xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 4da722ca)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
277 					struct dm_bio_details **bio_details_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
281 
282 	memset(mpio, 0, sizeof(*mpio));
283 	memset(bio_details, 0, sizeof(*bio_details));
284 	dm_bio_record(bio_details, bio);
285 
286 	if (mpio_p)
287 		*mpio_p = mpio;
288 	if (bio_details_p)
289 		*bio_details_p = bio_details;
290 }
291 
292 /*-----------------------------------------------
293  * Path selection
294  *-----------------------------------------------*/
295 
296 static int __pg_init_all_paths(struct multipath *m)
297 {
298 	struct pgpath *pgpath;
299 	unsigned long pg_init_delay = 0;
300 
301 	lockdep_assert_held(&m->lock);
302 
303 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
304 		return 0;
305 
306 	atomic_inc(&m->pg_init_count);
307 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
308 
309 	/* Check here to reset pg_init_required */
310 	if (!m->current_pg)
311 		return 0;
312 
313 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
314 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
315 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
316 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
317 		/* Skip failed paths */
318 		if (!pgpath->is_active)
319 			continue;
320 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
321 				       pg_init_delay))
322 			atomic_inc(&m->pg_init_in_progress);
323 	}
324 	return atomic_read(&m->pg_init_in_progress);
325 }
326 
327 static int pg_init_all_paths(struct multipath *m)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&m->lock, flags);
333 	ret = __pg_init_all_paths(m);
334 	spin_unlock_irqrestore(&m->lock, flags);
335 
336 	return ret;
337 }
338 
339 static void __switch_pg(struct multipath *m, struct priority_group *pg)
340 {
341 	m->current_pg = pg;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(lockless_dereference(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
389 		goto failed;
390 	}
391 
392 	/* Were we instructed to switch PG? */
393 	if (lockless_dereference(m->next_pg)) {
394 		spin_lock_irqsave(&m->lock, flags);
395 		pg = m->next_pg;
396 		if (!pg) {
397 			spin_unlock_irqrestore(&m->lock, flags);
398 			goto check_current_pg;
399 		}
400 		m->next_pg = NULL;
401 		spin_unlock_irqrestore(&m->lock, flags);
402 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
403 		if (!IS_ERR_OR_NULL(pgpath))
404 			return pgpath;
405 	}
406 
407 	/* Don't change PG until it has no remaining paths */
408 check_current_pg:
409 	pg = lockless_dereference(m->current_pg);
410 	if (pg) {
411 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
412 		if (!IS_ERR_OR_NULL(pgpath))
413 			return pgpath;
414 	}
415 
416 	/*
417 	 * Loop through priority groups until we find a valid path.
418 	 * First time we skip PGs marked 'bypassed'.
419 	 * Second time we only try the ones we skipped, but set
420 	 * pg_init_delay_retry so we do not hammer controllers.
421 	 */
422 	do {
423 		list_for_each_entry(pg, &m->priority_groups, list) {
424 			if (pg->bypassed == !!bypassed)
425 				continue;
426 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 			if (!IS_ERR_OR_NULL(pgpath)) {
428 				if (!bypassed)
429 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
430 				return pgpath;
431 			}
432 		}
433 	} while (bypassed--);
434 
435 failed:
436 	spin_lock_irqsave(&m->lock, flags);
437 	m->current_pgpath = NULL;
438 	m->current_pg = NULL;
439 	spin_unlock_irqrestore(&m->lock, flags);
440 
441 	return NULL;
442 }
443 
444 /*
445  * dm_report_EIO() is a macro instead of a function to make pr_debug()
446  * report the function name and line number of the function from which
447  * it has been invoked.
448  */
449 #define dm_report_EIO(m)						\
450 do {									\
451 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
452 									\
453 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
454 		 dm_device_name(md),					\
455 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
456 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
457 		 dm_noflush_suspending((m)->ti));			\
458 } while (0)
459 
460 /*
461  * Map cloned requests (request-based multipath)
462  */
463 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
464 				   union map_info *map_context,
465 				   struct request **__clone)
466 {
467 	struct multipath *m = ti->private;
468 	size_t nr_bytes = blk_rq_bytes(rq);
469 	struct pgpath *pgpath;
470 	struct block_device *bdev;
471 	struct dm_mpath_io *mpio = get_mpio(map_context);
472 	struct request_queue *q;
473 	struct request *clone;
474 
475 	/* Do we need to select a new pgpath? */
476 	pgpath = lockless_dereference(m->current_pgpath);
477 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
478 		pgpath = choose_pgpath(m, nr_bytes);
479 
480 	if (!pgpath) {
481 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
482 			return DM_MAPIO_DELAY_REQUEUE;
483 		dm_report_EIO(m);	/* Failed */
484 		return DM_MAPIO_KILL;
485 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
486 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
487 		if (pg_init_all_paths(m))
488 			return DM_MAPIO_DELAY_REQUEUE;
489 		return DM_MAPIO_REQUEUE;
490 	}
491 
492 	memset(mpio, 0, sizeof(*mpio));
493 	mpio->pgpath = pgpath;
494 	mpio->nr_bytes = nr_bytes;
495 
496 	bdev = pgpath->path.dev->bdev;
497 	q = bdev_get_queue(bdev);
498 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
499 	if (IS_ERR(clone)) {
500 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
501 		bool queue_dying = blk_queue_dying(q);
502 		DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing",
503 			    PTR_ERR(clone), queue_dying ? " (path offline)" : "");
504 		if (queue_dying) {
505 			atomic_inc(&m->pg_init_in_progress);
506 			activate_or_offline_path(pgpath);
507 			return DM_MAPIO_REQUEUE;
508 		}
509 		return DM_MAPIO_DELAY_REQUEUE;
510 	}
511 	clone->bio = clone->biotail = NULL;
512 	clone->rq_disk = bdev->bd_disk;
513 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
514 	*__clone = clone;
515 
516 	if (pgpath->pg->ps.type->start_io)
517 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
518 					      &pgpath->path,
519 					      nr_bytes);
520 	return DM_MAPIO_REMAPPED;
521 }
522 
523 static void multipath_release_clone(struct request *clone)
524 {
525 	blk_put_request(clone);
526 }
527 
528 /*
529  * Map cloned bios (bio-based multipath)
530  */
531 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
532 {
533 	size_t nr_bytes = bio->bi_iter.bi_size;
534 	struct pgpath *pgpath;
