomic_inc(&m->pg_init_in_progress);
309 	}
310 	return atomic_read(&m->pg_init_in_progress);
311 }
312 
313 static int pg_init_all_paths(struct multipath *m)
314 {
315 	int ret;
316 	unsigned long flags;
317 
318 	spin_lock_irqsave(&m->lock, flags);
319 	ret = __pg_init_all_paths(m);
320 	spin_unlock_irqrestore(&m->lock, flags);
321 
322 	return ret;
323 }
324 
325 static void __switch_pg(struct multipath *m, struct priority_group *pg)
326 {
327 	m->current_pg = pg;
328 
329 	/* Must we initialise the PG first, and queue I/O till it's ready? */
330 	if (m->hw_handler_name) {
331 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
332 		set_bit(MPATHF_QUEUE_IO, &m->flags);
333 	} else {
334 		/* FIXME: not needed if no scsi_dh is attached */
335 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
336 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
337 	}
338 
339 	atomic_set(&m->pg_init_count, 0);
340 }
341 
342 static struct pgpath *choose_path_in_pg(struct multipath *m,
343 					struct priority_group *pg,
344 					size_t nr_bytes)
345 {
346 	unsigned long flags;
347 	struct dm_path *path;
348 	struct pgpath *pgpath;
349 
350 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
351 	if (!path)
352 		return ERR_PTR(-ENXIO);
353 
354 	pgpath = path_to_pgpath(path);
355 
356 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
357 		/* Only update current_pgpath if pg changed */
358 		spin_lock_irqsave(&m->lock, flags);
359 		m->current_pgpath = pgpath;
360 		__switch_pg(m, pg);
361 		spin_unlock_irqrestore(&m->lock, flags);
362 	}
363 
364 	return pgpath;
365 }
366 
367 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
368 {
369 	unsigned long flags;
370 	struct priority_group *pg;
371 	struct pgpath *pgpath;
372 	unsigned bypassed = 1;
373 
374 	if (!atomic_read(&m->nr_valid_paths)) {
375 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
376 		goto failed;
377 	}
378 
379 	/* Were we instructed to switch PG? */
380 	if (READ_ONCE(m->next_pg)) {
381 		spin_lock_irqsave(&m->lock, flags);
382 		pg = m->next_pg;
383 		if (!pg) {
384 			spin_unlock_irqrestore(&m->lock, flags);
385 			goto check_current_pg;
386 		}
387 		m->next_pg = NULL;
388 		spin_unlock_irqrestore(&m->lock, flags);
389 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
390 		if (!IS_ERR_OR_NULL(pgpath))
391 			return pgpath;
392 	}
393 
394 	/* Don't change PG until it has no remaining paths */
395 check_current_pg:
396 	pg = READ_ONCE(m->current_pg);
397 	if (pg) {
398 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
399 		if (!IS_ERR_OR_NULL(pgpath))
400 			return pgpath;
401 	}
402 
403 	/*
404 	 * Loop through priority groups until we find a valid path.
405 	 * First time we skip PGs marked 'bypassed'.
406 	 * Second time we only try the ones we skipped, but set
407 	 * pg_init_delay_retry so we do not hammer controllers.
408 	 */
409 	do {
410 		list_for_each_entry(pg, &m->priority_groups, list) {
411 			if (pg->bypassed == !!bypassed)
412 				continue;
413 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
414 			if (!IS_ERR_OR_NULL(pgpath)) {
415 				if (!bypassed)
416 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
417 				return pgpath;
418 			}
419 		}
420 	} while (bypassed--);
421 
422 failed:
423 	spin_lock_irqsave(&m->lock, flags);
424 	m->current_pgpath = NULL;
425 	m->current_pg = NULL;
426 	spin_unlock_irqrestore(&m->lock, flags);
427 
428 	return NULL;
429 }
430 
431 /*
432  * dm_report_EIO() is a macro instead of a function to make pr_debug()
433  * report the function name and line number of the function from which
434  * it has been invoked.
435  */
436 #define dm_report_EIO(m)						\
437 do {									\
438 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
439 									\
440 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
441 		 dm_device_name(md),					\
442 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
443 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
444 		 dm_noflush_suspending((m)->ti));			\
445 } while (0)
446 
447 /*
448  * Check whether bios must be queued in the device-mapper core rather
449  * than here in the target.
450  *
451  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
452  * the same value then we are not between multipath_presuspend()
453  * and multipath_resume() calls and we have no need to check
454  * for the DMF_NOFLUSH_SUSPENDING flag.
455  */
456 static bool __must_push_back(struct multipath *m, unsigned long flags)
457 {
458 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
459 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
460 		dm_noflush_suspending(m->ti));
461 }
462 
463 /*
464  * Following functions use READ_ONCE to get atomic access to
465  * all m->flags to avoid taking spinlock
466  */
467 static bool must_push_back_rq(struct multipath *m)
468 {
469 	unsigned long flags = READ_ONCE(m->flags);
470 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
471 }
472 
473 static bool must_push_back_bio(struct multipath *m)
474 {
475 	unsigned long flags = READ_ONCE(m->flags);
476 	return __must_push_back(m, flags);
477 }
478 
479 /*
480  * Map cloned requests (request-based multipath)
481  */
482 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
483 				   union map_info *map_context,
484 				   struct request **__clone)
485 {
486 	struct multipath *m = ti->private;
487 	size_t nr_bytes = blk_rq_bytes(rq);
488 	struct pgpath *pgpath;
489 	struct block_device *bdev;
490 	struct dm_mpath_io *mpio = get_mpio(map_context);
491 	struct request_queue *q;
492 	struct request *clone;
493 
494 	/* Do we need to select a new pgpath? */
495 	pgpath = READ_ONCE(m->current_pgpath);
496 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
497 		pgpath = choose_pgpath(m, nr_bytes);
498 
499 	if (!pgpath) {
500 		if (must_push_back_rq(m))
501 			return DM_MAPIO_DELAY_REQUEUE;
502 		dm_report_EIO(m);	/* Failed */
503 		return DM_MAPIO_KILL;
504 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
505 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
506 		pg_init_all_paths(m);
507 		return DM_MAPIO_DELAY_REQUEUE;
508 	}
509 
510 	mpio->pgpath = pgpath;
511 	mpio->nr_bytes = nr_bytes;
512 
513 	bdev = pgpath->path.dev->bdev;
514 	q = bdev_get_queue(bdev);
515 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
516 	if (IS_ERR(clone)) {
517 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
518 		if (blk_queue_dying(q)) {
519 			atomic_inc(&m->pg_init_in_progress);
520 			activate_or_offline_path(pgpath);
521 			return DM_MAPIO_DELAY_REQUEUE;
522 		}
523 
524 		/*
525 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
526 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
527 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
528 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
529 		 * otherwise I/O merging can suffer.
