xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 82003e04)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	unsigned queue_mode;
94 
95 	/*
96 	 * We must use a mempool of dm_mpath_io structs so that we
97 	 * can resubmit bios on error.
98 	 */
99 	mempool_t *mpio_pool;
100 
101 	struct mutex work_mutex;
102 	struct work_struct trigger_event;
103 
104 	struct work_struct process_queued_bios;
105 	struct bio_list queued_bios;
106 };
107 
108 /*
109  * Context information attached to each io we process.
110  */
111 struct dm_mpath_io {
112 	struct pgpath *pgpath;
113 	size_t nr_bytes;
114 };
115 
116 typedef int (*action_fn) (struct pgpath *pgpath);
117 
118 static struct kmem_cache *_mpio_cache;
119 
120 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
121 static void trigger_event(struct work_struct *work);
122 static void activate_path(struct work_struct *work);
123 static void process_queued_bios(struct work_struct *work);
124 
125 /*-----------------------------------------------
126  * Multipath state flags.
127  *-----------------------------------------------*/
128 
129 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
130 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
131 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
132 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
133 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
134 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
135 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
136 
137 /*-----------------------------------------------
138  * Allocation routines
139  *-----------------------------------------------*/
140 
141 static struct pgpath *alloc_pgpath(void)
142 {
143 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
144 
145 	if (pgpath) {
146 		pgpath->is_active = true;
147 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path);
148 	}
149 
150 	return pgpath;
151 }
152 
153 static void free_pgpath(struct pgpath *pgpath)
154 {
155 	kfree(pgpath);
156 }
157 
158 static struct priority_group *alloc_priority_group(void)
159 {
160 	struct priority_group *pg;
161 
162 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
163 
164 	if (pg)
165 		INIT_LIST_HEAD(&pg->pgpaths);
166 
167 	return pg;
168 }
169 
170 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
171 {
172 	struct pgpath *pgpath, *tmp;
173 
174 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
175 		list_del(&pgpath->list);
176 		dm_put_device(ti, pgpath->path.dev);
177 		free_pgpath(pgpath);
178 	}
179 }
180 
181 static void free_priority_group(struct priority_group *pg,
182 				struct dm_target *ti)
183 {
184 	struct path_selector *ps = &pg->ps;
185 
186 	if (ps->type) {
187 		ps->type->destroy(ps);
188 		dm_put_path_selector(ps->type);
189 	}
190 
191 	free_pgpaths(&pg->pgpaths, ti);
192 	kfree(pg);
193 }
194 
195 static struct multipath *alloc_multipath(struct dm_target *ti)
196 {
197 	struct multipath *m;
198 
199 	m = kzalloc(sizeof(*m), GFP_KERNEL);
200 	if (m) {
201 		INIT_LIST_HEAD(&m->priority_groups);
202 		spin_lock_init(&m->lock);
203 		set_bit(MPATHF_QUEUE_IO, &m->flags);
204 		atomic_set(&m->nr_valid_paths, 0);
205 		atomic_set(&m->pg_init_in_progress, 0);
206 		atomic_set(&m->pg_init_count, 0);
207 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
208 		INIT_WORK(&m->trigger_event, trigger_event);
209 		init_waitqueue_head(&m->pg_init_wait);
210 		mutex_init(&m->work_mutex);
211 
212 		m->mpio_pool = NULL;
213 		m->queue_mode = DM_TYPE_NONE;
214 
215 		m->ti = ti;
216 		ti->private = m;
217 	}
218 
219 	return m;
220 }
221 
222 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
223 {
224 	if (m->queue_mode == DM_TYPE_NONE) {
225 		/*
226 		 * Default to request-based.
227 		 */
228 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
229 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
230 		else
231 			m->queue_mode = DM_TYPE_REQUEST_BASED;
232 	}
233 
234 	if (m->queue_mode == DM_TYPE_REQUEST_BASED) {
235 		unsigned min_ios = dm_get_reserved_rq_based_ios();
236 
237 		m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache);
238 		if (!m->mpio_pool)
239 			return -ENOMEM;
240 	}
241 	else if (m->queue_mode == DM_TYPE_BIO_BASED) {
242 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
243 		/*
244 		 * bio-based doesn't support any direct scsi_dh management;
245 		 * it just discovers if a scsi_dh is attached.
246 		 */
247 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
248 	}
249 
250 	dm_table_set_type(ti->table, m->queue_mode);
251 
252 	return 0;
253 }
254 
255 static void free_multipath(struct multipath *m)
256 {
257 	struct priority_group *pg, *tmp;
258 
259 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
260 		list_del(&pg->list);
261 		free_priority_group(pg, m->ti);
262 	}
263 
264 	kfree(m->hw_handler_name);
265 	kfree(m->hw_handler_params);
266 	mempool_destroy(m->mpio_pool);
267 	kfree(m);
268 }
269 
270 static struct dm_mpath_io *get_mpio(union map_info *info)
271 {
272 	return info->ptr;
273 }
274 
275 static struct dm_mpath_io *set_mpio(struct multipath *m, union map_info *info)
276 {
277 	struct dm_mpath_io *mpio;
278 
279 	if (!m->mpio_pool) {
280 		/* Use blk-mq pdu memory requested via per_io_data_size */
281 		mpio = get_mpio(info);
282 		memset(mpio, 0, sizeof(*mpio));
283 		return mpio;
284 	}
285 
286 	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
287 	if (!mpio)
288 		return NULL;
289 
290 	memset(mpio, 0, sizeof(*mpio));
291 	info->ptr = mpio;
292 
293 	return mpio;
294 }
295 
296 static void clear_request_fn_mpio(struct multipath *m, union map_info *info)
297 {
298 	/* Only needed for non blk-mq (.request_fn) multipath */
299 	if (m->mpio_pool) {
300 		struct dm_mpath_io *mpio = info->ptr;
301 
302 		info->ptr = NULL;
303 		mempool_free(mpio, m->mpio_pool);
304 	}
305 }
306 
307 static size_t multipath_per_bio_data_size(void)
308 {
309 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
310 }
311 
312 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
313 {
314 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
315 }
316 
317 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
318 {
319 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
320 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
321 	void *bio_details = mpio + 1;
322 
323 	return bio_details;
324 }
325 
326 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
327 					struct dm_bio_details **bio_details_p)
328 {
329 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
330 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
331 
332 	memset(mpio, 0, sizeof(*mpio));
333 	memset(bio_details, 0, sizeof(*bio_details));
334 	dm_bio_record(bio_details, bio);
335 
336 	if (mpio_p)
337 		*mpio_p = mpio;
338 	if (bio_details_p)
339 		*bio_details_p = bio_details;
340 }
341 
342 /*-----------------------------------------------
343  * Path selection
344  *-----------------------------------------------*/
345 
346 static int __pg_init_all_paths(struct multipath *m)