535 	unsigned long flags;
536 	bool queue_io;
537 
538 	/* Do we need to select a new pgpath? */
539 	pgpath = lockless_dereference(m->current_pgpath);
540 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
541 	if (!pgpath || !queue_io)
542 		pgpath = choose_pgpath(m, nr_bytes);
543 
544 	if ((pgpath && queue_io) ||
545 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
546 		/* Queue for the daemon to resubmit */
547 		spin_lock_irqsave(&m->lock, flags);
548 		bio_list_add(&m->queued_bios, bio);
549 		spin_unlock_irqrestore(&m->lock, flags);
550 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
551 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
552 			pg_init_all_paths(m);
553 		else if (!queue_io)
554 			queue_work(kmultipathd, &m->process_queued_bios);
555 		return DM_MAPIO_SUBMITTED;
556 	}
557 
558 	if (!pgpath) {
559 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
560 			return DM_MAPIO_REQUEUE;
561 		dm_report_EIO(m);
562 		return DM_MAPIO_KILL;
563 	}
564 
565 	mpio->pgpath = pgpath;
566 	mpio->nr_bytes = nr_bytes;
567 
568 	bio->bi_status = 0;
569 	bio->bi_bdev = pgpath->path.dev->bdev;
570 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
571 
572 	if (pgpath->pg->ps.type->start_io)
573 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
574 					      &pgpath->path,
575 					      nr_bytes);
576 	return DM_MAPIO_REMAPPED;
577 }
578 
579 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
580 {
581 	struct multipath *m = ti->private;
582 	struct dm_mpath_io *mpio = NULL;
583 
584 	multipath_init_per_bio_data(bio, &mpio, NULL);
585 
586 	return __multipath_map_bio(m, bio, mpio);
587 }
588 
589 static void process_queued_io_list(struct multipath *m)
590 {
591 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
592 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
593 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
594 		queue_work(kmultipathd, &m->process_queued_bios);
595 }
596 
597 static void process_queued_bios(struct work_struct *work)
598 {
599 	int r;
600 	unsigned long flags;
601 	struct bio *bio;
602 	struct bio_list bios;
603 	struct blk_plug plug;
604 	struct multipath *m =
605 		container_of(work, struct multipath, process_queued_bios);
606 
607 	bio_list_init(&bios);
608 
609 	spin_lock_irqsave(&m->lock, flags);
610 
611 	if (bio_list_empty(&m->queued_bios)) {
612 		spin_unlock_irqrestore(&m->lock, flags);
613 		return;
614 	}
615 
616 	bio_list_merge(&bios, &m->queued_bios);
617 	bio_list_init(&m->queued_bios);
618 
619 	spin_unlock_irqrestore(&m->lock, flags);
620 
621 	blk_start_plug(&plug);
622 	while ((bio = bio_list_pop(&bios))) {
623 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
624 		switch (r) {
625 		case DM_MAPIO_KILL:
626 			bio->bi_status = BLK_STS_IOERR;
627 			bio_endio(bio);
628 			break;
629 		case DM_MAPIO_REQUEUE:
630 			bio->bi_status = BLK_STS_DM_REQUEUE;
631 			bio_endio(bio);
632 			break;
633 		case DM_MAPIO_REMAPPED:
634 			generic_make_request(bio);
635 			break;
636 		}
637 	}
638 	blk_finish_plug(&plug);
639 }
640 
641 static void assign_bit(bool value, long nr, unsigned long *addr)
642 {
643 	if (value)
644 		set_bit(nr, addr);
645 	else
646 		clear_bit(nr, addr);
647 }
648 
649 /*
650  * If we run out of usable paths, should we queue I/O or error it?
651  */
652 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
653 			    bool save_old_value)
654 {
655 	unsigned long flags;
656 
657 	spin_lock_irqsave(&m->lock, flags);
658 	assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
659 		   (!save_old_value && queue_if_no_path),
660 		   MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
661 	assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti),
662 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
663 	spin_unlock_irqrestore(&m->lock, flags);
664 
665 	if (!queue_if_no_path) {
666 		dm_table_run_md_queue_async(m->ti->table);
667 		process_queued_io_list(m);
668 	}
669 
670 	return 0;
671 }
672 
673 /*
674  * An event is triggered whenever a path is taken out of use.
675  * Includes path failure and PG bypass.
676  */
677 static void trigger_event(struct work_struct *work)
678 {
679 	struct multipath *m =
680 		container_of(work, struct multipath, trigger_event);
681 
682 	dm_table_event(m->ti->table);
683 }
684 
685 /*-----------------------------------------------------------------
686  * Constructor/argument parsing:
687  * <#multipath feature args> [<arg>]*
688  * <#hw_handler args> [hw_handler [<arg>]*]
689  * <#priority groups>
690  * <initial priority group>
691  *     [<selector> <#selector args> [<arg>]*
692  *      <#paths> <#per-path selector args>
693  *         [<path> [<arg>]* ]+ ]+
694  *---------------------------------------------------------------*/
695 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
696 			       struct dm_target *ti)
697 {
698 	int r;
699 	struct path_selector_type *pst;
700 	unsigned ps_argc;
701 
702 	static struct dm_arg _args[] = {
703 		{0, 1024, "invalid number of path selector args"},
704 	};
705 
706 	pst = dm_get_path_selector(dm_shift_arg(as));
707 	if (!pst) {
708 		ti->error = "unknown path selector type";
709 		return -EINVAL;
710 	}
711 
712 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
713 	if (r) {
714 		dm_put_path_selector(pst);
715 		return -EINVAL;
716 	}
717 
718 	r = pst->create(&pg->ps, ps_argc, as->argv);
719 	if (r) {
720 		dm_put_path_selector(pst);
721 		ti->error = "path selector constructor failed";
722 		return r;
723 	}
724 
725 	pg->ps.type = pst;
726 	dm_consume_args(as, ps_argc);
727 
728 	return 0;
729 }
730 
731 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
732 			       struct dm_target *ti)
733 {
734 	int r;
735 	struct pgpath *p;
736 	struct multipath *m = ti->private;
737 	struct request_queue *q = NULL;
738 	const char *attached_handler_name;
739 
740 	/* we need at least a path arg */
741 	if (as->argc < 1) {
742 		ti->error = "no device given";
743 		return ERR_PTR(-EINVAL);
744 	}
745 
746 	p = alloc_pgpath();
747 	if (!p)
748 		return ERR_PTR(-ENOMEM);
749 
750 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
751 			  &p->path.dev);
752 	if (r) {
753 		ti->error = "error getting device";
754 		goto bad;
755 	}
756 
757 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
758 		q = bdev_get_queue(p->path.dev->bdev);
759 
760 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
761 retain:
762 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
763 		if (attached_handler_name) {
764 			/*
765 			 * Clear any hw_handler_params associated with a
766 			 * handler that isn't already attached.