530 		 */
531 		if (q->mq_ops)
532 			return DM_MAPIO_REQUEUE;
533 		else
534 			return DM_MAPIO_DELAY_REQUEUE;
535 	}
536 	clone->bio = clone->biotail = NULL;
537 	clone->rq_disk = bdev->bd_disk;
538 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
539 	*__clone = clone;
540 
541 	if (pgpath->pg->ps.type->start_io)
542 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
543 					      &pgpath->path,
544 					      nr_bytes);
545 	return DM_MAPIO_REMAPPED;
546 }
547 
548 static void multipath_release_clone(struct request *clone)
549 {
550 	blk_put_request(clone);
551 }
552 
553 /*
554  * Map cloned bios (bio-based multipath)
555  */
556 
557 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
558 {
559 	struct pgpath *pgpath;
560 	unsigned long flags;
561 	bool queue_io;
562 
563 	/* Do we need to select a new pgpath? */
564 	pgpath = READ_ONCE(m->current_pgpath);
565 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
566 	if (!pgpath || !queue_io)
567 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
568 
569 	if ((pgpath && queue_io) ||
570 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
571 		/* Queue for the daemon to resubmit */
572 		spin_lock_irqsave(&m->lock, flags);
573 		bio_list_add(&m->queued_bios, bio);
574 		spin_unlock_irqrestore(&m->lock, flags);
575 
576 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
577 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
578 			pg_init_all_paths(m);
579 		else if (!queue_io)
580 			queue_work(kmultipathd, &m->process_queued_bios);
581 
582 		return ERR_PTR(-EAGAIN);
583 	}
584 
585 	return pgpath;
586 }
587 
588 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio)
589 {
590 	struct pgpath *pgpath;
591 	unsigned long flags;
592 
593 	/* Do we need to select a new pgpath? */
594 	/*
595 	 * FIXME: currently only switching path if no path (due to failure, etc)
596 	 * - which negates the point of using a path selector
597 	 */
598 	pgpath = READ_ONCE(m->current_pgpath);
599 	if (!pgpath)
600 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
601 
602 	if (!pgpath) {
603 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
604 			/* Queue for the daemon to resubmit */
605 			spin_lock_irqsave(&m->lock, flags);
606 			bio_list_add(&m->queued_bios, bio);
607 			spin_unlock_irqrestore(&m->lock, flags);
608 			queue_work(kmultipathd, &m->process_queued_bios);
609 
610 			return ERR_PTR(-EAGAIN);
611 		}
612 		return NULL;
613 	}
614 
615 	return pgpath;
616 }
617 
618 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
619 			       struct dm_mpath_io *mpio)
620 {
621 	struct pgpath *pgpath;
622 
623 	if (!m->hw_handler_name)
624 		pgpath = __map_bio_fast(m, bio);
625 	else
626 		pgpath = __map_bio(m, bio);
627 
628 	if (IS_ERR(pgpath))
629 		return DM_MAPIO_SUBMITTED;
630 
631 	if (!pgpath) {
632 		if (must_push_back_bio(m))
633 			return DM_MAPIO_REQUEUE;
634 		dm_report_EIO(m);
635 		return DM_MAPIO_KILL;
636 	}
637 
638 	mpio->pgpath = pgpath;
639 
640 	bio->bi_status = 0;
641 	bio_set_dev(bio, pgpath->path.dev->bdev);
642 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
643 
644 	if (pgpath->pg->ps.type->start_io)
645 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
646 					      &pgpath->path,
647 					      mpio->nr_bytes);
648 	return DM_MAPIO_REMAPPED;
649 }
650 
651 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
652 {
653 	struct multipath *m = ti->private;
654 	struct dm_mpath_io *mpio = NULL;
655 
656 	multipath_init_per_bio_data(bio, &mpio);
657 	return __multipath_map_bio(m, bio, mpio);
658 }
659 
660 static void process_queued_io_list(struct multipath *m)
661 {
662 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
663 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
664 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
665 		queue_work(kmultipathd, &m->process_queued_bios);
666 }
667 
668 static void process_queued_bios(struct work_struct *work)
669 {
670 	int r;
671 	unsigned long flags;
672 	struct bio *bio;
673 	struct bio_list bios;
674 	struct blk_plug plug;
675 	struct multipath *m =
676 		container_of(work, struct multipath, process_queued_bios);
677 
678 	bio_list_init(&bios);
679 
680 	spin_lock_irqsave(&m->lock, flags);
681 
682 	if (bio_list_empty(&m->queued_bios)) {
683 		spin_unlock_irqrestore(&m->lock, flags);
684 		return;
685 	}
686 
687 	bio_list_merge(&bios, &m->queued_bios);
688 	bio_list_init(&m->queued_bios);
689 
690 	spin_unlock_irqrestore(&m->lock, flags);
691 
692 	blk_start_plug(&plug);
693 	while ((bio = bio_list_pop(&bios))) {
694 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
695 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
696 		r = __multipath_map_bio(m, bio, mpio);
697 		switch (r) {
698 		case DM_MAPIO_KILL:
699 			bio->bi_status = BLK_STS_IOERR;
700 			bio_endio(bio);
701 			break;
702 		case DM_MAPIO_REQUEUE:
703 			bio->bi_status = BLK_STS_DM_REQUEUE;
704 			bio_endio(bio);
705 			break;
706 		case DM_MAPIO_REMAPPED:
707 			generic_make_request(bio);
708 			break;
709 		case 0:
710 			break;
711 		default:
712 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
713 		}
714 	}
715 	blk_finish_plug(&plug);
716 }
717 
718 /*
719  * If we run out of usable paths, should we queue I/O or error it?
720  */
721 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
722 			    bool save_old_value)
723 {
724 	unsigned long flags;
725 
726 	spin_lock_irqsave(&m->lock, flags);
727 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
728 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
729 		   (!save_old_value && queue_if_no_path));
730 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
731 	spin_unlock_irqrestore(&m->lock, flags);
732 
733 	if (!queue_if_no_path) {
734 		dm_table_run_md_queue_async(m->ti->table);
735 		process_queued_io_list(m);
736 	}
737 
738 	return 0;
739 }
740 
741 /*
742  * An event is triggered whenever a path is taken out of use.
743  * Includes path failure and PG bypass.