347 {
348 	struct pgpath *pgpath;
349 	unsigned long pg_init_delay = 0;
350 
351 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
352 		return 0;
353 
354 	atomic_inc(&m->pg_init_count);
355 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
356 
357 	/* Check here to reset pg_init_required */
358 	if (!m->current_pg)
359 		return 0;
360 
361 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
362 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
363 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
364 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
365 		/* Skip failed paths */
366 		if (!pgpath->is_active)
367 			continue;
368 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
369 				       pg_init_delay))
370 			atomic_inc(&m->pg_init_in_progress);
371 	}
372 	return atomic_read(&m->pg_init_in_progress);
373 }
374 
375 static int pg_init_all_paths(struct multipath *m)
376 {
377 	int r;
378 	unsigned long flags;
379 
380 	spin_lock_irqsave(&m->lock, flags);
381 	r = __pg_init_all_paths(m);
382 	spin_unlock_irqrestore(&m->lock, flags);
383 
384 	return r;
385 }
386 
387 static void __switch_pg(struct multipath *m, struct priority_group *pg)
388 {
389 	m->current_pg = pg;
390 
391 	/* Must we initialise the PG first, and queue I/O till it's ready? */
392 	if (m->hw_handler_name) {
393 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
394 		set_bit(MPATHF_QUEUE_IO, &m->flags);
395 	} else {
396 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
397 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
398 	}
399 
400 	atomic_set(&m->pg_init_count, 0);
401 }
402 
403 static struct pgpath *choose_path_in_pg(struct multipath *m,
404 					struct priority_group *pg,
405 					size_t nr_bytes)
406 {
407 	unsigned long flags;
408 	struct dm_path *path;
409 	struct pgpath *pgpath;
410 
411 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
412 	if (!path)
413 		return ERR_PTR(-ENXIO);
414 
415 	pgpath = path_to_pgpath(path);
416 
417 	if (unlikely(lockless_dereference(m->current_pg) != pg)) {
418 		/* Only update current_pgpath if pg changed */
419 		spin_lock_irqsave(&m->lock, flags);
420 		m->current_pgpath = pgpath;
421 		__switch_pg(m, pg);
422 		spin_unlock_irqrestore(&m->lock, flags);
423 	}
424 
425 	return pgpath;
426 }
427 
428 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
429 {
430 	unsigned long flags;
431 	struct priority_group *pg;
432 	struct pgpath *pgpath;
433 	bool bypassed = true;
434 
435 	if (!atomic_read(&m->nr_valid_paths)) {
436 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
437 		goto failed;
438 	}
439 
440 	/* Were we instructed to switch PG? */
441 	if (lockless_dereference(m->next_pg)) {
442 		spin_lock_irqsave(&m->lock, flags);
443 		pg = m->next_pg;
444 		if (!pg) {
445 			spin_unlock_irqrestore(&m->lock, flags);
446 			goto check_current_pg;
447 		}
448 		m->next_pg = NULL;
449 		spin_unlock_irqrestore(&m->lock, flags);
450 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
451 		if (!IS_ERR_OR_NULL(pgpath))
452 			return pgpath;
453 	}
454 
455 	/* Don't change PG until it has no remaining paths */
456 check_current_pg:
457 	pg = lockless_dereference(m->current_pg);
458 	if (pg) {
459 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
460 		if (!IS_ERR_OR_NULL(pgpath))
461 			return pgpath;
462 	}
463 
464 	/*
465 	 * Loop through priority groups until we find a valid path.
466 	 * First time we skip PGs marked 'bypassed'.
467 	 * Second time we only try the ones we skipped, but set
468 	 * pg_init_delay_retry so we do not hammer controllers.
469 	 */
470 	do {
471 		list_for_each_entry(pg, &m->priority_groups, list) {
472 			if (pg->bypassed == bypassed)
473 				continue;
474 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
475 			if (!IS_ERR_OR_NULL(pgpath)) {
476 				if (!bypassed)
477 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
478 				return pgpath;
479 			}
480 		}
481 	} while (bypassed--);
482 
483 failed:
484 	spin_lock_irqsave(&m->lock, flags);
485 	m->current_pgpath = NULL;
486 	m->current_pg = NULL;
487 	spin_unlock_irqrestore(&m->lock, flags);
488 
489 	return NULL;
490 }
491 
492 /*
493  * Check whether bios must be queued in the device-mapper core rather
494  * than here in the target.
495  *
496  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
497  * same value then we are not between multipath_presuspend()
498  * and multipath_resume() calls and we have no need to check
499  * for the DMF_NOFLUSH_SUSPENDING flag.
500  */
501 static bool __must_push_back(struct multipath *m)
502 {
503 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) !=
504 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) &&
505 		dm_noflush_suspending(m->ti));
506 }
507 
508 static bool must_push_back_rq(struct multipath *m)
509 {
510 	bool r;
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&m->lock, flags);
514 	r = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) ||
515 	     __must_push_back(m));
516 	spin_unlock_irqrestore(&m->lock, flags);
517 
518 	return r;
519 }
520 
521 static bool must_push_back_bio(struct multipath *m)
522 {
523 	bool r;
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&m->lock, flags);
527 	r = __must_push_back(m);
528 	spin_unlock_irqrestore(&m->lock, flags);
529 
530 	return r;
531 }
532 
533 /*
534  * Map cloned requests (request-based multipath)
535  */
536 static int __multipath_map(struct dm_target *ti, struct request *clone,
537 			   union map_info *map_context,
538 			   struct request *rq, struct request **__clone)
539 {
540 	struct multipath *m = ti->private;
541 	int r = DM_MAPIO_REQUEUE;
542 	size_t nr_bytes = clone ? blk_rq_bytes(clone) : blk_rq_bytes(rq);
543 	struct pgpath *pgpath;
544 	struct block_device *bdev;
545 	struct dm_mpath_io *mpio;
546 
547 	/* Do we need to select a new pgpath? */
548 	pgpath = lockless_dereference(m->current_pgpath);
549 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
550 		pgpath = choose_pgpath(m, nr_bytes);
551 
552 	if (!pgpath) {
553 		if (must_push_back_rq(m))
554 			return DM_MAPIO_DELAY_REQUEUE;
555 		return -EIO;	/* Failed */
556 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
557 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
558 		pg_init_all_paths(m);
559 		return r;
560 	}
561 
562 	mpio = set_mpio(m, map_context);
563 	if (!mpio)
564 		/* ENOMEM, requeue */
565 		return r;
566 
567 	mpio->pgpath = pgpath;
568 	mpio->nr_bytes = nr_bytes;
569 
570 	bdev = pgpath->path.dev->bdev;
571 
572 	if (clone) {
573 		/*
574 		 * Old request-based interface: allocated clone is passed in.
575 		 * Used by: .request_fn stacked on .request_fn path(s).
576 		 */
577 		clone->q = bdev_get_queue(bdev);
578 		clone->rq_disk = bdev->bd_disk;
579 		clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
580 	} else {
581 		/*
582 		 * blk-mq request-based interface; used by both:
583 		 * .request_fn stacked on blk-mq path(s) and
584 		 * blk-mq stacked on blk-mq path(s).
