1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 unsigned long flags; /* Multipath state flags */ 68 69 spinlock_t lock; 70 enum dm_queue_mode queue_mode; 71 72 struct pgpath *current_pgpath; 73 struct priority_group *current_pg; 74 struct priority_group *next_pg; /* Switch to this PG if set */ 75 76 atomic_t nr_valid_paths; /* Total number of usable paths */ 77 unsigned nr_priority_groups; 78 struct list_head priority_groups; 79 80 const char *hw_handler_name; 81 char *hw_handler_params; 82 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 83 unsigned pg_init_retries; /* Number of times to retry pg_init */ 84 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 85 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 86 atomic_t pg_init_count; /* Number of times pg_init called */ 87 88 struct mutex work_mutex; 89 struct work_struct trigger_event; 90 struct dm_target *ti; 91 92 struct work_struct process_queued_bios; 93 struct bio_list queued_bios; 94 }; 95 96 /* 97 * Context information attached to each io we process. 98 */ 99 struct dm_mpath_io { 100 struct pgpath *pgpath; 101 size_t nr_bytes; 102 }; 103 104 typedef int (*action_fn) (struct pgpath *pgpath); 105 106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 107 static void trigger_event(struct work_struct *work); 108 static void activate_or_offline_path(struct pgpath *pgpath); 109 static void activate_path_work(struct work_struct *work); 110 static void process_queued_bios(struct work_struct *work); 111 112 /*----------------------------------------------- 113 * Multipath state flags. 114 *-----------------------------------------------*/ 115 116 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 117 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 120 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 121 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 122 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 123 124 /*----------------------------------------------- 125 * Allocation routines 126 *-----------------------------------------------*/ 127 128 static struct pgpath *alloc_pgpath(void) 129 { 130 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 131 132 if (!pgpath) 133 return NULL; 134 135 pgpath->is_active = true; 136 137 return pgpath; 138 } 139 140 static void free_pgpath(struct pgpath *pgpath) 141 { 142 kfree(pgpath); 143 } 144 145 static struct priority_group *alloc_priority_group(void) 146 { 147 struct priority_group *pg; 148 149 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 150 151 if (pg) 152 INIT_LIST_HEAD(&pg->pgpaths); 153 154 return pg; 155 } 156 157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 158 { 159 struct pgpath *pgpath, *tmp; 160 161 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 162 list_del(&pgpath->list); 163 dm_put_device(ti, pgpath->path.dev); 164 free_pgpath(pgpath); 165 } 166 } 167 168 static void free_priority_group(struct priority_group *pg, 169 struct dm_target *ti) 170 { 171 struct path_selector *ps = &pg->ps; 172 173 if (ps->type) { 174 ps->type->destroy(ps); 175 dm_put_path_selector(ps->type); 176 } 177 178 free_pgpaths(&pg->pgpaths, ti); 179 kfree(pg); 180 } 181 182 static struct multipath *alloc_multipath(struct dm_target *ti) 183 { 184 struct multipath *m; 185 186 m = kzalloc(sizeof(*m), GFP_KERNEL); 187 if (m) { 188 INIT_LIST_HEAD(&m->priority_groups); 189 spin_lock_init(&m->lock); 190 atomic_set(&m->nr_valid_paths, 0); 191 INIT_WORK(&m->trigger_event, trigger_event); 192 mutex_init(&m->work_mutex); 193 194 m->queue_mode = DM_TYPE_NONE; 195 196 m->ti = ti; 197 ti->private = m; 198 } 199 200 return m; 201 } 202 203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 204 { 205 if (m->queue_mode == DM_TYPE_NONE) { 206 /* 207 * Default to request-based. 208 */ 209 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 210 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 211 else 212 m->queue_mode = DM_TYPE_REQUEST_BASED; 213 214 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 215 INIT_WORK(&m->process_queued_bios, process_queued_bios); 216 /* 217 * bio-based doesn't support any direct scsi_dh management; 218 * it just discovers if a scsi_dh is attached. 219 */ 220 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 221 } 222 223 dm_table_set_type(ti->table, m->queue_mode); 224 225 /* 226 * Init fields that are only used when a scsi_dh is attached 227 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 228 */ 229 set_bit(MPATHF_QUEUE_IO, &m->flags); 230 atomic_set(&m->pg_init_in_progress, 0); 231 atomic_set(&m->pg_init_count, 0); 232 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 233 init_waitqueue_head(&m->pg_init_wait); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 mutex_destroy(&m->work_mutex); 250 kfree(m); 251 } 252 253 static struct dm_mpath_io *get_mpio(union map_info *info) 254 { 255 return info->ptr; 256 } 257 258 static size_t multipath_per_bio_data_size(void) 259 { 260 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 261 } 262 263 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 264 { 265 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 266 } 267 268 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 269 { 270 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 271 void *bio_details = mpio + 1; 272 return bio_details; 273 } 274 275 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 276 { 277 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 278 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 279 280 mpio->nr_bytes = bio->bi_iter.bi_size; 281 mpio->pgpath = NULL; 282 *mpio_p = mpio; 283 284 dm_bio_record(bio_details, bio); 285 } 286 287 /*----------------------------------------------- 288 * Path selection 289 *-----------------------------------------------*/ 290 291 static int __pg_init_all_paths(struct multipath *m) 292 { 293 struct pgpath *pgpath; 294 unsigned long pg_init_delay = 0; 295 296 lockdep_assert_held(&m->lock); 297 298 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 299 return 0; 300 301 atomic_inc(&m->pg_init_count); 302 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 303 304 /* Check here to reset pg_init_required */ 305 if (!m->current_pg) 306 return 0; 307 308 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 309 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 310 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 311 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 312 /* Skip failed paths */ 313 if (!pgpath->is_active) 314 continue; 315 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 316 pg_init_delay)) 317 atomic_inc(&m->pg_init_in_progress); 318 } 319 return atomic_read(&m->pg_init_in_progress); 320 } 321 322 static int pg_init_all_paths(struct multipath *m) 323 { 324 int ret; 325 unsigned long flags; 326 