1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/timer.h> 24 #include <linux/workqueue.h> 25 #include <linux/delay.h> 26 #include <scsi/scsi_dh.h> 27 #include <linux/atomic.h> 28 #include <linux/blk-mq.h> 29 30 #define DM_MSG_PREFIX "multipath" 31 #define DM_PG_INIT_DELAY_MSECS 2000 32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0 34 35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT; 36 37 /* Path properties */ 38 struct pgpath { 39 struct list_head list; 40 41 struct priority_group *pg; /* Owning PG */ 42 unsigned fail_count; /* Cumulative failure count */ 43 44 struct dm_path path; 45 struct delayed_work activate_path; 46 47 bool is_active:1; /* Path status */ 48 }; 49 50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 51 52 /* 53 * Paths are grouped into Priority Groups and numbered from 1 upwards. 54 * Each has a path selector which controls which path gets used. 55 */ 56 struct priority_group { 57 struct list_head list; 58 59 struct multipath *m; /* Owning multipath instance */ 60 struct path_selector ps; 61 62 unsigned pg_num; /* Reference number */ 63 unsigned nr_pgpaths; /* Number of paths in PG */ 64 struct list_head pgpaths; 65 66 bool bypassed:1; /* Temporarily bypass this PG? */ 67 }; 68 69 /* Multipath context */ 70 struct multipath { 71 unsigned long flags; /* Multipath state flags */ 72 73 spinlock_t lock; 74 enum dm_queue_mode queue_mode; 75 76 struct pgpath *current_pgpath; 77 struct priority_group *current_pg; 78 struct priority_group *next_pg; /* Switch to this PG if set */ 79 80 atomic_t nr_valid_paths; /* Total number of usable paths */ 81 unsigned nr_priority_groups; 82 struct list_head priority_groups; 83 84 const char *hw_handler_name; 85 char *hw_handler_params; 86 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 87 unsigned pg_init_retries; /* Number of times to retry pg_init */ 88 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 89 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 90 atomic_t pg_init_count; /* Number of times pg_init called */ 91 92 struct mutex work_mutex; 93 struct work_struct trigger_event; 94 struct dm_target *ti; 95 96 struct work_struct process_queued_bios; 97 struct bio_list queued_bios; 98 99 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */ 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 static void queue_if_no_path_timeout_work(struct timer_list *t); 118 119 /*----------------------------------------------- 120 * Multipath state flags. 121 *-----------------------------------------------*/ 122 123 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 124 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 127 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 128 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 129 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 130 131 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m) 132 { 133 bool r = test_bit(MPATHF_bit, &m->flags); 134 135 if (r) { 136 unsigned long flags; 137 spin_lock_irqsave(&m->lock, flags); 138 r = test_bit(MPATHF_bit, &m->flags); 139 spin_unlock_irqrestore(&m->lock, flags); 140 } 141 142 return r; 143 } 144 145 /*----------------------------------------------- 146 * Allocation routines 147 *-----------------------------------------------*/ 148 149 static struct pgpath *alloc_pgpath(void) 150 { 151 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 152 153 if (!pgpath) 154 return NULL; 155 156 pgpath->is_active = true; 157 158 return pgpath; 159 } 160 161 static void free_pgpath(struct pgpath *pgpath) 162 { 163 kfree(pgpath); 164 } 165 166 static struct priority_group *alloc_priority_group(void) 167 { 168 struct priority_group *pg; 169 170 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 171 172 if (pg) 173 INIT_LIST_HEAD(&pg->pgpaths); 174 175 return pg; 176 } 177 178 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 179 { 180 struct pgpath *pgpath, *tmp; 181 182 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 183 list_del(&pgpath->list); 184 dm_put_device(ti, pgpath->path.dev); 185 free_pgpath(pgpath); 186 } 187 } 188 189 static void free_priority_group(struct priority_group *pg, 190 struct dm_target *ti) 191 { 192 struct path_selector *ps = &pg->ps; 193 194 if (ps->type) { 195 ps->type->destroy(ps); 196 dm_put_path_selector(ps->type); 197 } 198 199 free_pgpaths(&pg->pgpaths, ti); 200 kfree(pg); 201 } 202 203 static struct multipath *alloc_multipath(struct dm_target *ti) 204 { 205 struct multipath *m; 206 207 m = kzalloc(sizeof(*m), GFP_KERNEL); 208 if (m) { 209 INIT_LIST_HEAD(&m->priority_groups); 210 spin_lock_init(&m->lock); 211 atomic_set(&m->nr_valid_paths, 0); 212 INIT_WORK(&m->trigger_event, trigger_event); 213 mutex_init(&m->work_mutex); 214 215 m->queue_mode = DM_TYPE_NONE; 216 217 m->ti = ti; 218 ti->private = m; 219 220 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0); 221 } 222 223 return m; 224 } 225 226 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 227 { 228 if (m->queue_mode == DM_TYPE_NONE) { 229 m->queue_mode = DM_TYPE_REQUEST_BASED; 230 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 231 INIT_WORK(&m->process_queued_bios, process_queued_bios); 232 /* 233 * bio-based doesn't support any direct scsi_dh management; 234 * it just discovers if a scsi_dh is attached. 235 */ 236 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 237 } 238 239 dm_table_set_type(ti->table, m->queue_mode); 240 241 /* 242 * Init fields that are only used when a scsi_dh is attached 243 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 244 */ 245 set_bit(MPATHF_QUEUE_IO, &m->flags); 246 atomic_set(&m->pg_init_in_progress, 0); 247 atomic_set(&m->pg_init_count, 0); 248 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 249 init_waitqueue_head(&m->pg_init_wait); 250 251 return 0; 252 } 253 254 static void free_multipath(struct multipath *m) 255 { 256 struct priority_group *pg, *tmp; 257 258 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 259 list_del(&pg->list); 260 free_priority_group(pg, m->ti); 261 } 262 263 kfree(m->hw_handler_name); 264 kfree(m->hw_handler_params); 265 mutex_destroy(&m->work_mutex); 266 kfree(m); 267 } 268 269 static struct dm_mpath_io *get_mpio(union map_info *info) 270 { 271 return info->ptr; 272 } 273 274 static size_t multipath_per_bio_data_size(void) 275 { 276 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 277 } 278 279 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 280 { 281 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 282 } 283 284 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 285 { 286 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 287 void *bio_details = mpio + 1; 288 return bio_details; 289 } 290 291 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 292 { 293 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 294 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 295 296 mpio->nr_bytes = bio->bi_iter.bi_size; 297 mpio->pgpath = NULL; 298 *mpio_p = mpio; 299 300 dm_bio_record(bio_details, bio); 301 } 302 303 /*----------------------------------------------- 304 * Path selection 305 *-----------------------------------------------*/ 306 307 static int __pg_init_all_paths(struct multipath *m) 308 { 309 struct pgpath *pgpath; 310 unsigned long pg_init_delay = 0; 311 312 lockdep_assert_held(&m->lock); 313 314 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 315 return 0; 316 317 