1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/timer.h> 24 #include <linux/workqueue.h> 25 #include <linux/delay.h> 26 #include <scsi/scsi_dh.h> 27 #include <linux/atomic.h> 28 #include <linux/blk-mq.h> 29 30 #define DM_MSG_PREFIX "multipath" 31 #define DM_PG_INIT_DELAY_MSECS 2000 32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0 34 35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT; 36 37 /* Path properties */ 38 struct pgpath { 39 struct list_head list; 40 41 struct priority_group *pg; /* Owning PG */ 42 unsigned fail_count; /* Cumulative failure count */ 43 44 struct dm_path path; 45 struct delayed_work activate_path; 46 47 bool is_active:1; /* Path status */ 48 }; 49 50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 51 52 /* 53 * Paths are grouped into Priority Groups and numbered from 1 upwards. 54 * Each has a path selector which controls which path gets used. 55 */ 56 struct priority_group { 57 struct list_head list; 58 59 struct multipath *m; /* Owning multipath instance */ 60 struct path_selector ps; 61 62 unsigned pg_num; /* Reference number */ 63 unsigned nr_pgpaths; /* Number of paths in PG */ 64 struct list_head pgpaths; 65 66 bool bypassed:1; /* Temporarily bypass this PG? */ 67 }; 68 69 /* Multipath context */ 70 struct multipath { 71 unsigned long flags; /* Multipath state flags */ 72 73 spinlock_t lock; 74 enum dm_queue_mode queue_mode; 75 76 struct pgpath *current_pgpath; 77 struct priority_group *current_pg; 78 struct priority_group *next_pg; /* Switch to this PG if set */ 79 80 atomic_t nr_valid_paths; /* Total number of usable paths */ 81 unsigned nr_priority_groups; 82 struct list_head priority_groups; 83 84 const char *hw_handler_name; 85 char *hw_handler_params; 86 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 87 unsigned pg_init_retries; /* Number of times to retry pg_init */ 88 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 89 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 90 atomic_t pg_init_count; /* Number of times pg_init called */ 91 92 struct mutex work_mutex; 93 struct work_struct trigger_event; 94 struct dm_target *ti; 95 96 struct work_struct process_queued_bios; 97 struct bio_list queued_bios; 98 99 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */ 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 static void queue_if_no_path_timeout_work(struct timer_list *t); 118 119 /*----------------------------------------------- 120 * Multipath state flags. 121 *-----------------------------------------------*/ 122 123 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 124 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 127 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 128 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 129 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 130 131 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m) 132 { 133 bool r = test_bit(MPATHF_bit, &m->flags); 134 135 if (r) { 136 unsigned long flags; 137 spin_lock_irqsave(&m->lock, flags); 138 r = test_bit(MPATHF_bit, &m->flags); 139 spin_unlock_irqrestore(&m->lock, flags); 140 } 141 142 return r; 143 } 144 145 /*----------------------------------------------- 146 * Allocation routines 147 *-----------------------------------------------*/ 148 149 static struct pgpath *alloc_pgpath(void) 150 { 151 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 152 153 if (!pgpath) 154 return NULL; 155 156 pgpath->is_active = true; 157 158 return pgpath; 159 } 160 161 static void free_pgpath(struct pgpath *pgpath) 162 { 163 kfree(pgpath); 164 } 165 166 static struct priority_group *alloc_priority_group(void) 167 { 168 struct priority_group *pg; 169 170 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 171 172 if (pg) 173 INIT_LIST_HEAD(&pg->pgpaths); 174 175 return pg; 176 } 177 178 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 179 { 180 struct pgpath *pgpath, *tmp; 181 182 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 183 list_del(&pgpath->list); 184 dm_put_device(ti, pgpath->path.dev); 185 free_pgpath(pgpath); 186 } 187 } 188 189 static void free_priority_group(struct priority_group *pg, 190 struct dm_target *ti) 191 { 192 struct path_selector *ps = &pg->ps; 193 194 if (ps->type) { 195 ps->type->destroy(ps); 196 dm_put_path_selector(ps->type); 197 } 198 199 free_pgpaths(&pg->pgpaths, ti); 200 kfree(pg); 201 } 202 203 static struct multipath *alloc_multipath(struct dm_target *ti) 204 { 205 struct multipath *m; 206 207 m = kzalloc(sizeof(*m), GFP_KERNEL); 208 if (m) { 209 INIT_LIST_HEAD(&m->priority_groups); 210 spin_lock_init(&m->lock); 211 atomic_set(&m->nr_valid_paths, 0); 212 INIT_WORK(&m->trigger_event, trigger_event); 213 mutex_init(&m->work_mutex); 214 215 m->queue_mode = DM_TYPE_NONE; 216 217 m->ti = ti; 218 ti->private = m; 219 220 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0); 221 } 222 223 return m; 224 } 225 226 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 227 { 228 if (m->queue_mode == DM_TYPE_NONE) { 229 m->queue_mode = DM_TYPE_REQUEST_BASED; 230 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 231 INIT_WORK(&m->process_queued_bios, process_queued_bios); 232 /* 233 * bio-based doesn't support any direct scsi_dh management; 234 * it just discovers if a scsi_dh is attached. 235 */ 236 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 237 } 238 239 dm_table_set_type(ti->table, m->queue_mode); 240 241 /* 242 * Init fields that are only used when a scsi_dh is attached 243 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 244 */ 245 set_bit(MPATHF_QUEUE_IO, &m->flags); 246 atomic_set(&m->pg_init_in_progress, 0); 247 atomic_set(&m->pg_init_count, 0); 248 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 249 init_waitqueue_head(&m->pg_init_wait); 250 251 return 0; 252 } 253 254 static void free_multipath(struct multipath *m) 255 { 256 struct priority_group *pg, *tmp; 257 258 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 259 list_del(&pg->list); 260 free_priority_group(pg, m->ti); 261 } 262 263 kfree(m->hw_handler_name); 264 kfree(m->hw_handler_params); 265 mutex_destroy(&m->work_mutex); 266 kfree(m); 267 } 268 269 static struct dm_mpath_io *get_mpio(union map_info *info) 270 { 271 return info->ptr; 272 } 273 274 static size_t multipath_per_bio_data_size(void) 275 { 276 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 277 } 278 279 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 280 { 281 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 282 } 283 284 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 285 { 286 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 287 void *bio_details = mpio + 1; 288 return bio_details; 289 } 290 291 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 292 { 293 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 294 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 295 296 mpio->nr_bytes = bio->bi_iter.bi_size; 297 mpio->pgpath = NULL; 298 *mpio_p = mpio; 299 300 dm_bio_record(bio_details, bio); 301 } 302 303 /*----------------------------------------------- 304 * Path selection 305 *-----------------------------------------------*/ 306 307 static int __pg_init_all_paths(struct multipath *m) 308 { 309 struct pgpath *pgpath; 310 unsigned long pg_init_delay = 0; 311 312 lockdep_assert_held(&m->lock); 313 314 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 315 return 0; 316 317 atomic_inc(&m->pg_init_count); 318 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 319 320 /* Check here to reset pg_init_required */ 321 if (!m->current_pg) 322 return 0; 323 324 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 325 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 326 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 327 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 328 /* Skip failed paths */ 329 if (!pgpath->is_active) 330 continue; 331 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 332 pg_init_delay)) 333 atomic_inc(&m->pg_init_in_progress); 334 } 335 return atomic_read(&m->pg_init_in_progress); 336 } 337 338 static int pg_init_all_paths(struct multipath *m) 339 { 340 int ret; 341 unsigned long flags; 342 343 spin_lock_irqsave(&m->lock, flags); 344 ret = __pg_init_all_paths(m); 345 spin_unlock_irqrestore(&m->lock, flags); 346 347 return ret; 348 } 349 350 static void __switch_pg(struct multipath *m, struct priority_group *pg) 351 { 352 lockdep_assert_held(&m->lock); 353 354 m->current_pg = pg; 355 356 /* Must we initialise the PG first, and queue I/O till it's ready? */ 357 if (m->hw_handler_name) { 358 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 359 set_bit(MPATHF_QUEUE_IO, &m->flags); 360 } else { 361 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 362 clear_bit(MPATHF_QUEUE_IO, &m->flags); 363 } 364 365 atomic_set(&m->pg_init_count, 0); 366 } 367 368 static struct pgpath *choose_path_in_pg(struct multipath *m, 369 struct priority_group *pg, 370 size_t nr_bytes) 371 { 372 unsigned long flags; 373 struct dm_path *path; 374 struct pgpath *pgpath; 375 376 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 377 if (!path) 378 return ERR_PTR(-ENXIO); 379 380 pgpath = path_to_pgpath(path); 381 382 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 383 /* Only update current_pgpath if pg changed */ 384 spin_lock_irqsave(&m->lock, flags); 385 m->current_pgpath = pgpath; 386 __switch_pg(m, pg); 387 spin_unlock_irqrestore(&m->lock, flags); 388 } 389 390 return pgpath; 391 } 392 393 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 394 { 395 unsigned long flags; 396 struct priority_group *pg; 397 struct pgpath *pgpath; 398 unsigned bypassed = 1; 399 400 if (!atomic_read(&m->nr_valid_paths)) { 401 spin_lock_irqsave(&m->lock, flags); 402 clear_bit(MPATHF_QUEUE_IO, &m->flags); 403 spin_unlock_irqrestore(&m->lock, flags); 404 goto failed; 405 } 406 407 /* Were we instructed to switch PG? */ 408 if (READ_ONCE(m->next_pg)) { 409 spin_lock_irqsave(&m->lock, flags); 410 pg = m->next_pg; 411 if (!pg) { 412 spin_unlock_irqrestore(&m->lock, flags); 413 goto check_current_pg; 414 } 415 m->next_pg = NULL; 416 spin_unlock_irqrestore(&m->lock, flags); 417 pgpath = choose_path_in_pg(m, pg, nr_bytes); 418 if (!IS_ERR_OR_NULL(pgpath)) 419 return pgpath; 420 } 421 422 /* Don't change PG until it has no remaining paths */ 423 check_current_pg: 424 pg = READ_ONCE(m->current_pg); 425 if (pg) { 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) 428 return pgpath; 429 } 430 431 /* 432 * Loop through priority groups until we find a valid path. 433 * First time we skip PGs marked 'bypassed'. 434 * Second time we only try the ones we skipped, but set 435 * pg_init_delay_retry so we do not hammer controllers. 436 */ 437 do { 438 list_for_each_entry(pg, &m->priority_groups, list) { 439 if (pg->bypassed == !!bypassed) 440 continue; 441 pgpath = choose_path_in_pg(m, pg, nr_bytes); 442 if (!IS_ERR_OR_NULL(pgpath)) { 443 if (!bypassed) { 444 spin_lock_irqsave(&m->lock, flags); 445 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 446 spin_unlock_irqrestore(&m->lock, flags); 447 } 448 return pgpath; 449 } 450 } 451 } while (bypassed--); 452 453 failed: 454 spin_lock_irqsave(&m->lock, flags); 455 m->current_pgpath = NULL; 456 m->current_pg = NULL; 457 spin_unlock_irqrestore(&m->lock, flags); 458 459 return NULL; 460 } 461 462 /* 463 * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited() 464 * report the function name and line number of the function from which 465 * it has been invoked. 466 */ 467 #define dm_report_EIO(m) \ 468 do { \ 469 DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \ 470 dm_table_device_name((m)->ti->table), \ 471 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 472 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 473 dm_noflush_suspending((m)->ti)); \ 474 } while (0) 475 476 /* 477 * Check whether bios must be queued in the device-mapper core rather 478 * than here in the target. 479 */ 480 static bool __must_push_back(struct multipath *m) 481 { 482 return dm_noflush_suspending(m->ti); 483 } 484 485 static bool must_push_back_rq(struct multipath *m) 486 { 487 unsigned long flags; 488 bool ret; 489 490 spin_lock_irqsave(&m->lock, flags); 491 ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m)); 492 spin_unlock_irqrestore(&m->lock, flags); 493 494 return ret; 495 } 496 497 /* 498 * Map cloned requests (request-based multipath) 499 */ 500 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 501 union map_info *map_context, 502 struct request **__clone) 503 { 504 struct multipath *m = ti->private; 505 size_t nr_bytes = blk_rq_bytes(rq); 506 struct pgpath *pgpath; 507 struct block_device *bdev; 508 struct dm_mpath_io *mpio = get_mpio(map_context); 509 struct request_queue *q; 510 struct request *clone; 511 512 /* Do we need to select a new pgpath? */ 513 pgpath = READ_ONCE(m->current_pgpath); 514 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 515 pgpath = choose_pgpath(m, nr_bytes); 516 517 if (!pgpath) { 518 if (must_push_back_rq(m)) 519 return DM_MAPIO_DELAY_REQUEUE; 520 dm_report_EIO(m); /* Failed */ 521 return DM_MAPIO_KILL; 522 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 523 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 524 pg_init_all_paths(m); 525 return DM_MAPIO_DELAY_REQUEUE; 526 } 527 528 mpio->pgpath = pgpath; 529 mpio->nr_bytes = nr_bytes; 530 531 bdev = pgpath->path.dev->bdev; 532 q = bdev_get_queue(bdev); 533 clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE, 534 BLK_MQ_REQ_NOWAIT); 535 if (IS_ERR(clone)) { 536 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 537 if (blk_queue_dying(q)) { 538 atomic_inc(&m->pg_init_in_progress); 539 activate_or_offline_path(pgpath); 540 return DM_MAPIO_DELAY_REQUEUE; 541 } 542 543 /* 544 * blk-mq's SCHED_RESTART can cover this requeue, so we 545 * needn't deal with it by DELAY_REQUEUE. More importantly, 546 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 547 * get the queue busy feedback (via BLK_STS_RESOURCE), 548 * otherwise I/O merging can suffer. 