744  */
745 static void trigger_event(struct work_struct *work)
746 {
747 	struct multipath *m =
748 		container_of(work, struct multipath, trigger_event);
749 
750 	dm_table_event(m->ti->table);
751 }
752 
753 /*-----------------------------------------------------------------
754  * Constructor/argument parsing:
755  * <#multipath feature args> [<arg>]*
756  * <#hw_handler args> [hw_handler [<arg>]*]
757  * <#priority groups>
758  * <initial priority group>
759  *     [<selector> <#selector args> [<arg>]*
760  *      <#paths> <#per-path selector args>
761  *         [<path> [<arg>]* ]+ ]+
762  *---------------------------------------------------------------*/
763 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
764 			       struct dm_target *ti)
765 {
766 	int r;
767 	struct path_selector_type *pst;
768 	unsigned ps_argc;
769 
770 	static const struct dm_arg _args[] = {
771 		{0, 1024, "invalid number of path selector args"},
772 	};
773 
774 	pst = dm_get_path_selector(dm_shift_arg(as));
775 	if (!pst) {
776 		ti->error = "unknown path selector type";
777 		return -EINVAL;
778 	}
779 
780 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
781 	if (r) {
782 		dm_put_path_selector(pst);
783 		return -EINVAL;
784 	}
785 
786 	r = pst->create(&pg->ps, ps_argc, as->argv);
787 	if (r) {
788 		dm_put_path_selector(pst);
789 		ti->error = "path selector constructor failed";
790 		return r;
791 	}
792 
793 	pg->ps.type = pst;
794 	dm_consume_args(as, ps_argc);
795 
796 	return 0;
797 }
798 
799 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, char **error)
800 {
801 	struct request_queue *q = bdev_get_queue(bdev);
802 	const char *attached_handler_name;
803 	int r;
804 
805 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
806 retain:
807 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
808 		if (attached_handler_name) {
809 			/*
810 			 * Clear any hw_handler_params associated with a
811 			 * handler that isn't already attached.
812 			 */
813 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
814 				kfree(m->hw_handler_params);
815 				m->hw_handler_params = NULL;
816 			}
817 
818 			/*
819 			 * Reset hw_handler_name to match the attached handler
820 			 *
821 			 * NB. This modifies the table line to show the actual
822 			 * handler instead of the original table passed in.
823 			 */
824 			kfree(m->hw_handler_name);
825 			m->hw_handler_name = attached_handler_name;
826 
827 			/*
828 			 * Init fields that are only used when a scsi_dh is attached
829 			 */
830 			if (!test_and_set_bit(MPATHF_QUEUE_IO, &m->flags)) {
831 				atomic_set(&m->pg_init_in_progress, 0);
832 				atomic_set(&m->pg_init_count, 0);
833 				m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
834 				init_waitqueue_head(&m->pg_init_wait);
835 			}
836 		}
837 	}
838 
839 	if (m->hw_handler_name) {
840 		r = scsi_dh_attach(q, m->hw_handler_name);
841 		if (r == -EBUSY) {
842 			char b[BDEVNAME_SIZE];
843 
844 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
845 			       bdevname(bdev, b));
846 			goto retain;
847 		}
848 		if (r < 0) {
849 			*error = "error attaching hardware handler";
850 			return r;
851 		}
852 
853 		if (m->hw_handler_params) {
854 			r = scsi_dh_set_params(q, m->hw_handler_params);
855 			if (r < 0) {
856 				*error = "unable to set hardware handler parameters";
857 				return r;
858 			}
859 		}
860 	}
861 
862 	return 0;
863 }
864 
865 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
866 				 struct dm_target *ti)
867 {
868 	int r;
869 	struct pgpath *p;
870 	struct multipath *m = ti->private;
871 	struct scsi_device *sdev;
872 
873 	/* we need at least a path arg */
874 	if (as->argc < 1) {
875 		ti->error = "no device given";
876 		return ERR_PTR(-EINVAL);
877 	}
878 
879 	p = alloc_pgpath();
880 	if (!p)
881 		return ERR_PTR(-ENOMEM);
882 
883 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
884 			  &p->path.dev);
885 	if (r) {
886 		ti->error = "error getting device";
887 		goto bad;
888 	}
889 
890 	sdev = scsi_device_from_queue(bdev_get_queue(p->path.dev->bdev));
891 	if (sdev) {
892 		put_device(&sdev->sdev_gendev);
893 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
894 		r = setup_scsi_dh(p->path.dev->bdev, m, &ti->error);
895 		if (r) {
896 			dm_put_device(ti, p->path.dev);
897 			goto bad;
898 		}
899 	}
900 
901 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
902 	if (r) {
903 		dm_put_device(ti, p->path.dev);
904 		goto bad;
905 	}
906 
907 	return p;
908  bad:
909 	free_pgpath(p);
910 	return ERR_PTR(r);
911 }
912 
913 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
914 						   struct multipath *m)
915 {
916 	static const struct dm_arg _args[] = {
917 		{1, 1024, "invalid number of paths"},
918 		{0, 1024, "invalid number of selector args"}
919 	};
920 
921 	int r;
922 	unsigned i, nr_selector_args, nr_args;
923 	struct priority_group *pg;
924 	struct dm_target *ti = m->ti;
925 
926 	if (as->argc < 2) {
927 		as->argc = 0;
928 		ti->error = "not enough priority group arguments";
929 		return ERR_PTR(-EINVAL);
930 	}
931 
932 	pg = alloc_priority_group();
933 	if (!pg) {
934 		ti->error = "couldn't allocate priority group";
935 		return ERR_PTR(-ENOMEM);
936 	}
937 	pg->m = m;
938 
939 	r = parse_path_selector(as, pg, ti);
940 	if (r)
941 		goto bad;
942 
943 	/*
944 	 * read the paths
945 	 */
946 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
947 	if (r)
948 		goto bad;
949 
950 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
951 	if (r)
952 		goto bad;
953 
954 	nr_args = 1 + nr_selector_args;
955 	for (i = 0; i < pg->nr_pgpaths; i++) {
956 		struct pgpath *pgpath;
957 		struct dm_arg_set path_args;
958 
959 		if (as->argc < nr_args) {
960 			ti->error = "not enough path parameters";
961 			r = -EINVAL;
962 			goto bad;
963 		}
964 
965 		path_args.argc = nr_args;
966 		path_args.argv = as->argv;
967 
968 		pgpath = parse_path(&path_args, &pg->ps, ti);
969 		if (IS_ERR(pgpath)) {
970 			r = PTR_ERR(pgpath);
971 			goto bad;
972 		}
973 
974 		pgpath->pg = pg;
975 		list_add_tail(&pgpath->list, &pg->pgpaths);
976 		dm_consume_args(as, nr_args);
977 	}
978 
979 	return pg;
980 
981  bad:
982 	free_priority_group(pg, ti);
983 	return ERR_PTR(r);
984 }
985 
986 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
987 {
988 	unsigned hw_argc;
989 	int ret;
990 	struct dm_target *ti = m->ti;
991 
992 	static const struct dm_arg _args[] = {
993 		{0, 1024, "invalid number of hardware handler args"},