atomic_inc(&m->pg_init_count); 318 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 319 320 /* Check here to reset pg_init_required */ 321 if (!m->current_pg) 322 return 0; 323 324 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 325 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 326 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 327 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 328 /* Skip failed paths */ 329 if (!pgpath->is_active) 330 continue; 331 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 332 pg_init_delay)) 333 atomic_inc(&m->pg_init_in_progress); 334 } 335 return atomic_read(&m->pg_init_in_progress); 336 } 337 338 static int pg_init_all_paths(struct multipath *m) 339 { 340 int ret; 341 unsigned long flags; 342 343 spin_lock_irqsave(&m->lock, flags); 344 ret = __pg_init_all_paths(m); 345 spin_unlock_irqrestore(&m->lock, flags); 346 347 return ret; 348 } 349 350 static void __switch_pg(struct multipath *m, struct priority_group *pg) 351 { 352 lockdep_assert_held(&m->lock); 353 354 m->current_pg = pg; 355 356 /* Must we initialise the PG first, and queue I/O till it's ready? */ 357 if (m->hw_handler_name) { 358 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 359 set_bit(MPATHF_QUEUE_IO, &m->flags); 360 } else { 361 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 362 clear_bit(MPATHF_QUEUE_IO, &m->flags); 363 } 364 365 atomic_set(&m->pg_init_count, 0); 366 } 367 368 static struct pgpath *choose_path_in_pg(struct multipath *m, 369 struct priority_group *pg, 370 size_t nr_bytes) 371 { 372 unsigned long flags; 373 struct dm_path *path; 374 struct pgpath *pgpath; 375 376 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 377 if (!path) 378 return ERR_PTR(-ENXIO); 379 380 pgpath = path_to_pgpath(path); 381 382 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 383 /* Only update current_pgpath if pg changed */ 384 spin_lock_irqsave(&m->lock, flags); 385 m->current_pgpath = pgpath; 386 __switch_pg(m, pg); 387 spin_unlock_irqrestore(&m->lock, flags); 388 } 389 390 return pgpath; 391 } 392 393 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 394 { 395 unsigned long flags; 396 struct priority_group *pg; 397 struct pgpath *pgpath; 398 unsigned bypassed = 1; 399 400 if (!atomic_read(&m->nr_valid_paths)) { 401 spin_lock_irqsave(&m->lock, flags); 402 clear_bit(MPATHF_QUEUE_IO, &m->flags); 403 spin_unlock_irqrestore(&m->lock, flags); 404 goto failed; 405 } 406 407 /* Were we instructed to switch PG? */ 408 if (READ_ONCE(m->next_pg)) { 409 spin_lock_irqsave(&m->lock, flags); 410 pg = m->next_pg; 411 if (!pg) { 412 spin_unlock_irqrestore(&m->lock, flags); 413 goto check_current_pg; 414 } 415 m->next_pg = NULL; 416 spin_unlock_irqrestore(&m->lock, flags); 417 pgpath = choose_path_in_pg(m, pg, nr_bytes); 418 if (!IS_ERR_OR_NULL(pgpath)) 419 return pgpath; 420 } 421 422 /* Don't change PG until it has no remaining paths */ 423 check_current_pg: 424 pg = READ_ONCE(m->current_pg); 425 if (pg) { 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) 428 return pgpath; 429 } 430 431 /* 432 * Loop through priority groups until we find a valid path. 433 * First time we skip PGs marked 'bypassed'. 434 * Second time we only try the ones we skipped, but set 435 * pg_init_delay_retry so we do not hammer controllers. 436 */ 437 do { 438 list_for_each_entry(pg, &m->priority_groups, list) { 439 if (pg->bypassed == !!bypassed) 440 continue; 441 pgpath = choose_path_in_pg(m, pg, nr_bytes); 442 if (!IS_ERR_OR_NULL(pgpath)) { 443 if (!bypassed) { 444 spin_lock_irqsave(&m->lock, flags); 445 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 446 spin_unlock_irqrestore(&m->lock, flags); 447 } 448 return pgpath; 449 } 450 } 451 } while (bypassed--); 452 453 failed: 454 spin_lock_irqsave(&m->lock, flags); 455 m->current_pgpath = NULL; 456 m->current_pg = NULL; 457 spin_unlock_irqrestore(&m->lock, flags); 458 459 return NULL; 460 } 461 462 /* 463 * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited() 464 * report the function name and line number of the function from which 465 * it has been invoked. 466 */ 467 #define dm_report_EIO(m) \ 468 do { \ 469 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 470 \ 471 DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \ 472 dm_device_name(md), \ 473 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 474 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 475 dm_noflush_suspending((m)->ti)); \ 476 } while (0) 477 478 /* 479 * Check whether bios must be queued in the device-mapper core rather 480 * than here in the target. 481 */ 482 static bool __must_push_back(struct multipath *m) 483 { 484 return dm_noflush_suspending(m->ti); 485 } 486 487 static bool must_push_back_rq(struct multipath *m) 488 { 489 unsigned long flags; 490 bool ret; 491 492 spin_lock_irqsave(&m->lock, flags); 493 ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m)); 494 spin_unlock_irqrestore(&m->lock, flags); 495 496 return ret; 497 } 498 499 /* 500 * Map cloned requests (request-based multipath) 501 */ 502 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 503 union map_info *map_context, 504 struct request **__clone) 505 { 506 struct multipath *m = ti->private; 507 size_t nr_bytes = blk_rq_bytes(rq); 508 struct pgpath *pgpath; 509 struct block_device *bdev; 510 struct dm_mpath_io *mpio = get_mpio(map_context); 511 struct request_queue *q; 512 struct request *clone; 513 514 /* Do we need to select a new pgpath? */ 515 pgpath = READ_ONCE(m->current_pgpath); 516 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 517 pgpath = choose_pgpath(m, nr_bytes); 518 519 if (!pgpath) { 520 if (must_push_back_rq(m)) 521 return DM_MAPIO_DELAY_REQUEUE; 522 dm_report_EIO(m); /* Failed */ 523 return DM_MAPIO_KILL; 524 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 525 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 526 pg_init_all_paths(m); 527 return DM_MAPIO_DELAY_REQUEUE; 528 } 529 530 mpio->pgpath = pgpath; 531 mpio->nr_bytes = nr_bytes; 532 533 bdev = pgpath->path.dev->bdev; 534 q = bdev_get_queue(bdev); 535 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, 536 BLK_MQ_REQ_NOWAIT); 537 if (IS_ERR(clone)) { 538 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 539 if (blk_queue_dying(q)) { 540 atomic_inc(&m->pg_init_in_progress); 541 activate_or_offline_path(pgpath); 542 return DM_MAPIO_DELAY_REQUEUE; 543 } 544 545 /* 546 * blk-mq's SCHED_RESTART can cover this requeue, so we 547 * needn't deal with it by DELAY_REQUEUE. More importantly, 548 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 549 * get the queue busy feedback (via BLK_STS_RESOURCE), 550 * otherwise I/O merging can suffer. 