549 */ 550 return DM_MAPIO_REQUEUE; 551 } 552 clone->bio = clone->biotail = NULL; 553 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 554 *__clone = clone; 555 556 if (pgpath->pg->ps.type->start_io) 557 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 558 &pgpath->path, 559 nr_bytes); 560 return DM_MAPIO_REMAPPED; 561 } 562 563 static void multipath_release_clone(struct request *clone, 564 union map_info *map_context) 565 { 566 if (unlikely(map_context)) { 567 /* 568 * non-NULL map_context means caller is still map 569 * method; must undo multipath_clone_and_map() 570 */ 571 struct dm_mpath_io *mpio = get_mpio(map_context); 572 struct pgpath *pgpath = mpio->pgpath; 573 574 if (pgpath && pgpath->pg->ps.type->end_io) 575 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 576 &pgpath->path, 577 mpio->nr_bytes, 578 clone->io_start_time_ns); 579 } 580 581 blk_mq_free_request(clone); 582 } 583 584 /* 585 * Map cloned bios (bio-based multipath) 586 */ 587 588 static void __multipath_queue_bio(struct multipath *m, struct bio *bio) 589 { 590 /* Queue for the daemon to resubmit */ 591 bio_list_add(&m->queued_bios, bio); 592 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 593 queue_work(kmultipathd, &m->process_queued_bios); 594 } 595 596 static void multipath_queue_bio(struct multipath *m, struct bio *bio) 597 { 598 unsigned long flags; 599 600 spin_lock_irqsave(&m->lock, flags); 601 __multipath_queue_bio(m, bio); 602 spin_unlock_irqrestore(&m->lock, flags); 603 } 604 605 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 606 { 607 struct pgpath *pgpath; 608 unsigned long flags; 609 610 /* Do we need to select a new pgpath? */ 611 pgpath = READ_ONCE(m->current_pgpath); 612 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 613 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 614 615 if (!pgpath) { 616 spin_lock_irqsave(&m->lock, flags); 617 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 618 __multipath_queue_bio(m, bio); 619 pgpath = ERR_PTR(-EAGAIN); 620 } 621 spin_unlock_irqrestore(&m->lock, flags); 622 623 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 624 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 625 multipath_queue_bio(m, bio); 626 pg_init_all_paths(m); 627 return ERR_PTR(-EAGAIN); 628 } 629 630 return pgpath; 631 } 632 633 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 634 struct dm_mpath_io *mpio) 635 { 636 struct pgpath *pgpath = __map_bio(m, bio); 637 638 if (IS_ERR(pgpath)) 639 return DM_MAPIO_SUBMITTED; 640 641 if (!pgpath) { 642 if (__must_push_back(m)) 643 return DM_MAPIO_REQUEUE; 644 dm_report_EIO(m); 645 return DM_MAPIO_KILL; 646 } 647 648 mpio->pgpath = pgpath; 649 650 bio->bi_status = 0; 651 bio_set_dev(bio, pgpath->path.dev->bdev); 652 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 653 654 if (pgpath->pg->ps.type->start_io) 655 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 656 &pgpath->path, 657 mpio->nr_bytes); 658 return DM_MAPIO_REMAPPED; 659 } 660 661 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 662 { 663 struct multipath *m = ti->private; 664 struct dm_mpath_io *mpio = NULL; 665 666 multipath_init_per_bio_data(bio, &mpio); 667 return __multipath_map_bio(m, bio, mpio); 668 } 669 670 static void process_queued_io_list(struct multipath *m) 671 { 672 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 673 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 674 else if (m->queue_mode == DM_TYPE_BIO_BASED) 675 queue_work(kmultipathd, &m->process_queued_bios); 676 } 677 678 static void process_queued_bios(struct work_struct *work) 679 { 680 int r; 681 unsigned long flags; 682 struct bio *bio; 683 struct bio_list bios; 684 struct blk_plug plug; 685 struct multipath *m = 686 container_of(work, struct multipath, process_queued_bios); 687 688 bio_list_init(&bios); 689 690 spin_lock_irqsave(&m->lock, flags); 691 692 if (bio_list_empty(&m->queued_bios)) { 693 spin_unlock_irqrestore(&m->lock, flags); 694 return; 695 } 696 697 bio_list_merge(&bios, &m->queued_bios); 698 bio_list_init(&m->queued_bios); 699 700 spin_unlock_irqrestore(&m->lock, flags); 701 702 blk_start_plug(&plug); 703 while ((bio = bio_list_pop(&bios))) { 704 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 705 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 706 r = __multipath_map_bio(m, bio, mpio); 707 switch (r) { 708 case DM_MAPIO_KILL: 709 bio->bi_status = BLK_STS_IOERR; 710 bio_endio(bio); 711 break; 712 case DM_MAPIO_REQUEUE: 713 bio->bi_status = BLK_STS_DM_REQUEUE; 714 bio_endio(bio); 715 break; 716 case DM_MAPIO_REMAPPED: 717 submit_bio_noacct(bio); 718 break; 719 case DM_MAPIO_SUBMITTED: 720 break; 721 default: 722 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 723 } 724 } 725 blk_finish_plug(&plug); 726 } 727 728 /* 729 * If we run out of usable paths, should we queue I/O or error it? 730 */ 731 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 732 bool save_old_value, const char *caller) 733 { 734 unsigned long flags; 735 bool queue_if_no_path_bit, saved_queue_if_no_path_bit; 736 const char *dm_dev_name = dm_table_device_name(m->ti->table); 737 738 DMDEBUG("%s: %s caller=%s queue_if_no_path=%d save_old_value=%d", 739 dm_dev_name, __func__, caller, queue_if_no_path, save_old_value); 740 741 spin_lock_irqsave(&m->lock, flags); 742 743 queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 744 saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 745 746 if (save_old_value) { 747 if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) { 748 DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!", 749 dm_dev_name); 750 } else 751 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit); 752 } else if (!queue_if_no_path && saved_queue_if_no_path_bit) { 753 /* due to "fail_if_no_path" message, need to honor it. */ 754 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 755 } 756 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 757 758 DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d", 759 dm_dev_name, __func__, 760 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 761 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 762 dm_noflush_suspending(m->ti)); 763 764 spin_unlock_irqrestore(&m->lock, flags); 765 766 if (!queue_if_no_path) { 767 dm_table_run_md_queue_async(m->ti->table); 768 process_queued_io_list(m); 769 } 770 771 return 0; 772 } 773 774 /* 775 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and 776 * process any queued I/O. 777 */ 778 static void queue_if_no_path_timeout_work(struct timer_list *t) 779 { 780 struct multipath *m = from_timer(m, t, nopath_timer); 781 782 DMWARN("queue_if_no_path timeout on %s, failing queued IO", 783 dm_table_device_name(m->ti->table)); 784 queue_if_no_path(m, false, false, __func__); 785 } 786 787 /* 788 * Enable the queue_if_no_path timeout if necessary. 789 * Called with m->lock held. 790 */ 791 static void enable_nopath_timeout(struct multipath *m) 792 { 793 unsigned long queue_if_no_path_timeout = 794 READ_ONCE(queue_if_no_path_timeout_secs) * HZ; 795 796 lockdep_assert_held(&m->lock); 797 798 if (queue_if_no_path_timeout > 0 && 799 atomic_read(&m->nr_valid_paths) == 0 && 800 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 801 mod_timer(&m->nopath_timer, 802 jiffies + queue_if_no_path_timeout); 803 } 804 } 805 806 static void disable_nopath_timeout(struct multipath *m) 807 { 808 del_timer_sync(&m->nopath_timer); 809 } 810 811 /* 812 * An event is triggered whenever a path is taken out of use. 813 * Includes path failure and PG bypass. 814 */ 815 static void trigger_event(struct work_struct *work) 816 { 817 struct multipath *m = 818 container_of(work, struct multipath, trigger_event); 819 820 dm_table_event(m->ti->table); 821 } 822 823 /*----------------------------------------------------------------- 824 * Constructor/argument parsing: 825 * <#multipath feature args> [<arg>]* 826 * <#hw_handler args> [hw_handler [<arg>]*] 827 * <#priority groups> 828 * <initial priority group> 829 * [<selector> <#selector args> [<arg>]* 830 * <#paths> <#per-path selector args> 831 * [<path> [<arg>]* ]+ ]+ 832 *---------------------------------------------------------------*/ 833 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 834 struct dm_target *ti) 835 { 836 int r; 837 struct path_selector_type *pst; 838 unsigned ps_argc; 839 840 static const struct dm_arg _args[] = { 841 {0, 1024, "invalid number of path selector args"}, 842 }; 843 844 pst = dm_get_path_selector(dm_shift_arg(as)); 845 if (!pst) { 846 ti->error = "unknown path selector type"; 847 return -EINVAL; 848 } 849 850 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 851 if (r) { 852 dm_put_path_selector(pst); 853 return -EINVAL; 854 } 855 856 r = pst->create(&pg->ps, ps_argc, as->argv); 857 if (r) { 858 dm_put_path_selector(pst); 859 ti->error = "path selector constructor failed"; 860 return r; 861 } 862 863 pg->ps.type = pst; 864 dm_consume_args(as, ps_argc); 865 866 return 0; 867 } 868 869 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 870 const char **attached_handler_name, char **error) 871 { 872 struct request_queue *q = bdev_get_queue(bdev); 873 int r; 874 875 if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) { 876 retain: 877 if (*attached_handler_name) { 878 /* 879 * Clear any hw_handler_params associated with a 880 * handler that isn't already attached. 