767 			 */
768 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
769 				kfree(m->hw_handler_params);
770 				m->hw_handler_params = NULL;
771 			}
772 
773 			/*
774 			 * Reset hw_handler_name to match the attached handler
775 			 *
776 			 * NB. This modifies the table line to show the actual
777 			 * handler instead of the original table passed in.
778 			 */
779 			kfree(m->hw_handler_name);
780 			m->hw_handler_name = attached_handler_name;
781 		}
782 	}
783 
784 	if (m->hw_handler_name) {
785 		r = scsi_dh_attach(q, m->hw_handler_name);
786 		if (r == -EBUSY) {
787 			char b[BDEVNAME_SIZE];
788 
789 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
790 				bdevname(p->path.dev->bdev, b));
791 			goto retain;
792 		}
793 		if (r < 0) {
794 			ti->error = "error attaching hardware handler";
795 			dm_put_device(ti, p->path.dev);
796 			goto bad;
797 		}
798 
799 		if (m->hw_handler_params) {
800 			r = scsi_dh_set_params(q, m->hw_handler_params);
801 			if (r < 0) {
802 				ti->error = "unable to set hardware "
803 							"handler parameters";
804 				dm_put_device(ti, p->path.dev);
805 				goto bad;
806 			}
807 		}
808 	}
809 
810 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
811 	if (r) {
812 		dm_put_device(ti, p->path.dev);
813 		goto bad;
814 	}
815 
816 	return p;
817 
818  bad:
819 	free_pgpath(p);
820 	return ERR_PTR(r);
821 }
822 
823 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
824 						   struct multipath *m)
825 {
826 	static struct dm_arg _args[] = {
827 		{1, 1024, "invalid number of paths"},
828 		{0, 1024, "invalid number of selector args"}
829 	};
830 
831 	int r;
832 	unsigned i, nr_selector_args, nr_args;
833 	struct priority_group *pg;
834 	struct dm_target *ti = m->ti;
835 
836 	if (as->argc < 2) {
837 		as->argc = 0;
838 		ti->error = "not enough priority group arguments";
839 		return ERR_PTR(-EINVAL);
840 	}
841 
842 	pg = alloc_priority_group();
843 	if (!pg) {
844 		ti->error = "couldn't allocate priority group";
845 		return ERR_PTR(-ENOMEM);
846 	}
847 	pg->m = m;
848 
849 	r = parse_path_selector(as, pg, ti);
850 	if (r)
851 		goto bad;
852 
853 	/*
854 	 * read the paths
855 	 */
856 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
857 	if (r)
858 		goto bad;
859 
860 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
861 	if (r)
862 		goto bad;
863 
864 	nr_args = 1 + nr_selector_args;
865 	for (i = 0; i < pg->nr_pgpaths; i++) {
866 		struct pgpath *pgpath;
867 		struct dm_arg_set path_args;
868 
869 		if (as->argc < nr_args) {
870 			ti->error = "not enough path parameters";
871 			r = -EINVAL;
872 			goto bad;
873 		}
874 
875 		path_args.argc = nr_args;
876 		path_args.argv = as->argv;
877 
878 		pgpath = parse_path(&path_args, &pg->ps, ti);
879 		if (IS_ERR(pgpath)) {
880 			r = PTR_ERR(pgpath);
881 			goto bad;
882 		}
883 
884 		pgpath->pg = pg;
885 		list_add_tail(&pgpath->list, &pg->pgpaths);
886 		dm_consume_args(as, nr_args);
887 	}
888 
889 	return pg;
890 
891  bad:
892 	free_priority_group(pg, ti);
893 	return ERR_PTR(r);
894 }
895 
896 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
897 {
898 	unsigned hw_argc;
899 	int ret;
900 	struct dm_target *ti = m->ti;
901 
902 	static struct dm_arg _args[] = {
903 		{0, 1024, "invalid number of hardware handler args"},
904 	};
905 
906 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
907 		return -EINVAL;
908 
909 	if (!hw_argc)
910 		return 0;
911 
912 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
913 		dm_consume_args(as, hw_argc);
914 		DMERR("bio-based multipath doesn't allow hardware handler args");
915 		return 0;
916 	}
917 
918 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
919 	if (!m->hw_handler_name)
920 		return -EINVAL;
921 
922 	if (hw_argc > 1) {
923 		char *p;
924 		int i, j, len = 4;
925 
926 		for (i = 0; i <= hw_argc - 2; i++)
927 			len += strlen(as->argv[i]) + 1;
928 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
929 		if (!p) {
930 			ti->error = "memory allocation failed";
931 			ret = -ENOMEM;
932 			goto fail;
933 		}
934 		j = sprintf(p, "%d", hw_argc - 1);
935 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
936 			j = sprintf(p, "%s", as->argv[i]);
937 	}
938 	dm_consume_args(as, hw_argc - 1);
939 
940 	return 0;
941 fail:
942 	kfree(m->hw_handler_name);
943 	m->hw_handler_name = NULL;
944 	return ret;
945 }
946 
947 static int parse_features(struct dm_arg_set *as, struct multipath *m)
948 {
949 	int r;
950 	unsigned argc;
951 	struct dm_target *ti = m->ti;
952 	const char *arg_name;
953 
954 	static struct dm_arg _args[] = {
955 		{0, 8, "invalid number of feature args"},
956 		{1, 50, "pg_init_retries must be between 1 and 50"},
957 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
958 	};
959 
960 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
961 	if (r)
962 		return -EINVAL;
963 
964 	if (!argc)
965 		return 0;
966 
967 	do {
968 		arg_name = dm_shift_arg(as);
969 		argc--;
970 
971 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
972 			r = queue_if_no_path(m, true, false);
973 			continue;
974 		}
975 
976 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
977 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
978 			continue;
979 		}
980 
981 		if (!strcasecmp(arg_name, "pg_init_retries") &&
982 		    (argc >= 1)) {
983 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
984 			argc--;
985 			continue;
986 		}
987 
988 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
989 		    (argc >= 1)) {
990 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
991 			argc--;
992 			continue;
993 		}
994 
995 		if (!strcasecmp(arg_name, "queue_mode") &&
996 		    (argc >= 1)) {
997 			const char *queue_mode_name = dm_shift_arg(as);
998 
999 			if (!strcasecmp(queue_mode_name, "bio"))
1000 				m->queue_mode = DM_TYPE_BIO_BASED;
1001 			else if (!strcasecmp(queue_mode_name, "rq"))