327 spin_lock_irqsave(&m->lock, flags); 328 ret = __pg_init_all_paths(m); 329 spin_unlock_irqrestore(&m->lock, flags); 330 331 return ret; 332 } 333 334 static void __switch_pg(struct multipath *m, struct priority_group *pg) 335 { 336 m->current_pg = pg; 337 338 /* Must we initialise the PG first, and queue I/O till it's ready? */ 339 if (m->hw_handler_name) { 340 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 341 set_bit(MPATHF_QUEUE_IO, &m->flags); 342 } else { 343 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 344 clear_bit(MPATHF_QUEUE_IO, &m->flags); 345 } 346 347 atomic_set(&m->pg_init_count, 0); 348 } 349 350 static struct pgpath *choose_path_in_pg(struct multipath *m, 351 struct priority_group *pg, 352 size_t nr_bytes) 353 { 354 unsigned long flags; 355 struct dm_path *path; 356 struct pgpath *pgpath; 357 358 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 359 if (!path) 360 return ERR_PTR(-ENXIO); 361 362 pgpath = path_to_pgpath(path); 363 364 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 365 /* Only update current_pgpath if pg changed */ 366 spin_lock_irqsave(&m->lock, flags); 367 m->current_pgpath = pgpath; 368 __switch_pg(m, pg); 369 spin_unlock_irqrestore(&m->lock, flags); 370 } 371 372 return pgpath; 373 } 374 375 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 376 { 377 unsigned long flags; 378 struct priority_group *pg; 379 struct pgpath *pgpath; 380 unsigned bypassed = 1; 381 382 if (!atomic_read(&m->nr_valid_paths)) { 383 clear_bit(MPATHF_QUEUE_IO, &m->flags); 384 goto failed; 385 } 386 387 /* Were we instructed to switch PG? */ 388 if (READ_ONCE(m->next_pg)) { 389 spin_lock_irqsave(&m->lock, flags); 390 pg = m->next_pg; 391 if (!pg) { 392 spin_unlock_irqrestore(&m->lock, flags); 393 goto check_current_pg; 394 } 395 m->next_pg = NULL; 396 spin_unlock_irqrestore(&m->lock, flags); 397 pgpath = choose_path_in_pg(m, pg, nr_bytes); 398 if (!IS_ERR_OR_NULL(pgpath)) 399 return pgpath; 400 } 401 402 /* Don't change PG until it has no remaining paths */ 403 check_current_pg: 404 pg = READ_ONCE(m->current_pg); 405 if (pg) { 406 pgpath = choose_path_in_pg(m, pg, nr_bytes); 407 if (!IS_ERR_OR_NULL(pgpath)) 408 return pgpath; 409 } 410 411 /* 412 * Loop through priority groups until we find a valid path. 413 * First time we skip PGs marked 'bypassed'. 414 * Second time we only try the ones we skipped, but set 415 * pg_init_delay_retry so we do not hammer controllers. 416 */ 417 do { 418 list_for_each_entry(pg, &m->priority_groups, list) { 419 if (pg->bypassed == !!bypassed) 420 continue; 421 pgpath = choose_path_in_pg(m, pg, nr_bytes); 422 if (!IS_ERR_OR_NULL(pgpath)) { 423 if (!bypassed) 424 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 425 return pgpath; 426 } 427 } 428 } while (bypassed--); 429 430 failed: 431 spin_lock_irqsave(&m->lock, flags); 432 m->current_pgpath = NULL; 433 m->current_pg = NULL; 434 spin_unlock_irqrestore(&m->lock, flags); 435 436 return NULL; 437 } 438 439 /* 440 * dm_report_EIO() is a macro instead of a function to make pr_debug() 441 * report the function name and line number of the function from which 442 * it has been invoked. 443 */ 444 #define dm_report_EIO(m) \ 445 do { \ 446 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 447 \ 448 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 449 dm_device_name(md), \ 450 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 451 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 452 dm_noflush_suspending((m)->ti)); \ 453 } while (0) 454 455 /* 456 * Check whether bios must be queued in the device-mapper core rather 457 * than here in the target. 458 * 459 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 460 * the same value then we are not between multipath_presuspend() 461 * and multipath_resume() calls and we have no need to check 462 * for the DMF_NOFLUSH_SUSPENDING flag. 463 */ 464 static bool __must_push_back(struct multipath *m, unsigned long flags) 465 { 466 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 467 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 468 dm_noflush_suspending(m->ti)); 469 } 470 471 /* 472 * Following functions use READ_ONCE to get atomic access to 473 * all m->flags to avoid taking spinlock 474 */ 475 static bool must_push_back_rq(struct multipath *m) 476 { 477 unsigned long flags = READ_ONCE(m->flags); 478 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 479 } 480 481 static bool must_push_back_bio(struct multipath *m) 482 { 483 unsigned long flags = READ_ONCE(m->flags); 484 return __must_push_back(m, flags); 485 } 486 487 /* 488 * Map cloned requests (request-based multipath) 489 */ 490 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 491 union map_info *map_context, 492 struct request **__clone) 493 { 494 struct multipath *m = ti->private; 495 size_t nr_bytes = blk_rq_bytes(rq); 496 struct pgpath *pgpath; 497 struct block_device *bdev; 498 struct dm_mpath_io *mpio = get_mpio(map_context); 499 struct request_queue *q; 500 struct request *clone; 501 502 /* Do we need to select a new pgpath? */ 503 pgpath = READ_ONCE(m->current_pgpath); 504 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 505 pgpath = choose_pgpath(m, nr_bytes); 506 507 if (!pgpath) { 508 if (must_push_back_rq(m)) 509 return DM_MAPIO_DELAY_REQUEUE; 510 dm_report_EIO(m); /* Failed */ 511 return DM_MAPIO_KILL; 512 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 513 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 514 pg_init_all_paths(m); 515 return DM_MAPIO_DELAY_REQUEUE; 516 } 517 518 mpio->pgpath = pgpath; 519 mpio->nr_bytes = nr_bytes; 520 521 bdev = pgpath->path.dev->bdev; 522 q = bdev_get_queue(bdev); 523 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, 524 BLK_MQ_REQ_NOWAIT); 525 if (IS_ERR(clone)) { 526 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 527 if (blk_queue_dying(q)) { 528 atomic_inc(&m->pg_init_in_progress); 529 activate_or_offline_path(pgpath); 530 return DM_MAPIO_DELAY_REQUEUE; 531 } 532 533 /* 534 * blk-mq's SCHED_RESTART can cover this requeue, so we 535 * needn't deal with it by DELAY_REQUEUE. More importantly, 536 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 537 * get the queue busy feedback (via BLK_STS_RESOURCE), 538 * otherwise I/O merging can suffer. 