551 */ 552 return DM_MAPIO_REQUEUE; 553 } 554 clone->bio = clone->biotail = NULL; 555 clone->rq_disk = bdev->bd_disk; 556 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 557 *__clone = clone; 558 559 if (pgpath->pg->ps.type->start_io) 560 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 561 &pgpath->path, 562 nr_bytes); 563 return DM_MAPIO_REMAPPED; 564 } 565 566 static void multipath_release_clone(struct request *clone, 567 union map_info *map_context) 568 { 569 if (unlikely(map_context)) { 570 /* 571 * non-NULL map_context means caller is still map 572 * method; must undo multipath_clone_and_map() 573 */ 574 struct dm_mpath_io *mpio = get_mpio(map_context); 575 struct pgpath *pgpath = mpio->pgpath; 576 577 if (pgpath && pgpath->pg->ps.type->end_io) 578 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 579 &pgpath->path, 580 mpio->nr_bytes, 581 clone->io_start_time_ns); 582 } 583 584 blk_put_request(clone); 585 } 586 587 /* 588 * Map cloned bios (bio-based multipath) 589 */ 590 591 static void __multipath_queue_bio(struct multipath *m, struct bio *bio) 592 { 593 /* Queue for the daemon to resubmit */ 594 bio_list_add(&m->queued_bios, bio); 595 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 596 queue_work(kmultipathd, &m->process_queued_bios); 597 } 598 599 static void multipath_queue_bio(struct multipath *m, struct bio *bio) 600 { 601 unsigned long flags; 602 603 spin_lock_irqsave(&m->lock, flags); 604 __multipath_queue_bio(m, bio); 605 spin_unlock_irqrestore(&m->lock, flags); 606 } 607 608 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 609 { 610 struct pgpath *pgpath; 611 unsigned long flags; 612 613 /* Do we need to select a new pgpath? */ 614 pgpath = READ_ONCE(m->current_pgpath); 615 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 616 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 617 618 if (!pgpath) { 619 spin_lock_irqsave(&m->lock, flags); 620 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 621 __multipath_queue_bio(m, bio); 622 pgpath = ERR_PTR(-EAGAIN); 623 } 624 spin_unlock_irqrestore(&m->lock, flags); 625 626 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 627 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 628 multipath_queue_bio(m, bio); 629 pg_init_all_paths(m); 630 return ERR_PTR(-EAGAIN); 631 } 632 633 return pgpath; 634 } 635 636 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 637 struct dm_mpath_io *mpio) 638 { 639 struct pgpath *pgpath = __map_bio(m, bio); 640 641 if (IS_ERR(pgpath)) 642 return DM_MAPIO_SUBMITTED; 643 644 if (!pgpath) { 645 if (__must_push_back(m)) 646 return DM_MAPIO_REQUEUE; 647 dm_report_EIO(m); 648 return DM_MAPIO_KILL; 649 } 650 651 mpio->pgpath = pgpath; 652 653 bio->bi_status = 0; 654 bio_set_dev(bio, pgpath->path.dev->bdev); 655 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 656 657 if (pgpath->pg->ps.type->start_io) 658 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 659 &pgpath->path, 660 mpio->nr_bytes); 661 return DM_MAPIO_REMAPPED; 662 } 663 664 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 665 { 666 struct multipath *m = ti->private; 667 struct dm_mpath_io *mpio = NULL; 668 669 multipath_init_per_bio_data(bio, &mpio); 670 return __multipath_map_bio(m, bio, mpio); 671 } 672 673 static void process_queued_io_list(struct multipath *m) 674 { 675 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 676 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 677 else if (m->queue_mode == DM_TYPE_BIO_BASED) 678 queue_work(kmultipathd, &m->process_queued_bios); 679 } 680 681 static void process_queued_bios(struct work_struct *work) 682 { 683 int r; 684 unsigned long flags; 685 struct bio *bio; 686 struct bio_list bios; 687 struct blk_plug plug; 688 struct multipath *m = 689 container_of(work, struct multipath, process_queued_bios); 690 691 bio_list_init(&bios); 692 693 spin_lock_irqsave(&m->lock, flags); 694 695 if (bio_list_empty(&m->queued_bios)) { 696 spin_unlock_irqrestore(&m->lock, flags); 697 return; 698 } 699 700 bio_list_merge(&bios, &m->queued_bios); 701 bio_list_init(&m->queued_bios); 702 703 spin_unlock_irqrestore(&m->lock, flags); 704 705 blk_start_plug(&plug); 706 while ((bio = bio_list_pop(&bios))) { 707 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 708 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 709 r = __multipath_map_bio(m, bio, mpio); 710 switch (r) { 711 case DM_MAPIO_KILL: 712 bio->bi_status = BLK_STS_IOERR; 713 bio_endio(bio); 714 break; 715 case DM_MAPIO_REQUEUE: 716 bio->bi_status = BLK_STS_DM_REQUEUE; 717 bio_endio(bio); 718 break; 719 case DM_MAPIO_REMAPPED: 720 submit_bio_noacct(bio); 721 break; 722 case DM_MAPIO_SUBMITTED: 723 break; 724 default: 725 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 726 } 727 } 728 blk_finish_plug(&plug); 729 } 730 731 /* 732 * If we run out of usable paths, should we queue I/O or error it? 733 */ 734 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 735 bool save_old_value, const char *caller) 736 { 737 unsigned long flags; 738 bool queue_if_no_path_bit, saved_queue_if_no_path_bit; 739 const char *dm_dev_name = dm_device_name(dm_table_get_md(m->ti->table)); 740 741 DMDEBUG("%s: %s caller=%s queue_if_no_path=%d save_old_value=%d", 742 dm_dev_name, __func__, caller, queue_if_no_path, save_old_value); 743 744 spin_lock_irqsave(&m->lock, flags); 745 746 queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 747 saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 748 749 if (save_old_value) { 750 if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) { 751 DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!", 752 dm_dev_name); 753 } else 754 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit); 755 } else if (!queue_if_no_path && saved_queue_if_no_path_bit) { 756 /* due to "fail_if_no_path" message, need to honor it. */ 757 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 758 } 759 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 760 761 DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d", 762 dm_dev_name, __func__, 763 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 764 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 765 dm_noflush_suspending(m->ti)); 766 767 spin_unlock_irqrestore(&m->lock, flags); 768 769 if (!queue_if_no_path) { 770 dm_table_run_md_queue_async(m->ti->table); 771 process_queued_io_list(m); 772 } 773 774 return 0; 775 } 776 777 /* 778 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and 779 * process any queued I/O. 780 */ 781 static void queue_if_no_path_timeout_work(struct timer_list *t) 782 { 783 struct multipath *m = from_timer(m, t, nopath_timer); 784 struct mapped_device *md = dm_table_get_md(m->ti->table); 785 786 DMWARN("queue_if_no_path timeout on %s, failing queued IO", dm_device_name(md)); 787 queue_if_no_path(m, false, false, __func__); 788 } 789 790 /* 791 * Enable the queue_if_no_path timeout if necessary. 792 * Called with m->lock held. 793 */ 794 static void enable_nopath_timeout(struct multipath *m) 795 { 796 unsigned long queue_if_no_path_timeout = 797 READ_ONCE(queue_if_no_path_timeout_secs) * HZ; 798 799 lockdep_assert_held(&m->lock); 800 801 if (queue_if_no_path_timeout > 0 && 802 atomic_read(&m->nr_valid_paths) == 0 && 803 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 804 mod_timer(&m->nopath_timer, 805 jiffies + queue_if_no_path_timeout); 806 } 807 } 808 809 static void disable_nopath_timeout(struct multipath *m) 810 { 811 del_timer_sync(&m->nopath_timer); 812 } 813 814 /* 815 * An event is triggered whenever a path is taken out of use. 816 * Includes path failure and PG bypass. 