1002 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1003 			else if (!strcasecmp(queue_mode_name, "mq"))
1004 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1005 			else {
1006 				ti->error = "Unknown 'queue_mode' requested";
1007 				r = -EINVAL;
1008 			}
1009 			argc--;
1010 			continue;
1011 		}
1012 
1013 		ti->error = "Unrecognised multipath feature request";
1014 		r = -EINVAL;
1015 	} while (argc && !r);
1016 
1017 	return r;
1018 }
1019 
1020 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1021 {
1022 	/* target arguments */
1023 	static struct dm_arg _args[] = {
1024 		{0, 1024, "invalid number of priority groups"},
1025 		{0, 1024, "invalid initial priority group number"},
1026 	};
1027 
1028 	int r;
1029 	struct multipath *m;
1030 	struct dm_arg_set as;
1031 	unsigned pg_count = 0;
1032 	unsigned next_pg_num;
1033 
1034 	as.argc = argc;
1035 	as.argv = argv;
1036 
1037 	m = alloc_multipath(ti);
1038 	if (!m) {
1039 		ti->error = "can't allocate multipath";
1040 		return -EINVAL;
1041 	}
1042 
1043 	r = parse_features(&as, m);
1044 	if (r)
1045 		goto bad;
1046 
1047 	r = alloc_multipath_stage2(ti, m);
1048 	if (r)
1049 		goto bad;
1050 
1051 	r = parse_hw_handler(&as, m);
1052 	if (r)
1053 		goto bad;
1054 
1055 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1056 	if (r)
1057 		goto bad;
1058 
1059 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1060 	if (r)
1061 		goto bad;
1062 
1063 	if ((!m->nr_priority_groups && next_pg_num) ||
1064 	    (m->nr_priority_groups && !next_pg_num)) {
1065 		ti->error = "invalid initial priority group";
1066 		r = -EINVAL;
1067 		goto bad;
1068 	}
1069 
1070 	/* parse the priority groups */
1071 	while (as.argc) {
1072 		struct priority_group *pg;
1073 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1074 
1075 		pg = parse_priority_group(&as, m);
1076 		if (IS_ERR(pg)) {
1077 			r = PTR_ERR(pg);
1078 			goto bad;
1079 		}
1080 
1081 		nr_valid_paths += pg->nr_pgpaths;
1082 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1083 
1084 		list_add_tail(&pg->list, &m->priority_groups);
1085 		pg_count++;
1086 		pg->pg_num = pg_count;
1087 		if (!--next_pg_num)
1088 			m->next_pg = pg;
1089 	}
1090 
1091 	if (pg_count != m->nr_priority_groups) {
1092 		ti->error = "priority group count mismatch";
1093 		r = -EINVAL;
1094 		goto bad;
1095 	}
1096 
1097 	ti->num_flush_bios = 1;
1098 	ti->num_discard_bios = 1;
1099 	ti->num_write_same_bios = 1;
1100 	ti->num_write_zeroes_bios = 1;
1101 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1102 		ti->per_io_data_size = multipath_per_bio_data_size();
1103 	else
1104 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1105 
1106 	return 0;
1107 
1108  bad:
1109 	free_multipath(m);
1110 	return r;
1111 }
1112 
1113 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1114 {
1115 	DEFINE_WAIT(wait);
1116 
1117 	while (1) {
1118 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1119 
1120 		if (!atomic_read(&m->pg_init_in_progress))
1121 			break;
1122 
1123 		io_schedule();
1124 	}
1125 	finish_wait(&m->pg_init_wait, &wait);
1126 }
1127 
1128 static void flush_multipath_work(struct multipath *m)
1129 {
1130 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1131 	smp_mb__after_atomic();
1132 
1133 	flush_workqueue(kmpath_handlerd);
1134 	multipath_wait_for_pg_init_completion(m);
1135 	flush_workqueue(kmultipathd);
1136 	flush_work(&m->trigger_event);
1137 
1138 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1139 	smp_mb__after_atomic();
1140 }
1141 
1142 static void multipath_dtr(struct dm_target *ti)
1143 {
1144 	struct multipath *m = ti->private;
1145 
1146 	flush_multipath_work(m);
1147 	free_multipath(m);
1148 }
1149 
1150 /*
1151  * Take a path out of use.
1152  */
1153 static int fail_path(struct pgpath *pgpath)
1154 {
1155 	unsigned long flags;
1156 	struct multipath *m = pgpath->pg->m;
1157 
1158 	spin_lock_irqsave(&m->lock, flags);
1159 
1160 	if (!pgpath->is_active)
1161 		goto out;
1162 
1163 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1164 
1165 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1166 	pgpath->is_active = false;
1167 	pgpath->fail_count++;
1168 
1169 	atomic_dec(&m->nr_valid_paths);
1170 
1171 	if (pgpath == m->current_pgpath)
1172 		m->current_pgpath = NULL;
1173 
1174 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1175 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1176 
1177 	schedule_work(&m->trigger_event);
1178 
1179 out:
1180 	spin_unlock_irqrestore(&m->lock, flags);
1181 
1182 	return 0;
1183 }
1184 
1185 /*
1186  * Reinstate a previously-failed path
1187  */
1188 static int reinstate_path(struct pgpath *pgpath)
1189 {
1190 	int r = 0, run_queue = 0;
1191 	unsigned long flags;
1192 	struct multipath *m = pgpath->pg->m;
1193 	unsigned nr_valid_paths;
1194 
1195 	spin_lock_irqsave(&m->lock, flags);
1196 
1197 	if (pgpath->is_active)
1198 		goto out;
1199 
1200 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1201 
1202 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1203 	if (r)
1204 		goto out;
1205 
1206 	pgpath->is_active = true;
1207 
1208 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1209 	if (nr_valid_paths == 1) {
1210 		m->current_pgpath = NULL;
1211 		run_queue = 1;
1212 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1213 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1214 			atomic_inc(&m->pg_init_in_progress);
1215 	}
1216 
1217 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1218 		       pgpath->path.dev->name, nr_valid_paths);
1219 
1220 	schedule_work(&m->trigger_event);
1221 
1222 out:
1223 	spin_unlock_irqrestore(&m->lock, flags);
1224 	if (run_queue) {
1225 		dm_table_run_md_queue_async(m->ti->table);
1226 		process_queued_io_list(m);
1227 	}
1228 
1229 	return r;
1230 }
1231 
1232 /*
1233  * Fail or reinstate all paths that match the provided struct dm_dev.
