xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 38a12607)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		/*
207 		 * Default to request-based.
208 		 */
209 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
210 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
211 		else
212 			m->queue_mode = DM_TYPE_REQUEST_BASED;
213 
214 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
215 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
216 		/*
217 		 * bio-based doesn't support any direct scsi_dh management;
218 		 * it just discovers if a scsi_dh is attached.
219 		 */
220 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
221 	}
222 
223 	dm_table_set_type(ti->table, m->queue_mode);
224 
225 	/*
226 	 * Init fields that are only used when a scsi_dh is attached
227 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
228 	 */
229 	set_bit(MPATHF_QUEUE_IO, &m->flags);
230 	atomic_set(&m->pg_init_in_progress, 0);
231 	atomic_set(&m->pg_init_count, 0);
232 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
233 	init_waitqueue_head(&m->pg_init_wait);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	mutex_destroy(&m->work_mutex);
250 	kfree(m);
251 }
252 
253 static struct dm_mpath_io *get_mpio(union map_info *info)
254 {
255 	return info->ptr;
256 }
257 
258 static size_t multipath_per_bio_data_size(void)
259 {
260 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
261 }
262 
263 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
264 {
265 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
266 }
267 
268 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
269 {
270 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
271 	void *bio_details = mpio + 1;
272 	return bio_details;
273 }
274 
275 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
276 {
277 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
278 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
279 
280 	mpio->nr_bytes = bio->bi_iter.bi_size;
281 	mpio->pgpath = NULL;
282 	*mpio_p = mpio;
283 
284 	dm_bio_record(bio_details, bio);
285 }
286 
287 /*-----------------------------------------------
288  * Path selection
289  *-----------------------------------------------*/
290 
291 static int __pg_init_all_paths(struct multipath *m)
292 {
293 	struct pgpath *pgpath;
294 	unsigned long pg_init_delay = 0;
295 
296 	lockdep_assert_held(&m->lock);
297 
298 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
299 		return 0;
300 
301 	atomic_inc(&m->pg_init_count);
302 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
303 
304 	/* Check here to reset pg_init_required */
305 	if (!m->current_pg)
306 		return 0;
307 
308 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
309 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
310 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
311 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
312 		/* Skip failed paths */
313 		if (!pgpath->is_active)
314 			continue;
315 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
316 				       pg_init_delay))
317 			atomic_inc(&m->pg_init_in_progress);
318 	}
319 	return atomic_read(&m->pg_init_in_progress);
320 }
321 
322 static int pg_init_all_paths(struct multipath *m)
323 {
324 	int ret;
325 	unsigned long flags;
326 
327 	spin_lock_irqsave(&m->lock, flags);
328 	ret = __pg_init_all_paths(m);
329 	spin_unlock_irqrestore(&m->lock, flags);
330 
331 	return ret;
332 }
333 
334 static void __switch_pg(struct multipath *m, struct priority_group *pg)
335 {
336 	m->current_pg = pg;
337 
338 	/* Must we initialise the PG first, and queue I/O till it's ready? */
339 	if (m->hw_handler_name) {
340 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
341 		set_bit(MPATHF_QUEUE_IO, &m->flags);
342 	} else {
343 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
344 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
345 	}
346 
347 	atomic_set(&m->pg_init_count, 0);
348 }
349 
350 static struct pgpath *choose_path_in_pg(struct multipath *m,
351 					struct priority_group *pg,
352 					size_t nr_bytes)
353 {
354 	unsigned long flags;
355 	struct dm_path *path;
356 	struct pgpath *pgpath;
357 
358 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
359 	if (!path)
360 		return ERR_PTR(-ENXIO);
361 
362 	pgpath = path_to_pgpath(path);
363 
364 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
365 		/* Only update current_pgpath if pg changed */
366 		spin_lock_irqsave(&m->lock, flags);
367 		m->current_pgpath = pgpath;
368 		__switch_pg(m, pg);
369 		spin_unlock_irqrestore(&m->lock, flags);
370 	}
371 
372 	return pgpath;
373 }
374 
375 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
376 {
377 	unsigned long flags;
378 	struct priority_group *pg;
379 	struct pgpath *pgpath;
380 	unsigned bypassed = 1;
381 
382 	if (!atomic_read(&m->nr_valid_paths)) {
383 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
384 		goto failed;
385 	}
386 
387 	/* Were we instructed to switch PG? */
388 	if (READ_ONCE(m->next_pg)) {
389 		spin_lock_irqsave(&m->lock, flags);
390 		pg = m->next_pg;
391 		if (!pg) {
392 			spin_unlock_irqrestore(&m->lock, flags);
393 			goto check_current_pg;
394 		}
395 		m->next_pg = NULL;
396 		spin_unlock_irqrestore(&m->lock, flags);
397 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
398 		if (!IS_ERR_OR_NULL(pgpath))
399 			return pgpath;
400 	}
401 
402 	/* Don't change PG until it has no remaining paths */
403 check_current_pg:
404 	pg = READ_ONCE(m->current_pg);
405 	if (pg) {
406 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
407 		if (!IS_ERR_OR_NULL(pgpath))
408 			return pgpath;
409 	}
410 
411 	/*
412 	 * Loop through priority groups until we find a valid path.