817 */ 818 static void trigger_event(struct work_struct *work) 819 { 820 struct multipath *m = 821 container_of(work, struct multipath, trigger_event); 822 823 dm_table_event(m->ti->table); 824 } 825 826 /*----------------------------------------------------------------- 827 * Constructor/argument parsing: 828 * <#multipath feature args> [<arg>]* 829 * <#hw_handler args> [hw_handler [<arg>]*] 830 * <#priority groups> 831 * <initial priority group> 832 * [<selector> <#selector args> [<arg>]* 833 * <#paths> <#per-path selector args> 834 * [<path> [<arg>]* ]+ ]+ 835 *---------------------------------------------------------------*/ 836 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 837 struct dm_target *ti) 838 { 839 int r; 840 struct path_selector_type *pst; 841 unsigned ps_argc; 842 843 static const struct dm_arg _args[] = { 844 {0, 1024, "invalid number of path selector args"}, 845 }; 846 847 pst = dm_get_path_selector(dm_shift_arg(as)); 848 if (!pst) { 849 ti->error = "unknown path selector type"; 850 return -EINVAL; 851 } 852 853 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 854 if (r) { 855 dm_put_path_selector(pst); 856 return -EINVAL; 857 } 858 859 r = pst->create(&pg->ps, ps_argc, as->argv); 860 if (r) { 861 dm_put_path_selector(pst); 862 ti->error = "path selector constructor failed"; 863 return r; 864 } 865 866 pg->ps.type = pst; 867 dm_consume_args(as, ps_argc); 868 869 return 0; 870 } 871 872 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 873 const char **attached_handler_name, char **error) 874 { 875 struct request_queue *q = bdev_get_queue(bdev); 876 int r; 877 878 if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) { 879 retain: 880 if (*attached_handler_name) { 881 /* 882 * Clear any hw_handler_params associated with a 883 * handler that isn't already attached. 884 */ 885 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 886 kfree(m->hw_handler_params); 887 m->hw_handler_params = NULL; 888 } 889 890 /* 891 * Reset hw_handler_name to match the attached handler 892 * 893 * NB. This modifies the table line to show the actual 894 * handler instead of the original table passed in. 895 */ 896 kfree(m->hw_handler_name); 897 m->hw_handler_name = *attached_handler_name; 898 *attached_handler_name = NULL; 899 } 900 } 901 902 if (m->hw_handler_name) { 903 r = scsi_dh_attach(q, m->hw_handler_name); 904 if (r == -EBUSY) { 905 char b[BDEVNAME_SIZE]; 906 907 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 908 bdevname(bdev, b)); 909 goto retain; 910 } 911 if (r < 0) { 912 *error = "error attaching hardware handler"; 913 return r; 914 } 915 916 if (m->hw_handler_params) { 917 r = scsi_dh_set_params(q, m->hw_handler_params); 918 if (r < 0) { 919 *error = "unable to set hardware handler parameters"; 920 return r; 921 } 922 } 923 } 924 925 return 0; 926 } 927 928 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 929 struct dm_target *ti) 930 { 931 int r; 932 struct pgpath *p; 933 struct multipath *m = ti->private; 934 struct request_queue *q; 935 const char *attached_handler_name = NULL; 936 937 /* we need at least a path arg */ 938 if (as->argc < 1) { 939 ti->error = "no device given"; 940 return ERR_PTR(-EINVAL); 941 } 942 943 p = alloc_pgpath(); 944 if (!p) 945 return ERR_PTR(-ENOMEM); 946 947 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 948 &p->path.dev); 949 if (r) { 950 ti->error = "error getting device"; 951 goto bad; 952 } 953 954 q = bdev_get_queue(p->path.dev->bdev); 955 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 956 if (attached_handler_name || m->hw_handler_name) { 957 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 958 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 959 kfree(attached_handler_name); 960 if (r) { 961 dm_put_device(ti, p->path.dev); 962 goto bad; 963 } 964 } 965 966 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 967 if (r) { 968 dm_put_device(ti, p->path.dev); 969 goto bad; 970 } 971 972 return p; 973 bad: 974 free_pgpath(p); 975 return ERR_PTR(r); 976 } 977 978 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 979 struct multipath *m) 980 { 981 static const struct dm_arg _args[] = { 982 {1, 1024, "invalid number of paths"}, 983 {0, 1024, "invalid number of selector args"} 984 }; 985 986 int r; 987 unsigned i, nr_selector_args, nr_args; 988 struct priority_group *pg; 989 struct dm_target *ti = m->ti; 990 991 if (as->argc < 2) { 992 as->argc = 0; 993 ti->error = "not enough priority group arguments"; 994 return ERR_PTR(-EINVAL); 995 } 996 997 pg = alloc_priority_group(); 998 if (!pg) { 999 ti->error = "couldn't allocate priority group"; 1000 return ERR_PTR(-ENOMEM); 1001 } 1002 pg->m = m; 1003 1004 r = parse_path_selector(as, pg, ti); 1005 if (r) 1006 goto bad; 1007 1008 /* 1009 * read the paths 1010 */ 1011 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 1012 if (r) 1013 goto bad; 1014 1015 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 1016 if (r) 1017 goto bad; 1018 1019 nr_args = 1 + nr_selector_args; 1020 for (i = 0; i < pg->nr_pgpaths; i++) { 1021 struct pgpath *pgpath; 1022 struct dm_arg_set path_args; 1023 1024 if (as->argc < nr_args) { 1025 ti->error = "not enough path parameters"; 1026 r = -EINVAL; 1027 goto bad; 1028 } 1029 1030 path_args.argc = nr_args; 1031 path_args.argv = as->argv; 1032 1033 pgpath = parse_path(&path_args, &pg->ps, ti); 1034 if (IS_ERR(pgpath)) { 1035 r = PTR_ERR(pgpath); 1036 goto bad; 1037 } 1038 1039 pgpath->pg = pg; 1040 list_add_tail(&pgpath->list, &pg->pgpaths); 1041 dm_consume_args(as, nr_args); 1042 } 1043 1044 return pg; 1045 1046 bad: 1047 free_priority_group(pg, ti); 1048 return ERR_PTR(r); 1049 } 1050 1051 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 1052 { 1053 unsigned hw_argc; 1054 int ret; 1055 struct dm_target *ti = m->ti; 1056 1057 static const struct dm_arg _args[] = { 1058 {0, 1024, "invalid number of hardware handler args"}, 1059 }; 1060 1061 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 1062 return -EINVAL; 1063 1064 if (!hw_argc) 1065 return 0; 1066 1067 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1068 dm_consume_args(as, hw_argc); 1069 DMERR("bio-based multipath doesn't allow hardware handler args"); 1070 return 0; 1071 } 1072 1073 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1074 if (!m->hw_handler_name) 1075 return -EINVAL; 1076 1077 if (hw_argc > 1) { 1078 char *p; 1079 int i, j, len = 4; 1080 1081 for (i = 0; i <= hw_argc - 2; i++) 1082 len += strlen(as->argv[i]) + 1; 1083 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1084 if (!p) { 1085 ti->error = "memory allocation failed"; 1086 ret = -ENOMEM; 1087 goto fail; 1088 } 1089 j = sprintf(p, "%d", hw_argc - 1); 1090 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1091 j = sprintf(p, "%s", as->argv[i]); 1092 } 1093 dm_consume_args(as, hw_argc - 1); 1094 1095 return 0; 1096 fail: 1097 kfree(m->hw_handler_name); 1098 m->hw_handler_name = NULL; 1099 return ret; 1100 } 1101 1102 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1103 { 1104 int r; 1105 unsigned argc; 1106 struct dm_target *ti = m->ti; 1107 const char *arg_name; 1108 1109 static const struct dm_arg _args[] = { 1110 {0, 8, "invalid number of feature args"}, 1111 {1, 50, "pg_init_retries must be between 1 and 50"}, 1112 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1113 }; 1114 1115 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1116 if (r) 1117 return -EINVAL; 1118 1119 if (!argc) 1120 return 0; 1121 1122 do { 1123 arg_name = dm_shift_arg(as); 1124 argc--; 1125 1126 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1127 r = queue_if_no_path(m, true, false, __func__); 1128 continue; 1129 } 1130 1131 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1132 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1133 continue; 1134 } 1135 1136 if (!strcasecmp(arg_name, "pg_init_retries") && 1137 (argc >= 1)) { 1138 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1139 argc--; 1140 continue; 1141 } 1142 1143 