539 */ 540 if (q->mq_ops) 541 return DM_MAPIO_REQUEUE; 542 else 543 return DM_MAPIO_DELAY_REQUEUE; 544 } 545 clone->bio = clone->biotail = NULL; 546 clone->rq_disk = bdev->bd_disk; 547 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 548 *__clone = clone; 549 550 if (pgpath->pg->ps.type->start_io) 551 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 552 &pgpath->path, 553 nr_bytes); 554 return DM_MAPIO_REMAPPED; 555 } 556 557 static void multipath_release_clone(struct request *clone) 558 { 559 blk_put_request(clone); 560 } 561 562 /* 563 * Map cloned bios (bio-based multipath) 564 */ 565 566 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 567 { 568 struct pgpath *pgpath; 569 unsigned long flags; 570 bool queue_io; 571 572 /* Do we need to select a new pgpath? */ 573 pgpath = READ_ONCE(m->current_pgpath); 574 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 575 if (!pgpath || !queue_io) 576 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 577 578 if ((pgpath && queue_io) || 579 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 580 /* Queue for the daemon to resubmit */ 581 spin_lock_irqsave(&m->lock, flags); 582 bio_list_add(&m->queued_bios, bio); 583 spin_unlock_irqrestore(&m->lock, flags); 584 585 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 586 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 587 pg_init_all_paths(m); 588 else if (!queue_io) 589 queue_work(kmultipathd, &m->process_queued_bios); 590 591 return ERR_PTR(-EAGAIN); 592 } 593 594 return pgpath; 595 } 596 597 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio) 598 { 599 struct pgpath *pgpath; 600 unsigned long flags; 601 602 /* Do we need to select a new pgpath? */ 603 /* 604 * FIXME: currently only switching path if no path (due to failure, etc) 605 * - which negates the point of using a path selector 606 */ 607 pgpath = READ_ONCE(m->current_pgpath); 608 if (!pgpath) 609 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 610 611 if (!pgpath) { 612 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 613 /* Queue for the daemon to resubmit */ 614 spin_lock_irqsave(&m->lock, flags); 615 bio_list_add(&m->queued_bios, bio); 616 spin_unlock_irqrestore(&m->lock, flags); 617 queue_work(kmultipathd, &m->process_queued_bios); 618 619 return ERR_PTR(-EAGAIN); 620 } 621 return NULL; 622 } 623 624 return pgpath; 625 } 626 627 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 628 struct dm_mpath_io *mpio) 629 { 630 struct pgpath *pgpath; 631 632 if (!m->hw_handler_name) 633 pgpath = __map_bio_fast(m, bio); 634 else 635 pgpath = __map_bio(m, bio); 636 637 if (IS_ERR(pgpath)) 638 return DM_MAPIO_SUBMITTED; 639 640 if (!pgpath) { 641 if (must_push_back_bio(m)) 642 return DM_MAPIO_REQUEUE; 643 dm_report_EIO(m); 644 return DM_MAPIO_KILL; 645 } 646 647 mpio->pgpath = pgpath; 648 649 bio->bi_status = 0; 650 bio_set_dev(bio, pgpath->path.dev->bdev); 651 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 652 653 if (pgpath->pg->ps.type->start_io) 654 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 655 &pgpath->path, 656 mpio->nr_bytes); 657 return DM_MAPIO_REMAPPED; 658 } 659 660 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 661 { 662 struct multipath *m = ti->private; 663 struct dm_mpath_io *mpio = NULL; 664 665 multipath_init_per_bio_data(bio, &mpio); 666 return __multipath_map_bio(m, bio, mpio); 667 } 668 669 static void process_queued_io_list(struct multipath *m) 670 { 671 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 672 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 673 else if (m->queue_mode == DM_TYPE_BIO_BASED) 674 queue_work(kmultipathd, &m->process_queued_bios); 675 } 676 677 static void process_queued_bios(struct work_struct *work) 678 { 679 int r; 680 unsigned long flags; 681 struct bio *bio; 682 struct bio_list bios; 683 struct blk_plug plug; 684 struct multipath *m = 685 container_of(work, struct multipath, process_queued_bios); 686 687 bio_list_init(&bios); 688 689 spin_lock_irqsave(&m->lock, flags); 690 691 if (bio_list_empty(&m->queued_bios)) { 692 spin_unlock_irqrestore(&m->lock, flags); 693 return; 694 } 695 696 bio_list_merge(&bios, &m->queued_bios); 697 bio_list_init(&m->queued_bios); 698 699 spin_unlock_irqrestore(&m->lock, flags); 700 701 blk_start_plug(&plug); 702 while ((bio = bio_list_pop(&bios))) { 703 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 704 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 705 r = __multipath_map_bio(m, bio, mpio); 706 switch (r) { 707 case DM_MAPIO_KILL: 708 bio->bi_status = BLK_STS_IOERR; 709 bio_endio(bio); 710 break; 711 case DM_MAPIO_REQUEUE: 712 bio->bi_status = BLK_STS_DM_REQUEUE; 713 bio_endio(bio); 714 break; 715 case DM_MAPIO_REMAPPED: 716 generic_make_request(bio); 717 break; 718 case DM_MAPIO_SUBMITTED: 719 break; 720 default: 721 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 722 } 723 } 724 blk_finish_plug(&plug); 725 } 726 727 /* 728 * If we run out of usable paths, should we queue I/O or error it? 729 */ 730 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 731 bool save_old_value) 732 { 733 unsigned long flags; 734 735 spin_lock_irqsave(&m->lock, flags); 736 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 737 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 738 (!save_old_value && queue_if_no_path)); 739 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 740 spin_unlock_irqrestore(&m->lock, flags); 741 742 if (!queue_if_no_path) { 743 dm_table_run_md_queue_async(m->ti->table); 744 process_queued_io_list(m); 745 } 746 747 return 0; 748 } 749 750 /* 751 * An event is triggered whenever a path is taken out of use. 752 * Includes path failure and PG bypass. 753 */ 754 static void trigger_event(struct work_struct *work) 755 { 756 struct multipath *m = 757 container_of(work, struct multipath, trigger_event); 758 759 dm_table_event(m->ti->table); 760 } 761 762 /*----------------------------------------------------------------- 763 * Constructor/argument parsing: 764 * <#multipath feature args> [<arg>]* 765 * <#hw_handler args> [hw_handler [<arg>]*] 766 * <#priority groups> 767 * <initial priority group> 768 * [<selector> <#selector args> [<arg>]* 769 * <#paths> <#per-path selector args> 770 * [<path> [<arg>]* ]+ ]+ 771 *---------------------------------------------------------------*/ 772 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 773 struct dm_target *ti) 774 { 775 int r; 776 struct path_selector_type *pst; 777 unsigned ps_argc; 778 779 static const struct dm_arg _args[] = { 780 {0, 1024, "invalid number of path selector args"}, 781 }; 782 783 pst = dm_get_path_selector(dm_shift_arg(as)); 784 if (!pst) { 785 ti->error = "unknown path selector type"; 786 return -EINVAL; 787 } 788 789 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 790 if (r) { 791 dm_put_path_selector(pst); 792 return -EINVAL; 793 } 794 795 r = pst->create(&pg->ps, ps_argc, as->argv); 796 if (r) { 797 dm_put_path_selector(pst); 798 ti->error = "path selector constructor failed"; 799 return r; 800 } 801 802 pg->ps.type = pst; 803 dm_consume_args(as, ps_argc); 804 805 return 0; 806 } 807 808 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 809 const char **attached_handler_name, char **error) 810 { 811 struct request_queue *q = bdev_get_queue(bdev); 812 int r; 813 814 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 815 retain: 816 if (*attached_handler_name) { 817 /* 818 * Clear any hw_handler_params associated with a 819 * handler that isn't already attached. 