585 		 */
586 		*__clone = blk_mq_alloc_request(bdev_get_queue(bdev),
587 						rq_data_dir(rq), BLK_MQ_REQ_NOWAIT);
588 		if (IS_ERR(*__clone)) {
589 			/* ENOMEM, requeue */
590 			clear_request_fn_mpio(m, map_context);
591 			return r;
592 		}
593 		(*__clone)->bio = (*__clone)->biotail = NULL;
594 		(*__clone)->rq_disk = bdev->bd_disk;
595 		(*__clone)->cmd_flags |= REQ_FAILFAST_TRANSPORT;
596 	}
597 
598 	if (pgpath->pg->ps.type->start_io)
599 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
600 					      &pgpath->path,
601 					      nr_bytes);
602 	return DM_MAPIO_REMAPPED;
603 }
604 
605 static int multipath_map(struct dm_target *ti, struct request *clone,
606 			 union map_info *map_context)
607 {
608 	return __multipath_map(ti, clone, map_context, NULL, NULL);
609 }
610 
611 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
612 				   union map_info *map_context,
613 				   struct request **clone)
614 {
615 	return __multipath_map(ti, NULL, map_context, rq, clone);
616 }
617 
618 static void multipath_release_clone(struct request *clone)
619 {
620 	blk_mq_free_request(clone);
621 }
622 
623 /*
624  * Map cloned bios (bio-based multipath)
625  */
626 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
627 {
628 	size_t nr_bytes = bio->bi_iter.bi_size;
629 	struct pgpath *pgpath;
630 	unsigned long flags;
631 	bool queue_io;
632 
633 	/* Do we need to select a new pgpath? */
634 	pgpath = lockless_dereference(m->current_pgpath);
635 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
636 	if (!pgpath || !queue_io)
637 		pgpath = choose_pgpath(m, nr_bytes);
638 
639 	if ((pgpath && queue_io) ||
640 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
641 		/* Queue for the daemon to resubmit */
642 		spin_lock_irqsave(&m->lock, flags);
643 		bio_list_add(&m->queued_bios, bio);
644 		spin_unlock_irqrestore(&m->lock, flags);
645 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
646 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
647 			pg_init_all_paths(m);
648 		else if (!queue_io)
649 			queue_work(kmultipathd, &m->process_queued_bios);
650 		return DM_MAPIO_SUBMITTED;
651 	}
652 
653 	if (!pgpath) {
654 		if (!must_push_back_bio(m))
655 			return -EIO;
656 		return DM_MAPIO_REQUEUE;
657 	}
658 
659 	mpio->pgpath = pgpath;
660 	mpio->nr_bytes = nr_bytes;
661 
662 	bio->bi_error = 0;
663 	bio->bi_bdev = pgpath->path.dev->bdev;
664 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
665 
666 	if (pgpath->pg->ps.type->start_io)
667 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
668 					      &pgpath->path,
669 					      nr_bytes);
670 	return DM_MAPIO_REMAPPED;
671 }
672 
673 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
674 {
675 	struct multipath *m = ti->private;
676 	struct dm_mpath_io *mpio = NULL;
677 
678 	multipath_init_per_bio_data(bio, &mpio, NULL);
679 
680 	return __multipath_map_bio(m, bio, mpio);
681 }
682 
683 static void process_queued_io_list(struct multipath *m)
684 {
685 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
686 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
687 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
688 		queue_work(kmultipathd, &m->process_queued_bios);
689 }
690 
691 static void process_queued_bios(struct work_struct *work)
692 {
693 	int r;
694 	unsigned long flags;
695 	struct bio *bio;
696 	struct bio_list bios;
697 	struct blk_plug plug;
698 	struct multipath *m =
699 		container_of(work, struct multipath, process_queued_bios);
700 
701 	bio_list_init(&bios);
702 
703 	spin_lock_irqsave(&m->lock, flags);
704 
705 	if (bio_list_empty(&m->queued_bios)) {
706 		spin_unlock_irqrestore(&m->lock, flags);
707 		return;
708 	}
709 
710 	bio_list_merge(&bios, &m->queued_bios);
711 	bio_list_init(&m->queued_bios);
712 
713 	spin_unlock_irqrestore(&m->lock, flags);
714 
715 	blk_start_plug(&plug);
716 	while ((bio = bio_list_pop(&bios))) {
717 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
718 		if (r < 0 || r == DM_MAPIO_REQUEUE) {
719 			bio->bi_error = r;
720 			bio_endio(bio);
721 		} else if (r == DM_MAPIO_REMAPPED)
722 			generic_make_request(bio);
723 	}
724 	blk_finish_plug(&plug);
725 }
726 
727 /*
728  * If we run out of usable paths, should we queue I/O or error it?
729  */
730 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
731 			    bool save_old_value)
732 {
733 	unsigned long flags;
734 
735 	spin_lock_irqsave(&m->lock, flags);
736 
737 	if (save_old_value) {
738 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
739 			set_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
740 		else
741 			clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
742 	} else {
743 		if (queue_if_no_path)
744 			set_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
745 		else
746 			clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
747 	}
748 	if (queue_if_no_path)
749 		set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
750 	else
751 		clear_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
752 
753 	spin_unlock_irqrestore(&m->lock, flags);
754 
755 	if (!queue_if_no_path) {
756 		dm_table_run_md_queue_async(m->ti->table);
757 		process_queued_io_list(m);
758 	}
759 
760 	return 0;
761 }
762 
763 /*
764  * An event is triggered whenever a path is taken out of use.
765  * Includes path failure and PG bypass.
766  */
767 static void trigger_event(struct work_struct *work)
768 {
769 	struct multipath *m =
770 		container_of(work, struct multipath, trigger_event);
771 
772 	dm_table_event(m->ti->table);
773 }
774 
775 /*-----------------------------------------------------------------
776  * Constructor/argument parsing:
777  * <#multipath feature args> [<arg>]*
778  * <#hw_handler args> [hw_handler [<arg>]*]
779  * <#priority groups>
780  * <initial priority group>
781  *     [<selector> <#selector args> [<arg>]*
782  *      <#paths> <#per-path selector args>
783  *         [<path> [<arg>]* ]+ ]+
784  *---------------------------------------------------------------*/
785 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
786 			       struct dm_target *ti)
787 {
788 	int r;
789 	struct path_selector_type *pst;
790 	unsigned ps_argc;
791 
792 	static struct dm_arg _args[] = {
793 		{0, 1024, "invalid number of path selector args"},
794 	};
795 
796 	pst = dm_get_path_selector(dm_shift_arg(as));
797 	if (!pst) {
798 		ti->error = "unknown path selector type";
799 		return -EINVAL;
800 	}
801 
802 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
803 	if (r) {
804 		dm_put_path_selector(pst);
805 		return -EINVAL;
806 	}
807 
808 	r = pst->create(&pg->ps, ps_argc, as->argv);
809 	if (r) {
810 		dm_put_path_selector(pst);
811 		ti->error = "path selector constructor failed";
812 		return r;
813 	}
814 
815 	pg->ps.type = pst;
816 	dm_consume_args(as, ps_argc);
817 
818 	return 0;
819 }
820 
821 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
822 			       struct dm_target *ti)
823 {
824 	int r;
825 	struct pgpath *p;
826 	struct multipath *m = ti->private;
827 	struct request_queue *q = NULL;
828 	const char *attached_handler_name;
829 
830 	/* we need at least a path arg */
831 	if (as->argc < 1) {
832 		ti->error = "no device given";
833 		return ERR_PTR(-EINVAL);
834 	}
835 
836 	p = alloc_pgpath();
837 	if (!p)
838 		return ERR_PTR(-ENOMEM);
839 
840 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
841 			  &p->path.dev);
842 	if (r) {
843 		ti->error = "error getting device";
844 		goto bad;
845 	}
846 
847 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
848 		q = bdev_get_queue(p->path.dev->bdev);
849 
850 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
851 retain:
852 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
853 		if (attached_handler_name) {
854 			/*
855 			 * Reset hw_handler_name to match the attached handler
856 			 * and clear any hw_handler_params associated with the
857 			 * ignored handler.
858 			 *
859 			 * NB. This modifies the table line to show the actual
860 			 * handler instead of the original table passed in.