881 */ 882 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 883 kfree(m->hw_handler_params); 884 m->hw_handler_params = NULL; 885 } 886 887 /* 888 * Reset hw_handler_name to match the attached handler 889 * 890 * NB. This modifies the table line to show the actual 891 * handler instead of the original table passed in. 892 */ 893 kfree(m->hw_handler_name); 894 m->hw_handler_name = *attached_handler_name; 895 *attached_handler_name = NULL; 896 } 897 } 898 899 if (m->hw_handler_name) { 900 r = scsi_dh_attach(q, m->hw_handler_name); 901 if (r == -EBUSY) { 902 DMINFO("retaining handler on device %pg", bdev); 903 goto retain; 904 } 905 if (r < 0) { 906 *error = "error attaching hardware handler"; 907 return r; 908 } 909 910 if (m->hw_handler_params) { 911 r = scsi_dh_set_params(q, m->hw_handler_params); 912 if (r < 0) { 913 *error = "unable to set hardware handler parameters"; 914 return r; 915 } 916 } 917 } 918 919 return 0; 920 } 921 922 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 923 struct dm_target *ti) 924 { 925 int r; 926 struct pgpath *p; 927 struct multipath *m = ti->private; 928 struct request_queue *q; 929 const char *attached_handler_name = NULL; 930 931 /* we need at least a path arg */ 932 if (as->argc < 1) { 933 ti->error = "no device given"; 934 return ERR_PTR(-EINVAL); 935 } 936 937 p = alloc_pgpath(); 938 if (!p) 939 return ERR_PTR(-ENOMEM); 940 941 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 942 &p->path.dev); 943 if (r) { 944 ti->error = "error getting device"; 945 goto bad; 946 } 947 948 q = bdev_get_queue(p->path.dev->bdev); 949 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 950 if (attached_handler_name || m->hw_handler_name) { 951 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 952 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 953 kfree(attached_handler_name); 954 if (r) { 955 dm_put_device(ti, p->path.dev); 956 goto bad; 957 } 958 } 959 960 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 961 if (r) { 962 dm_put_device(ti, p->path.dev); 963 goto bad; 964 } 965 966 return p; 967 bad: 968 free_pgpath(p); 969 return ERR_PTR(r); 970 } 971 972 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 973 struct multipath *m) 974 { 975 static const struct dm_arg _args[] = { 976 {1, 1024, "invalid number of paths"}, 977 {0, 1024, "invalid number of selector args"} 978 }; 979 980 int r; 981 unsigned i, nr_selector_args, nr_args; 982 struct priority_group *pg; 983 struct dm_target *ti = m->ti; 984 985 if (as->argc < 2) { 986 as->argc = 0; 987 ti->error = "not enough priority group arguments"; 988 return ERR_PTR(-EINVAL); 989 } 990 991 pg = alloc_priority_group(); 992 if (!pg) { 993 ti->error = "couldn't allocate priority group"; 994 return ERR_PTR(-ENOMEM); 995 } 996 pg->m = m; 997 998 r = parse_path_selector(as, pg, ti); 999 if (r) 1000 goto bad; 1001 1002 /* 1003 * read the paths 1004 */ 1005 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 1006 if (r) 1007 goto bad; 1008 1009 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 1010 if (r) 1011 goto bad; 1012 1013 nr_args = 1 + nr_selector_args; 1014 for (i = 0; i < pg->nr_pgpaths; i++) { 1015 struct pgpath *pgpath; 1016 struct dm_arg_set path_args; 1017 1018 if (as->argc < nr_args) { 1019 ti->error = "not enough path parameters"; 1020 r = -EINVAL; 1021 goto bad; 1022 } 1023 1024 path_args.argc = nr_args; 1025 path_args.argv = as->argv; 1026 1027 pgpath = parse_path(&path_args, &pg->ps, ti); 1028 if (IS_ERR(pgpath)) { 1029 r = PTR_ERR(pgpath); 1030 goto bad; 1031 } 1032 1033 pgpath->pg = pg; 1034 list_add_tail(&pgpath->list, &pg->pgpaths); 1035 dm_consume_args(as, nr_args); 1036 } 1037 1038 return pg; 1039 1040 bad: 1041 free_priority_group(pg, ti); 1042 return ERR_PTR(r); 1043 } 1044 1045 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 1046 { 1047 unsigned hw_argc; 1048 int ret; 1049 struct dm_target *ti = m->ti; 1050 1051 static const struct dm_arg _args[] = { 1052 {0, 1024, "invalid number of hardware handler args"}, 1053 }; 1054 1055 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 1056 return -EINVAL; 1057 1058 if (!hw_argc) 1059 return 0; 1060 1061 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1062 dm_consume_args(as, hw_argc); 1063 DMERR("bio-based multipath doesn't allow hardware handler args"); 1064 return 0; 1065 } 1066 1067 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1068 if (!m->hw_handler_name) 1069 return -EINVAL; 1070 1071 if (hw_argc > 1) { 1072 char *p; 1073 int i, j, len = 4; 1074 1075 for (i = 0; i <= hw_argc - 2; i++) 1076 len += strlen(as->argv[i]) + 1; 1077 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1078 if (!p) { 1079 ti->error = "memory allocation failed"; 1080 ret = -ENOMEM; 1081 goto fail; 1082 } 1083 j = sprintf(p, "%d", hw_argc - 1); 1084 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1085 j = sprintf(p, "%s", as->argv[i]); 1086 } 1087 dm_consume_args(as, hw_argc - 1); 1088 1089 return 0; 1090 fail: 1091 kfree(m->hw_handler_name); 1092 m->hw_handler_name = NULL; 1093 return ret; 1094 } 1095 1096 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1097 { 1098 int r; 1099 unsigned argc; 1100 struct dm_target *ti = m->ti; 1101 const char *arg_name; 1102 1103 static const struct dm_arg _args[] = { 1104 {0, 8, "invalid number of feature args"}, 1105 {1, 50, "pg_init_retries must be between 1 and 50"}, 1106 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1107 }; 1108 1109 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1110 if (r) 1111 return -EINVAL; 1112 1113 if (!argc) 1114 return 0; 1115 1116 do { 1117 arg_name = dm_shift_arg(as); 1118 argc--; 1119 1120 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1121 r = queue_if_no_path(m, true, false, __func__); 1122 continue; 1123 } 1124 1125 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1126 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1127 continue; 1128 } 1129 1130 if (!strcasecmp(arg_name, "pg_init_retries") && 1131 (argc >= 1)) { 1132 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1133 argc--; 1134 continue; 1135 } 1136 1137 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1138 (argc >= 1)) { 1139 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1140 argc--; 1141 continue; 1142 } 1143 1144 if (!strcasecmp(arg_name, "queue_mode") && 1145 (argc >= 1)) { 1146 const char *queue_mode_name = dm_shift_arg(as); 1147 1148 if (!strcasecmp(queue_mode_name, "bio")) 1149 m->queue_mode = DM_TYPE_BIO_BASED; 1150 else if (!strcasecmp(queue_mode_name, "rq") || 1151 !strcasecmp(queue_mode_name, "mq")) 1152 m->queue_mode = DM_TYPE_REQUEST_BASED; 1153 else { 1154 ti->error = "Unknown 'queue_mode' requested"; 1155 r = -EINVAL; 1156 } 1157 argc--; 1158 continue; 1159 } 1160 1161 ti->error = "Unrecognised multipath