820 */ 821 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 822 kfree(m->hw_handler_params); 823 m->hw_handler_params = NULL; 824 } 825 826 /* 827 * Reset hw_handler_name to match the attached handler 828 * 829 * NB. This modifies the table line to show the actual 830 * handler instead of the original table passed in. 831 */ 832 kfree(m->hw_handler_name); 833 m->hw_handler_name = *attached_handler_name; 834 *attached_handler_name = NULL; 835 } 836 } 837 838 if (m->hw_handler_name) { 839 r = scsi_dh_attach(q, m->hw_handler_name); 840 if (r == -EBUSY) { 841 char b[BDEVNAME_SIZE]; 842 843 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 844 bdevname(bdev, b)); 845 goto retain; 846 } 847 if (r < 0) { 848 *error = "error attaching hardware handler"; 849 return r; 850 } 851 852 if (m->hw_handler_params) { 853 r = scsi_dh_set_params(q, m->hw_handler_params); 854 if (r < 0) { 855 *error = "unable to set hardware handler parameters"; 856 return r; 857 } 858 } 859 } 860 861 return 0; 862 } 863 864 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 865 struct dm_target *ti) 866 { 867 int r; 868 struct pgpath *p; 869 struct multipath *m = ti->private; 870 struct request_queue *q; 871 const char *attached_handler_name = NULL; 872 873 /* we need at least a path arg */ 874 if (as->argc < 1) { 875 ti->error = "no device given"; 876 return ERR_PTR(-EINVAL); 877 } 878 879 p = alloc_pgpath(); 880 if (!p) 881 return ERR_PTR(-ENOMEM); 882 883 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 884 &p->path.dev); 885 if (r) { 886 ti->error = "error getting device"; 887 goto bad; 888 } 889 890 q = bdev_get_queue(p->path.dev->bdev); 891 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 892 if (attached_handler_name || m->hw_handler_name) { 893 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 894 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 895 if (r) { 896 dm_put_device(ti, p->path.dev); 897 goto bad; 898 } 899 } 900 901 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 902 if (r) { 903 dm_put_device(ti, p->path.dev); 904 goto bad; 905 } 906 907 return p; 908 bad: 909 kfree(attached_handler_name); 910 free_pgpath(p); 911 return ERR_PTR(r); 912 } 913 914 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 915 struct multipath *m) 916 { 917 static const struct dm_arg _args[] = { 918 {1, 1024, "invalid number of paths"}, 919 {0, 1024, "invalid number of selector args"} 920 }; 921 922 int r; 923 unsigned i, nr_selector_args, nr_args; 924 struct priority_group *pg; 925 struct dm_target *ti = m->ti; 926 927 if (as->argc < 2) { 928 as->argc = 0; 929 ti->error = "not enough priority group arguments"; 930 return ERR_PTR(-EINVAL); 931 } 932 933 pg = alloc_priority_group(); 934 if (!pg) { 935 ti->error = "couldn't allocate priority group"; 936 return ERR_PTR(-ENOMEM); 937 } 938 pg->m = m; 939 940 r = parse_path_selector(as, pg, ti); 941 if (r) 942 goto bad; 943 944 /* 945 * read the paths 946 */ 947 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 948 if (r) 949 goto bad; 950 951 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 952 if (r) 953 goto bad; 954 955 nr_args = 1 + nr_selector_args; 956 for (i = 0; i < pg->nr_pgpaths; i++) { 957 struct pgpath *pgpath; 958 struct dm_arg_set path_args; 959 960 if (as->argc < nr_args) { 961 ti->error = "not enough path parameters"; 962 r = -EINVAL; 963 goto bad; 964 } 965 966 path_args.argc = nr_args; 967 path_args.argv = as->argv; 968 969 pgpath = parse_path(&path_args, &pg->ps, ti); 970 if (IS_ERR(pgpath)) { 971 r = PTR_ERR(pgpath); 972 goto bad; 973 } 974 975 pgpath->pg = pg; 976 list_add_tail(&pgpath->list, &pg->pgpaths); 977 dm_consume_args(as, nr_args); 978 } 979 980 return pg; 981 982 bad: 983 free_priority_group(pg, ti); 984 return ERR_PTR(r); 985 } 986 987 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 988 { 989 unsigned hw_argc; 990 int ret; 991 struct dm_target *ti = m->ti; 992 993 static const struct dm_arg _args[] = { 994 {0, 1024, "invalid number of hardware handler args"}, 995 }; 996 997 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 998 return -EINVAL; 999 1000 if (!hw_argc) 1001 return 0; 1002 1003 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1004 dm_consume_args(as, hw_argc); 1005 DMERR("bio-based multipath doesn't allow hardware handler args"); 1006 return 0; 1007 } 1008 1009 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1010 if (!m->hw_handler_name) 1011 return -EINVAL; 1012 1013 if (hw_argc > 1) { 1014 char *p; 1015 int i, j, len = 4; 1016 1017 for (i = 0; i <= hw_argc - 2; i++) 1018 len += strlen(as->argv[i]) + 1; 1019 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1020 if (!p) { 1021 ti->error = "memory allocation failed"; 1022 ret = -ENOMEM; 1023 goto fail; 1024 } 1025 j = sprintf(p, "%d", hw_argc - 1); 1026 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1027 j = sprintf(p, "%s", as->argv[i]); 1028 } 1029 dm_consume_args(as, hw_argc - 1); 1030 1031 return 0; 1032 fail: 1033 kfree(m->hw_handler_name); 1034 m->hw_handler_name = NULL; 1035 return ret; 1036 } 1037 1038 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1039 { 1040 int r; 1041 unsigned argc; 1042 struct dm_target *ti = m->ti; 1043 const char *arg_name; 1044 1045 static const struct dm_arg _args[] = { 1046 {0, 8, "invalid number of feature args"}, 1047 {1, 50, "pg_init_retries must be between 1 and 50"}, 1048 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1049 }; 1050 1051 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1052 if (r) 1053 return -EINVAL; 1054 1055 if (!argc) 1056 return 0; 1057 1058 do { 1059 arg_name = dm_shift_arg(as); 1060 argc--; 1061 1062 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1063 r = queue_if_no_path(m, true, false); 1064 continue; 1065 } 1066 1067 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1068 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1069 continue; 1070 } 1071 1072 if (!strcasecmp(arg_name, "pg_init_retries") && 1073 (argc >= 1)) { 1074 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1075 argc--; 1076 continue; 1077 } 1078 1079 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1080 (argc >= 1)) { 1081 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1082 argc--; 1083 continue; 1084 } 1085 1086 if (!strcasecmp(arg_name, "queue_mode") && 1087 (argc >= 1)) { 1088 const char *queue_mode_name = dm_shift_arg(as); 1089 1090 if (!strcasecmp(queue_mode_name, "bio")) 1091 m->queue_mode = DM_TYPE_BIO_BASED; 1092 else if (!strcasecmp(queue_mode_name, "rq")) 1093 m->queue_mode = DM_TYPE_REQUEST_BASED; 1094 else if (!strcasecmp(queue_mode_name, "mq")) 1095 