994 	};
995 
996 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
997 		return -EINVAL;
998 
999 	if (!hw_argc)
1000 		return 0;
1001 
1002 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1003 		dm_consume_args(as, hw_argc);
1004 		DMERR("bio-based multipath doesn't allow hardware handler args");
1005 		return 0;
1006 	}
1007 
1008 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1009 	if (!m->hw_handler_name)
1010 		return -EINVAL;
1011 
1012 	if (hw_argc > 1) {
1013 		char *p;
1014 		int i, j, len = 4;
1015 
1016 		for (i = 0; i <= hw_argc - 2; i++)
1017 			len += strlen(as->argv[i]) + 1;
1018 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1019 		if (!p) {
1020 			ti->error = "memory allocation failed";
1021 			ret = -ENOMEM;
1022 			goto fail;
1023 		}
1024 		j = sprintf(p, "%d", hw_argc - 1);
1025 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1026 			j = sprintf(p, "%s", as->argv[i]);
1027 	}
1028 	dm_consume_args(as, hw_argc - 1);
1029 
1030 	return 0;
1031 fail:
1032 	kfree(m->hw_handler_name);
1033 	m->hw_handler_name = NULL;
1034 	return ret;
1035 }
1036 
1037 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1038 {
1039 	int r;
1040 	unsigned argc;
1041 	struct dm_target *ti = m->ti;
1042 	const char *arg_name;
1043 
1044 	static const struct dm_arg _args[] = {
1045 		{0, 8, "invalid number of feature args"},
1046 		{1, 50, "pg_init_retries must be between 1 and 50"},
1047 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1048 	};
1049 
1050 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1051 	if (r)
1052 		return -EINVAL;
1053 
1054 	if (!argc)
1055 		return 0;
1056 
1057 	do {
1058 		arg_name = dm_shift_arg(as);
1059 		argc--;
1060 
1061 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1062 			r = queue_if_no_path(m, true, false);
1063 			continue;
1064 		}
1065 
1066 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1067 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1068 			continue;
1069 		}
1070 
1071 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1072 		    (argc >= 1)) {
1073 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1074 			argc--;
1075 			continue;
1076 		}
1077 
1078 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1079 		    (argc >= 1)) {
1080 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1081 			argc--;
1082 			continue;
1083 		}
1084 
1085 		if (!strcasecmp(arg_name, "queue_mode") &&
1086 		    (argc >= 1)) {
1087 			const char *queue_mode_name = dm_shift_arg(as);
1088 
1089 			if (!strcasecmp(queue_mode_name, "bio"))
1090 				m->queue_mode = DM_TYPE_BIO_BASED;
1091 			else if (!strcasecmp(queue_mode_name, "rq"))
1092 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1093 			else if (!strcasecmp(queue_mode_name, "mq"))
1094 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1095 			else {
1096 				ti->error = "Unknown 'queue_mode' requested";
1097 				r = -EINVAL;
1098 			}
1099 			argc--;
1100 			continue;
1101 		}
1102 
1103 		ti->error = "Unrecognised multipath feature request";
1104 		r = -EINVAL;
1105 	} while (argc && !r);
1106 
1107 	return r;
1108 }
1109 
1110 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1111 {
1112 	/* target arguments */
1113 	static const struct dm_arg _args[] = {
1114 		{0, 1024, "invalid number of priority groups"},
1115 		{0, 1024, "invalid initial priority group number"},
1116 	};
1117 
1118 	int r;
1119 	struct multipath *m;
1120 	struct dm_arg_set as;
1121 	unsigned pg_count = 0;
1122 	unsigned next_pg_num;
1123 
1124 	as.argc = argc;
1125 	as.argv = argv;
1126 
1127 	m = alloc_multipath(ti);
1128 	if (!m) {
1129 		ti->error = "can't allocate multipath";
1130 		return -EINVAL;
1131 	}
1132 
1133 	r = parse_features(&as, m);
1134 	if (r)
1135 		goto bad;
1136 
1137 	r = alloc_multipath_stage2(ti, m);
1138 	if (r)
1139 		goto bad;
1140 
1141 	r = parse_hw_handler(&as, m);
1142 	if (r)
1143 		goto bad;
1144 
1145 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1146 	if (r)
1147 		goto bad;
1148 
1149 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1150 	if (r)
1151 		goto bad;
1152 
1153 	if ((!m->nr_priority_groups && next_pg_num) ||
1154 	    (m->nr_priority_groups && !next_pg_num)) {
1155 		ti->error = "invalid initial priority group";
1156 		r = -EINVAL;
1157 		goto bad;
1158 	}
1159 
1160 	/* parse the priority groups */
1161 	while (as.argc) {
1162 		struct priority_group *pg;
1163 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1164 
1165 		pg = parse_priority_group(&as, m);
1166 		if (IS_ERR(pg)) {
1167 			r = PTR_ERR(pg);
1168 			goto bad;
1169 		}
1170 
1171 		nr_valid_paths += pg->nr_pgpaths;
1172 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1173 
1174 		list_add_tail(&pg->list, &m->priority_groups);
1175 		pg_count++;
1176 		pg->pg_num = pg_count;
1177 		if (!--next_pg_num)
1178 			m->next_pg = pg;
1179 	}
1180 
1181 	if (pg_count != m->nr_priority_groups) {
1182 		ti->error = "priority group count mismatch";
1183 		r = -EINVAL;
1184 		goto bad;
1185 	}
1186 
1187 	ti->num_flush_bios = 1;
1188 	ti->num_discard_bios = 1;
1189 	ti->num_write_same_bios = 1;
1190 	ti->num_write_zeroes_bios = 1;
1191 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1192 		ti->per_io_data_size = multipath_per_bio_data_size();
1193 	else
1194 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1195 
1196 	return 0;
1197 
1198  bad:
1199 	free_multipath(m);
1200 	return r;
1201 }
1202 
1203 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1204 {
1205 	DEFINE_WAIT(wait);
1206 
1207 	while (1) {
1208 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1209 
1210 		if (!atomic_read(&m->pg_init_in_progress))
1211 			break;
1212 
1213 		io_schedule();
1214 	}
1215 	finish_wait(&m->pg_init_wait, &wait);
1216 }
1217 
1218 static void flush_multipath_work(struct multipath *m)
1219 {
1220 	if (m->hw_handler_name) {
1221 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1222 		smp_mb__after_atomic();
1223 
1224 		flush_workqueue(kmpath_handlerd);
1225 		multipath_wait_for_pg_init_completion(m);
1226 
1227 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1228 		smp_mb__after_atomic();
1229 	}
1230 
1231 	flush_workqueue(kmultipathd);
1232 	flush_work(&m->trigger_event);
1233 }
1234 
1235 static void multipath_dtr(struct dm_target *ti)
1236 {
1237 	struct multipath *m = ti->private;
1238 
1239 	flush_multipath_work(m);
1240 	free_multipath(m);
1241 }
1242 
1243 /*
1244  * Take a path out of use.