feature request"; 1162 r = -EINVAL; 1163 } while (argc && !r); 1164 1165 return r; 1166 } 1167 1168 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1169 { 1170 /* target arguments */ 1171 static const struct dm_arg _args[] = { 1172 {0, 1024, "invalid number of priority groups"}, 1173 {0, 1024, "invalid initial priority group number"}, 1174 }; 1175 1176 int r; 1177 struct multipath *m; 1178 struct dm_arg_set as; 1179 unsigned pg_count = 0; 1180 unsigned next_pg_num; 1181 unsigned long flags; 1182 1183 as.argc = argc; 1184 as.argv = argv; 1185 1186 m = alloc_multipath(ti); 1187 if (!m) { 1188 ti->error = "can't allocate multipath"; 1189 return -EINVAL; 1190 } 1191 1192 r = parse_features(&as, m); 1193 if (r) 1194 goto bad; 1195 1196 r = alloc_multipath_stage2(ti, m); 1197 if (r) 1198 goto bad; 1199 1200 r = parse_hw_handler(&as, m); 1201 if (r) 1202 goto bad; 1203 1204 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1205 if (r) 1206 goto bad; 1207 1208 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1209 if (r) 1210 goto bad; 1211 1212 if ((!m->nr_priority_groups && next_pg_num) || 1213 (m->nr_priority_groups && !next_pg_num)) { 1214 ti->error = "invalid initial priority group"; 1215 r = -EINVAL; 1216 goto bad; 1217 } 1218 1219 /* parse the priority groups */ 1220 while (as.argc) { 1221 struct priority_group *pg; 1222 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1223 1224 pg = parse_priority_group(&as, m); 1225 if (IS_ERR(pg)) { 1226 r = PTR_ERR(pg); 1227 goto bad; 1228 } 1229 1230 nr_valid_paths += pg->nr_pgpaths; 1231 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1232 1233 list_add_tail(&pg->list, &m->priority_groups); 1234 pg_count++; 1235 pg->pg_num = pg_count; 1236 if (!--next_pg_num) 1237 m->next_pg = pg; 1238 } 1239 1240 if (pg_count != m->nr_priority_groups) { 1241 ti->error = "priority group count mismatch"; 1242 r = -EINVAL; 1243 goto bad; 1244 } 1245 1246 spin_lock_irqsave(&m->lock, flags); 1247 enable_nopath_timeout(m); 1248 spin_unlock_irqrestore(&m->lock, flags); 1249 1250 ti->num_flush_bios = 1; 1251 ti->num_discard_bios = 1; 1252 ti->num_write_zeroes_bios = 1; 1253 if (m->queue_mode == DM_TYPE_BIO_BASED) 1254 ti->per_io_data_size = multipath_per_bio_data_size(); 1255 else 1256 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1257 1258 return 0; 1259 1260 bad: 1261 free_multipath(m); 1262 return r; 1263 } 1264 1265 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1266 { 1267 DEFINE_WAIT(wait); 1268 1269 while (1) { 1270 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1271 1272 if (!atomic_read(&m->pg_init_in_progress)) 1273 break; 1274 1275 io_schedule(); 1276 } 1277 finish_wait(&m->pg_init_wait, &wait); 1278 } 1279 1280 static void flush_multipath_work(struct multipath *m) 1281 { 1282 if (m->hw_handler_name) { 1283 unsigned long flags; 1284 1285 if (!atomic_read(&m->pg_init_in_progress)) 1286 goto skip; 1287 1288 spin_lock_irqsave(&m->lock, flags); 1289 if (atomic_read(&m->pg_init_in_progress) && 1290 !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) { 1291 spin_unlock_irqrestore(&m->lock, flags); 1292 1293 flush_workqueue(kmpath_handlerd); 1294 multipath_wait_for_pg_init_completion(m); 1295 1296 spin_lock_irqsave(&m->lock, flags); 1297 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1298 } 1299 spin_unlock_irqrestore(&m->lock, flags); 1300 } 1301 skip: 1302 if (m->queue_mode == DM_TYPE_BIO_BASED) 1303 flush_work(&m->process_queued_bios); 1304 flush_work(&m->trigger_event); 1305 } 1306 1307 static void multipath_dtr(struct dm_target *ti) 1308 { 1309 struct multipath *m = ti->private; 1310 1311 disable_nopath_timeout(m); 1312 flush_multipath_work(m); 1313 free_multipath(m); 1314 } 1315 1316 /* 1317 * Take a path out of use. 1318 */ 1319 static int fail_path(struct pgpath *pgpath) 1320 { 1321 unsigned long flags; 1322 struct multipath *m = pgpath->pg->m; 1323 1324 spin_lock_irqsave(&m->lock, flags); 1325 1326 if (!pgpath->is_active) 1327 goto out; 1328 1329 DMWARN("%s: Failing path %s.", 1330 dm_table_device_name(m->ti->table), 1331 pgpath->path.dev->name); 1332 1333 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1334 pgpath->is_active = false; 1335 pgpath->fail_count++; 1336 1337 atomic_dec(&m->nr_valid_paths); 1338 1339 if (pgpath == m->current_pgpath) 1340 m->current_pgpath = NULL; 1341 1342 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1343 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1344 1345 schedule_work(&m->trigger_event); 1346 1347 enable_nopath_timeout(m); 1348 1349 out: 1350 spin_unlock_irqrestore(&m->lock, flags); 1351 1352 return 0; 1353 } 1354 1355 /* 1356 * Reinstate a previously-failed path 1357 */ 1358 static int reinstate_path(struct pgpath *pgpath) 1359 { 1360 int r = 0, run_queue = 0; 1361 unsigned long flags; 1362 struct multipath *m = pgpath->pg->m; 1363 unsigned nr_valid_paths; 1364 1365 spin_lock_irqsave(&m->lock, flags); 1366 1367 if (pgpath->is_active) 1368 goto out; 1369 1370 DMWARN("%s: Reinstating path %s.", 1371 dm_table_device_name(m->ti->table), 1372 pgpath->path.dev->name); 1373 1374 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1375 if (r) 1376 goto out; 1377 1378 pgpath->is_active = true; 1379 1380 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1381 if (nr_valid_paths == 1) { 1382 m->current_pgpath = NULL; 1383 run_queue = 1; 1384 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1385 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1386 atomic_inc(&m->pg_init_in_progress); 1387 } 1388 1389 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1390 pgpath->path.dev->name, nr_valid_paths); 1391 1392 schedule_work(&m->trigger_event); 1393 1394 out: 1395 spin_unlock_irqrestore(&m->lock, flags); 1396 if (run_queue) { 1397 dm_table_run_md_queue_async(m->ti->table); 1398 process_queued_io_list(m); 1399 } 1400 1401 if (pgpath->is_active) 1402 disable_nopath_timeout(m); 1403 1404 return r; 1405 } 1406 1407 /* 1408 * Fail or reinstate all paths that match the provided struct dm_dev. 1409 */ 1410 static int action_dev(struct multipath *m, struct dm_dev *dev, 1411 action_fn action) 1412 { 1413 int r = -EINVAL; 1414 struct pgpath *pgpath; 1415 struct priority_group *pg; 1416 1417 list_for_each_entry(pg, &m->priority_groups, list) { 1418 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1419 if (pgpath->path.dev == dev) 1420 r = action(pgpath); 1421 } 1422 } 1423 1424 return r; 1425 } 1426 1427 /* 1428 * Temporarily try to avoid having to use the specified PG 1429 */ 1430 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1431 bool bypassed) 1432 { 1433 unsigned long flags; 1434 1435 spin_lock_irqsave(&m->lock, flags); 1436 1437 pg->bypassed = bypassed; 1438 m->current_pgpath = NULL; 1439 m->current_pg = NULL; 1440 1441 spin_unlock_irqrestore(&m->lock, flags); 1442 1443 schedule_work(&m->trigger_event); 1444 } 1445 1446 /* 1447 * Switch to using the specified PG from the next I/O that gets mapped 1448 */ 1449 static int switch_pg_num(struct multipath *m, const char *pgstr) 1450 { 1451 struct priority_group *pg; 1452 unsigned pgnum; 1453 unsigned long flags; 1454 char dummy; 1455 1456 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1457 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1458 DMWARN("invalid PG number supplied to switch_pg_num"); 1459 return -EINVAL; 1460 } 1461 1462 spin_lock_irqsave(&m->lock, flags); 1463 list_for_each_entry(pg, &m->priority_groups, list) { 1464 pg->bypassed = false; 1465 if (--pgnum) 1466 continue; 1467 1468 m->current_pgpath = NULL; 1469 m->current_pg = NULL; 1470 m->next_pg = pg; 1471 } 1472 spin_unlock_irqrestore(&m->lock, flags); 1473 1474 schedule_work(&m->trigger_event); 1475 return 0; 1476 } 1477 1478 /* 1479 * Set/clear bypassed status of a PG. 1480 * PGs are numbered upwards from 1 in the order they were declared. 