413 	 * First time we skip PGs marked 'bypassed'.
414 	 * Second time we only try the ones we skipped, but set
415 	 * pg_init_delay_retry so we do not hammer controllers.
416 	 */
417 	do {
418 		list_for_each_entry(pg, &m->priority_groups, list) {
419 			if (pg->bypassed == !!bypassed)
420 				continue;
421 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
422 			if (!IS_ERR_OR_NULL(pgpath)) {
423 				if (!bypassed)
424 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
425 				return pgpath;
426 			}
427 		}
428 	} while (bypassed--);
429 
430 failed:
431 	spin_lock_irqsave(&m->lock, flags);
432 	m->current_pgpath = NULL;
433 	m->current_pg = NULL;
434 	spin_unlock_irqrestore(&m->lock, flags);
435 
436 	return NULL;
437 }
438 
439 /*
440  * dm_report_EIO() is a macro instead of a function to make pr_debug()
441  * report the function name and line number of the function from which
442  * it has been invoked.
443  */
444 #define dm_report_EIO(m)						\
445 do {									\
446 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
447 									\
448 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
449 		 dm_device_name(md),					\
450 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
451 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
452 		 dm_noflush_suspending((m)->ti));			\
453 } while (0)
454 
455 /*
456  * Check whether bios must be queued in the device-mapper core rather
457  * than here in the target.
458  *
459  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
460  * the same value then we are not between multipath_presuspend()
461  * and multipath_resume() calls and we have no need to check
462  * for the DMF_NOFLUSH_SUSPENDING flag.
463  */
464 static bool __must_push_back(struct multipath *m, unsigned long flags)
465 {
466 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
467 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
468 		dm_noflush_suspending(m->ti));
469 }
470 
471 /*
472  * Following functions use READ_ONCE to get atomic access to
473  * all m->flags to avoid taking spinlock
474  */
475 static bool must_push_back_rq(struct multipath *m)
476 {
477 	unsigned long flags = READ_ONCE(m->flags);
478 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
479 }
480 
481 static bool must_push_back_bio(struct multipath *m)
482 {
483 	unsigned long flags = READ_ONCE(m->flags);
484 	return __must_push_back(m, flags);
485 }
486 
487 /*
488  * Map cloned requests (request-based multipath)
489  */
490 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
491 				   union map_info *map_context,
492 				   struct request **__clone)
493 {
494 	struct multipath *m = ti->private;
495 	size_t nr_bytes = blk_rq_bytes(rq);
496 	struct pgpath *pgpath;
497 	struct block_device *bdev;
498 	struct dm_mpath_io *mpio = get_mpio(map_context);
499 	struct request_queue *q;
500 	struct request *clone;
501 
502 	/* Do we need to select a new pgpath? */
503 	pgpath = READ_ONCE(m->current_pgpath);
504 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
505 		pgpath = choose_pgpath(m, nr_bytes);
506 
507 	if (!pgpath) {
508 		if (must_push_back_rq(m))
509 			return DM_MAPIO_DELAY_REQUEUE;
510 		dm_report_EIO(m);	/* Failed */
511 		return DM_MAPIO_KILL;
512 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
513 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
514 		pg_init_all_paths(m);
515 		return DM_MAPIO_DELAY_REQUEUE;
516 	}
517 
518 	mpio->pgpath = pgpath;
519 	mpio->nr_bytes = nr_bytes;
520 
521 	bdev = pgpath->path.dev->bdev;
522 	q = bdev_get_queue(bdev);
523 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
524 			BLK_MQ_REQ_NOWAIT);
525 	if (IS_ERR(clone)) {
526 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
527 		if (blk_queue_dying(q)) {
528 			atomic_inc(&m->pg_init_in_progress);
529 			activate_or_offline_path(pgpath);
530 			return DM_MAPIO_DELAY_REQUEUE;
531 		}
532 
533 		/*
534 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
535 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
536 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
537 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
538 		 * otherwise I/O merging can suffer.