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1096 else { 1097 ti->error = "Unknown 'queue_mode' requested"; 1098 r = -EINVAL; 1099 } 1100 argc--; 1101 continue; 1102 } 1103 1104 ti->error = "Unrecognised multipath feature request"; 1105 r = -EINVAL; 1106 } while (argc && !r); 1107 1108 return r; 1109 } 1110 1111 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1112 { 1113 /* target arguments */ 1114 static const struct dm_arg _args[] = { 1115 {0, 1024, "invalid number of priority groups"}, 1116 {0, 1024, "invalid initial priority group number"}, 1117 }; 1118 1119 int r; 1120 struct multipath *m; 1121 struct dm_arg_set as; 1122 unsigned pg_count = 0; 1123 unsigned next_pg_num; 1124 1125 as.argc = argc; 1126 as.argv = argv; 1127 1128 m = alloc_multipath(ti); 1129 if (!m) { 1130 ti->error = "can't allocate multipath"; 1131 return -EINVAL; 1132 } 1133 1134 r = parse_features(&as, m); 1135 if (r) 1136 goto bad; 1137 1138 r = alloc_multipath_stage2(ti, m); 1139 if (r) 1140 goto bad; 1141 1142 r = parse_hw_handler(&as, m); 1143 if (r) 1144 goto bad; 1145 1146 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1147 if (r) 1148 goto bad; 1149 1150 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1151 if (r) 1152 goto bad; 1153 1154 if ((!m->nr_priority_groups && next_pg_num) || 1155 (m->nr_priority_groups && !next_pg_num)) { 1156 ti->error = "invalid initial priority group"; 1157 r = -EINVAL; 1158 goto bad; 1159 } 1160 1161 /* parse the priority groups */ 1162 while (as.argc) { 1163 struct priority_group *pg; 1164 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1165 1166 pg = parse_priority_group(&as, m); 1167 if (IS_ERR(pg)) { 1168 r = PTR_ERR(pg); 1169 goto bad; 1170 } 1171 1172 nr_valid_paths += pg->nr_pgpaths; 1173 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1174 1175 list_add_tail(&pg->list, &m->priority_groups); 1176 pg_count++; 1177 pg->pg_num = pg_count; 1178 if (!--next_pg_num) 1179 m->next_pg = pg; 1180 } 1181 1182 if (pg_count != m->nr_priority_groups) { 1183 ti->error = "priority group count mismatch"; 1184 r = -EINVAL; 1185 goto bad; 1186 } 1187 1188 ti->num_flush_bios = 1; 1189 ti->num_discard_bios = 1; 1190 ti->num_write_same_bios = 1; 1191 ti->num_write_zeroes_bios = 1; 1192 if (m->queue_mode == DM_TYPE_BIO_BASED) 1193 ti->per_io_data_size = multipath_per_bio_data_size(); 1194 else 1195 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1196 1197 return 0; 1198 1199 bad: 1200 free_multipath(m); 1201 return r; 1202 } 1203 1204 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1205 { 1206 DEFINE_WAIT(wait); 1207 1208 while (1) { 1209 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1210 1211 if (!atomic_read(&m->pg_init_in_progress)) 1212 break; 1213 1214 io_schedule(); 1215 } 1216 finish_wait(&m->pg_init_wait, &wait); 1217 } 1218 1219 static void flush_multipath_work(struct multipath *m) 1220 { 1221 if (m->hw_handler_name) { 1222 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1223 smp_mb__after_atomic(); 1224 1225 flush_workqueue(kmpath_handlerd); 1226 multipath_wait_for_pg_init_completion(m); 1227 1228 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1229 smp_mb__after_atomic(); 1230 } 1231 1232 flush_workqueue(kmultipathd); 1233 flush_work(&m->trigger_event); 1234 } 1235 1236 static void multipath_dtr(struct dm_target *ti) 1237 { 1238 struct multipath *m = ti->private; 1239 1240 flush_multipath_work(m); 1241 free_multipath(m); 1242 } 1243 1244 /* 1245 * Take a path out of use. 1246 */ 1247 static int fail_path(struct pgpath *pgpath) 1248 { 1249 unsigned long flags; 1250 struct multipath *m = pgpath->pg->m; 1251 1252 spin_lock_irqsave(&m->lock, flags); 1253 1254 if (!pgpath->is_active) 1255 goto out; 1256 1257 DMWARN("Failing path %s.", pgpath->path.dev->name); 1258 1259 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1260 pgpath->is_active = false; 1261 pgpath->fail_count++; 1262 1263 atomic_dec(&m->nr_valid_paths); 1264 1265 if (pgpath == m->current_pgpath) 1266 m->current_pgpath = NULL; 1267 1268 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1269 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1270 1271 schedule_work(&m->trigger_event); 1272 1273 out: 1274 spin_unlock_irqrestore(&m->lock, flags); 1275 1276 return 0; 1277 } 1278 1279 /* 1280 * Reinstate a previously-failed path 1281 */ 1282 static int reinstate_path(struct pgpath *pgpath) 1283 { 1284 int r = 0, run_queue = 0; 1285 unsigned long flags; 1286 struct multipath *m = pgpath->pg->m; 1287 unsigned nr_valid_paths; 1288 1289 spin_lock_irqsave(&m->lock, flags); 1290 1291 if (pgpath->is_active) 1292 goto out; 1293 1294 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1295 1296 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1297 if (r) 1298 goto out; 1299 1300 pgpath->is_active = true; 1301 1302 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1303 if (nr_valid_paths == 1) { 1304 m->current_pgpath = NULL; 1305 run_queue = 1; 1306 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1307 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1308 atomic_inc(&m->pg_init_in_progress); 1309 } 1310 1311 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1312 pgpath->path.dev->name, nr_valid_paths); 1313 1314 schedule_work(&m->trigger_event); 1315 1316 out: 1317 spin_unlock_irqrestore(&m->lock, flags); 1318 if (run_queue) { 1319 dm_table_run_md_queue_async(m->ti->table); 1320 process_queued_io_list(m); 1321 } 1322 1323 return r; 1324 } 1325 1326 /* 1327 * Fail or reinstate all paths that match the provided struct dm_dev. 1328 */ 1329 static int action_dev(struct multipath *m, struct dm_dev *dev, 1330 action_fn action) 1331 { 1332 int r = -EINVAL; 1333 struct pgpath *pgpath; 1334 struct priority_group *pg; 1335 1336 list_for_each_entry(pg, &m->priority_groups, list) { 1337 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1338 if (pgpath->path.dev == dev) 1339 r = action(pgpath); 1340 } 1341 } 1342 1343 return r; 1344 } 1345 1346 /* 1347 * Temporarily try to avoid having to use the specified PG 1348 */ 1349 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1350 bool bypassed) 1351 { 1352 unsigned long flags; 1353 1354 spin_lock_irqsave(&m->lock, flags); 1355 1356 pg->bypassed = bypassed; 1357 m->current_pgpath = NULL; 1358 m->current_pg = NULL; 1359 1360 spin_unlock_irqrestore(&m->lock, flags); 1361 1362 schedule_work(&m->trigger_event); 1363 } 1364 1365 /* 1366 * Switch to using the specified PG from the next I/O that gets mapped 1367 */ 1368 static int switch_pg_num(struct multipath *m, const char *pgstr) 1369 { 1370 struct priority_group *pg; 1371 unsigned pgnum; 1372 unsigned long flags; 1373 char dummy; 1374 1375 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1376 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1377 DMWARN("invalid PG number supplied to switch_pg_num"); 1378 return -EINVAL; 1379 } 1380 1381 spin_lock_irqsave(&m->lock, flags); 1382 list_for_each_entry(pg, &m->priority_groups, list) { 1383 pg->bypassed = false; 1384 if (--pgnum) 1385 continue; 1386 1387 m->current_pgpath = NULL; 1388 m->current_pg = NULL; 1389 m->next_pg = pg; 1390 } 1391 spin_unlock_irqrestore(&m->lock, flags); 1392 1393 schedule_work(&m->trigger_event); 1394 return 0; 1395 } 1396 1397 /* 1398 * Set/clear bypassed status of a PG. 1399 * PGs are numbered upwards from 1 in the order they were declared. 