1234  */
1235 static int action_dev(struct multipath *m, struct dm_dev *dev,
1236 		      action_fn action)
1237 {
1238 	int r = -EINVAL;
1239 	struct pgpath *pgpath;
1240 	struct priority_group *pg;
1241 
1242 	list_for_each_entry(pg, &m->priority_groups, list) {
1243 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1244 			if (pgpath->path.dev == dev)
1245 				r = action(pgpath);
1246 		}
1247 	}
1248 
1249 	return r;
1250 }
1251 
1252 /*
1253  * Temporarily try to avoid having to use the specified PG
1254  */
1255 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1256 		      bool bypassed)
1257 {
1258 	unsigned long flags;
1259 
1260 	spin_lock_irqsave(&m->lock, flags);
1261 
1262 	pg->bypassed = bypassed;
1263 	m->current_pgpath = NULL;
1264 	m->current_pg = NULL;
1265 
1266 	spin_unlock_irqrestore(&m->lock, flags);
1267 
1268 	schedule_work(&m->trigger_event);
1269 }
1270 
1271 /*
1272  * Switch to using the specified PG from the next I/O that gets mapped
1273  */
1274 static int switch_pg_num(struct multipath *m, const char *pgstr)
1275 {
1276 	struct priority_group *pg;
1277 	unsigned pgnum;
1278 	unsigned long flags;
1279 	char dummy;
1280 
1281 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1282 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1283 		DMWARN("invalid PG number supplied to switch_pg_num");
1284 		return -EINVAL;
1285 	}
1286 
1287 	spin_lock_irqsave(&m->lock, flags);
1288 	list_for_each_entry(pg, &m->priority_groups, list) {
1289 		pg->bypassed = false;
1290 		if (--pgnum)
1291 			continue;
1292 
1293 		m->current_pgpath = NULL;
1294 		m->current_pg = NULL;
1295 		m->next_pg = pg;
1296 	}
1297 	spin_unlock_irqrestore(&m->lock, flags);
1298 
1299 	schedule_work(&m->trigger_event);
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Set/clear bypassed status of a PG.
1305  * PGs are numbered upwards from 1 in the order they were declared.
1306  */
1307 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1308 {
1309 	struct priority_group *pg;
1310 	unsigned pgnum;
1311 	char dummy;
1312 
1313 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1314 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1315 		DMWARN("invalid PG number supplied to bypass_pg");
1316 		return -EINVAL;
1317 	}
1318 
1319 	list_for_each_entry(pg, &m->priority_groups, list) {
1320 		if (!--pgnum)
1321 			break;
1322 	}
1323 
1324 	bypass_pg(m, pg, bypassed);
1325 	return 0;
1326 }
1327 
1328 /*
1329  * Should we retry pg_init immediately?
1330  */
1331 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1332 {
1333 	unsigned long flags;
1334 	bool limit_reached = false;
1335 
1336 	spin_lock_irqsave(&m->lock, flags);
1337 
1338 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1339 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1340 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1341 	else
1342 		limit_reached = true;
1343 
1344 	spin_unlock_irqrestore(&m->lock, flags);
1345 
1346 	return limit_reached;
1347 }
1348 
1349 static void pg_init_done(void *data, int errors)
1350 {
1351 	struct pgpath *pgpath = data;
1352 	struct priority_group *pg = pgpath->pg;
1353 	struct multipath *m = pg->m;
1354 	unsigned long flags;
1355 	bool delay_retry = false;
1356 
1357 	/* device or driver problems */
1358 	switch (errors) {
1359 	case SCSI_DH_OK:
1360 		break;
1361 	case SCSI_DH_NOSYS:
1362 		if (!m->hw_handler_name) {
1363 			errors = 0;
1364 			break;
1365 		}
1366 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1367 		      "Error %d.", m->hw_handler_name, errors);
1368 		/*
1369 		 * Fail path for now, so we do not ping pong
1370 		 */
1371 		fail_path(pgpath);
1372 		break;
1373 	case SCSI_DH_DEV_TEMP_BUSY:
1374 		/*
1375 		 * Probably doing something like FW upgrade on the
1376 		 * controller so try the other pg.
1377 		 */
1378 		bypass_pg(m, pg, true);
1379 		break;
1380 	case SCSI_DH_RETRY:
1381 		/* Wait before retrying. */
1382 		delay_retry = 1;
1383 	case SCSI_DH_IMM_RETRY:
1384 	case SCSI_DH_RES_TEMP_UNAVAIL:
1385 		if (pg_init_limit_reached(m, pgpath))
1386 			fail_path(pgpath);
1387 		errors = 0;
1388 		break;
1389 	case SCSI_DH_DEV_OFFLINED:
1390 	default:
1391 		/*
1392 		 * We probably do not want to fail the path for a device
1393 		 * error, but this is what the old dm did. In future
1394 		 * patches we can do more advanced handling.
1395 		 */
1396 		fail_path(pgpath);
1397 	}
1398 
1399 	spin_lock_irqsave(&m->lock, flags);
1400 	if (errors) {
1401 		if (pgpath == m->current_pgpath) {
1402 			DMERR("Could not failover device. Error %d.", errors);
1403 			m->current_pgpath = NULL;
1404 			m->current_pg = NULL;
1405 		}
1406 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1407 		pg->bypassed = false;
1408 
1409 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1410 		/* Activations of other paths are still on going */
1411 		goto out;
1412 
1413 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1414 		if (delay_retry)
1415 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1416 		else
1417 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1418 
1419 		if (__pg_init_all_paths(m))
1420 			goto out;
1421 	}
1422 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1423 
1424 	process_queued_io_list(m);
1425 
1426 	/*
1427 	 * Wake up any thread waiting to suspend.