1481 */ 1482 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1483 { 1484 struct priority_group *pg; 1485 unsigned pgnum; 1486 char dummy; 1487 1488 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1489 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1490 DMWARN("invalid PG number supplied to bypass_pg"); 1491 return -EINVAL; 1492 } 1493 1494 list_for_each_entry(pg, &m->priority_groups, list) { 1495 if (!--pgnum) 1496 break; 1497 } 1498 1499 bypass_pg(m, pg, bypassed); 1500 return 0; 1501 } 1502 1503 /* 1504 * Should we retry pg_init immediately? 1505 */ 1506 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1507 { 1508 unsigned long flags; 1509 bool limit_reached = false; 1510 1511 spin_lock_irqsave(&m->lock, flags); 1512 1513 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1514 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1515 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1516 else 1517 limit_reached = true; 1518 1519 spin_unlock_irqrestore(&m->lock, flags); 1520 1521 return limit_reached; 1522 } 1523 1524 static void pg_init_done(void *data, int errors) 1525 { 1526 struct pgpath *pgpath = data; 1527 struct priority_group *pg = pgpath->pg; 1528 struct multipath *m = pg->m; 1529 unsigned long flags; 1530 bool delay_retry = false; 1531 1532 /* device or driver problems */ 1533 switch (errors) { 1534 case SCSI_DH_OK: 1535 break; 1536 case SCSI_DH_NOSYS: 1537 if (!m->hw_handler_name) { 1538 errors = 0; 1539 break; 1540 } 1541 DMERR("Could not failover the device: Handler scsi_dh_%s " 1542 "Error %d.", m->hw_handler_name, errors); 1543 /* 1544 * Fail path for now, so we do not ping pong 1545 */ 1546 fail_path(pgpath); 1547 break; 1548 case SCSI_DH_DEV_TEMP_BUSY: 1549 /* 1550 * Probably doing something like FW upgrade on the 1551 * controller so try the other pg. 1552 */ 1553 bypass_pg(m, pg, true); 1554 break; 1555 case SCSI_DH_RETRY: 1556 /* Wait before retrying. */ 1557 delay_retry = true; 1558 fallthrough; 1559 case SCSI_DH_IMM_RETRY: 1560 case SCSI_DH_RES_TEMP_UNAVAIL: 1561 if (pg_init_limit_reached(m, pgpath)) 1562 fail_path(pgpath); 1563 errors = 0; 1564 break; 1565 case SCSI_DH_DEV_OFFLINED: 1566 default: 1567 /* 1568 * We probably do not want to fail the path for a device 1569 * error, but this is what the old dm did. In future 1570 * patches we can do more advanced handling. 1571 */ 1572 fail_path(pgpath); 1573 } 1574 1575 spin_lock_irqsave(&m->lock, flags); 1576 if (errors) { 1577 if (pgpath == m->current_pgpath) { 1578 DMERR("Could not failover device. Error %d.", errors); 1579 m->current_pgpath = NULL; 1580 m->current_pg = NULL; 1581 } 1582 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1583 pg->bypassed = false; 1584 1585 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1586 /* Activations of other paths are still on going */ 1587 goto out; 1588 1589 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1590 if (delay_retry) 1591 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1592 else 1593 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1594 1595 if (__pg_init_all_paths(m)) 1596 goto out; 1597 } 1598 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1599 1600 process_queued_io_list(m); 1601 1602 /* 1603 * Wake up any thread waiting to suspend. 1604 */ 1605 wake_up(&m->pg_init_wait); 1606 1607 out: 1608 spin_unlock_irqrestore(&m->lock, flags); 1609 } 1610 1611 static void activate_or_offline_path(struct pgpath *pgpath) 1612 { 1613 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1614 1615 if (pgpath->is_active && !blk_queue_dying(q)) 1616 scsi_dh_activate(q, pg_init_done, pgpath); 1617 else 1618 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1619 } 1620 1621 static void activate_path_work(struct work_struct *work) 1622 { 1623 struct pgpath *pgpath = 1624 container_of(work, struct pgpath, activate_path.work); 1625 1626 activate_or_offline_path(pgpath); 1627 } 1628 1629 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1630 blk_status_t error, union map_info *map_context) 1631 { 1632 struct dm_mpath_io *mpio = get_mpio(map_context); 1633 struct pgpath *pgpath = mpio->pgpath; 1634 int r = DM_ENDIO_DONE; 1635 1636 /* 1637 * We don't queue any clone request inside the multipath target 1638 * during end I/O handling, since those clone requests don't have 1639 * bio clones. If we queue them inside the multipath target, 1640 * we need to make bio clones, that requires memory allocation. 1641 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1642 * don't have bio clones.) 1643 * Instead of queueing the clone request here, we queue the original 1644 * request into dm core, which will remake a clone request and 1645 * clone bios for it and resubmit it later. 1646 */ 1647 if (error && blk_path_error(error)) { 1648 struct multipath *m = ti->private; 1649 1650 if (error == BLK_STS_RESOURCE) 1651 r = DM_ENDIO_DELAY_REQUEUE; 1652 else 1653 r = DM_ENDIO_REQUEUE; 1654 1655 if (pgpath) 1656 fail_path(pgpath); 1657 1658 if (!atomic_read(&m->nr_valid_paths) && 1659 !must_push_back_rq(m)) { 1660 if (error == BLK_STS_IOERR) 1661 dm_report_EIO(m); 1662 /* complete with the original error */ 1663 r = DM_ENDIO_DONE; 1664 } 1665 } 1666 1667 if (pgpath) { 1668 struct path_selector *ps = &pgpath->pg->ps; 1669 1670 if (ps->type->end_io) 1671 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1672 clone->io_start_time_ns); 1673 } 1674 1675 return r; 1676 } 1677 1678 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1679 blk_status_t *error) 1680 { 1681 struct multipath *m = ti->private; 1682 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1683 struct pgpath *pgpath = mpio->pgpath; 1684 unsigned long flags; 1685 int r = DM_ENDIO_DONE; 1686 1687 if (!*error || !blk_path_error(*error)) 1688 goto done; 1689 1690 if (pgpath) 1691 fail_path(pgpath); 1692 1693 if (!atomic_read(&m->nr_valid_paths)) { 1694 spin_lock_irqsave(&m->lock, flags); 1695 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1696 if (__must_push_back(m)) { 1697 r = DM_ENDIO_REQUEUE; 1698 } else { 1699 dm_report_EIO(m); 1700 *error = BLK_STS_IOERR; 1701 } 1702 spin_unlock_irqrestore(&m->lock, flags); 1703 goto done; 1704 } 1705 spin_unlock_irqrestore(&m->lock, flags); 1706 } 1707 1708 multipath_queue_bio(m, clone); 1709 r = DM_ENDIO_INCOMPLETE; 1710 done: 1711 if (pgpath) { 1712 struct path_selector *ps = &pgpath->pg->ps; 1713 1714 if (ps->type->end_io) 1715 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1716 dm_start_time_ns_from_clone(clone)); 1717 } 1718 1719 return r; 1720 } 1721 1722 /* 1723 * Suspend with flush can't complete until all the I/O is processed 1724 * so if the last path fails we must error any remaining I/O. 1725 * - Note that if the freeze_bdev fails while suspending, the 1726 * queue_if_no_path state is lost - userspace should reset it. 1727 * Otherwise, during noflush suspend, queue_if_no_path will not change. 1728 */ 1729 static void multipath_presuspend(struct dm_target *ti) 1730 { 1731 struct multipath *m = ti->private; 1732 1733 /* FIXME: bio-based shouldn't need to always disable queue_if_no_path */ 1734 if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti)) 1735 queue_if_no_path(m, false, true, __func__); 1736 } 1737 1738 static void multipath_postsuspend(struct dm_target *ti) 1739 { 1740 struct multipath *m = ti->private; 1741 1742 mutex_lock(&m->work_mutex); 1743 flush_multipath_work(m); 1744 mutex_unlock(&m->work_mutex); 1745 } 1746 1747 /* 1748 * Restore the queue_if_no_path setting. 