1245  */
1246 static int fail_path(struct pgpath *pgpath)
1247 {
1248 	unsigned long flags;
1249 	struct multipath *m = pgpath->pg->m;
1250 
1251 	spin_lock_irqsave(&m->lock, flags);
1252 
1253 	if (!pgpath->is_active)
1254 		goto out;
1255 
1256 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1257 
1258 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1259 	pgpath->is_active = false;
1260 	pgpath->fail_count++;
1261 
1262 	atomic_dec(&m->nr_valid_paths);
1263 
1264 	if (pgpath == m->current_pgpath)
1265 		m->current_pgpath = NULL;
1266 
1267 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1268 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1269 
1270 	schedule_work(&m->trigger_event);
1271 
1272 out:
1273 	spin_unlock_irqrestore(&m->lock, flags);
1274 
1275 	return 0;
1276 }
1277 
1278 /*
1279  * Reinstate a previously-failed path
1280  */
1281 static int reinstate_path(struct pgpath *pgpath)
1282 {
1283 	int r = 0, run_queue = 0;
1284 	unsigned long flags;
1285 	struct multipath *m = pgpath->pg->m;
1286 	unsigned nr_valid_paths;
1287 
1288 	spin_lock_irqsave(&m->lock, flags);
1289 
1290 	if (pgpath->is_active)
1291 		goto out;
1292 
1293 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1294 
1295 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1296 	if (r)
1297 		goto out;
1298 
1299 	pgpath->is_active = true;
1300 
1301 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1302 	if (nr_valid_paths == 1) {
1303 		m->current_pgpath = NULL;
1304 		run_queue = 1;
1305 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1306 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1307 			atomic_inc(&m->pg_init_in_progress);
1308 	}
1309 
1310 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1311 		       pgpath->path.dev->name, nr_valid_paths);
1312 
1313 	schedule_work(&m->trigger_event);
1314 
1315 out:
1316 	spin_unlock_irqrestore(&m->lock, flags);
1317 	if (run_queue) {
1318 		dm_table_run_md_queue_async(m->ti->table);
1319 		process_queued_io_list(m);
1320 	}
1321 
1322 	return r;
1323 }
1324 
1325 /*
1326  * Fail or reinstate all paths that match the provided struct dm_dev.
1327  */
1328 static int action_dev(struct multipath *m, struct dm_dev *dev,
1329 		      action_fn action)
1330 {
1331 	int r = -EINVAL;
1332 	struct pgpath *pgpath;
1333 	struct priority_group *pg;
1334 
1335 	list_for_each_entry(pg, &m->priority_groups, list) {
1336 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1337 			if (pgpath->path.dev == dev)
1338 				r = action(pgpath);
1339 		}
1340 	}
1341 
1342 	return r;
1343 }
1344 
1345 /*
1346  * Temporarily try to avoid having to use the specified PG
1347  */
1348 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1349 		      bool bypassed)
1350 {
1351 	unsigned long flags;
1352 
1353 	spin_lock_irqsave(&m->lock, flags);
1354 
1355 	pg->bypassed = bypassed;
1356 	m->current_pgpath = NULL;
1357 	m->current_pg = NULL;
1358 
1359 	spin_unlock_irqrestore(&m->lock, flags);
1360 
1361 	schedule_work(&m->trigger_event);
1362 }
1363 
1364 /*
1365  * Switch to using the specified PG from the next I/O that gets mapped
1366  */
1367 static int switch_pg_num(struct multipath *m, const char *pgstr)
1368 {
1369 	struct priority_group *pg;
1370 	unsigned pgnum;
1371 	unsigned long flags;
1372 	char dummy;
1373 
1374 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1375 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1376 		DMWARN("invalid PG number supplied to switch_pg_num");
1377 		return -EINVAL;
1378 	}
1379 
1380 	spin_lock_irqsave(&m->lock, flags);
1381 	list_for_each_entry(pg, &m->priority_groups, list) {
1382 		pg->bypassed = false;
1383 		if (--pgnum)
1384 			continue;
1385 
1386 		m->current_pgpath = NULL;
1387 		m->current_pg = NULL;
1388 		m->next_pg = pg;
1389 	}
1390 	spin_unlock_irqrestore(&m->lock, flags);
1391 
1392 	schedule_work(&m->trigger_event);
1393 	return 0;
1394 }
1395 
1396 /*
1397  * Set/clear bypassed status of a PG.
1398  * PGs are numbered upwards from 1 in the order they were declared.
1399  */
1400 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1401 {
1402 	struct priority_group *pg;
1403 	unsigned pgnum;
1404 	char dummy;
1405 
1406 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1407 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1408 		DMWARN("invalid PG number supplied to bypass_pg");
1409 		return -EINVAL;
1410 	}
1411 
1412 	list_for_each_entry(pg, &m->priority_groups, list) {
1413 		if (!--pgnum)
1414 			break;
1415 	}
1416 
1417 	bypass_pg(m, pg, bypassed);
1418 	return 0;
1419 }
1420 
1421 /*
1422  * Should we retry pg_init immediately?
1423  */
1424 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1425 {
1426 	unsigned long flags;
1427 	bool limit_reached = false;
1428 
1429 	spin_lock_irqsave(&m->lock, flags);
1430 
1431 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1432 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1433 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1434 	else
1435 		limit_reached = true;
1436 
1437 	spin_unlock_irqrestore(&m->lock, flags);
1438 
1439 	return limit_reached;
1440 }
1441 
1442 static void pg_init_done(void *data, int errors)
1443 {
1444 	struct pgpath *pgpath = data;
1445 	struct priority_group *pg = pgpath->pg;
1446 	struct multipath *m = pg->m;
1447 	unsigned long flags;
1448 	bool delay_retry = false;
1449 
1450 	/* device or driver problems */
1451 	switch (errors) {
1452 	case SCSI_DH_OK:
1453 		break;
1454 	case SCSI_DH_NOSYS:
1455 		if (!m->hw_handler_name) {
1456 			errors = 0;
1457 			break;
1458 		}
1459 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1460 		      "Error %d.", m->hw_handler_name, errors);
1461 		/*
1462 		 * Fail path for now, so we do not ping pong
1463 		 */
1464 		fail_path(pgpath);
1465 		break;
1466 	case SCSI_DH_DEV_TEMP_BUSY:
1467 		/*
1468 		 * Probably doing something like FW upgrade on the
1469 		 * controller so try the other pg.