861 			 */
862 			kfree(m->hw_handler_name);
863 			m->hw_handler_name = attached_handler_name;
864 
865 			kfree(m->hw_handler_params);
866 			m->hw_handler_params = NULL;
867 		}
868 	}
869 
870 	if (m->hw_handler_name) {
871 		r = scsi_dh_attach(q, m->hw_handler_name);
872 		if (r == -EBUSY) {
873 			char b[BDEVNAME_SIZE];
874 
875 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
876 				bdevname(p->path.dev->bdev, b));
877 			goto retain;
878 		}
879 		if (r < 0) {
880 			ti->error = "error attaching hardware handler";
881 			dm_put_device(ti, p->path.dev);
882 			goto bad;
883 		}
884 
885 		if (m->hw_handler_params) {
886 			r = scsi_dh_set_params(q, m->hw_handler_params);
887 			if (r < 0) {
888 				ti->error = "unable to set hardware "
889 							"handler parameters";
890 				dm_put_device(ti, p->path.dev);
891 				goto bad;
892 			}
893 		}
894 	}
895 
896 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
897 	if (r) {
898 		dm_put_device(ti, p->path.dev);
899 		goto bad;
900 	}
901 
902 	return p;
903 
904  bad:
905 	free_pgpath(p);
906 	return ERR_PTR(r);
907 }
908 
909 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
910 						   struct multipath *m)
911 {
912 	static struct dm_arg _args[] = {
913 		{1, 1024, "invalid number of paths"},
914 		{0, 1024, "invalid number of selector args"}
915 	};
916 
917 	int r;
918 	unsigned i, nr_selector_args, nr_args;
919 	struct priority_group *pg;
920 	struct dm_target *ti = m->ti;
921 
922 	if (as->argc < 2) {
923 		as->argc = 0;
924 		ti->error = "not enough priority group arguments";
925 		return ERR_PTR(-EINVAL);
926 	}
927 
928 	pg = alloc_priority_group();
929 	if (!pg) {
930 		ti->error = "couldn't allocate priority group";
931 		return ERR_PTR(-ENOMEM);
932 	}
933 	pg->m = m;
934 
935 	r = parse_path_selector(as, pg, ti);
936 	if (r)
937 		goto bad;
938 
939 	/*
940 	 * read the paths
941 	 */
942 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
943 	if (r)
944 		goto bad;
945 
946 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
947 	if (r)
948 		goto bad;
949 
950 	nr_args = 1 + nr_selector_args;
951 	for (i = 0; i < pg->nr_pgpaths; i++) {
952 		struct pgpath *pgpath;
953 		struct dm_arg_set path_args;
954 
955 		if (as->argc < nr_args) {
956 			ti->error = "not enough path parameters";
957 			r = -EINVAL;
958 			goto bad;
959 		}
960 
961 		path_args.argc = nr_args;
962 		path_args.argv = as->argv;
963 
964 		pgpath = parse_path(&path_args, &pg->ps, ti);
965 		if (IS_ERR(pgpath)) {
966 			r = PTR_ERR(pgpath);
967 			goto bad;
968 		}
969 
970 		pgpath->pg = pg;
971 		list_add_tail(&pgpath->list, &pg->pgpaths);
972 		dm_consume_args(as, nr_args);
973 	}
974 
975 	return pg;
976 
977  bad:
978 	free_priority_group(pg, ti);
979 	return ERR_PTR(r);
980 }
981 
982 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
983 {
984 	unsigned hw_argc;
985 	int ret;
986 	struct dm_target *ti = m->ti;
987 
988 	static struct dm_arg _args[] = {
989 		{0, 1024, "invalid number of hardware handler args"},
990 	};
991 
992 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
993 		return -EINVAL;
994 
995 	if (!hw_argc)
996 		return 0;
997 
998 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
999 		dm_consume_args(as, hw_argc);
1000 		DMERR("bio-based multipath doesn't allow hardware handler args");
1001 		return 0;
1002 	}
1003 
1004 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1005 
1006 	if (hw_argc > 1) {
1007 		char *p;
1008 		int i, j, len = 4;
1009 
1010 		for (i = 0; i <= hw_argc - 2; i++)
1011 			len += strlen(as->argv[i]) + 1;
1012 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1013 		if (!p) {
1014 			ti->error = "memory allocation failed";
1015 			ret = -ENOMEM;
1016 			goto fail;
1017 		}
1018 		j = sprintf(p, "%d", hw_argc - 1);
1019 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1020 			j = sprintf(p, "%s", as->argv[i]);
1021 	}
1022 	dm_consume_args(as, hw_argc - 1);
1023 
1024 	return 0;
1025 fail:
1026 	kfree(m->hw_handler_name);
1027 	m->hw_handler_name = NULL;
1028 	return ret;
1029 }
1030 
1031 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1032 {
1033 	int r;
1034 	unsigned argc;
1035 	struct dm_target *ti = m->ti;
1036 	const char *arg_name;
1037 
1038 	static struct dm_arg _args[] = {
1039 		{0, 8, "invalid number of feature args"},
1040 		{1, 50, "pg_init_retries must be between 1 and 50"},
1041 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1042 	};
1043 
1044 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1045 	if (r)
1046 		return -EINVAL;
1047 
1048 	if (!argc)
1049 		return 0;
1050 
1051 	do {
1052 		arg_name = dm_shift_arg(as);
1053 		argc--;
1054 
1055 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1056 			r = queue_if_no_path(m, true, false);
1057 			continue;
1058 		}
1059 
1060 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1061 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1062 			continue;
1063 		}
1064 
1065 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1066 		    (argc >= 1)) {
1067 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1068 			argc--;
1069 			continue;
1070 		}
1071 
1072 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1073 		    (argc >= 1)) {
1074 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1075 			argc--;
1076 			continue;
1077 		}
1078 
1079 		if (!strcasecmp(arg_name, "queue_mode") &&
1080 		    (argc >= 1)) {
1081 			const char *queue_mode_name = dm_shift_arg(as);
1082 
1083 			if (!strcasecmp(queue_mode_name, "bio"))
1084 				m->queue_mode = DM_TYPE_BIO_BASED;
1085 			else if (!strcasecmp(queue_mode_name, "rq"))
1086 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1087 			else if (!strcasecmp(queue_mode_name, "mq"))
1088 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1089 			else {
1090 				ti->error = "Unknown 'queue_mode' requested";
1091 				r = -EINVAL;
1092 			}
1093 			argc--;
1094 			continue;
1095 		}
1096 
1097 		ti->error = "Unrecognised multipath feature request";
1098 		r = -EINVAL;
1099 	} while (argc && !r);
1100 
1101 	return r;
1102 }
1103 
1104 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1105 {
1106 	/* target arguments */
1107 	static struct dm_arg _args[] = {
1108 		{0, 1024, "invalid number of priority groups"},
1109 		{0, 1024, "invalid initial priority group number"},
1110 	};
1111 
1112 	int r;
1113 	struct multipath *m;
1114 	struct dm_arg_set as;
1115 	unsigned pg_count = 0;
1116 	unsigned next_pg_num;
1117 
1118 	as.argc = argc;
1119 	as.argv = argv;
1120 
1121 	m = alloc_multipath(ti);
1122 	if (!m) {
1123 		ti->error = "can't allocate multipath";
1124 		return -EINVAL;
1125 	}
1126 
1127 	r = parse_features(&as, m);
1128 	if (r)
1129 		goto bad;
1130 
1131 	r = alloc_multipath_stage2(ti, m);
1132 	if (r)
1133 		goto bad;
1134 
1135 	r = parse_hw_handler(&as, m);
1136 	if (r)
1137 		goto bad;
1138 
1139 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1140 	if (r)
1141 		goto bad;
1142 
1143 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1144 	if (r)
1145 		goto bad;
1146 
1147 	if ((!m->nr_priority_groups && next_pg_num) ||
1148 	    (m->nr_priority_groups && !next_pg_num)) {
1149 		ti->error = "invalid initial priority group";
1150 		r = -EINVAL;
1151 		goto bad;
1152 	}
1153 
1154 	/* parse the priority groups */
1155 	while (as.argc) {
1156 		struct priority_group *pg;
1157 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1158 
1159 		pg = parse_priority_group(&as, m);
1160 		if (IS_ERR(pg)) {
1161 			r = PTR_ERR(pg);
1162 			goto bad;
1163 		}
1164 
1165 		nr_valid_paths += pg->nr_pgpaths;
1166 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1167 
1168 		list_add_tail(&pg->list, &m->priority_groups);
1169 		pg_count++;
1170 		pg->pg_num = pg_count;
1171 		if (!--next_pg_num)
1172 			m->next_pg = pg;
1173 	}
1174 
1175 	if (pg_count != m->nr_priority_groups) {
1176 		ti->error = "priority group count mismatch";
1177 		r = -EINVAL;
1178 		goto bad;
1179 	}
1180 
1181 	ti->num_flush_bios = 1;
1182 	ti->num_discard_bios = 1;
1183 	ti->num_write_same_bios = 1;
1184 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1185 		ti->per_io_data_size = multipath_per_bio_data_size();
1186 	else if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
1187 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1188 
1189 	return 0;
1190 
1191  bad:
1192 	free_multipath(m);
1193 	return r;
1194 }
1195 
1196 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1197 {
1198 	DEFINE_WAIT(wait);
1199 
1200 	while (1) {
1201 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1202 
1203 		if (!atomic_read(&m->pg_init_in_progress))
1204 			break;
1205 
1206 		io_schedule();
1207 	}
1208 	finish_wait(&m->pg_init_wait, &wait);
1209 }
1210 
1211 static void flush_multipath_work(struct multipath *m)
1212 {
1213 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1214 	smp_mb__after_atomic();
1215 
1216 	flush_workqueue(kmpath_handlerd);
1217 	multipath_wait_for_pg_init_completion(m);
1218 	flush_workqueue(kmultipathd);
1219 	flush_work(&m->trigger_event);
1220 
1221 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1222 	smp_mb__after_atomic();
1223 }
1224 
1225 static void multipath_dtr(struct dm_target *ti)
1226 {
1227 	struct multipath *m = ti->private;
1228 
1229 	flush_multipath_work(m);
1230 	free_multipath(m);
1231 }
1232 
1233 /*
1234  * Take a path out of use.