1428 	 */
1429 	wake_up(&m->pg_init_wait);
1430 
1431 out:
1432 	spin_unlock_irqrestore(&m->lock, flags);
1433 }
1434 
1435 static void activate_or_offline_path(struct pgpath *pgpath)
1436 {
1437 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1438 
1439 	if (pgpath->is_active && !blk_queue_dying(q))
1440 		scsi_dh_activate(q, pg_init_done, pgpath);
1441 	else
1442 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1443 }
1444 
1445 static void activate_path_work(struct work_struct *work)
1446 {
1447 	struct pgpath *pgpath =
1448 		container_of(work, struct pgpath, activate_path.work);
1449 
1450 	activate_or_offline_path(pgpath);
1451 }
1452 
1453 static int noretry_error(blk_status_t error)
1454 {
1455 	switch (error) {
1456 	case BLK_STS_NOTSUPP:
1457 	case BLK_STS_NOSPC:
1458 	case BLK_STS_TARGET:
1459 	case BLK_STS_NEXUS:
1460 	case BLK_STS_MEDIUM:
1461 	case BLK_STS_RESOURCE:
1462 		return 1;
1463 	}
1464 
1465 	/* Anything else could be a path failure, so should be retried */
1466 	return 0;
1467 }
1468 
1469 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1470 			    blk_status_t error, union map_info *map_context)
1471 {
1472 	struct dm_mpath_io *mpio = get_mpio(map_context);
1473 	struct pgpath *pgpath = mpio->pgpath;
1474 	int r = DM_ENDIO_DONE;
1475 
1476 	/*
1477 	 * We don't queue any clone request inside the multipath target
1478 	 * during end I/O handling, since those clone requests don't have
1479 	 * bio clones.  If we queue them inside the multipath target,
1480 	 * we need to make bio clones, that requires memory allocation.
1481 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1482 	 *  don't have bio clones.)
1483 	 * Instead of queueing the clone request here, we queue the original
1484 	 * request into dm core, which will remake a clone request and
1485 	 * clone bios for it and resubmit it later.
1486 	 */
1487 	if (error && !noretry_error(error)) {
1488 		struct multipath *m = ti->private;
1489 
1490 		r = DM_ENDIO_REQUEUE;
1491 
1492 		if (pgpath)
1493 			fail_path(pgpath);
1494 
1495 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1496 		    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1497 			if (error == BLK_STS_IOERR)
1498 				dm_report_EIO(m);
1499 			/* complete with the original error */
1500 			r = DM_ENDIO_DONE;
1501 		}
1502 	}
1503 
1504 	if (pgpath) {
1505 		struct path_selector *ps = &pgpath->pg->ps;
1506 
1507 		if (ps->type->end_io)
1508 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1509 	}
1510 
1511 	return r;
1512 }
1513 
1514 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1515 		blk_status_t *error)
1516 {
1517 	struct multipath *m = ti->private;
1518 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1519 	struct pgpath *pgpath = mpio->pgpath;
1520 	unsigned long flags;
1521 	int r = DM_ENDIO_DONE;
1522 
1523 	if (!*error || noretry_error(*error))
1524 		goto done;
1525 
1526 	if (pgpath)
1527 		fail_path(pgpath);
1528 
1529 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1530 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1531 		dm_report_EIO(m);
1532 		*error = BLK_STS_IOERR;
1533 		goto done;
1534 	}
1535 
1536 	/* Queue for the daemon to resubmit */
1537 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1538 
1539 	spin_lock_irqsave(&m->lock, flags);
1540 	bio_list_add(&m->queued_bios, clone);
1541 	spin_unlock_irqrestore(&m->lock, flags);
1542 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1543 		queue_work(kmultipathd, &m->process_queued_bios);
1544 
1545 	r = DM_ENDIO_INCOMPLETE;
1546 done:
1547 	if (pgpath) {
1548 		struct path_selector *ps = &pgpath->pg->ps;
1549 
1550 		if (ps->type->end_io)
1551 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1552 	}
1553 
1554 	return r;
1555 }
1556 
1557 /*
1558  * Suspend can't complete until all the I/O is processed so if
1559  * the last path fails we must error any remaining I/O.
1560  * Note that if the freeze_bdev fails while suspending, the
1561  * queue_if_no_path state is lost - userspace should reset it.
1562  */
1563 static void multipath_presuspend(struct dm_target *ti)
1564 {
1565 	struct multipath *m = ti->private;
1566 
1567 	queue_if_no_path(m, false, true);
1568 }
1569 
1570 static void multipath_postsuspend(struct dm_target *ti)
1571 {
1572 	struct multipath *m = ti->private;
1573 
1574 	mutex_lock(&m->work_mutex);
1575 	flush_multipath_work(m);
1576 	mutex_unlock(&m->work_mutex);
1577 }
1578 
1579 /*
1580  * Restore the queue_if_no_path setting.