1470 		 */
1471 		bypass_pg(m, pg, true);
1472 		break;
1473 	case SCSI_DH_RETRY:
1474 		/* Wait before retrying. */
1475 		delay_retry = 1;
1476 		/* fall through */
1477 	case SCSI_DH_IMM_RETRY:
1478 	case SCSI_DH_RES_TEMP_UNAVAIL:
1479 		if (pg_init_limit_reached(m, pgpath))
1480 			fail_path(pgpath);
1481 		errors = 0;
1482 		break;
1483 	case SCSI_DH_DEV_OFFLINED:
1484 	default:
1485 		/*
1486 		 * We probably do not want to fail the path for a device
1487 		 * error, but this is what the old dm did. In future
1488 		 * patches we can do more advanced handling.
1489 		 */
1490 		fail_path(pgpath);
1491 	}
1492 
1493 	spin_lock_irqsave(&m->lock, flags);
1494 	if (errors) {
1495 		if (pgpath == m->current_pgpath) {
1496 			DMERR("Could not failover device. Error %d.", errors);
1497 			m->current_pgpath = NULL;
1498 			m->current_pg = NULL;
1499 		}
1500 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1501 		pg->bypassed = false;
1502 
1503 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1504 		/* Activations of other paths are still on going */
1505 		goto out;
1506 
1507 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1508 		if (delay_retry)
1509 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1510 		else
1511 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1512 
1513 		if (__pg_init_all_paths(m))
1514 			goto out;
1515 	}
1516 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1517 
1518 	process_queued_io_list(m);
1519 
1520 	/*
1521 	 * Wake up any thread waiting to suspend.
1522 	 */
1523 	wake_up(&m->pg_init_wait);
1524 
1525 out:
1526 	spin_unlock_irqrestore(&m->lock, flags);
1527 }
1528 
1529 static void activate_or_offline_path(struct pgpath *pgpath)
1530 {
1531 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1532 
1533 	if (pgpath->is_active && !blk_queue_dying(q))
1534 		scsi_dh_activate(q, pg_init_done, pgpath);
1535 	else
1536 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1537 }
1538 
1539 static void activate_path_work(struct work_struct *work)
1540 {
1541 	struct pgpath *pgpath =
1542 		container_of(work, struct pgpath, activate_path.work);
1543 
1544 	activate_or_offline_path(pgpath);
1545 }
1546 
1547 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1548 			    blk_status_t error, union map_info *map_context)
1549 {
1550 	struct dm_mpath_io *mpio = get_mpio(map_context);
1551 	struct pgpath *pgpath = mpio->pgpath;
1552 	int r = DM_ENDIO_DONE;
1553 
1554 	/*
1555 	 * We don't queue any clone request inside the multipath target
1556 	 * during end I/O handling, since those clone requests don't have
1557 	 * bio clones.  If we queue them inside the multipath target,
1558 	 * we need to make bio clones, that requires memory allocation.
1559 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1560 	 *  don't have bio clones.)
1561 	 * Instead of queueing the clone request here, we queue the original
1562 	 * request into dm core, which will remake a clone request and
1563 	 * clone bios for it and resubmit it later.
1564 	 */
1565 	if (error && blk_path_error(error)) {
1566 		struct multipath *m = ti->private;
1567 
1568 		if (error == BLK_STS_RESOURCE)
1569 			r = DM_ENDIO_DELAY_REQUEUE;
1570 		else
1571 			r = DM_ENDIO_REQUEUE;
1572 
1573 		if (pgpath)
1574 			fail_path(pgpath);
1575 
1576 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1577 		    !must_push_back_rq(m)) {
1578 			if (error == BLK_STS_IOERR)
1579 				dm_report_EIO(m);
1580 			/* complete with the original error */
1581 			r = DM_ENDIO_DONE;
1582 		}
1583 	}
1584 
1585 	if (pgpath) {
1586 		struct path_selector *ps = &pgpath->pg->ps;
1587 
1588 		if (ps->type->end_io)
1589 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1590 	}
1591 
1592 	return r;
1593 }
1594 
1595 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1596 				blk_status_t *error)
1597 {
1598 	struct multipath *m = ti->private;
1599 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1600 	struct pgpath *pgpath = mpio->pgpath;
1601 	unsigned long flags;
1602 	int r = DM_ENDIO_DONE;
1603 
1604 	if (!*error || !blk_path_error(*error))
1605 		goto done;
1606 
1607 	if (pgpath)
1608 		fail_path(pgpath);
1609 
1610 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1611 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1612 		if (must_push_back_bio(m)) {
1613 			r = DM_ENDIO_REQUEUE;
1614 		} else {
1615 			dm_report_EIO(m);
1616 			*error = BLK_STS_IOERR;
1617 		}
1618 		goto done;
1619 	}
1620 
1621 	spin_lock_irqsave(&m->lock, flags);
1622 	bio_list_add(&m->queued_bios, clone);
1623 	spin_unlock_irqrestore(&m->lock, flags);
1624 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1625 		queue_work(kmultipathd, &m->process_queued_bios);
1626 
1627 	r = DM_ENDIO_INCOMPLETE;
1628 done:
1629 	if (pgpath) {
1630 		struct path_selector *ps = &pgpath->pg->ps;
1631 
1632 		if (ps->type->end_io)
1633 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1634 	}
1635 
1636 	return r;
1637 }
1638 
1639 /*
1640  * Suspend can't complete until all the I/O is processed so if
1641  * the last path fails we must error any remaining I/O.
1642  * Note that if the freeze_bdev fails while suspending, the
1643  * queue_if_no_path state is lost - userspace should reset it.
1644  */
1645 static void multipath_presuspend(struct dm_target *ti)
1646 {
1647 	struct multipath *m = ti->private;
1648 
1649 	queue_if_no_path(m, false, true);
1650 }
1651 
1652 static void multipath_postsuspend(struct dm_target *ti)
1653 {
1654 	struct multipath *m = ti->private;
1655 
1656 	mutex_lock(&m->work_mutex);
1657 	flush_multipath_work(m);
1658 	mutex_unlock(&m->work_mutex);
1659 }
1660 
1661 /*
1662  * Restore the queue_if_no_path setting.