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1144 (argc >= 1)) { 1145 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1146 argc--; 1147 continue; 1148 } 1149 1150 if (!strcasecmp(arg_name, "queue_mode") && 1151 (argc >= 1)) { 1152 const char *queue_mode_name = dm_shift_arg(as); 1153 1154 if (!strcasecmp(queue_mode_name, "bio")) 1155 m->queue_mode = DM_TYPE_BIO_BASED; 1156 else if (!strcasecmp(queue_mode_name, "rq") || 1157 !strcasecmp(queue_mode_name, "mq")) 1158 m->queue_mode = DM_TYPE_REQUEST_BASED; 1159 else { 1160 ti->error = "Unknown 'queue_mode' requested"; 1161 r = -EINVAL; 1162 } 1163 argc--; 1164 continue; 1165 } 1166 1167 ti->error = "Unrecognised multipath feature request"; 1168 r = -EINVAL; 1169 } while (argc && !r); 1170 1171 return r; 1172 } 1173 1174 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1175 { 1176 /* target arguments */ 1177 static const struct dm_arg _args[] = { 1178 {0, 1024, "invalid number of priority groups"}, 1179 {0, 1024, "invalid initial priority group number"}, 1180 }; 1181 1182 int r; 1183 struct multipath *m; 1184 struct dm_arg_set as; 1185 unsigned pg_count = 0; 1186 unsigned next_pg_num; 1187 unsigned long flags; 1188 1189 as.argc = argc; 1190 as.argv = argv; 1191 1192 m = alloc_multipath(ti); 1193 if (!m) { 1194 ti->error = "can't allocate multipath"; 1195 return -EINVAL; 1196 } 1197 1198 r = parse_features(&as, m); 1199 if (r) 1200 goto bad; 1201 1202 r = alloc_multipath_stage2(ti, m); 1203 if (r) 1204 goto bad; 1205 1206 r = parse_hw_handler(&as, m); 1207 if (r) 1208 goto bad; 1209 1210 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1211 if (r) 1212 goto bad; 1213 1214 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1215 if (r) 1216 goto bad; 1217 1218 if ((!m->nr_priority_groups && next_pg_num) || 1219 (m->nr_priority_groups && !next_pg_num)) { 1220 ti->error = "invalid initial priority group"; 1221 r = -EINVAL; 1222 goto bad; 1223 } 1224 1225 /* parse the priority groups */ 1226 while (as.argc) { 1227 struct priority_group *pg; 1228 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1229 1230 pg = parse_priority_group(&as, m); 1231 if (IS_ERR(pg)) { 1232 r = PTR_ERR(pg); 1233 goto bad; 1234 } 1235 1236 nr_valid_paths += pg->nr_pgpaths; 1237 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1238 1239 list_add_tail(&pg->list, &m->priority_groups); 1240 pg_count++; 1241 pg->pg_num = pg_count; 1242 if (!--next_pg_num) 1243 m->next_pg = pg; 1244 } 1245 1246 if (pg_count != m->nr_priority_groups) { 1247 ti->error = "priority group count mismatch"; 1248 r = -EINVAL; 1249 goto bad; 1250 } 1251 1252 spin_lock_irqsave(&m->lock, flags); 1253 enable_nopath_timeout(m); 1254 spin_unlock_irqrestore(&m->lock, flags); 1255 1256 ti->num_flush_bios = 1; 1257 ti->num_discard_bios = 1; 1258 ti->num_write_same_bios = 1; 1259 ti->num_write_zeroes_bios = 1; 1260 if (m->queue_mode == DM_TYPE_BIO_BASED) 1261 ti->per_io_data_size = multipath_per_bio_data_size(); 1262 else 1263 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1264 1265 return 0; 1266 1267 bad: 1268 free_multipath(m); 1269 return r; 1270 } 1271 1272 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1273 { 1274 DEFINE_WAIT(wait); 1275 1276 while (1) { 1277 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1278 1279 if (!atomic_read(&m->pg_init_in_progress)) 1280 break; 1281 1282 io_schedule(); 1283 } 1284 finish_wait(&m->pg_init_wait, &wait); 1285 } 1286 1287 static void flush_multipath_work(struct multipath *m) 1288 { 1289 if (m->hw_handler_name) { 1290 unsigned long flags; 1291 1292 if (!atomic_read(&m->pg_init_in_progress)) 1293 goto skip; 1294 1295 spin_lock_irqsave(&m->lock, flags); 1296 if (atomic_read(&m->pg_init_in_progress) && 1297 !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) { 1298 spin_unlock_irqrestore(&m->lock, flags); 1299 1300 flush_workqueue(kmpath_handlerd); 1301 multipath_wait_for_pg_init_completion(m); 1302 1303 spin_lock_irqsave(&m->lock, flags); 1304 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1305 } 1306 spin_unlock_irqrestore(&m->lock, flags); 1307 } 1308 skip: 1309 if (m->queue_mode == DM_TYPE_BIO_BASED) 1310 flush_work(&m->process_queued_bios); 1311 flush_work(&m->trigger_event); 1312 } 1313 1314 static void multipath_dtr(struct dm_target *ti) 1315 { 1316 struct multipath *m = ti->private; 1317 1318 disable_nopath_timeout(m); 1319 flush_multipath_work(m); 1320 free_multipath(m); 1321 } 1322 1323 /* 1324 * Take a path out of use. 1325 */ 1326 static int fail_path(struct pgpath *pgpath) 1327 { 1328 unsigned long flags; 1329 struct multipath *m = pgpath->pg->m; 1330 1331 spin_lock_irqsave(&m->lock, flags); 1332 1333 if (!pgpath->is_active) 1334 goto out; 1335 1336 DMWARN("%s: Failing path %s.", 1337 dm_device_name(dm_table_get_md(m->ti->table)), 1338 pgpath->path.dev->name); 1339 1340 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1341 pgpath->is_active = false; 1342 pgpath->fail_count++; 1343 1344 atomic_dec(&m->nr_valid_paths); 1345 1346 if (pgpath == m->current_pgpath) 1347 m->current_pgpath = NULL; 1348 1349 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1350 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1351 1352 schedule_work(&m->trigger_event); 1353 1354 enable_nopath_timeout(m); 1355 1356 out: 1357 spin_unlock_irqrestore(&m->lock, flags); 1358 1359 return 0; 1360 } 1361 1362 /* 1363 * Reinstate a previously-failed path 1364 */ 1365 static int reinstate_path(struct pgpath *pgpath) 1366 { 1367 int r = 0, run_queue = 0; 1368 unsigned long flags; 1369 struct multipath *m = pgpath->pg->m; 1370 unsigned nr_valid_paths; 1371 1372 spin_lock_irqsave(&m->lock, flags); 1373 1374 if (pgpath->is_active) 1375 goto out; 1376 1377 DMWARN("%s: Reinstating path %s.", 1378 dm_device_name(dm_table_get_md(m->ti->table)), 1379 pgpath->path.dev->name); 1380 1381 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1382 if (r) 1383 goto out; 1384 1385 pgpath->is_active = true; 1386 1387 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1388 if (nr_valid_paths == 1) { 1389 m->current_pgpath = NULL; 1390 run_queue = 1; 1391 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1392 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1393 atomic_inc(&m->pg_init_in_progress); 1394 } 1395 1396 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1397 pgpath->path.dev->name, nr_valid_paths); 1398 1399 schedule_work(&m->trigger_event); 1400 1401 out: 1402 spin_unlock_irqrestore(&m->lock, flags); 1403 if (run_queue) { 1404 dm_table_run_md_queue_async(m->ti->table); 1405 process_queued_io_list(m); 1406 } 1407 1408 if (pgpath->is_active) 1409 disable_nopath_timeout(m); 1410 1411 return r; 1412 } 1413 1414 /* 1415 * Fail or reinstate all paths that match the provided struct dm_dev. 1416 */ 1417 static int action_dev(struct multipath *m, struct dm_dev *dev, 1418 action_fn action) 1419 { 1420 int r = -EINVAL; 1421 struct pgpath *pgpath; 1422 struct priority_group *pg; 1423 1424 list_for_each_entry(pg, &m->priority_groups, list) { 1425 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1426 if (pgpath->path.dev == dev) 1427 r = action(pgpath); 1428 } 1429 } 1430 1431 return r; 1432 } 1433 1434 /* 1435 * Temporarily try to avoid having to use the specified PG 1436 */ 1437 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1438 bool bypassed) 1439 { 1440 unsigned long flags; 1441 1442 spin_lock_irqsave(&m->lock, flags); 1443 1444 pg->bypassed = bypassed; 1445 m->current_pgpath = NULL; 1446 m->current_pg = NULL; 1447 1448 spin_unlock_irqrestore(&m->lock, flags); 1449 1450 schedule_work(&m->trigger_event); 1451 } 1452 1453 /* 1454 * Switch to using the specified PG from the next I/O that gets mapped 1455 */ 1456 static int switch_pg_num(struct multipath *m, const char *pgstr) 1457 { 1458 struct priority_group *pg; 1459 unsigned pgnum; 1460 unsigned long flags; 1461 char dummy; 1462 1463 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1464 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1465 DMWARN("invalid PG number supplied to switch_pg_num"); 1466 return -EINVAL; 1467 } 1468 1469 spin_lock_irqsave(&m->lock, flags); 1470 list_for_each_entry(pg, &m->priority_groups, list) { 1471 pg->bypassed = false; 1472 if (--pgnum) 1473 continue; 1474 1475 m->current_pgpath = NULL; 1476 m->current_pg = NULL; 1477 m->next_pg = pg; 1478 } 1479 spin_unlock_irqrestore(&m->lock, flags); 1480 1481 schedule_work(&m->trigger_event); 1482 return 0; 1483 } 1484 1485 /* 1486 * Set/clear bypassed status of a PG. 1487 * PGs are numbered upwards from 1 in the order they were declared. 1488 */ 1489 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1490 { 1491 struct priority_group *pg; 1492 unsigned pgnum; 1493 char dummy; 1494 1495 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1496 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1497 DMWARN("invalid PG number supplied to bypass_pg"); 1498 return -EINVAL; 1499 } 1500 1501 list_for_each_entry(pg, &m->priority_groups, list) { 1502 if (!--pgnum) 1503 break; 1504 } 1505 1506 bypass_pg(m, pg, bypassed); 1507 return 0; 1508 } 1509 1510 /* 1511 * Should we retry pg_init immediately? 1512 */ 1513 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1514 { 1515 unsigned long flags; 1516 bool limit_reached = false; 1517 1518 spin_lock_irqsave(&m->lock, flags); 1519 1520 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1521 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1522 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1523 else 1524 limit_reached = true; 1525 1526 spin_unlock_irqrestore(&m->lock, flags); 1527 1528 return limit_reached; 1529 } 1530 1531 static void pg_init_done(void *data, int errors) 1532 { 1533 struct pgpath *pgpath = data; 1534 struct priority_group *pg = pgpath->pg; 1535 struct multipath *m = pg->m; 1536 unsigned long flags; 1537 bool delay_retry = false; 1538 1539 /* device or driver problems */ 1540 switch (errors) { 1541 case SCSI_DH_OK: 1542 break; 1543 case SCSI_DH_NOSYS: 1544 if (!m->hw_handler_name) { 1545 errors = 0; 1546 break; 1547 } 1548 DMERR("Could not failover the device: Handler scsi_dh_%s " 1549 "Error %d.", m->hw_handler_name, errors); 1550 /* 1551 * Fail path for now, so we do not ping pong 1552 */ 1553 fail_path(pgpath); 1554 break; 1555 case SCSI_DH_DEV_TEMP_BUSY: 1556 /* 1557 * Probably doing something like FW upgrade on the 1558 * controller so try the other pg. 1559 */ 1560 bypass_pg(m, pg, true); 1561 break; 1562 case SCSI_DH_RETRY: 1563 /* Wait before retrying. */ 1564 delay_retry = true; 1565 fallthrough; 1566 case SCSI_DH_IMM_RETRY: 1567 case SCSI_DH_RES_TEMP_UNAVAIL: 1568 if (pg_init_limit_reached(m, pgpath)) 1569 fail_path(pgpath); 1570 errors = 0; 1571 break; 1572 case SCSI_DH_DEV_OFFLINED: 1573 default: 1574 /* 1575 * We probably do not want to fail the path for a device 1576 * error, but this is what the old dm did. In future 1577 * patches we can do more advanced handling. 1578 */ 1579 fail_path(pgpath); 1580 } 1581 1582 spin_lock_irqsave(&m->lock, flags); 1583 if (errors) { 1584 if (pgpath == m->current_pgpath) { 1585 DMERR("Could not failover device. Error %d.", errors); 1586 m->current_pgpath = NULL; 1587 m->current_pg = NULL; 1588 } 1589 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1590 pg->bypassed = false; 1591 1592 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1593 /* Activations of other paths are still on going */ 1594 goto out; 1595 1596 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1597 if (delay_retry) 1598 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1599 else 1600 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1601 1602 if (__pg_init_all_paths(m)) 1603 goto out; 1604 } 1605 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1606 1607 process_queued_io_list(m); 1608 1609 /* 1610 * Wake up any thread waiting to suspend. 1611 */ 1612 wake_up(&m->pg_init_wait); 1613 1614 out: 1615 spin_unlock_irqrestore(&m->lock, flags); 1616 } 1617 1618 static void activate_or_offline_path(struct pgpath *pgpath) 1619 { 1620 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1621 1622 if (pgpath->is_active && !blk_queue_dying(q)) 1623 scsi_dh_activate(q, pg_init_done, pgpath); 1624 else 1625 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1626 } 1627 1628 static void activate_path_work(struct work_struct *work) 1629 { 1630 struct pgpath *pgpath = 1631 container_of(work, struct pgpath, activate_path.work); 1632 1633 activate_or_offline_path(pgpath); 1634 } 1635 1636 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1637 blk_status_t error, union map_info *map_context) 1638 { 1639 struct dm_mpath_io *mpio = get_mpio(map_context); 1640 struct pgpath *pgpath = mpio->pgpath; 1641 int r = DM_ENDIO_DONE; 1642 1643 /* 1644 * We don't queue any clone request inside the multipath target 1645 * during end I/O handling, since those clone requests don't have 1646 * bio clones. If we queue them inside the multipath target, 1647 * we need to make bio clones, that requires memory allocation. 1648 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1649 * don't have bio clones.) 1650 * Instead of queueing the clone request here, we queue the original 1651 * request into dm core, which will remake a clone request and 1652 * clone bios for it and resubmit it later. 1653 */ 1654 if (error && blk_path_error(error)) { 1655 struct multipath *m = ti->private; 1656 1657 if (error == BLK_STS_RESOURCE) 1658 r = DM_ENDIO_DELAY_REQUEUE; 1659 else 1660 r = DM_ENDIO_REQUEUE; 1661 1662 if (pgpath) 1663 fail_path(pgpath); 1664 1665 if (!atomic_read(&m->nr_valid_paths) && 1666 !must_push_back_rq(m)) { 1667 if (error == BLK_STS_IOERR) 1668 dm_report_EIO(m); 1669 /* complete with the original error */ 1670 r = DM_ENDIO_DONE; 1671 } 1672 } 1673 1674 if (pgpath) { 1675 struct path_selector *ps = &pgpath->pg->ps; 1676 1677 if (ps->type->end_io) 1678 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1679 clone->io_start_time_ns); 1680 } 1681 1682 return r; 1683 } 1684 1685 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1686 blk_status_t *error) 1687 { 1688 struct multipath *m = ti->private; 1689 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1690 struct pgpath *pgpath = mpio->pgpath; 1691 unsigned long flags; 1692 int r = DM_ENDIO_DONE; 1693 1694 if (!