1749 */ 1750 static void multipath_resume(struct dm_target *ti) 1751 { 1752 struct multipath *m = ti->private; 1753 unsigned long flags; 1754 1755 spin_lock_irqsave(&m->lock, flags); 1756 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) { 1757 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1758 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 1759 } 1760 1761 DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d", 1762 dm_table_device_name(m->ti->table), __func__, 1763 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 1764 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1765 1766 spin_unlock_irqrestore(&m->lock, flags); 1767 } 1768 1769 /* 1770 * Info output has the following format: 1771 * num_multipath_feature_args [multipath_feature_args]* 1772 * num_handler_status_args [handler_status_args]* 1773 * num_groups init_group_number 1774 * [A|D|E num_ps_status_args [ps_status_args]* 1775 * num_paths num_selector_args 1776 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1777 * 1778 * Table output has the following format (identical to the constructor string): 1779 * num_feature_args [features_args]* 1780 * num_handler_args hw_handler [hw_handler_args]* 1781 * num_groups init_group_number 1782 * [priority selector-name num_ps_args [ps_args]* 1783 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1784 */ 1785 static void multipath_status(struct dm_target *ti, status_type_t type, 1786 unsigned status_flags, char *result, unsigned maxlen) 1787 { 1788 int sz = 0, pg_counter, pgpath_counter; 1789 unsigned long flags; 1790 struct multipath *m = ti->private; 1791 struct priority_group *pg; 1792 struct pgpath *p; 1793 unsigned pg_num; 1794 char state; 1795 1796 spin_lock_irqsave(&m->lock, flags); 1797 1798 /* Features */ 1799 if (type == STATUSTYPE_INFO) 1800 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1801 atomic_read(&m->pg_init_count)); 1802 else { 1803 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1804 (m->pg_init_retries > 0) * 2 + 1805 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1806 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1807 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1808 1809 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1810 DMEMIT("queue_if_no_path "); 1811 if (m->pg_init_retries) 1812 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1813 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1814 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1815 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1816 DMEMIT("retain_attached_hw_handler "); 1817 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1818 switch(m->queue_mode) { 1819 case DM_TYPE_BIO_BASED: 1820 DMEMIT("queue_mode bio "); 1821 break; 1822 default: 1823 WARN_ON_ONCE(true); 1824 break; 1825 } 1826 } 1827 } 1828 1829 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1830 DMEMIT("0 "); 1831 else 1832 DMEMIT("1 %s ", m->hw_handler_name); 1833 1834 DMEMIT("%u ", m->nr_priority_groups); 1835 1836 if (m->next_pg) 1837 pg_num = m->next_pg->pg_num; 1838 else if (m->current_pg) 1839 pg_num = m->current_pg->pg_num; 1840 else 1841 pg_num = (m->nr_priority_groups ? 1 : 0); 1842 1843 DMEMIT("%u ", pg_num); 1844 1845 switch (type) { 1846 case STATUSTYPE_INFO: 1847 list_for_each_entry(pg, &m->priority_groups, list) { 1848 if (pg->bypassed) 1849 state = 'D'; /* Disabled */ 1850 else if (pg == m->current_pg) 1851 state = 'A'; /* Currently Active */ 1852 else 1853 state = 'E'; /* Enabled */ 1854 1855 DMEMIT("%c ", state); 1856 1857 if (pg->ps.type->status) 1858 sz += pg->ps.type->status(&pg->ps, NULL, type, 1859 result + sz, 1860 maxlen - sz); 1861 else 1862 DMEMIT("0 "); 1863 1864 DMEMIT("%u %u ", pg->nr_pgpaths, 1865 pg->ps.type->info_args); 1866 1867 list_for_each_entry(p, &pg->pgpaths, list) { 1868 DMEMIT("%s %s %u ", p->path.dev->name, 1869 p->is_active ? "A" : "F", 1870 p->fail_count); 1871 if (pg->ps.type->status) 1872 sz += pg->ps.type->status(&pg->ps, 1873 &p->path, type, result + sz, 1874 maxlen - sz); 1875 } 1876 } 1877 break; 1878 1879 case STATUSTYPE_TABLE: 1880 list_for_each_entry(pg, &m->priority_groups, list) { 1881 DMEMIT("%s ", pg->ps.type->name); 1882 1883 if (pg->ps.type->status) 1884 sz += pg->ps.type->status(&pg->ps, NULL, type, 1885 result + sz, 1886 maxlen - sz); 1887 else 1888 DMEMIT("0 "); 1889 1890 DMEMIT("%u %u ", pg->nr_pgpaths, 1891 pg->ps.type->table_args); 1892 1893 list_for_each_entry(p, &pg->pgpaths, list) { 1894 DMEMIT("%s ", p->path.dev->name); 1895 if (pg->ps.type->status) 1896 sz += pg->ps.type->status(&pg->ps, 1897 &p->path, type, result + sz, 1898 maxlen - sz); 1899 } 1900 } 1901 break; 1902 1903 case STATUSTYPE_IMA: 1904 sz = 0; /*reset the result pointer*/ 1905 1906 DMEMIT_TARGET_NAME_VERSION(ti->type); 1907 DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups); 1908 1909 pg_counter = 0; 1910 list_for_each_entry(pg, &m->priority_groups, list) { 1911 if (pg->bypassed) 1912 state = 'D'; /* Disabled */ 1913 else if (pg == m->current_pg) 1914 state = 'A'; /* Currently Active */ 1915 else 1916 state = 'E'; /* Enabled */ 1917 DMEMIT(",pg_state_%d=%c", pg_counter, state); 1918 DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths); 1919 DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name); 1920 1921 pgpath_counter = 0; 1922 list_for_each_entry(p, &pg->pgpaths, list) { 1923 DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u", 1924 pg_counter, pgpath_counter, p->path.dev->name, 1925 pg_counter, pgpath_counter, p->is_active ? 'A' : 'F', 1926 pg_counter, pgpath_counter, p->fail_count); 1927 if (pg->ps.type->status) { 1928 DMEMIT(",path_selector_status_%d_%d=", 1929 pg_counter, pgpath_counter); 1930 sz += pg->ps.type->status(&pg->ps, &p->path, 1931 type, result + sz, 1932 maxlen - sz); 1933 } 1934 pgpath_counter++; 1935 } 1936 pg_counter++; 1937 } 1938 DMEMIT(";"); 1939 break; 1940 } 1941 1942 spin_unlock_irqrestore(&m->lock, flags); 1943 } 1944 1945 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1946 char *result, unsigned maxlen) 1947 { 1948 int r = -EINVAL; 1949 struct dm_dev *dev; 1950 struct multipath *m = ti->private; 1951 action_fn action; 1952 unsigned long flags; 1953 1954 mutex_lock(&m->work_mutex); 1955 1956 if (dm_suspended(ti)) { 1957 r = -EBUSY; 1958 goto out; 1959 } 1960 1961 if (argc == 1) { 1962 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1963 r = queue_if_no_path(m, true, false, __func__); 1964 spin_lock_irqsave(&m->lock, flags); 1965 enable_nopath_timeout(m); 1966 spin_unlock_irqrestore(&m->lock, flags); 1967 goto out; 1968 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1969 r = queue_if_no_path(m, false, false, __func__); 1970 disable_nopath_timeout(m); 1971 goto out; 1972 } 1973 } 1974 1975 if (argc != 2) { 1976 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1977 goto out; 1978 } 1979 1980 if (!strcasecmp(argv[0], "disable_group")) { 1981 r = bypass_pg_num(m, argv[1], true); 1982 goto out; 1983 } else if (!strcasecmp(argv[0], "enable_group")) { 1984 r = bypass_pg_num(m, argv[1], false); 1985 goto out; 1986 } else if (!strcasecmp(argv[0], "switch_group")) { 1987 r = switch_pg_num(m, argv[1]); 1988 goto out; 1989 } else if (!strcasecmp(argv[0], "reinstate_path")) 1990 action = reinstate_path; 1991 else if (!strcasecmp(argv[0], "fail_path")) 1992 action = fail_path; 1993 