539 		 */
540 		if (q->mq_ops)
541 			return DM_MAPIO_REQUEUE;
542 		else
543 			return DM_MAPIO_DELAY_REQUEUE;
544 	}
545 	clone->bio = clone->biotail = NULL;
546 	clone->rq_disk = bdev->bd_disk;
547 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
548 	*__clone = clone;
549 
550 	if (pgpath->pg->ps.type->start_io)
551 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
552 					      &pgpath->path,
553 					      nr_bytes);
554 	return DM_MAPIO_REMAPPED;
555 }
556 
557 static void multipath_release_clone(struct request *clone)
558 {
559 	blk_put_request(clone);
560 }
561 
562 /*
563  * Map cloned bios (bio-based multipath)
564  */
565 
566 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
567 {
568 	struct pgpath *pgpath;
569 	unsigned long flags;
570 	bool queue_io;
571 
572 	/* Do we need to select a new pgpath? */
573 	pgpath = READ_ONCE(m->current_pgpath);
574 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
575 	if (!pgpath || !queue_io)
576 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
577 
578 	if ((pgpath && queue_io) ||
579 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
580 		/* Queue for the daemon to resubmit */
581 		spin_lock_irqsave(&m->lock, flags);
582 		bio_list_add(&m->queued_bios, bio);
583 		spin_unlock_irqrestore(&m->lock, flags);
584 
585 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
586 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
587 			pg_init_all_paths(m);
588 		else if (!queue_io)
589 			queue_work(kmultipathd, &m->process_queued_bios);
590 
591 		return ERR_PTR(-EAGAIN);
592 	}
593 
594 	return pgpath;
595 }
596 
597 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio)
598 {
599 	struct pgpath *pgpath;
600 	unsigned long flags;
601 
602 	/* Do we need to select a new pgpath? */
603 	/*
604 	 * FIXME: currently only switching path if no path (due to failure, etc)
605 	 * - which negates the point of using a path selector
606 	 */
607 	pgpath = READ_ONCE(m->current_pgpath);
608 	if (!pgpath)
609 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
610 
611 	if (!pgpath) {
612 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
613 			/* Queue for the daemon to resubmit */
614 			spin_lock_irqsave(&m->lock, flags);
615 			bio_list_add(&m->queued_bios, bio);
616 			spin_unlock_irqrestore(&m->lock, flags);
617 			queue_work(kmultipathd, &m->process_queued_bios);
618 
619 			return ERR_PTR(-EAGAIN);
620 		}
621 		return NULL;
622 	}
623 
624 	return pgpath;
625 }
626 
627 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
628 			       struct dm_mpath_io *mpio)
629 {
630 	struct pgpath *pgpath;
631 
632 	if (!m->hw_handler_name)
633 		pgpath = __map_bio_fast(m, bio);
634 	else
635 		pgpath = __map_bio(m, bio);
636 
637 	if (IS_ERR(pgpath))
638 		return DM_MAPIO_SUBMITTED;
639 
640 	if (!pgpath) {
641 		if (must_push_back_bio(m))
642 			return DM_MAPIO_REQUEUE;
643 		dm_report_EIO(m);
644 		return DM_MAPIO_KILL;
645 	}
646 
647 	mpio->pgpath = pgpath;
648 
649 	bio->bi_status = 0;
650 	bio_set_dev(bio, pgpath->path.dev->bdev);
651 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
652 
653 	if (pgpath->pg->ps.type->start_io)
654 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
655 					      &pgpath->path,
656 					      mpio->nr_bytes);
657 	return DM_MAPIO_REMAPPED;
658 }
659 
660 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
661 {
662 	struct multipath *m = ti->private;
663 	struct dm_mpath_io *mpio = NULL;
664 
665 	multipath_init_per_bio_data(bio, &mpio);
666 	return __multipath_map_bio(m, bio, mpio);
667 }
668 
669 static void process_queued_io_list(struct multipath *m)
670 {
671 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
672 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
673 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
674 		queue_work(kmultipathd, &m->process_queued_bios);
675 }
676 
677 static void process_queued_bios(struct work_struct *work)
678 {
679 	int r;