1235  */
1236 static int fail_path(struct pgpath *pgpath)
1237 {
1238 	unsigned long flags;
1239 	struct multipath *m = pgpath->pg->m;
1240 
1241 	spin_lock_irqsave(&m->lock, flags);
1242 
1243 	if (!pgpath->is_active)
1244 		goto out;
1245 
1246 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1247 
1248 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1249 	pgpath->is_active = false;
1250 	pgpath->fail_count++;
1251 
1252 	atomic_dec(&m->nr_valid_paths);
1253 
1254 	if (pgpath == m->current_pgpath)
1255 		m->current_pgpath = NULL;
1256 
1257 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1258 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1259 
1260 	schedule_work(&m->trigger_event);
1261 
1262 out:
1263 	spin_unlock_irqrestore(&m->lock, flags);
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Reinstate a previously-failed path
1270  */
1271 static int reinstate_path(struct pgpath *pgpath)
1272 {
1273 	int r = 0, run_queue = 0;
1274 	unsigned long flags;
1275 	struct multipath *m = pgpath->pg->m;
1276 	unsigned nr_valid_paths;
1277 
1278 	spin_lock_irqsave(&m->lock, flags);
1279 
1280 	if (pgpath->is_active)
1281 		goto out;
1282 
1283 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1284 
1285 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1286 	if (r)
1287 		goto out;
1288 
1289 	pgpath->is_active = true;
1290 
1291 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1292 	if (nr_valid_paths == 1) {
1293 		m->current_pgpath = NULL;
1294 		run_queue = 1;
1295 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1296 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1297 			atomic_inc(&m->pg_init_in_progress);
1298 	}
1299 
1300 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1301 		       pgpath->path.dev->name, nr_valid_paths);
1302 
1303 	schedule_work(&m->trigger_event);
1304 
1305 out:
1306 	spin_unlock_irqrestore(&m->lock, flags);
1307 	if (run_queue) {
1308 		dm_table_run_md_queue_async(m->ti->table);
1309 		process_queued_io_list(m);
1310 	}
1311 
1312 	return r;
1313 }
1314 
1315 /*
1316  * Fail or reinstate all paths that match the provided struct dm_dev.
1317  */
1318 static int action_dev(struct multipath *m, struct dm_dev *dev,
1319 		      action_fn action)
1320 {
1321 	int r = -EINVAL;
1322 	struct pgpath *pgpath;
1323 	struct priority_group *pg;
1324 
1325 	list_for_each_entry(pg, &m->priority_groups, list) {
1326 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1327 			if (pgpath->path.dev == dev)
1328 				r = action(pgpath);
1329 		}
1330 	}
1331 
1332 	return r;
1333 }
1334 
1335 /*
1336  * Temporarily try to avoid having to use the specified PG
1337  */
1338 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1339 		      bool bypassed)
1340 {
1341 	unsigned long flags;
1342 
1343 	spin_lock_irqsave(&m->lock, flags);
1344 
1345 	pg->bypassed = bypassed;
1346 	m->current_pgpath = NULL;
1347 	m->current_pg = NULL;
1348 
1349 	spin_unlock_irqrestore(&m->lock, flags);
1350 
1351 	schedule_work(&m->trigger_event);
1352 }
1353 
1354 /*
1355  * Switch to using the specified PG from the next I/O that gets mapped
1356  */
1357 static int switch_pg_num(struct multipath *m, const char *pgstr)
1358 {
1359 	struct priority_group *pg;
1360 	unsigned pgnum;
1361 	unsigned long flags;
1362 	char dummy;
1363 
1364 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1365 	    (pgnum > m->nr_priority_groups)) {
1366 		DMWARN("invalid PG number supplied to switch_pg_num");
1367 		return -EINVAL;
1368 	}
1369 
1370 	spin_lock_irqsave(&m->lock, flags);
1371 	list_for_each_entry(pg, &m->priority_groups, list) {
1372 		pg->bypassed = false;
1373 		if (--pgnum)
1374 			continue;
1375 
1376 		m->current_pgpath = NULL;
1377 		m->current_pg = NULL;
1378 		m->next_pg = pg;
1379 	}
1380 	spin_unlock_irqrestore(&m->lock, flags);
1381 
1382 	schedule_work(&m->trigger_event);
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Set/clear bypassed status of a PG.
1388  * PGs are numbered upwards from 1 in the order they were declared.
1389  */
1390 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1391 {
1392 	struct priority_group *pg;
1393 	unsigned pgnum;
1394 	char dummy;
1395 
1396 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1397 	    (pgnum > m->nr_priority_groups)) {
1398 		DMWARN("invalid PG number supplied to bypass_pg");
1399 		return -EINVAL;
1400 	}
1401 
1402 	list_for_each_entry(pg, &m->priority_groups, list) {
1403 		if (!--pgnum)
1404 			break;
1405 	}
1406 
1407 	bypass_pg(m, pg, bypassed);
1408 	return 0;
1409 }
1410 
1411 /*
1412  * Should we retry pg_init immediately?