1663  */
1664 static void multipath_resume(struct dm_target *ti)
1665 {
1666 	struct multipath *m = ti->private;
1667 	unsigned long flags;
1668 
1669 	spin_lock_irqsave(&m->lock, flags);
1670 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1671 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1672 	spin_unlock_irqrestore(&m->lock, flags);
1673 }
1674 
1675 /*
1676  * Info output has the following format:
1677  * num_multipath_feature_args [multipath_feature_args]*
1678  * num_handler_status_args [handler_status_args]*
1679  * num_groups init_group_number
1680  *            [A|D|E num_ps_status_args [ps_status_args]*
1681  *             num_paths num_selector_args
1682  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1683  *
1684  * Table output has the following format (identical to the constructor string):
1685  * num_feature_args [features_args]*
1686  * num_handler_args hw_handler [hw_handler_args]*
1687  * num_groups init_group_number
1688  *     [priority selector-name num_ps_args [ps_args]*
1689  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1690  */
1691 static void multipath_status(struct dm_target *ti, status_type_t type,
1692 			     unsigned status_flags, char *result, unsigned maxlen)
1693 {
1694 	int sz = 0;
1695 	unsigned long flags;
1696 	struct multipath *m = ti->private;
1697 	struct priority_group *pg;
1698 	struct pgpath *p;
1699 	unsigned pg_num;
1700 	char state;
1701 
1702 	spin_lock_irqsave(&m->lock, flags);
1703 
1704 	/* Features */
1705 	if (type == STATUSTYPE_INFO)
1706 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1707 		       atomic_read(&m->pg_init_count));
1708 	else {
1709 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1710 			      (m->pg_init_retries > 0) * 2 +
1711 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1712 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1713 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1714 
1715 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1716 			DMEMIT("queue_if_no_path ");
1717 		if (m->pg_init_retries)
1718 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1719 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1720 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1721 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1722 			DMEMIT("retain_attached_hw_handler ");
1723 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1724 			switch(m->queue_mode) {
1725 			case DM_TYPE_BIO_BASED:
1726 				DMEMIT("queue_mode bio ");
1727 				break;
1728 			case DM_TYPE_MQ_REQUEST_BASED:
1729 				DMEMIT("queue_mode mq ");
1730 				break;
1731 			default:
1732 				WARN_ON_ONCE(true);
1733 				break;
1734 			}
1735 		}
1736 	}
1737 
1738 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1739 		DMEMIT("0 ");
1740 	else
1741 		DMEMIT("1 %s ", m->hw_handler_name);
1742 
1743 	DMEMIT("%u ", m->nr_priority_groups);
1744 
1745 	if (m->next_pg)
1746 		pg_num = m->next_pg->pg_num;
1747 	else if (m->current_pg)
1748 		pg_num = m->current_pg->pg_num;
1749 	else
1750 		pg_num = (m->nr_priority_groups ? 1 : 0);
1751 
1752 	DMEMIT("%u ", pg_num);
1753 
1754 	switch (type) {
1755 	case STATUSTYPE_INFO:
1756 		list_for_each_entry(pg, &m->priority_groups, list) {
1757 			if (pg->bypassed)
1758 				state = 'D';	/* Disabled */
1759 			else if (pg == m->current_pg)
1760 				state = 'A';	/* Currently Active */
1761 			else
1762 				state = 'E';	/* Enabled */
1763 
1764 			DMEMIT("%c ", state);
1765 
1766 			if (pg->ps.type->status)
1767 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1768 							  result + sz,
1769 							  maxlen - sz);
1770 			else
1771 				DMEMIT("0 ");
1772 
1773 			DMEMIT("%u %u ", pg->nr_pgpaths,
1774 			       pg->ps.type->info_args);
1775 
1776 			list_for_each_entry(p, &pg->pgpaths, list) {
1777 				DMEMIT("%s %s %u ", p->path.dev->name,
1778 				       p->is_active ? "A" : "F",
1779 				       p->fail_count);
1780 				if (pg->ps.type->status)
1781 					sz += pg->ps.type->status(&pg->ps,
1782 					      &p->path, type, result + sz,
1783 					      maxlen - sz);
1784 			}
1785 		}
1786 		break;
1787 
1788 	case STATUSTYPE_TABLE:
1789 		list_for_each_entry(pg, &m->priority_groups, list) {
1790 			DMEMIT("%s ", pg->ps.type->name);
1791 
1792 			if (pg->ps.type->status)
1793 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1794 							  result + sz,
1795 							  maxlen - sz);
1796 			else
1797 				DMEMIT("0 ");
1798 
1799 			DMEMIT("%u %u ", pg->nr_pgpaths,
1800 			       pg->ps.type->table_args);
1801 
1802 			list_for_each_entry(p, &pg->pgpaths, list) {
1803 				DMEMIT("%s ", p->path.dev->name);
1804 				if (pg->ps.type->status)
1805 					sz += pg->ps.type->status(&pg->ps,
1806 					      &p->path, type, result + sz,
1807 					      maxlen - sz);
1808 			}
1809 		}
1810 		break;
1811 	}
1812 
1813 	spin_unlock_irqrestore(&m->lock, flags);
1814 }
1815 
1816 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1817 {
1818 	int r = -EINVAL;
1819 	struct dm_dev *dev;
1820 	struct multipath *m = ti->private;
1821 	action_fn action;
1822 
1823 	mutex_lock(&m->work_mutex);
1824 
1825 	if (dm_suspended(ti)) {
1826 		r = -EBUSY;
1827 		goto out;
1828 	}
1829 
1830 	if (argc == 1) {
1831 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1832 			r = queue_if_no_path(m, true, false);
1833 			goto out;
1834 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1835 			r = queue_if_no_path(m, false, false);
1836 			goto out;
1837 		}
1838 	}
1839 
1840 	if (argc != 2) {
1841 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1842 		goto out;
1843 	}
1844 
1845 	if (!strcasecmp(argv[0], "disable_group")) {
1846 		r = bypass_pg_num(m, argv[1], true);
1847 		goto out;
1848 	} else if (!strcasecmp(argv[0], "enable_group")) {
1849 		r = bypass_pg_num(m, argv[1], false);
1850 		goto out;
1851 	} else if (!strcasecmp(argv[0], "switch_group")) {
1852 		r = switch_pg_num(m, argv[1]);
1853 		goto out;
1854 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1855 		action = reinstate_path;
1856 	else if (!strcasecmp(argv[0], "fail_path"))
1857 		action = fail_path;
1858 	else {
1859 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1860 		goto out;
1861 	}
1862 
1863 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1864 	if (r) {
1865 		DMWARN("message: error getting device %s",
1866 		       argv[1]);
1867 		goto out;
1868 	}
1869 
1870 	r = action_dev(m, dev, action);
1871 
1872 	dm_put_device(ti, dev);
1873 
1874 out:
1875 	mutex_unlock(&m->work_mutex);
1876 	return r;
1877 }
1878 
1879 static int multipath_prepare_ioctl(struct dm_target *ti,
1880 		struct block_device **bdev, fmode_t *mode)
1881 {
1882 	struct multipath *m = ti->private;
1883 	struct pgpath *current_pgpath;
1884 	int r;
1885 
1886 	current_pgpath = READ_ONCE(m->current_pgpath);
1887 	if (!current_pgpath)
1888 		current_pgpath = choose_pgpath(m, 0);
1889 
1890 	if (current_pgpath) {
1891 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1892 			*bdev = current_pgpath->path.dev->bdev;
1893 			*mode = current_pgpath->path.dev->mode;
1894 			r = 0;
1895 		} else {
1896 			/* pg_init has not started or completed */
1897 			r = -ENOTCONN;
1898 		}
1899 	} else {
1900 		/* No path is available */
1901 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1902 			r = -ENOTCONN;
1903 		else
1904 			r = -EIO;
1905 	}
1906 
1907 	if (r == -ENOTCONN) {
1908 		if (!READ_ONCE(m->current_pg)) {
1909 			/* Path status changed, redo selection */
1910 			(void) choose_pgpath(m, 0);
1911 		}
1912 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1913 			pg_init_all_paths(m);
1914 		dm_table_run_md_queue_async(m->ti->table);
1915 		process_queued_io_list(m);
1916 	}
1917 
1918 	/*
1919 	 * Only pass ioctls through if the device sizes match exactly.