else { 1994 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1995 goto out; 1996 } 1997 1998 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1999 if (r) { 2000 DMWARN("message: error getting device %s", 2001 argv[1]); 2002 goto out; 2003 } 2004 2005 r = action_dev(m, dev, action); 2006 2007 dm_put_device(ti, dev); 2008 2009 out: 2010 mutex_unlock(&m->work_mutex); 2011 return r; 2012 } 2013 2014 static int multipath_prepare_ioctl(struct dm_target *ti, 2015 struct block_device **bdev) 2016 { 2017 struct multipath *m = ti->private; 2018 struct pgpath *pgpath; 2019 unsigned long flags; 2020 int r; 2021 2022 pgpath = READ_ONCE(m->current_pgpath); 2023 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 2024 pgpath = choose_pgpath(m, 0); 2025 2026 if (pgpath) { 2027 if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) { 2028 *bdev = pgpath->path.dev->bdev; 2029 r = 0; 2030 } else { 2031 /* pg_init has not started or completed */ 2032 r = -ENOTCONN; 2033 } 2034 } else { 2035 /* No path is available */ 2036 r = -EIO; 2037 spin_lock_irqsave(&m->lock, flags); 2038 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2039 r = -ENOTCONN; 2040 spin_unlock_irqrestore(&m->lock, flags); 2041 } 2042 2043 if (r == -ENOTCONN) { 2044 if (!READ_ONCE(m->current_pg)) { 2045 /* Path status changed, redo selection */ 2046 (void) choose_pgpath(m, 0); 2047 } 2048 spin_lock_irqsave(&m->lock, flags); 2049 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 2050 (void) __pg_init_all_paths(m); 2051 spin_unlock_irqrestore(&m->lock, flags); 2052 dm_table_run_md_queue_async(m->ti->table); 2053 process_queued_io_list(m); 2054 } 2055 2056 /* 2057 * Only pass ioctls through if the device sizes match exactly. 2058 */ 2059 if (!r && ti->len != bdev_nr_sectors((*bdev))) 2060 return 1; 2061 return r; 2062 } 2063 2064 static int multipath_iterate_devices(struct dm_target *ti, 2065 iterate_devices_callout_fn fn, void *data) 2066 { 2067 struct multipath *m = ti->private; 2068 struct priority_group *pg; 2069 struct pgpath *p; 2070 int ret = 0; 2071 2072 list_for_each_entry(pg, &m->priority_groups, list) { 2073 list_for_each_entry(p, &pg->pgpaths, list) { 2074 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 2075 if (ret) 2076 goto out; 2077 } 2078 } 2079 2080 out: 2081 return ret; 2082 } 2083 2084 static int pgpath_busy(struct pgpath *pgpath) 2085 { 2086 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 2087 2088 return blk_lld_busy(q); 2089 } 2090 2091 /* 2092 * We return "busy", only when we can map I/Os but underlying devices 2093 * are busy (so even if we map I/Os now, the I/Os will wait on 2094 * the underlying queue). 2095 * In other words, if we want to kill I/Os or queue them inside us 2096 * due to map unavailability, we don't return "busy". Otherwise, 2097 * dm core won't give us the I/Os and we can't do what we want. 2098 */ 2099 static int multipath_busy(struct dm_target *ti) 2100 { 2101 bool busy = false, has_active = false; 2102 struct multipath *m = ti->private; 2103 struct priority_group *pg, *next_pg; 2104 struct pgpath *pgpath; 2105 2106 /* pg_init in progress */ 2107 if (atomic_read(&m->pg_init_in_progress)) 2108 return true; 2109 2110 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2111 if (!atomic_read(&m->nr_valid_paths)) { 2112 unsigned long flags; 2113 spin_lock_irqsave(&m->lock, flags); 2114 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 2115 spin_unlock_irqrestore(&m->lock, flags); 2116 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 2117 } 2118 spin_unlock_irqrestore(&m->lock, flags); 2119 } 2120 2121 /* Guess which priority_group will be used at next mapping time */ 2122 pg = READ_ONCE(m->current_pg); 2123 next_pg = READ_ONCE(m->next_pg); 2124 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 2125 pg = next_pg; 2126 2127 if (!pg) { 2128 /* 2129 * We don't know which pg will be used at next mapping time. 2130 * We don't call choose_pgpath() here to avoid to trigger 2131 * pg_init just by busy checking. 2132 * So we don't know whether underlying devices we will be using 2133 * at next mapping time are busy or not. Just try mapping. 2134 */ 2135 return busy; 2136 } 2137 2138 /* 2139 * If there is one non-busy active path at least, the path selector 2140 * will be able to select it. So we consider such a pg as not busy. 2141 */ 2142 busy = true; 2143 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2144 if (pgpath->is_active) { 2145 has_active = true; 2146 if (!pgpath_busy(pgpath)) { 2147 busy = false; 2148 break; 2149 } 2150 } 2151 } 2152 2153 if (!has_active) { 2154 /* 2155 * No active path in this pg, so this pg won't be used and 2156 * the current_pg will be changed at next mapping time. 2157 * We need to try mapping to determine it. 2158 */ 2159 busy = false; 2160 } 2161 2162 return busy; 2163 } 2164 2165 /*----------------------------------------------------------------- 2166 * Module setup 2167 *---------------------------------------------------------------*/ 2168 static struct target_type multipath_target = { 2169 .name = "multipath", 2170 .version = {1, 14, 0}, 2171 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2172 DM_TARGET_PASSES_INTEGRITY, 2173 .module = THIS_MODULE, 2174 .ctr = multipath_ctr, 2175 .dtr = multipath_dtr, 2176 .clone_and_map_rq = multipath_clone_and_map, 2177 .release_clone_rq = multipath_release_clone, 2178 .rq_end_io = multipath_end_io, 2179 .map = multipath_map_bio, 2180 .end_io = multipath_end_io_bio, 2181 .presuspend = multipath_presuspend, 2182 .postsuspend = multipath_postsuspend, 2183 .resume = multipath_resume, 2184 .status = multipath_status, 2185 .message = multipath_message, 2186 .prepare_ioctl = multipath_prepare_ioctl, 2187 .iterate_devices = multipath_iterate_devices, 2188 .busy = multipath_busy, 2189 }; 2190 2191 static int __init dm_multipath_init(void) 2192 { 2193 int r; 2194 2195 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2196 if (!kmultipathd) { 2197 DMERR("failed to create workqueue kmpathd"); 2198 r = -ENOMEM; 2199 goto bad_alloc_kmultipathd; 2200 } 2201 2202 /* 2203 * A separate workqueue is used to handle the device handlers 2204 * to avoid overloading existing workqueue. Overloading the 2205 * old workqueue would also create a bottleneck in the 2206 * path of the storage hardware device activation. 2207 */ 2208 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2209 WQ_MEM_RECLAIM); 2210 if (!kmpath_handlerd) { 2211 DMERR("failed to create workqueue kmpath_handlerd"); 2212 r = -ENOMEM; 2213 goto bad_alloc_kmpath_handlerd; 2214 } 2215 2216 r = dm_register_target(&multipath_target); 2217 if (r < 0) { 2218 DMERR("request-based register failed %d", r); 2219 r = -EINVAL; 2220 goto bad_register_target; 2221 } 2222 2223 return 0; 2224 2225 bad_register_target: 2226 destroy_workqueue(kmpath_handlerd); 2227 bad_alloc_kmpath_handlerd: 2228 destroy_workqueue(kmultipathd); 2229 bad_alloc_kmultipathd: 2230 return r; 2231 } 2232 2233 static void __exit dm_multipath_exit(void) 2234 { 2235 destroy_workqueue(kmpath_handlerd); 2236 destroy_workqueue(kmultipathd); 2237 2238 dm_unregister_target(&multipath_target); 2239 } 2240 2241 module_init(dm_multipath_init); 2242 module_exit(dm_multipath_exit); 2243 2244 module_param_named(queue_if_no_path_timeout_secs, 2245 queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR); 2246 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds"); 2247 2248 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2249 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2250 MODULE_LICENSE("GPL"); 2251