1413  */
1414 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1415 {
1416 	unsigned long flags;
1417 	bool limit_reached = false;
1418 
1419 	spin_lock_irqsave(&m->lock, flags);
1420 
1421 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1422 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1423 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1424 	else
1425 		limit_reached = true;
1426 
1427 	spin_unlock_irqrestore(&m->lock, flags);
1428 
1429 	return limit_reached;
1430 }
1431 
1432 static void pg_init_done(void *data, int errors)
1433 {
1434 	struct pgpath *pgpath = data;
1435 	struct priority_group *pg = pgpath->pg;
1436 	struct multipath *m = pg->m;
1437 	unsigned long flags;
1438 	bool delay_retry = false;
1439 
1440 	/* device or driver problems */
1441 	switch (errors) {
1442 	case SCSI_DH_OK:
1443 		break;
1444 	case SCSI_DH_NOSYS:
1445 		if (!m->hw_handler_name) {
1446 			errors = 0;
1447 			break;
1448 		}
1449 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1450 		      "Error %d.", m->hw_handler_name, errors);
1451 		/*
1452 		 * Fail path for now, so we do not ping pong
1453 		 */
1454 		fail_path(pgpath);
1455 		break;
1456 	case SCSI_DH_DEV_TEMP_BUSY:
1457 		/*
1458 		 * Probably doing something like FW upgrade on the
1459 		 * controller so try the other pg.
1460 		 */
1461 		bypass_pg(m, pg, true);
1462 		break;
1463 	case SCSI_DH_RETRY:
1464 		/* Wait before retrying. */
1465 		delay_retry = 1;
1466 	case SCSI_DH_IMM_RETRY:
1467 	case SCSI_DH_RES_TEMP_UNAVAIL:
1468 		if (pg_init_limit_reached(m, pgpath))
1469 			fail_path(pgpath);
1470 		errors = 0;
1471 		break;
1472 	case SCSI_DH_DEV_OFFLINED:
1473 	default:
1474 		/*
1475 		 * We probably do not want to fail the path for a device
1476 		 * error, but this is what the old dm did. In future
1477 		 * patches we can do more advanced handling.
1478 		 */
1479 		fail_path(pgpath);
1480 	}
1481 
1482 	spin_lock_irqsave(&m->lock, flags);
1483 	if (errors) {
1484 		if (pgpath == m->current_pgpath) {
1485 			DMERR("Could not failover device. Error %d.", errors);
1486 			m->current_pgpath = NULL;
1487 			m->current_pg = NULL;
1488 		}
1489 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1490 		pg->bypassed = false;
1491 
1492 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1493 		/* Activations of other paths are still on going */
1494 		goto out;
1495 
1496 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1497 		if (delay_retry)
1498 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1499 		else
1500 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1501 
1502 		if (__pg_init_all_paths(m))
1503 			goto out;
1504 	}
1505 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1506 
1507 	process_queued_io_list(m);
1508 
1509 	/*
1510 	 * Wake up any thread waiting to suspend.
1511 	 */
1512 	wake_up(&m->pg_init_wait);
1513 
1514 out:
1515 	spin_unlock_irqrestore(&m->lock, flags);
1516 }
1517 
1518 static void activate_path(struct work_struct *work)
1519 {
1520 	struct pgpath *pgpath =
1521 		container_of(work, struct pgpath, activate_path.work);
1522 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1523 
1524 	if (pgpath->is_active && !blk_queue_dying(q))
1525 		scsi_dh_activate(q, pg_init_done, pgpath);
1526 	else
1527 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1528 }
1529 
1530 static int noretry_error(int error)
1531 {
1532 	switch (error) {
1533 	case -EBADE:
1534 		/*
1535 		 * EBADE signals an reservation conflict.
1536 		 * We shouldn't fail the path here as we can communicate with
1537 		 * the target.  We should failover to the next path, but in
1538 		 * doing so we might be causing a ping-pong between paths.
1539 		 * So just return the reservation conflict error.
1540 		 */
1541 	case -EOPNOTSUPP:
1542 	case -EREMOTEIO:
1543 	case -EILSEQ:
1544 	case -ENODATA:
1545 	case -ENOSPC:
1546 		return 1;
1547 	}
1548 
1549 	/* Anything else could be a path failure, so should be retried */
1550 	return 0;
1551 }
1552 
1553 /*
1554  * end_io handling
1555  */
1556 static int do_end_io(struct multipath *m, struct request *clone,
1557 		     int error, struct dm_mpath_io *mpio)
1558 {
1559 	/*
1560 	 * We don't queue any clone request inside the multipath target
1561 	 * during end I/O handling, since those clone requests don't have
1562 	 * bio clones.  If we queue them inside the multipath target,
1563 	 * we need to make bio clones, that requires memory allocation.
1564 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1565 	 *  don't have bio clones.)
1566 	 * Instead of queueing the clone request here, we queue the original
1567 	 * request into dm core, which will remake a clone request and
1568 	 * clone bios for it and resubmit it later.
1569 	 */
1570 	int r = DM_ENDIO_REQUEUE;
1571 
1572 	if (!error && !clone->errors)
1573 		return 0;	/* I/O complete */
1574 
1575 	if (noretry_error(error))
1576 		return error;
1577 
1578 	if (mpio->pgpath)
1579 		fail_path(mpio->pgpath);
1580 
1581 	if (!atomic_read(&m->nr_valid_paths)) {
1582 		if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1583 			if (!must_push_back_rq(m))
1584 				r = -EIO;
1585 		}
1586 	}
1587 
1588 	return r;
1589 }
1590 
1591 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1592 			    int error, union map_info *map_context)
1593 {
1594 	struct multipath *m = ti->private;
1595 	struct dm_mpath_io *mpio = get_mpio(map_context);
1596 	struct pgpath *pgpath;
1597 	struct path_selector *ps;
1598 	int r;
1599 
1600 	BUG_ON(!mpio);
1601 
1602 	r = do_end_io(m, clone, error, mpio);
1603 	pgpath = mpio->pgpath;
1604 	if (pgpath) {
1605 		ps = &pgpath->pg->ps;
1606 		if (ps->type->end_io)
1607 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1608 	}
1609 	clear_request_fn_mpio(m, map_context);
1610 
1611 	return r;
1612 }
1613 
1614 static int do_end_io_bio(struct multipath *m, struct bio *clone,
1615 			 int error, struct dm_mpath_io *mpio)
1616 {
1617 	unsigned long flags;
1618 
1619 	if (!error)
1620 		return 0;	/* I/O complete */
1621 
1622 	if (noretry_error(error))
1623 		return error;
1624 
1625 	if (mpio->pgpath)
1626 		fail_path(mpio->pgpath);
1627 
1628 	if (!atomic_read(&m->nr_valid_paths)) {
1629 		if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1630 			if (!must_push_back_bio(m))
1631 				return -EIO;
1632 			return DM_ENDIO_REQUEUE;
1633 		}
1634 	}
1635 
1636 	/* Queue for the daemon to resubmit */
1637 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1638 
1639 	spin_lock_irqsave(&m->lock, flags);
1640 	bio_list_add(&m->queued_bios, clone);
1641 	spin_unlock_irqrestore(&m->lock, flags);
1642 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1643 		queue_work(kmultipathd, &m->process_queued_bios);
1644 
1645 	return DM_ENDIO_INCOMPLETE;
1646 }
1647 
1648 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error)
1649 {
1650 	struct multipath *m = ti->private;
1651 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1652 	struct pgpath *pgpath;
1653 	struct path_selector *ps;
1654 	int r;
1655 
1656 	BUG_ON(!mpio);
1657 
1658 	r = do_end_io_bio(m, clone, error, mpio);
1659 	pgpath = mpio->pgpath;
1660 	if (pgpath) {
1661 		ps = &pgpath->pg->ps;
1662 		if (ps->type->end_io)
1663 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1664 	}
1665 
1666 	return r;
1667 }
1668 
1669 /*
1670  * Suspend can't complete until all the I/O is processed so if
1671  * the last path fails we must error any remaining I/O.
1672  * Note that if the freeze_bdev fails while suspending, the
1673  * queue_if_no_path state is lost - userspace should reset it.