1581  */
1582 static void multipath_resume(struct dm_target *ti)
1583 {
1584 	struct multipath *m = ti->private;
1585 	unsigned long flags;
1586 
1587 	spin_lock_irqsave(&m->lock, flags);
1588 	assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
1589 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1590 	spin_unlock_irqrestore(&m->lock, flags);
1591 }
1592 
1593 /*
1594  * Info output has the following format:
1595  * num_multipath_feature_args [multipath_feature_args]*
1596  * num_handler_status_args [handler_status_args]*
1597  * num_groups init_group_number
1598  *            [A|D|E num_ps_status_args [ps_status_args]*
1599  *             num_paths num_selector_args
1600  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1601  *
1602  * Table output has the following format (identical to the constructor string):
1603  * num_feature_args [features_args]*
1604  * num_handler_args hw_handler [hw_handler_args]*
1605  * num_groups init_group_number
1606  *     [priority selector-name num_ps_args [ps_args]*
1607  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1608  */
1609 static void multipath_status(struct dm_target *ti, status_type_t type,
1610 			     unsigned status_flags, char *result, unsigned maxlen)
1611 {
1612 	int sz = 0;
1613 	unsigned long flags;
1614 	struct multipath *m = ti->private;
1615 	struct priority_group *pg;
1616 	struct pgpath *p;
1617 	unsigned pg_num;
1618 	char state;
1619 
1620 	spin_lock_irqsave(&m->lock, flags);
1621 
1622 	/* Features */
1623 	if (type == STATUSTYPE_INFO)
1624 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1625 		       atomic_read(&m->pg_init_count));
1626 	else {
1627 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1628 			      (m->pg_init_retries > 0) * 2 +
1629 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1630 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1631 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1632 
1633 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1634 			DMEMIT("queue_if_no_path ");
1635 		if (m->pg_init_retries)
1636 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1637 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1638 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1639 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1640 			DMEMIT("retain_attached_hw_handler ");
1641 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1642 			switch(m->queue_mode) {
1643 			case DM_TYPE_BIO_BASED:
1644 				DMEMIT("queue_mode bio ");
1645 				break;
1646 			case DM_TYPE_MQ_REQUEST_BASED:
1647 				DMEMIT("queue_mode mq ");
1648 				break;
1649 			default:
1650 				WARN_ON_ONCE(true);
1651 				break;
1652 			}
1653 		}
1654 	}
1655 
1656 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1657 		DMEMIT("0 ");
1658 	else
1659 		DMEMIT("1 %s ", m->hw_handler_name);
1660 
1661 	DMEMIT("%u ", m->nr_priority_groups);
1662 
1663 	if (m->next_pg)
1664 		pg_num = m->next_pg->pg_num;
1665 	else if (m->current_pg)
1666 		pg_num = m->current_pg->pg_num;
1667 	else
1668 		pg_num = (m->nr_priority_groups ? 1 : 0);
1669 
1670 	DMEMIT("%u ", pg_num);
1671 
1672 	switch (type) {
1673 	case STATUSTYPE_INFO:
1674 		list_for_each_entry(pg, &m->priority_groups, list) {
1675 			if (pg->bypassed)
1676 				state = 'D';	/* Disabled */
1677 			else if (pg == m->current_pg)
1678 				state = 'A';	/* Currently Active */
1679 			else
1680 				state = 'E';	/* Enabled */
1681 
1682 			DMEMIT("%c ", state);
1683 
1684 			if (pg->ps.type->status)
1685 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1686 							  result + sz,
1687 							  maxlen - sz);
1688 			else
1689 				DMEMIT("0 ");
1690 
1691 			DMEMIT("%u %u ", pg->nr_pgpaths,
1692 			       pg->ps.type->info_args);
1693 
1694 			list_for_each_entry(p, &pg->pgpaths, list) {
1695 				DMEMIT("%s %s %u ", p->path.dev->name,
1696 				       p->is_active ? "A" : "F",
1697 				       p->fail_count);
1698 				if (pg->ps.type->status)
1699 					sz += pg->ps.type->status(&pg->ps,
1700 					      &p->path, type, result + sz,
1701 					      maxlen - sz);
1702 			}
1703 		}
1704 		break;
1705 
1706 	case STATUSTYPE_TABLE:
1707 		list_for_each_entry(pg, &m->priority_groups, list) {
1708 			DMEMIT("%s ", pg->ps.type->name);
1709 
1710 			if (pg->ps.type->status)
1711 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1712 							  result + sz,
1713 							  maxlen - sz);
1714 			else
1715 				DMEMIT("0 ");
1716 
1717 			DMEMIT("%u %u ", pg->nr_pgpaths,
1718 			       pg->ps.type->table_args);
1719 
1720 			list_for_each_entry(p, &pg->pgpaths, list) {
1721 				DMEMIT("%s ", p->path.dev->name);
1722 				if (pg->ps.type->status)
1723 					sz += pg->ps.type->status(&pg->ps,
1724 					      &p->path, type, result + sz,
1725 					      maxlen - sz);
1726 			}
1727 		}
1728 		break;
1729 	}
1730 
1731 	spin_unlock_irqrestore(&m->lock, flags);
1732 }
1733 
1734 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1735 {
1736 	int r = -EINVAL;
1737 	struct dm_dev *dev;
1738 	struct multipath *m = ti->private;
1739 	action_fn action;
1740 
1741 	mutex_lock(&m->work_mutex);
1742 
1743 	if (dm_suspended(ti)) {
1744 		r = -EBUSY;
1745 		goto out;
1746 	}
1747 
1748 	if (argc == 1) {
1749 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1750 			r = queue_if_no_path(m, true, false);
1751 			goto out;
1752 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1753 			r = queue_if_no_path(m, false, false);
1754 			goto out;
1755 		}
1756 	}
1757 
1758 	if (argc != 2) {
1759 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1760 		goto out;
1761 	}
1762 
1763 	if (!strcasecmp(argv[0], "disable_group")) {
1764 		r = bypass_pg_num(m, argv[1], true);
1765 		goto out;
1766 	} else if (!strcasecmp(argv[0], "enable_group")) {
1767 		r = bypass_pg_num(m, argv[1], false);
1768 		goto out;
1769 	} else if (!strcasecmp(argv[0], "switch_group")) {
1770 		r = switch_pg_num(m, argv[1]);
1771 		goto out;
1772 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1773 		action = reinstate_path;
1774 	else if (!strcasecmp(argv[0], "fail_path"))
1775 		action = fail_path;
1776 	else {
1777 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1778 		goto out;
1779 	}
1780 
1781 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1782 	if (r) {
1783 		DMWARN("message: error getting device %s",
1784 		       argv[1]);
1785 		goto out;
1786 	}
1787 
1788 	r = action_dev(m, dev, action);
1789 
1790 	dm_put_device(ti, dev);
1791 
1792 out:
1793 	mutex_unlock(&m->work_mutex);
1794 	return r;
1795 }
1796 
1797 static int multipath_prepare_ioctl(struct dm_target *ti,
1798 		struct block_device **bdev, fmode_t *mode)
1799 {
1800 	struct multipath *m = ti->private;
1801 	struct pgpath *current_pgpath;
1802 	int r;
1803 
1804 	current_pgpath = lockless_dereference(m->current_pgpath);
1805 	if (!current_pgpath)
1806 		current_pgpath = choose_pgpath(m, 0);
1807 
1808 	if (current_pgpath) {
1809 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1810 			*bdev = current_pgpath->path.dev->bdev;
1811 			*mode = current_pgpath->path.dev->mode;
1812 			r = 0;
1813 		} else {
1814 			/* pg_init has not started or completed */
1815 			r = -ENOTCONN;
1816 		}
1817 	} else {
1818 		/* No path is available */
1819 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1820 			r = -ENOTCONN;
1821 		else
1822 			r = -EIO;
1823 	}
1824 
1825 	if (r == -ENOTCONN) {
1826 		if (!lockless_dereference(m->current_pg)) {
1827 			/* Path status changed, redo selection */
1828 			(void) choose_pgpath(m, 0);
1829 		}
1830 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1831 			pg_init_all_paths(m);
1832 		dm_table_run_md_queue_async(m->ti->table);
1833 		process_queued_io_list(m);
1834 	}
1835 
1836 	/*
1837 	 * Only pass ioctls through if the device sizes match exactly.