1400 */ 1401 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1402 { 1403 struct priority_group *pg; 1404 unsigned pgnum; 1405 char dummy; 1406 1407 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1408 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1409 DMWARN("invalid PG number supplied to bypass_pg"); 1410 return -EINVAL; 1411 } 1412 1413 list_for_each_entry(pg, &m->priority_groups, list) { 1414 if (!--pgnum) 1415 break; 1416 } 1417 1418 bypass_pg(m, pg, bypassed); 1419 return 0; 1420 } 1421 1422 /* 1423 * Should we retry pg_init immediately? 1424 */ 1425 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1426 { 1427 unsigned long flags; 1428 bool limit_reached = false; 1429 1430 spin_lock_irqsave(&m->lock, flags); 1431 1432 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1433 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1434 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1435 else 1436 limit_reached = true; 1437 1438 spin_unlock_irqrestore(&m->lock, flags); 1439 1440 return limit_reached; 1441 } 1442 1443 static void pg_init_done(void *data, int errors) 1444 { 1445 struct pgpath *pgpath = data; 1446 struct priority_group *pg = pgpath->pg; 1447 struct multipath *m = pg->m; 1448 unsigned long flags; 1449 bool delay_retry = false; 1450 1451 /* device or driver problems */ 1452 switch (errors) { 1453 case SCSI_DH_OK: 1454 break; 1455 case SCSI_DH_NOSYS: 1456 if (!m->hw_handler_name) { 1457 errors = 0; 1458 break; 1459 } 1460 DMERR("Could not failover the device: Handler scsi_dh_%s " 1461 "Error %d.", m->hw_handler_name, errors); 1462 /* 1463 * Fail path for now, so we do not ping pong 1464 */ 1465 fail_path(pgpath); 1466 break; 1467 case SCSI_DH_DEV_TEMP_BUSY: 1468 /* 1469 * Probably doing something like FW upgrade on the 1470 * controller so try the other pg. 1471 */ 1472 bypass_pg(m, pg, true); 1473 break; 1474 case SCSI_DH_RETRY: 1475 /* Wait before retrying. */ 1476 delay_retry = 1; 1477 /* fall through */ 1478 case SCSI_DH_IMM_RETRY: 1479 case SCSI_DH_RES_TEMP_UNAVAIL: 1480 if (pg_init_limit_reached(m, pgpath)) 1481 fail_path(pgpath); 1482 errors = 0; 1483 break; 1484 case SCSI_DH_DEV_OFFLINED: 1485 default: 1486 /* 1487 * We probably do not want to fail the path for a device 1488 * error, but this is what the old dm did. In future 1489 * patches we can do more advanced handling. 1490 */ 1491 fail_path(pgpath); 1492 } 1493 1494 spin_lock_irqsave(&m->lock, flags); 1495 if (errors) { 1496 if (pgpath == m->current_pgpath) { 1497 DMERR("Could not failover device. Error %d.", errors); 1498 m->current_pgpath = NULL; 1499 m->current_pg = NULL; 1500 } 1501 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1502 pg->bypassed = false; 1503 1504 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1505 /* Activations of other paths are still on going */ 1506 goto out; 1507 1508 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1509 if (delay_retry) 1510 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1511 else 1512 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1513 1514 if (__pg_init_all_paths(m)) 1515 goto out; 1516 } 1517 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1518 1519 process_queued_io_list(m); 1520 1521 /* 1522 * Wake up any thread waiting to suspend. 1523 */ 1524 wake_up(&m->pg_init_wait); 1525 1526 out: 1527 spin_unlock_irqrestore(&m->lock, flags); 1528 } 1529 1530 static void activate_or_offline_path(struct pgpath *pgpath) 1531 { 1532 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1533 1534 if (pgpath->is_active && !blk_queue_dying(q)) 1535 scsi_dh_activate(q, pg_init_done, pgpath); 1536 else 1537 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1538 } 1539 1540 static void activate_path_work(struct work_struct *work) 1541 { 1542 struct pgpath *pgpath = 1543 container_of(work, struct pgpath, activate_path.work); 1544 1545 activate_or_offline_path(pgpath); 1546 } 1547 1548 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1549 blk_status_t error, union map_info *map_context) 1550 { 1551 struct dm_mpath_io *mpio = get_mpio(map_context); 1552 struct pgpath *pgpath = mpio->pgpath; 1553 int r = DM_ENDIO_DONE; 1554 1555 /* 1556 * We don't queue any clone request inside the multipath target 1557 * during end I/O handling, since those clone requests don't have 1558 * bio clones. If we queue them inside the multipath target, 1559 * we need to make bio clones, that requires memory allocation. 1560 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1561 * don't have bio clones.) 1562 * Instead of queueing the clone request here, we queue the original 1563 * request into dm core, which will remake a clone request and 1564 * clone bios for it and resubmit it later. 1565 */ 1566 if (error && blk_path_error(error)) { 1567 struct multipath *m = ti->private; 1568 1569 if (error == BLK_STS_RESOURCE) 1570 r = DM_ENDIO_DELAY_REQUEUE; 1571 else 1572 r = DM_ENDIO_REQUEUE; 1573 1574 if (pgpath) 1575 fail_path(pgpath); 1576 1577 if (atomic_read(&m->nr_valid_paths) == 0 && 1578 !must_push_back_rq(m)) { 1579 if (error == BLK_STS_IOERR) 1580 dm_report_EIO(m); 1581 /* complete with the original error */ 1582 r = DM_ENDIO_DONE; 1583 } 1584 } 1585 1586 if (pgpath) { 1587 struct path_selector *ps = &pgpath->pg->ps; 1588 1589 if (ps->type->end_io) 1590 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1591 } 1592 1593 return r; 1594 } 1595 1596 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1597 blk_status_t *error) 1598 { 1599 struct multipath *m = ti->private; 1600 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1601 struct pgpath *pgpath = mpio->pgpath; 1602 unsigned long flags; 1603 int r = DM_ENDIO_DONE; 1604 1605 if (!