1674  */
1675 static void multipath_presuspend(struct dm_target *ti)
1676 {
1677 	struct multipath *m = ti->private;
1678 
1679 	queue_if_no_path(m, false, true);
1680 }
1681 
1682 static void multipath_postsuspend(struct dm_target *ti)
1683 {
1684 	struct multipath *m = ti->private;
1685 
1686 	mutex_lock(&m->work_mutex);
1687 	flush_multipath_work(m);
1688 	mutex_unlock(&m->work_mutex);
1689 }
1690 
1691 /*
1692  * Restore the queue_if_no_path setting.
1693  */
1694 static void multipath_resume(struct dm_target *ti)
1695 {
1696 	struct multipath *m = ti->private;
1697 	unsigned long flags;
1698 
1699 	spin_lock_irqsave(&m->lock, flags);
1700 	if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags))
1701 		set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1702 	else
1703 		clear_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1704 	spin_unlock_irqrestore(&m->lock, flags);
1705 }
1706 
1707 /*
1708  * Info output has the following format:
1709  * num_multipath_feature_args [multipath_feature_args]*
1710  * num_handler_status_args [handler_status_args]*
1711  * num_groups init_group_number
1712  *            [A|D|E num_ps_status_args [ps_status_args]*
1713  *             num_paths num_selector_args
1714  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1715  *
1716  * Table output has the following format (identical to the constructor string):
1717  * num_feature_args [features_args]*
1718  * num_handler_args hw_handler [hw_handler_args]*
1719  * num_groups init_group_number
1720  *     [priority selector-name num_ps_args [ps_args]*
1721  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1722  */
1723 static void multipath_status(struct dm_target *ti, status_type_t type,
1724 			     unsigned status_flags, char *result, unsigned maxlen)
1725 {
1726 	int sz = 0;
1727 	unsigned long flags;
1728 	struct multipath *m = ti->private;
1729 	struct priority_group *pg;
1730 	struct pgpath *p;
1731 	unsigned pg_num;
1732 	char state;
1733 
1734 	spin_lock_irqsave(&m->lock, flags);
1735 
1736 	/* Features */
1737 	if (type == STATUSTYPE_INFO)
1738 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1739 		       atomic_read(&m->pg_init_count));
1740 	else {
1741 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1742 			      (m->pg_init_retries > 0) * 2 +
1743 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1744 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1745 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1746 
1747 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1748 			DMEMIT("queue_if_no_path ");
1749 		if (m->pg_init_retries)
1750 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1751 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1752 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1753 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1754 			DMEMIT("retain_attached_hw_handler ");
1755 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1756 			switch(m->queue_mode) {
1757 			case DM_TYPE_BIO_BASED:
1758 				DMEMIT("queue_mode bio ");
1759 				break;
1760 			case DM_TYPE_MQ_REQUEST_BASED:
1761 				DMEMIT("queue_mode mq ");
1762 				break;
1763 			}
1764 		}
1765 	}
1766 
1767 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1768 		DMEMIT("0 ");
1769 	else
1770 		DMEMIT("1 %s ", m->hw_handler_name);
1771 
1772 	DMEMIT("%u ", m->nr_priority_groups);
1773 
1774 	if (m->next_pg)
1775 		pg_num = m->next_pg->pg_num;
1776 	else if (m->current_pg)
1777 		pg_num = m->current_pg->pg_num;
1778 	else
1779 		pg_num = (m->nr_priority_groups ? 1 : 0);
1780 
1781 	DMEMIT("%u ", pg_num);
1782 
1783 	switch (type) {
1784 	case STATUSTYPE_INFO:
1785 		list_for_each_entry(pg, &m->priority_groups, list) {
1786 			if (pg->bypassed)
1787 				state = 'D';	/* Disabled */
1788 			else if (pg == m->current_pg)
1789 				state = 'A';	/* Currently Active */
1790 			else
1791 				state = 'E';	/* Enabled */
1792 
1793 			DMEMIT("%c ", state);
1794 
1795 			if (pg->ps.type->status)
1796 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1797 							  result + sz,
1798 							  maxlen - sz);
1799 			else
1800 				DMEMIT("0 ");
1801 
1802 			DMEMIT("%u %u ", pg->nr_pgpaths,
1803 			       pg->ps.type->info_args);
1804 
1805 			list_for_each_entry(p, &pg->pgpaths, list) {
1806 				DMEMIT("%s %s %u ", p->path.dev->name,
1807 				       p->is_active ? "A" : "F",
1808 				       p->fail_count);
1809 				if (pg->ps.type->status)
1810 					sz += pg->ps.type->status(&pg->ps,
1811 					      &p->path, type, result + sz,
1812 					      maxlen - sz);
1813 			}
1814 		}
1815 		break;
1816 
1817 	case STATUSTYPE_TABLE:
1818 		list_for_each_entry(pg, &m->priority_groups, list) {
1819 			DMEMIT("%s ", pg->ps.type->name);
1820 
1821 			if (pg->ps.type->status)
1822 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1823 							  result + sz,
1824 							  maxlen - sz);
1825 			else
1826 				DMEMIT("0 ");
1827 
1828 			DMEMIT("%u %u ", pg->nr_pgpaths,
1829 			       pg->ps.type->table_args);
1830 
1831 			list_for_each_entry(p, &pg->pgpaths, list) {
1832 				DMEMIT("%s ", p->path.dev->name);
1833 				if (pg->ps.type->status)
1834 					sz += pg->ps.type->status(&pg->ps,
1835 					      &p->path, type, result + sz,
1836 					      maxlen - sz);
1837 			}
1838 		}
1839 		break;
1840 	}
1841 
1842 	spin_unlock_irqrestore(&m->lock, flags);
1843 }
1844 
1845 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1846 {
1847 	int r = -EINVAL;
1848 	struct dm_dev *dev;
1849 	struct multipath *m = ti->private;
1850 	action_fn action;
1851 
1852 	mutex_lock(&m->work_mutex);
1853 
1854 	if (dm_suspended(ti)) {
1855 		r = -EBUSY;
1856 		goto out;
1857 	}
1858 
1859 	if (argc == 1) {
1860 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1861 			r = queue_if_no_path(m, true, false);
1862 			goto out;
1863 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1864 			r = queue_if_no_path(m, false, false);
1865 			goto out;
1866 		}
1867 	}
1868 
1869 	if (argc != 2) {
1870 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1871 		goto out;
1872 	}
1873 
1874 	if (!strcasecmp(argv[0], "disable_group")) {
1875 		r = bypass_pg_num(m, argv[1], true);
1876 		goto out;
1877 	} else if (!strcasecmp(argv[0], "enable_group")) {
1878 		r = bypass_pg_num(m, argv[1], false);
1879 		goto out;
1880 	} else if (!strcasecmp(argv[0], "switch_group")) {
1881 		r = switch_pg_num(m, argv[1]);
1882 		goto out;
1883 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1884 		action = reinstate_path;
1885 	else if (!strcasecmp(argv[0], "fail_path"))
1886 		action = fail_path;
1887 	else {
1888 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1889 		goto out;
1890 	}
1891 
1892 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1893 	if (r) {
1894 		DMWARN("message: error getting device %s",
1895 		       argv[1]);
1896 		goto out;
1897 	}
1898 
1899 	r = action_dev(m, dev, action);
1900 
1901 	dm_put_device(ti, dev);
1902 
1903 out:
1904 	mutex_unlock(&m->work_mutex);
1905 	return r;
1906 }
1907 
1908 static int multipath_prepare_ioctl(struct dm_target *ti,
1909 		struct block_device **bdev, fmode_t *mode)
1910 {
1911 	struct multipath *m = ti->private;
1912 	struct pgpath *current_pgpath;
1913 	int r;
1914 
1915 	current_pgpath = lockless_dereference(m->current_pgpath);
1916 	if (!current_pgpath)
1917 		current_pgpath = choose_pgpath(m, 0);
1918 
1919 	if (current_pgpath) {
1920 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1921 			*bdev = current_pgpath->path.dev->bdev;
1922 			*mode = current_pgpath->path.dev->mode;
1923 			r = 0;
1924 		} else {
1925 			/* pg_init has not started or completed */
1926 			r = -ENOTCONN;
1927 		}
1928 	} else {
1929 		/* No path is available */
1930 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1931 			r = -ENOTCONN;
1932 		else
1933 			r = -EIO;
1934 	}
1935 
1936 	if (r == -ENOTCONN) {
1937 		if (!lockless_dereference(m->current_pg)) {
1938 			/* Path status changed, redo selection */
1939 			(void) choose_pgpath(m, 0);
1940 		}
1941 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1942 			pg_init_all_paths(m);
1943 		dm_table_run_md_queue_async(m->ti->table);
1944 		process_queued_io_list(m);
1945 	}
1946 
1947 	/*
1948 	 * Only pass ioctls through if the device sizes match exactly.