680 	unsigned long flags;
681 	struct bio *bio;
682 	struct bio_list bios;
683 	struct blk_plug plug;
684 	struct multipath *m =
685 		container_of(work, struct multipath, process_queued_bios);
686 
687 	bio_list_init(&bios);
688 
689 	spin_lock_irqsave(&m->lock, flags);
690 
691 	if (bio_list_empty(&m->queued_bios)) {
692 		spin_unlock_irqrestore(&m->lock, flags);
693 		return;
694 	}
695 
696 	bio_list_merge(&bios, &m->queued_bios);
697 	bio_list_init(&m->queued_bios);
698 
699 	spin_unlock_irqrestore(&m->lock, flags);
700 
701 	blk_start_plug(&plug);
702 	while ((bio = bio_list_pop(&bios))) {
703 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
704 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
705 		r = __multipath_map_bio(m, bio, mpio);
706 		switch (r) {
707 		case DM_MAPIO_KILL:
708 			bio->bi_status = BLK_STS_IOERR;
709 			bio_endio(bio);
710 			break;
711 		case DM_MAPIO_REQUEUE:
712 			bio->bi_status = BLK_STS_DM_REQUEUE;
713 			bio_endio(bio);
714 			break;
715 		case DM_MAPIO_REMAPPED:
716 			generic_make_request(bio);
717 			break;
718 		case DM_MAPIO_SUBMITTED:
719 			break;
720 		default:
721 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
722 		}
723 	}
724 	blk_finish_plug(&plug);
725 }
726 
727 /*
728  * If we run out of usable paths, should we queue I/O or error it?
729  */
730 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
731 			    bool save_old_value)
732 {
733 	unsigned long flags;
734 
735 	spin_lock_irqsave(&m->lock, flags);
736 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
737 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
738 		   (!save_old_value && queue_if_no_path));
739 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
740 	spin_unlock_irqrestore(&m->lock, flags);
741 
742 	if (!queue_if_no_path) {
743 		dm_table_run_md_queue_async(m->ti->table);
744 		process_queued_io_list(m);
745 	}
746 
747 	return 0;
748 }
749 
750 /*
751  * An event is triggered whenever a path is taken out of use.
752  * Includes path failure and PG bypass.
753  */
754 static void trigger_event(struct work_struct *work)
755 {
756 	struct multipath *m =
757 		container_of(work, struct multipath, trigger_event);
758 
759 	dm_table_event(m->ti->table);
760 }
761 
762 /*-----------------------------------------------------------------
763  * Constructor/argument parsing:
764  * <#multipath feature args> [<arg>]*
765  * <#hw_handler args> [hw_handler [<arg>]*]
766  * <#priority groups>
767  * <initial priority group>
768  *     [<selector> <#selector args> [<arg>]*
769  *      <#paths> <#per-path selector args>
770  *         [<path> [<arg>]* ]+ ]+
771  *---------------------------------------------------------------*/
772 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
773 			       struct dm_target *ti)
774 {
775 	int r;
776 	struct path_selector_type *pst;
777 	unsigned ps_argc;
778 
779 	static const struct dm_arg _args[] = {
780 		{0, 1024, "invalid number of path selector args"},
781 	};
782 
783 	pst = dm_get_path_selector(dm_shift_arg(as));
784 	if (!pst) {
785 		ti->error = "unknown path selector type";
786 		return -EINVAL;
787 	}
788 
789 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
790 	if (r) {
791 		dm_put_path_selector(pst);
792 		return -EINVAL;
793 	}
794 
795 	r = pst->create(&pg->ps, ps_argc, as->argv);
796 	if (r) {
797 		dm_put_path_selector(pst);
798 		ti->error = "path selector constructor failed";
799 		return r;
800 	}
801 
802 	pg->ps.type = pst;
803 	dm_consume_args(as, ps_argc);
804 
805 	return 0;
806 }
807 
808 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
809 			 const char **attached_handler_name, char **error)
810 {
811 	struct request_queue *q = bdev_get_queue(bdev);
812 	int r;
813 
814 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
815 retain:
816 		if (*attached_handler_name) {
817 			/*
818 			 * Clear any hw_handler_params associated with a
819 			 * handler that isn't already attached.