*error || !blk_path_error(*error)) 1606 goto done; 1607 1608 if (pgpath) 1609 fail_path(pgpath); 1610 1611 if (atomic_read(&m->nr_valid_paths) == 0 && 1612 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1613 if (must_push_back_bio(m)) { 1614 r = DM_ENDIO_REQUEUE; 1615 } else { 1616 dm_report_EIO(m); 1617 *error = BLK_STS_IOERR; 1618 } 1619 goto done; 1620 } 1621 1622 spin_lock_irqsave(&m->lock, flags); 1623 bio_list_add(&m->queued_bios, clone); 1624 spin_unlock_irqrestore(&m->lock, flags); 1625 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1626 queue_work(kmultipathd, &m->process_queued_bios); 1627 1628 r = DM_ENDIO_INCOMPLETE; 1629 done: 1630 if (pgpath) { 1631 struct path_selector *ps = &pgpath->pg->ps; 1632 1633 if (ps->type->end_io) 1634 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1635 } 1636 1637 return r; 1638 } 1639 1640 /* 1641 * Suspend can't complete until all the I/O is processed so if 1642 * the last path fails we must error any remaining I/O. 1643 * Note that if the freeze_bdev fails while suspending, the 1644 * queue_if_no_path state is lost - userspace should reset it. 1645 */ 1646 static void multipath_presuspend(struct dm_target *ti) 1647 { 1648 struct multipath *m = ti->private; 1649 1650 queue_if_no_path(m, false, true); 1651 } 1652 1653 static void multipath_postsuspend(struct dm_target *ti) 1654 { 1655 struct multipath *m = ti->private; 1656 1657 mutex_lock(&m->work_mutex); 1658 flush_multipath_work(m); 1659 mutex_unlock(&m->work_mutex); 1660 } 1661 1662 /* 1663 * Restore the queue_if_no_path setting. 1664 */ 1665 static void multipath_resume(struct dm_target *ti) 1666 { 1667 struct multipath *m = ti->private; 1668 unsigned long flags; 1669 1670 spin_lock_irqsave(&m->lock, flags); 1671 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1672 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1673 spin_unlock_irqrestore(&m->lock, flags); 1674 } 1675 1676 /* 1677 * Info output has the following format: 1678 * num_multipath_feature_args [multipath_feature_args]* 1679 * num_handler_status_args [handler_status_args]* 1680 * num_groups init_group_number 1681 * [A|D|E num_ps_status_args [ps_status_args]* 1682 * num_paths num_selector_args 1683 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1684 * 1685 * Table output has the following format (identical to the constructor string): 1686 * num_feature_args [features_args]* 1687 * num_handler_args hw_handler [hw_handler_args]* 1688 * num_groups init_group_number 1689 * [priority selector-name num_ps_args [ps_args]* 1690 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1691 */ 1692 static void multipath_status(struct dm_target *ti, status_type_t type, 1693 unsigned status_flags, char *result, unsigned maxlen) 1694 { 1695 int sz = 0; 1696 unsigned long flags; 1697 struct multipath *m = ti->private; 1698 struct priority_group *pg; 1699 struct pgpath *p; 1700 unsigned pg_num; 1701 char state; 1702 1703 spin_lock_irqsave(&m->lock, flags); 1704 1705 /* Features */ 1706 if (type == STATUSTYPE_INFO) 1707 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1708 atomic_read(&m->pg_init_count)); 1709 else { 1710 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1711 (m->pg_init_retries > 0) * 2 + 1712 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1713 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1714 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1715 1716 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1717 DMEMIT("queue_if_no_path "); 1718 if (m->pg_init_retries) 1719 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1720 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1721 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1722 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1723 DMEMIT("retain_attached_hw_handler "); 1724 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1725 switch(m->queue_mode) { 1726 case DM_TYPE_BIO_BASED: 1727 DMEMIT("queue_mode bio "); 1728 break; 1729 case DM_TYPE_MQ_REQUEST_BASED: 1730 DMEMIT("queue_mode mq "); 1731 break; 1732 default: 1733 WARN_ON_ONCE(true); 1734 break; 1735 } 1736 } 1737 } 1738 1739 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1740 DMEMIT("0 "); 1741 else 1742 DMEMIT("1 %s ", m->hw_handler_name); 1743 1744 DMEMIT("%u ", m->nr_priority_groups); 1745 1746 if (m->next_pg) 1747 pg_num = m->next_pg->pg_num; 1748 else if (m->current_pg) 1749 pg_num = m->current_pg->pg_num; 1750 else 1751 pg_num = (m->nr_priority_groups ? 1 : 0); 1752 1753 DMEMIT("%u ", pg_num); 1754 1755 switch (type) { 1756 case STATUSTYPE_INFO: 1757 list_for_each_entry(pg, &m->priority_groups, list) { 1758 if (pg->bypassed) 1759 state = 'D'; /* Disabled */ 1760 else if (pg == m->current_pg) 1761 state = 'A'; /* Currently Active */ 1762 else 1763 state = 'E'; /* Enabled */ 1764 1765 DMEMIT("%c ", state); 1766 1767 if (pg->ps.type->status) 1768 sz += pg->ps.type->status(&pg->ps, NULL, type, 1769 result + sz, 1770 maxlen - sz); 1771 else 1772 DMEMIT("0 "); 1773 1774 DMEMIT("%u %u ", pg->nr_pgpaths, 1775 pg->ps.type->info_args); 1776 1777 list_for_each_entry(p, &pg->pgpaths, list) { 1778 DMEMIT("%s %s %u ", p->path.dev->name, 1779 p->is_active ? "A" : "F", 1780 p->fail_count); 1781 if (pg->ps.type->status) 1782 sz += pg->ps.type->status(&pg->ps, 1783 &p->path, type, result + sz, 1784 maxlen - sz); 1785 } 1786 } 1787 break; 1788 1789 case STATUSTYPE_TABLE: 1790 list_for_each_entry(pg, &m->priority_groups, list) { 1791 DMEMIT("%s ", pg->ps.type->name); 1792 1793 if (pg->ps.type->status) 1794 sz += pg->ps.type->status(&pg->ps, NULL, type, 1795 result + sz, 1796 maxlen - sz); 1797 else 1798 DMEMIT("0 "); 1799 1800 DMEMIT("%u %u ", pg->nr_pgpaths, 1801 pg->ps.type->table_args); 1802 1803 list_for_each_entry(p, &pg->pgpaths, list) { 1804 DMEMIT("%s ", p->path.dev->name); 1805 if (pg->ps.type->status) 1806 sz += pg->ps.type->status(&pg->ps, 1807 &p->path, type, result + sz, 1808 maxlen - sz); 1809 } 1810 } 1811 break; 1812 } 1813 1814 spin_unlock_irqrestore(&m->lock, flags); 1815 } 1816 1817 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1818 char *result, unsigned maxlen) 1819 { 1820 int r = -EINVAL; 1821 struct dm_dev *dev; 1822 struct multipath *m = ti->private; 1823 action_fn action; 1824 1825 mutex_lock(&m->work_mutex); 1826 1827 if (dm_suspended(ti)) { 1828 r = -EBUSY; 1829 goto out; 1830 } 1831 1832 if (argc == 1) { 1833 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1834 r = queue_if_no_path(m, true, false); 1835 goto out; 1836 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1837 r = queue_if_no_path(m, false, false); 1838 goto out; 1839 } 1840 } 1841 1842 if (argc != 2) { 1843 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1844 goto out; 1845 } 1846 1847 if (!strcasecmp(argv[0], "disable_group")) { 1848 r = bypass_pg_num(m, argv[1], true); 1849 goto out; 1850 } else if (!strcasecmp(argv[0], "enable_group")) { 1851 r = bypass_pg_num(m, argv[1], false); 1852 goto out; 1853 } else if (!strcasecmp(argv[0], "switch_group")) { 1854 r = switch_pg_num(m, argv[1]); 1855 goto out; 1856 } else if (!strcasecmp(argv[0], "reinstate_path")) 1857 action = reinstate_path; 1858 else if (!strcasecmp(argv[0], "fail_path")) 1859 action = fail_path; 1860 else { 1861 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1862 goto out; 1863 } 1864 1865 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1866 