*error || !blk_path_error(*error)) 1695 goto done; 1696 1697 if (pgpath) 1698 fail_path(pgpath); 1699 1700 if (!atomic_read(&m->nr_valid_paths)) { 1701 spin_lock_irqsave(&m->lock, flags); 1702 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1703 if (__must_push_back(m)) { 1704 r = DM_ENDIO_REQUEUE; 1705 } else { 1706 dm_report_EIO(m); 1707 *error = BLK_STS_IOERR; 1708 } 1709 spin_unlock_irqrestore(&m->lock, flags); 1710 goto done; 1711 } 1712 spin_unlock_irqrestore(&m->lock, flags); 1713 } 1714 1715 multipath_queue_bio(m, clone); 1716 r = DM_ENDIO_INCOMPLETE; 1717 done: 1718 if (pgpath) { 1719 struct path_selector *ps = &pgpath->pg->ps; 1720 1721 if (ps->type->end_io) 1722 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1723 dm_start_time_ns_from_clone(clone)); 1724 } 1725 1726 return r; 1727 } 1728 1729 /* 1730 * Suspend with flush can't complete until all the I/O is processed 1731 * so if the last path fails we must error any remaining I/O. 1732 * - Note that if the freeze_bdev fails while suspending, the 1733 * queue_if_no_path state is lost - userspace should reset it. 1734 * Otherwise, during noflush suspend, queue_if_no_path will not change. 1735 */ 1736 static void multipath_presuspend(struct dm_target *ti) 1737 { 1738 struct multipath *m = ti->private; 1739 1740 /* FIXME: bio-based shouldn't need to always disable queue_if_no_path */ 1741 if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti)) 1742 queue_if_no_path(m, false, true, __func__); 1743 } 1744 1745 static void multipath_postsuspend(struct dm_target *ti) 1746 { 1747 struct multipath *m = ti->private; 1748 1749 mutex_lock(&m->work_mutex); 1750 flush_multipath_work(m); 1751 mutex_unlock(&m->work_mutex); 1752 } 1753 1754 /* 1755 * Restore the queue_if_no_path setting. 1756 */ 1757 static void multipath_resume(struct dm_target *ti) 1758 { 1759 struct multipath *m = ti->private; 1760 unsigned long flags; 1761 1762 spin_lock_irqsave(&m->lock, flags); 1763 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) { 1764 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1765 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 1766 } 1767 1768 DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d", 1769 dm_device_name(dm_table_get_md(m->ti->table)), __func__, 1770 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 1771 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1772 1773 spin_unlock_irqrestore(&m->lock, flags); 1774 } 1775 1776 /* 1777 * Info output has the following format: 1778 * num_multipath_feature_args [multipath_feature_args]* 1779 * num_handler_status_args [handler_status_args]* 1780 * num_groups init_group_number 1781 * [A|D|E num_ps_status_args [ps_status_args]* 1782 * num_paths num_selector_args 1783 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1784 * 1785 * Table output has the following format (identical to the constructor string): 1786 * num_feature_args [features_args]* 1787 * num_handler_args hw_handler [hw_handler_args]* 1788 * num_groups init_group_number 1789 * [priority selector-name num_ps_args [ps_args]* 1790 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1791 */ 1792 static void multipath_status(struct dm_target *ti, status_type_t type, 1793 unsigned status_flags, char *result, unsigned maxlen) 1794 { 1795 int sz = 0; 1796 unsigned long flags; 1797 struct multipath *m = ti->private; 1798 struct priority_group *pg; 1799 struct pgpath *p; 1800 unsigned pg_num; 1801 char state; 1802 1803 spin_lock_irqsave(&m->lock, flags); 1804 1805 /* Features */ 1806 if (type == STATUSTYPE_INFO) 1807 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1808 atomic_read(&m->pg_init_count)); 1809 else { 1810 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1811 (m->pg_init_retries > 0) * 2 + 1812 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1813 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1814 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1815 1816 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1817 DMEMIT("queue_if_no_path "); 1818 if (m->pg_init_retries) 1819 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1820 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1821 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1822 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1823 DMEMIT("retain_attached_hw_handler "); 1824 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1825 switch(m->queue_mode) { 1826 case DM_TYPE_BIO_BASED: 1827 DMEMIT("queue_mode bio "); 1828 break; 1829 default: 1830 WARN_ON_ONCE(true); 1831 break; 1832 } 1833 } 1834 } 1835 1836 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1837 DMEMIT("0 "); 1838 else 1839 DMEMIT("1 %s ", m->hw_handler_name); 1840 1841 DMEMIT("%u ", m->nr_priority_groups); 1842 1843 if (m->next_pg) 1844 pg_num = m->next_pg->pg_num; 1845 else if (m->current_pg) 1846 pg_num = m->current_pg->pg_num; 1847 else 1848 pg_num = (m->nr_priority_groups ? 1 : 0); 1849 1850 DMEMIT("%u ", pg_num); 1851 1852 switch (type) { 1853 case STATUSTYPE_INFO: 1854 list_for_each_entry(pg, &m->priority_groups, list) { 1855 if (pg->bypassed) 1856 state = 'D'; /* Disabled */ 1857 else if (pg == m->current_pg) 1858 state = 'A'; /* Currently Active */ 1859 else 1860 state = 'E'; /* Enabled */ 1861 1862 DMEMIT("%c ", state); 1863 1864 if (pg->ps.type->status) 1865 sz += pg->ps.type->status(&pg->ps, NULL, type, 1866 result + sz, 1867 maxlen - sz); 1868 else 1869 DMEMIT("0 "); 1870 1871 DMEMIT("%u %u ", pg->nr_pgpaths, 1872 pg->ps.type->info_args); 1873 1874 list_for_each_entry(p, &pg->pgpaths, list) { 1875 DMEMIT("%s %s %u ", p->path.dev->name, 1876 p->is_active ? "A" : "F", 1877 p->fail_count); 1878 if (pg->ps.type->status) 1879 sz += pg->ps.type->status(&pg->ps, 1880 &p->path, type, result + sz, 1881 maxlen - sz); 1882 } 1883 } 1884 break; 1885 1886 case STATUSTYPE_TABLE: 1887 list_for_each_entry(pg, &m->priority_groups, list) { 1888 DMEMIT("%s ", pg->ps.type->name); 1889 1890 if (pg->ps.type->status) 1891 sz += pg->ps.type->status(&pg->ps, NULL, type, 1892 result + sz, 1893 maxlen - sz); 1894 else 1895 DMEMIT("0 "); 1896 1897 DMEMIT("%u %u ", pg->nr_pgpaths, 1898 pg->ps.type->table_args); 1899 1900 list_for_each_entry(p, &pg->pgpaths, list) { 1901 DMEMIT("%s ", p->path.dev->name); 1902 if (pg->ps.type->status) 1903 sz += pg->ps.type->status(&pg->ps, 1904 &p->path, type, result + sz, 1905 maxlen - sz); 1906 } 1907 } 1908 break; 1909 } 1910 1911 spin_unlock_irqrestore(&m->lock, flags); 1912 } 1913 1914 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1915 char *result, unsigned maxlen) 1916 { 1917 int r = -EINVAL; 1918 struct dm_dev *dev; 1919 struct multipath *m = ti->private; 1920 action_fn action; 1921 unsigned long flags; 1922 1923 mutex_lock(&m->work_mutex); 1924 1925 if (dm_suspended(ti)) { 1926 r = -EBUSY; 1927 goto out; 1928 } 1929 1930 if (argc == 1) { 1931 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1932 r = queue_if_no_path(m, true, false, __func__); 1933 spin_lock_irqsave(&m->lock, flags); 1934 enable_nopath_timeout(m); 1935 spin_unlock_irqrestore(&m->lock, flags); 1936 goto out; 1937 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1938 r = queue_if_no_path(m, false, false, __func__); 1939 disable_nopath_timeout(m); 1940 goto out; 1941 } 1942 } 1943 1944 if (argc != 2) { 1945 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1946 goto out; 1947 } 1948 1949 if (!strcasecmp(argv[0], "disable_group")) { 1950 r = bypass_pg_num(m, argv[1], true); 1951 goto out; 1952 } else if (!strcasecmp(argv[0], "enable_group")) { 1953 r = bypass_pg_num(m, argv[1], false); 1954 goto out; 1955 } else if (!strcasecmp(argv[0], "switch_group")) { 1956 r = switch_pg_num(m, argv[1]); 1957 goto out; 1958 } else if (!strcasecmp(argv[0], "reinstate_path")) 1959 action = reinstate_path; 1960 else if (!strcasecmp(argv[0], "fail_path")) 1961 action = fail_path; 1962 else { 1963 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1964 goto out; 1965 } 1966 1967 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1968 