1920 	 */
1921 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1922 		return 1;
1923 	return r;
1924 }
1925 
1926 static int multipath_iterate_devices(struct dm_target *ti,
1927 				     iterate_devices_callout_fn fn, void *data)
1928 {
1929 	struct multipath *m = ti->private;
1930 	struct priority_group *pg;
1931 	struct pgpath *p;
1932 	int ret = 0;
1933 
1934 	list_for_each_entry(pg, &m->priority_groups, list) {
1935 		list_for_each_entry(p, &pg->pgpaths, list) {
1936 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1937 			if (ret)
1938 				goto out;
1939 		}
1940 	}
1941 
1942 out:
1943 	return ret;
1944 }
1945 
1946 static int pgpath_busy(struct pgpath *pgpath)
1947 {
1948 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1949 
1950 	return blk_lld_busy(q);
1951 }
1952 
1953 /*
1954  * We return "busy", only when we can map I/Os but underlying devices
1955  * are busy (so even if we map I/Os now, the I/Os will wait on
1956  * the underlying queue).
1957  * In other words, if we want to kill I/Os or queue them inside us
1958  * due to map unavailability, we don't return "busy".  Otherwise,
1959  * dm core won't give us the I/Os and we can't do what we want.
1960  */
1961 static int multipath_busy(struct dm_target *ti)
1962 {
1963 	bool busy = false, has_active = false;
1964 	struct multipath *m = ti->private;
1965 	struct priority_group *pg, *next_pg;
1966 	struct pgpath *pgpath;
1967 
1968 	/* pg_init in progress */
1969 	if (atomic_read(&m->pg_init_in_progress))
1970 		return true;
1971 
1972 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1973 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1974 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1975 
1976 	/* Guess which priority_group will be used at next mapping time */
1977 	pg = READ_ONCE(m->current_pg);
1978 	next_pg = READ_ONCE(m->next_pg);
1979 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1980 		pg = next_pg;
1981 
1982 	if (!pg) {
1983 		/*
1984 		 * We don't know which pg will be used at next mapping time.
1985 		 * We don't call choose_pgpath() here to avoid to trigger
1986 		 * pg_init just by busy checking.
1987 		 * So we don't know whether underlying devices we will be using
1988 		 * at next mapping time are busy or not. Just try mapping.
1989 		 */
1990 		return busy;
1991 	}
1992 
1993 	/*
1994 	 * If there is one non-busy active path at least, the path selector
1995 	 * will be able to select it. So we consider such a pg as not busy.
1996 	 */
1997 	busy = true;
1998 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1999 		if (pgpath->is_active) {
2000 			has_active = true;
2001 			if (!pgpath_busy(pgpath)) {
2002 				busy = false;
2003 				break;
2004 			}
2005 		}
2006 	}
2007 
2008 	if (!has_active) {
2009 		/*
2010 		 * No active path in this pg, so this pg won't be used and
2011 		 * the current_pg will be changed at next mapping time.
2012 		 * We need to try mapping to determine it.
2013 		 */
2014 		busy = false;
2015 	}
2016 
2017 	return busy;
2018 }
2019 
2020 /*-----------------------------------------------------------------
2021  * Module setup
2022  *---------------------------------------------------------------*/
2023 static struct target_type multipath_target = {
2024 	.name = "multipath",
2025 	.version = {1, 12, 0},
2026 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
2027 	.module = THIS_MODULE,
2028 	.ctr = multipath_ctr,
2029 	.dtr = multipath_dtr,
2030 	.clone_and_map_rq = multipath_clone_and_map,
2031 	.release_clone_rq = multipath_release_clone,
2032 	.rq_end_io = multipath_end_io,
2033 	.map = multipath_map_bio,
2034 	.end_io = multipath_end_io_bio,
2035 	.presuspend = multipath_presuspend,
2036 	.postsuspend = multipath_postsuspend,
2037 	.resume = multipath_resume,
2038 	.status = multipath_status,
2039 	.message = multipath_message,
2040 	.prepare_ioctl = multipath_prepare_ioctl,
2041 	.iterate_devices = multipath_iterate_devices,
2042 	.busy = multipath_busy,
2043 };
2044 
2045 static int __init dm_multipath_init(void)
2046 {
2047 	int r;
2048 
2049 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2050 	if (!kmultipathd) {
2051 		DMERR("failed to create workqueue kmpathd");
2052 		r = -ENOMEM;
2053 		goto bad_alloc_kmultipathd;
2054 	}
2055 
2056 	/*
2057 	 * A separate workqueue is used to handle the device handlers
2058 	 * to avoid overloading existing workqueue. Overloading the
2059 	 * old workqueue would also create a bottleneck in the
2060 	 * path of the storage hardware device activation.
2061 	 */
2062 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2063 						  WQ_MEM_RECLAIM);
2064 	if (!kmpath_handlerd) {
2065 		DMERR("failed to create workqueue kmpath_handlerd");
2066 		r = -ENOMEM;
2067 		goto bad_alloc_kmpath_handlerd;
2068 	}
2069 
2070 	r = dm_register_target(&multipath_target);
2071 	if (r < 0) {
2072 		DMERR("request-based register failed %d", r);
2073 		r = -EINVAL;
2074 		goto bad_register_target;
2075 	}
2076 
2077 	return 0;
2078 
2079 bad_register_target:
2080 	destroy_workqueue(kmpath_handlerd);
2081 bad_alloc_kmpath_handlerd:
2082 	destroy_workqueue(kmultipathd);
2083 bad_alloc_kmultipathd:
2084 	return r;
2085 }
2086 
2087 static void __exit dm_multipath_exit(void)
2088 {
2089 	destroy_workqueue(kmpath_handlerd);
2090 	destroy_workqueue(kmultipathd);
2091 
2092 	dm_unregister_target(&multipath_target);
2093 }
2094 
2095 module_init(dm_multipath_init);
2096 module_exit(dm_multipath_exit);
2097 
2098 MODULE_DESCRIPTION(DM_NAME " multipath target");
2099 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2100 MODULE_LICENSE("GPL");
2101