1949 	 */
1950 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1951 		return 1;
1952 	return r;
1953 }
1954 
1955 static int multipath_iterate_devices(struct dm_target *ti,
1956 				     iterate_devices_callout_fn fn, void *data)
1957 {
1958 	struct multipath *m = ti->private;
1959 	struct priority_group *pg;
1960 	struct pgpath *p;
1961 	int ret = 0;
1962 
1963 	list_for_each_entry(pg, &m->priority_groups, list) {
1964 		list_for_each_entry(p, &pg->pgpaths, list) {
1965 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1966 			if (ret)
1967 				goto out;
1968 		}
1969 	}
1970 
1971 out:
1972 	return ret;
1973 }
1974 
1975 static int pgpath_busy(struct pgpath *pgpath)
1976 {
1977 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1978 
1979 	return blk_lld_busy(q);
1980 }
1981 
1982 /*
1983  * We return "busy", only when we can map I/Os but underlying devices
1984  * are busy (so even if we map I/Os now, the I/Os will wait on
1985  * the underlying queue).
1986  * In other words, if we want to kill I/Os or queue them inside us
1987  * due to map unavailability, we don't return "busy".  Otherwise,
1988  * dm core won't give us the I/Os and we can't do what we want.
1989  */
1990 static int multipath_busy(struct dm_target *ti)
1991 {
1992 	bool busy = false, has_active = false;
1993 	struct multipath *m = ti->private;
1994 	struct priority_group *pg, *next_pg;
1995 	struct pgpath *pgpath;
1996 
1997 	/* pg_init in progress */
1998 	if (atomic_read(&m->pg_init_in_progress))
1999 		return true;
2000 
2001 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
2002 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
2003 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
2004 
2005 	/* Guess which priority_group will be used at next mapping time */
2006 	pg = lockless_dereference(m->current_pg);
2007 	next_pg = lockless_dereference(m->next_pg);
2008 	if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg))
2009 		pg = next_pg;
2010 
2011 	if (!pg) {
2012 		/*
2013 		 * We don't know which pg will be used at next mapping time.
2014 		 * We don't call choose_pgpath() here to avoid to trigger
2015 		 * pg_init just by busy checking.
2016 		 * So we don't know whether underlying devices we will be using
2017 		 * at next mapping time are busy or not. Just try mapping.
2018 		 */
2019 		return busy;
2020 	}
2021 
2022 	/*
2023 	 * If there is one non-busy active path at least, the path selector
2024 	 * will be able to select it. So we consider such a pg as not busy.
2025 	 */
2026 	busy = true;
2027 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2028 		if (pgpath->is_active) {
2029 			has_active = true;
2030 			if (!pgpath_busy(pgpath)) {
2031 				busy = false;
2032 				break;
2033 			}
2034 		}
2035 	}
2036 
2037 	if (!has_active) {
2038 		/*
2039 		 * No active path in this pg, so this pg won't be used and
2040 		 * the current_pg will be changed at next mapping time.
2041 		 * We need to try mapping to determine it.
2042 		 */
2043 		busy = false;
2044 	}
2045 
2046 	return busy;
2047 }
2048 
2049 /*-----------------------------------------------------------------
2050  * Module setup
2051  *---------------------------------------------------------------*/
2052 static struct target_type multipath_target = {
2053 	.name = "multipath",
2054 	.version = {1, 12, 0},
2055 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
2056 	.module = THIS_MODULE,
2057 	.ctr = multipath_ctr,
2058 	.dtr = multipath_dtr,
2059 	.map_rq = multipath_map,
2060 	.clone_and_map_rq = multipath_clone_and_map,
2061 	.release_clone_rq = multipath_release_clone,
2062 	.rq_end_io = multipath_end_io,
2063 	.map = multipath_map_bio,
2064 	.end_io = multipath_end_io_bio,
2065 	.presuspend = multipath_presuspend,
2066 	.postsuspend = multipath_postsuspend,
2067 	.resume = multipath_resume,
2068 	.status = multipath_status,
2069 	.message = multipath_message,
2070 	.prepare_ioctl = multipath_prepare_ioctl,
2071 	.iterate_devices = multipath_iterate_devices,
2072 	.busy = multipath_busy,
2073 };
2074 
2075 static int __init dm_multipath_init(void)
2076 {
2077 	int r;
2078 
2079 	/* allocate a slab for the dm_mpath_ios */
2080 	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
2081 	if (!_mpio_cache)
2082 		return -ENOMEM;
2083 
2084 	r = dm_register_target(&multipath_target);
2085 	if (r < 0) {
2086 		DMERR("request-based register failed %d", r);
2087 		r = -EINVAL;
2088 		goto bad_register_target;
2089 	}
2090 
2091 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2092 	if (!kmultipathd) {
2093 		DMERR("failed to create workqueue kmpathd");
2094 		r = -ENOMEM;
2095 		goto bad_alloc_kmultipathd;
2096 	}
2097 
2098 	/*
2099 	 * A separate workqueue is used to handle the device handlers
2100 	 * to avoid overloading existing workqueue. Overloading the
2101 	 * old workqueue would also create a bottleneck in the
2102 	 * path of the storage hardware device activation.
2103 	 */
2104 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2105 						  WQ_MEM_RECLAIM);
2106 	if (!kmpath_handlerd) {
2107 		DMERR("failed to create workqueue kmpath_handlerd");
2108 		r = -ENOMEM;
2109 		goto bad_alloc_kmpath_handlerd;
2110 	}
2111 
2112 	return 0;
2113 
2114 bad_alloc_kmpath_handlerd:
2115 	destroy_workqueue(kmultipathd);
2116 bad_alloc_kmultipathd:
2117 	dm_unregister_target(&multipath_target);
2118 bad_register_target:
2119 	kmem_cache_destroy(_mpio_cache);
2120 
2121 	return r;
2122 }
2123 
2124 static void __exit dm_multipath_exit(void)
2125 {
2126 	destroy_workqueue(kmpath_handlerd);
2127 	destroy_workqueue(kmultipathd);
2128 
2129 	dm_unregister_target(&multipath_target);
2130 	kmem_cache_destroy(_mpio_cache);
2131 }
2132 
2133 module_init(dm_multipath_init);
2134 module_exit(dm_multipath_exit);
2135 
2136 MODULE_DESCRIPTION(DM_NAME " multipath target");
2137 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2138 MODULE_LICENSE("GPL");
2139