if (r) { 1969 DMWARN("message: error getting device %s", 1970 argv[1]); 1971 goto out; 1972 } 1973 1974 r = action_dev(m, dev, action); 1975 1976 dm_put_device(ti, dev); 1977 1978 out: 1979 mutex_unlock(&m->work_mutex); 1980 return r; 1981 } 1982 1983 static int multipath_prepare_ioctl(struct dm_target *ti, 1984 struct block_device **bdev) 1985 { 1986 struct multipath *m = ti->private; 1987 struct pgpath *pgpath; 1988 unsigned long flags; 1989 int r; 1990 1991 pgpath = READ_ONCE(m->current_pgpath); 1992 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 1993 pgpath = choose_pgpath(m, 0); 1994 1995 if (pgpath) { 1996 if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) { 1997 *bdev = pgpath->path.dev->bdev; 1998 r = 0; 1999 } else { 2000 /* pg_init has not started or completed */ 2001 r = -ENOTCONN; 2002 } 2003 } else { 2004 /* No path is available */ 2005 r = -EIO; 2006 spin_lock_irqsave(&m->lock, flags); 2007 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2008 r = -ENOTCONN; 2009 spin_unlock_irqrestore(&m->lock, flags); 2010 } 2011 2012 if (r == -ENOTCONN) { 2013 if (!READ_ONCE(m->current_pg)) { 2014 /* Path status changed, redo selection */ 2015 (void) choose_pgpath(m, 0); 2016 } 2017 spin_lock_irqsave(&m->lock, flags); 2018 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 2019 (void) __pg_init_all_paths(m); 2020 spin_unlock_irqrestore(&m->lock, flags); 2021 dm_table_run_md_queue_async(m->ti->table); 2022 process_queued_io_list(m); 2023 } 2024 2025 /* 2026 * Only pass ioctls through if the device sizes match exactly. 2027 */ 2028 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 2029 return 1; 2030 return r; 2031 } 2032 2033 static int multipath_iterate_devices(struct dm_target *ti, 2034 iterate_devices_callout_fn fn, void *data) 2035 { 2036 struct multipath *m = ti->private; 2037 struct priority_group *pg; 2038 struct pgpath *p; 2039 int ret = 0; 2040 2041 list_for_each_entry(pg, &m->priority_groups, list) { 2042 list_for_each_entry(p, &pg->pgpaths, list) { 2043 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 2044 if (ret) 2045 goto out; 2046 } 2047 } 2048 2049 out: 2050 return ret; 2051 } 2052 2053 static int pgpath_busy(struct pgpath *pgpath) 2054 { 2055 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 2056 2057 return blk_lld_busy(q); 2058 } 2059 2060 /* 2061 * We return "busy", only when we can map I/Os but underlying devices 2062 * are busy (so even if we map I/Os now, the I/Os will wait on 2063 * the underlying queue). 2064 * In other words, if we want to kill I/Os or queue them inside us 2065 * due to map unavailability, we don't return "busy". Otherwise, 2066 * dm core won't give us the I/Os and we can't do what we want. 2067 */ 2068 static int multipath_busy(struct dm_target *ti) 2069 { 2070 bool busy = false, has_active = false; 2071 struct multipath *m = ti->private; 2072 struct priority_group *pg, *next_pg; 2073 struct pgpath *pgpath; 2074 2075 /* pg_init in progress */ 2076 if (atomic_read(&m->pg_init_in_progress)) 2077 return true; 2078 2079 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2080 if (!atomic_read(&m->nr_valid_paths)) { 2081 unsigned long flags; 2082 spin_lock_irqsave(&m->lock, flags); 2083 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 2084 spin_unlock_irqrestore(&m->lock, flags); 2085 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 2086 } 2087 spin_unlock_irqrestore(&m->lock, flags); 2088 } 2089 2090 /* Guess which priority_group will be used at next mapping time */ 2091 pg = READ_ONCE(m->current_pg); 2092 next_pg = READ_ONCE(m->next_pg); 2093 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 2094 pg = next_pg; 2095 2096 if (!pg) { 2097 /* 2098 * We don't know which pg will be used at next mapping time. 2099 * We don't call choose_pgpath() here to avoid to trigger 2100 * pg_init just by busy checking. 2101 * So we don't know whether underlying devices we will be using 2102 * at next mapping time are busy or not. Just try mapping. 2103 */ 2104 return busy; 2105 } 2106 2107 /* 2108 * If there is one non-busy active path at least, the path selector 2109 * will be able to select it. So we consider such a pg as not busy. 2110 */ 2111 busy = true; 2112 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2113 if (pgpath->is_active) { 2114 has_active = true; 2115 if (!pgpath_busy(pgpath)) { 2116 busy = false; 2117 break; 2118 } 2119 } 2120 } 2121 2122 if (!has_active) { 2123 /* 2124 * No active path in this pg, so this pg won't be used and 2125 * the current_pg will be changed at next mapping time. 2126 * We need to try mapping to determine it. 2127 */ 2128 busy = false; 2129 } 2130 2131 return busy; 2132 } 2133 2134 /*----------------------------------------------------------------- 2135 * Module setup 2136 *---------------------------------------------------------------*/ 2137 static struct target_type multipath_target = { 2138 .name = "multipath", 2139 .version = {1, 14, 0}, 2140 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2141 DM_TARGET_PASSES_INTEGRITY, 2142 .module = THIS_MODULE, 2143 .ctr = multipath_ctr, 2144 .dtr = multipath_dtr, 2145 .clone_and_map_rq = multipath_clone_and_map, 2146 .release_clone_rq = multipath_release_clone, 2147 .rq_end_io = multipath_end_io, 2148 .map = multipath_map_bio, 2149 .end_io = multipath_end_io_bio, 2150 .presuspend = multipath_presuspend, 2151 .postsuspend = multipath_postsuspend, 2152 .resume = multipath_resume, 2153 .status = multipath_status, 2154 .message = multipath_message, 2155 .prepare_ioctl = multipath_prepare_ioctl, 2156 .iterate_devices = multipath_iterate_devices, 2157 .busy = multipath_busy, 2158 }; 2159 2160 static int __init dm_multipath_init(void) 2161 { 2162 int r; 2163 2164 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2165 if (!kmultipathd) { 2166 DMERR("failed to create workqueue kmpathd"); 2167 r = -ENOMEM; 2168 goto bad_alloc_kmultipathd; 2169 } 2170 2171 /* 2172 * A separate workqueue is used to handle the device handlers 2173 * to avoid overloading existing workqueue. Overloading the 2174 * old workqueue would also create a bottleneck in the 2175 * path of the storage hardware device activation. 2176 */ 2177 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2178 WQ_MEM_RECLAIM); 2179 if (!kmpath_handlerd) { 2180 DMERR("failed to create workqueue kmpath_handlerd"); 2181 r = -ENOMEM; 2182 goto bad_alloc_kmpath_handlerd; 2183 } 2184 2185 r = dm_register_target(&multipath_target); 2186 if (r < 0) { 2187 DMERR("request-based register failed %d", r); 2188 r = -EINVAL; 2189 goto bad_register_target; 2190 } 2191 2192 return 0; 2193 2194 bad_register_target: 2195 destroy_workqueue(kmpath_handlerd); 2196 bad_alloc_kmpath_handlerd: 2197 destroy_workqueue(kmultipathd); 2198 bad_alloc_kmultipathd: 2199 return r; 2200 } 2201 2202 static void __exit dm_multipath_exit(void) 2203 { 2204 destroy_workqueue(kmpath_handlerd); 2205 destroy_workqueue(kmultipathd); 2206 2207 dm_unregister_target(&multipath_target); 2208 } 2209 2210 module_init(dm_multipath_init); 2211 module_exit(dm_multipath_exit); 2212 2213 module_param_named(queue_if_no_path_timeout_secs, 2214 queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR); 2215 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds"); 2216 2217 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2218 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2219 MODULE_LICENSE("GPL"); 2220