820 			 */
821 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
822 				kfree(m->hw_handler_params);
823 				m->hw_handler_params = NULL;
824 			}
825 
826 			/*
827 			 * Reset hw_handler_name to match the attached handler
828 			 *
829 			 * NB. This modifies the table line to show the actual
830 			 * handler instead of the original table passed in.
831 			 */
832 			kfree(m->hw_handler_name);
833 			m->hw_handler_name = *attached_handler_name;
834 			*attached_handler_name = NULL;
835 		}
836 	}
837 
838 	if (m->hw_handler_name) {
839 		r = scsi_dh_attach(q, m->hw_handler_name);
840 		if (r == -EBUSY) {
841 			char b[BDEVNAME_SIZE];
842 
843 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
844 			       bdevname(bdev, b));
845 			goto retain;
846 		}
847 		if (r < 0) {
848 			*error = "error attaching hardware handler";
849 			return r;
850 		}
851 
852 		if (m->hw_handler_params) {
853 			r = scsi_dh_set_params(q, m->hw_handler_params);
854 			if (r < 0) {
855 				*error = "unable to set hardware handler parameters";
856 				return r;
857 			}
858 		}
859 	}
860 
861 	return 0;
862 }
863 
864 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
865 				 struct dm_target *ti)
866 {
867 	int r;
868 	struct pgpath *p;
869 	struct multipath *m = ti->private;
870 	struct request_queue *q;
871 	const char *attached_handler_name = NULL;
872 
873 	/* we need at least a path arg */
874 	if (as->argc < 1) {
875 		ti->error = "no device given";
876 		return ERR_PTR(-EINVAL);
877 	}
878 
879 	p = alloc_pgpath();
880 	if (!p)
881 		return ERR_PTR(-ENOMEM);
882 
883 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
884 			  &p->path.dev);
885 	if (r) {
886 		ti->error = "error getting device";
887 		goto bad;
888 	}
889 
890 	q = bdev_get_queue(p->path.dev->bdev);
891 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
892 	if (attached_handler_name || m->hw_handler_name) {
893 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
894 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
895 		if (r) {
896 			dm_put_device(ti, p->path.dev);
897 			goto bad;
898 		}
899 	}
900 
901 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
902 	if (r) {
903 		dm_put_device(ti, p->path.dev);
904 		goto bad;
905 	}
906 
907 	return p;
908  bad:
909 	kfree(attached_handler_name);
910 	free_pgpath(p);
911 	return ERR_PTR(r);
912 }
913 
914 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
915 						   struct multipath *m)
916 {
917 	static const struct dm_arg _args[] = {
918 		{1, 1024, "invalid number of paths"},
919 		{0, 1024, "invalid number of selector args"}
920 	};
921 
922 	int r;
923 	unsigned i, nr_selector_args, nr_args;
924 	struct priority_group *pg;
925 	struct dm_target *ti = m->ti;
926 
927 	if (as->argc < 2) {
928 		as->argc = 0;
929 		ti->error = "not enough priority group arguments";
930 		return ERR_PTR(-EINVAL);
931 	}
932 
933 	pg = alloc_priority_group();
934 	if (!pg) {
935 		ti->error = "couldn't allocate priority group";
936 		return ERR_PTR(-ENOMEM);
937 	}
938 	pg->m = m;
939 
940 	r = parse_path_selector(as, pg, ti);
941 	if (r)
942 		goto bad;
943 
944 	/*
945 	 * read the paths
946 	 */
947 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
948 	if (r)
949 		goto bad;
950 
951 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
952 	if (r)
953 		goto bad;
954 
955 	nr_args = 1 + nr_selector_args;
956 	for (i = 0; i < pg->nr_pgpaths; i++) {
957 		struct pgpath *pgpath;
958 		struct dm_arg_set path_args;
959 
960 		if (as->argc < nr_args) {
961 			ti->error = "not enough path parameters";
962 			r = -EINVAL;
963 			goto bad;
964 		}
965 
966 		path_args.argc = nr_args;
967 		path_args.argv = as->argv;
968 
969 		pgpath = parse_path(&path_args, &pg->ps, ti);
970 		if (IS_ERR(pgpath)) {