if (r) { 1867 DMWARN("message: error getting device %s", 1868 argv[1]); 1869 goto out; 1870 } 1871 1872 r = action_dev(m, dev, action); 1873 1874 dm_put_device(ti, dev); 1875 1876 out: 1877 mutex_unlock(&m->work_mutex); 1878 return r; 1879 } 1880 1881 static int multipath_prepare_ioctl(struct dm_target *ti, 1882 struct block_device **bdev) 1883 { 1884 struct multipath *m = ti->private; 1885 struct pgpath *current_pgpath; 1886 int r; 1887 1888 current_pgpath = READ_ONCE(m->current_pgpath); 1889 if (!current_pgpath) 1890 current_pgpath = choose_pgpath(m, 0); 1891 1892 if (current_pgpath) { 1893 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1894 *bdev = current_pgpath->path.dev->bdev; 1895 r = 0; 1896 } else { 1897 /* pg_init has not started or completed */ 1898 r = -ENOTCONN; 1899 } 1900 } else { 1901 /* No path is available */ 1902 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1903 r = -ENOTCONN; 1904 else 1905 r = -EIO; 1906 } 1907 1908 if (r == -ENOTCONN) { 1909 if (!READ_ONCE(m->current_pg)) { 1910 /* Path status changed, redo selection */ 1911 (void) choose_pgpath(m, 0); 1912 } 1913 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1914 pg_init_all_paths(m); 1915 dm_table_run_md_queue_async(m->ti->table); 1916 process_queued_io_list(m); 1917 } 1918 1919 /* 1920 * Only pass ioctls through if the device sizes match exactly. 1921 */ 1922 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1923 return 1; 1924 return r; 1925 } 1926 1927 static int multipath_iterate_devices(struct dm_target *ti, 1928 iterate_devices_callout_fn fn, void *data) 1929 { 1930 struct multipath *m = ti->private; 1931 struct priority_group *pg; 1932 struct pgpath *p; 1933 int ret = 0; 1934 1935 list_for_each_entry(pg, &m->priority_groups, list) { 1936 list_for_each_entry(p, &pg->pgpaths, list) { 1937 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1938 if (ret) 1939 goto out; 1940 } 1941 } 1942 1943 out: 1944 return ret; 1945 } 1946 1947 static int pgpath_busy(struct pgpath *pgpath) 1948 { 1949 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1950 1951 return blk_lld_busy(q); 1952 } 1953 1954 /* 1955 * We return "busy", only when we can map I/Os but underlying devices 1956 * are busy (so even if we map I/Os now, the I/Os will wait on 1957 * the underlying queue). 1958 * In other words, if we want to kill I/Os or queue them inside us 1959 * due to map unavailability, we don't return "busy". Otherwise, 1960 * dm core won't give us the I/Os and we can't do what we want. 1961 */ 1962 static int multipath_busy(struct dm_target *ti) 1963 { 1964 bool busy = false, has_active = false; 1965 struct multipath *m = ti->private; 1966 struct priority_group *pg, *next_pg; 1967 struct pgpath *pgpath; 1968 1969 /* pg_init in progress */ 1970 if (atomic_read(&m->pg_init_in_progress)) 1971 return true; 1972 1973 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1974 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1975 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1976 1977 /* Guess which priority_group will be used at next mapping time */ 1978 pg = READ_ONCE(m->current_pg); 1979 next_pg = READ_ONCE(m->next_pg); 1980 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1981 pg = next_pg; 1982 1983 if (!pg) { 1984 /* 1985 * We don't know which pg will be used at next mapping time. 1986 * We don't call choose_pgpath() here to avoid to trigger 1987 * pg_init just by busy checking. 1988 * So we don't know whether underlying devices we will be using 1989 * at next mapping time are busy or not. Just try mapping. 1990 */ 1991 return busy; 1992 } 1993 1994 /* 1995 * If there is one non-busy active path at least, the path selector 1996 * will be able to select it. So we consider such a pg as not busy. 1997 */ 1998 busy = true; 1999 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2000 if (pgpath->is_active) { 2001 has_active = true; 2002 if (!pgpath_busy(pgpath)) { 2003 busy = false; 2004 break; 2005 } 2006 } 2007 } 2008 2009 if (!has_active) { 2010 /* 2011 * No active path in this pg, so this pg won't be used and 2012 * the current_pg will be changed at next mapping time. 2013 * We need to try mapping to determine it. 2014 */ 2015 busy = false; 2016 } 2017 2018 return busy; 2019 } 2020 2021 /*----------------------------------------------------------------- 2022 * Module setup 2023 *---------------------------------------------------------------*/ 2024 static struct target_type multipath_target = { 2025 .name = "multipath", 2026 .version = {1, 13, 0}, 2027 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2028 DM_TARGET_PASSES_INTEGRITY, 2029 .module = THIS_MODULE, 2030 .ctr = multipath_ctr, 2031 .dtr = multipath_dtr, 2032 .clone_and_map_rq = multipath_clone_and_map, 2033 .release_clone_rq = multipath_release_clone, 2034 .rq_end_io = multipath_end_io, 2035 .map = multipath_map_bio, 2036 .end_io = multipath_end_io_bio, 2037 .presuspend = multipath_presuspend, 2038 .postsuspend = multipath_postsuspend, 2039 .resume = multipath_resume, 2040 .status = multipath_status, 2041 .message = multipath_message, 2042 .prepare_ioctl = multipath_prepare_ioctl, 2043 .iterate_devices = multipath_iterate_devices, 2044 .busy = multipath_busy, 2045 }; 2046 2047 static int __init dm_multipath_init(void) 2048 { 2049 int r; 2050 2051 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2052 if (!kmultipathd) { 2053 DMERR("failed to create workqueue kmpathd"); 2054 r = -ENOMEM; 2055 goto bad_alloc_kmultipathd; 2056 } 2057 2058 /* 2059 * A separate workqueue is used to handle the device handlers 2060 * to avoid overloading existing workqueue. Overloading the 2061 * old workqueue would also create a bottleneck in the 2062 * path of the storage hardware device activation. 2063 */ 2064 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2065 WQ_MEM_RECLAIM); 2066 if (!kmpath_handlerd) { 2067 DMERR("failed to create workqueue kmpath_handlerd"); 2068 r = -ENOMEM; 2069 goto bad_alloc_kmpath_handlerd; 2070 } 2071 2072 r = dm_register_target(&multipath_target); 2073 if (r < 0) { 2074 DMERR("request-based register failed %d", r); 2075 r = -EINVAL; 2076 goto bad_register_target; 2077 } 2078 2079 return 0; 2080 2081 bad_register_target: 2082 destroy_workqueue(kmpath_handlerd); 2083 bad_alloc_kmpath_handlerd: 2084 destroy_workqueue(kmultipathd); 2085 bad_alloc_kmultipathd: 2086 return r; 2087 } 2088 2089 static void __exit dm_multipath_exit(void) 2090 { 2091 destroy_workqueue(kmpath_handlerd); 2092 destroy_workqueue(kmultipathd); 2093 2094 dm_unregister_target(&multipath_target); 2095 } 2096 2097 module_init(dm_multipath_init); 2098 module_exit(dm_multipath_exit); 2099 2100 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2101 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2102 MODULE_LICENSE("GPL"); 2103