1838 	 */
1839 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1840 		return 1;
1841 	return r;
1842 }
1843 
1844 static int multipath_iterate_devices(struct dm_target *ti,
1845 				     iterate_devices_callout_fn fn, void *data)
1846 {
1847 	struct multipath *m = ti->private;
1848 	struct priority_group *pg;
1849 	struct pgpath *p;
1850 	int ret = 0;
1851 
1852 	list_for_each_entry(pg, &m->priority_groups, list) {
1853 		list_for_each_entry(p, &pg->pgpaths, list) {
1854 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1855 			if (ret)
1856 				goto out;
1857 		}
1858 	}
1859 
1860 out:
1861 	return ret;
1862 }
1863 
1864 static int pgpath_busy(struct pgpath *pgpath)
1865 {
1866 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1867 
1868 	return blk_lld_busy(q);
1869 }
1870 
1871 /*
1872  * We return "busy", only when we can map I/Os but underlying devices
1873  * are busy (so even if we map I/Os now, the I/Os will wait on
1874  * the underlying queue).
1875  * In other words, if we want to kill I/Os or queue them inside us
1876  * due to map unavailability, we don't return "busy".  Otherwise,
1877  * dm core won't give us the I/Os and we can't do what we want.
1878  */
1879 static int multipath_busy(struct dm_target *ti)
1880 {
1881 	bool busy = false, has_active = false;
1882 	struct multipath *m = ti->private;
1883 	struct priority_group *pg, *next_pg;
1884 	struct pgpath *pgpath;
1885 
1886 	/* pg_init in progress */
1887 	if (atomic_read(&m->pg_init_in_progress))
1888 		return true;
1889 
1890 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1891 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1892 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1893 
1894 	/* Guess which priority_group will be used at next mapping time */
1895 	pg = lockless_dereference(m->current_pg);
1896 	next_pg = lockless_dereference(m->next_pg);
1897 	if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg))
1898 		pg = next_pg;
1899 
1900 	if (!pg) {
1901 		/*
1902 		 * We don't know which pg will be used at next mapping time.
1903 		 * We don't call choose_pgpath() here to avoid to trigger
1904 		 * pg_init just by busy checking.
1905 		 * So we don't know whether underlying devices we will be using
1906 		 * at next mapping time are busy or not. Just try mapping.
1907 		 */
1908 		return busy;
1909 	}
1910 
1911 	/*
1912 	 * If there is one non-busy active path at least, the path selector
1913 	 * will be able to select it. So we consider such a pg as not busy.
1914 	 */
1915 	busy = true;
1916 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1917 		if (pgpath->is_active) {
1918 			has_active = true;
1919 			if (!pgpath_busy(pgpath)) {
1920 				busy = false;
1921 				break;
1922 			}
1923 		}
1924 	}
1925 
1926 	if (!has_active) {
1927 		/*
1928 		 * No active path in this pg, so this pg won't be used and
1929 		 * the current_pg will be changed at next mapping time.
1930 		 * We need to try mapping to determine it.
1931 		 */
1932 		busy = false;
1933 	}
1934 
1935 	return busy;
1936 }
1937 
1938 /*-----------------------------------------------------------------
1939  * Module setup
1940  *---------------------------------------------------------------*/
1941 static struct target_type multipath_target = {
1942 	.name = "multipath",
1943 	.version = {1, 12, 0},
1944 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1945 	.module = THIS_MODULE,
1946 	.ctr = multipath_ctr,
1947 	.dtr = multipath_dtr,
1948 	.clone_and_map_rq = multipath_clone_and_map,
1949 	.release_clone_rq = multipath_release_clone,
1950 	.rq_end_io = multipath_end_io,
1951 	.map = multipath_map_bio,
1952 	.end_io = multipath_end_io_bio,
1953 	.presuspend = multipath_presuspend,
1954 	.postsuspend = multipath_postsuspend,
1955 	.resume = multipath_resume,
1956 	.status = multipath_status,
1957 	.message = multipath_message,
1958 	.prepare_ioctl = multipath_prepare_ioctl,
1959 	.iterate_devices = multipath_iterate_devices,
1960 	.busy = multipath_busy,
1961 };
1962 
1963 static int __init dm_multipath_init(void)
1964 {
1965 	int r;
1966 
1967 	r = dm_register_target(&multipath_target);
1968 	if (r < 0) {
1969 		DMERR("request-based register failed %d", r);
1970 		r = -EINVAL;
1971 		goto bad_register_target;
1972 	}
1973 
1974 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1975 	if (!kmultipathd) {
1976 		DMERR("failed to create workqueue kmpathd");
1977 		r = -ENOMEM;
1978 		goto bad_alloc_kmultipathd;
1979 	}
1980 
1981 	/*
1982 	 * A separate workqueue is used to handle the device handlers
1983 	 * to avoid overloading existing workqueue. Overloading the
1984 	 * old workqueue would also create a bottleneck in the
1985 	 * path of the storage hardware device activation.
1986 	 */
1987 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1988 						  WQ_MEM_RECLAIM);
1989 	if (!kmpath_handlerd) {
1990 		DMERR("failed to create workqueue kmpath_handlerd");
1991 		r = -ENOMEM;
1992 		goto bad_alloc_kmpath_handlerd;
1993 	}
1994 
1995 	return 0;
1996 
1997 bad_alloc_kmpath_handlerd:
1998 	destroy_workqueue(kmultipathd);
1999 bad_alloc_kmultipathd:
2000 	dm_unregister_target(&multipath_target);
2001 bad_register_target:
2002 	return r;
2003 }
2004 
2005 static void __exit dm_multipath_exit(void)
2006 {
2007 	destroy_workqueue(kmpath_handlerd);
2008 	destroy_workqueue(kmultipathd);
2009 
2010 	dm_unregister_target(&multipath_target);
2011 }
2012 
2013 module_init(dm_multipath_init);
2014 module_exit(dm_multipath_exit);
2015 
2016 MODULE_DESCRIPTION(DM_NAME " multipath target");
2017 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2018 MODULE_LICENSE("GPL");
2019