971 			r = PTR_ERR(pgpath);
972 			goto bad;
973 		}
974 
975 		pgpath->pg = pg;
976 		list_add_tail(&pgpath->list, &pg->pgpaths);
977 		dm_consume_args(as, nr_args);
978 	}
979 
980 	return pg;
981 
982  bad:
983 	free_priority_group(pg, ti);
984 	return ERR_PTR(r);
985 }
986 
987 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
988 {
989 	unsigned hw_argc;
990 	int ret;
991 	struct dm_target *ti = m->ti;
992 
993 	static const struct dm_arg _args[] = {
994 		{0, 1024, "invalid number of hardware handler args"},
995 	};
996 
997 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
998 		return -EINVAL;
999 
1000 	if (!hw_argc)
1001 		return 0;
1002 
1003 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1004 		dm_consume_args(as, hw_argc);
1005 		DMERR("bio-based multipath doesn't allow hardware handler args");
1006 		return 0;
1007 	}
1008 
1009 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1010 	if (!m->hw_handler_name)
1011 		return -EINVAL;
1012 
1013 	if (hw_argc > 1) {
1014 		char *p;
1015 		int i, j, len = 4;
1016 
1017 		for (i = 0; i <= hw_argc - 2; i++)
1018 			len += strlen(as->argv[i]) + 1;
1019 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1020 		if (!p) {
1021 			ti->error = "memory allocation failed";
1022 			ret = -ENOMEM;
1023 			goto fail;
1024 		}
1025 		j = sprintf(p, "%d", hw_argc - 1);
1026 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1027 			j = sprintf(p, "%s", as->argv[i]);
1028 	}
1029 	dm_consume_args(as, hw_argc - 1);
1030 
1031 	return 0;
1032 fail:
1033 	kfree(m->hw_handler_name);
1034 	m->hw_handler_name = NULL;
1035 	return ret;
1036 }
1037 
1038 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1039 {
1040 	int r;
1041 	unsigned argc;
1042 	struct dm_target *ti = m->ti;
1043 	const char *arg_name;
1044 
1045 	static const struct dm_arg _args[] = {
1046 		{0, 8, "invalid number of feature args"},
1047 		{1, 50, "pg_init_retries must be between 1 and 50"},
1048 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1049 	};
1050 
1051 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1052 	if (r)
1053 		return -EINVAL;
1054 
1055 	if (!argc)
1056 		return 0;
1057 
1058 	do {
1059 		arg_name = dm_shift_arg(as);
1060 		argc--;
1061 
1062 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1063 			r = queue_if_no_path(m, true, false);
1064 			continue;
1065 		}
1066 
1067 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1068 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1069 			continue;
1070 		}
1071 
1072 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1073 		    (argc >= 1)) {
1074 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1075 			argc--;
1076 			continue;
1077 		}
1078 
1079 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1080 		    (argc >= 1)) {
1081 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1082 			argc--;
1083 			continue;
1084 		}
1085 
1086 		if (!strcasecmp(arg_name, "queue_mode") &&
1087 		    (argc >= 1)) {
1088 			const char *queue_mode_name = dm_shift_arg(as);
1089 
1090 			if (!strcasecmp(queue_mode_name, "bio"))
1091 				m->queue_mode = DM_TYPE_BIO_BASED;
1092 			else if (!strcasecmp(queue_mode_name, "rq"))
1093 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1094 			else if (!strcasecmp(queue_mode_name, "mq"))
1095 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1096 			else {
1097 				ti->error = "Unknown 'queue_mode' requested";
1098 				r = -EINVAL;
1099 			}
1100 			argc--;
1101 			continue;
1102 		}
1103 
1104 		ti->error = "Unrecognised multipath feature request";
1105 		r = -EINVAL;
1106 	} while (argc && !r);
1107 
1108 	return r;
1109 }
1110 
1111 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1112 {
1113 	/* target arguments */
1114 	static const struct dm_arg _args[] = {
1115 		{0, 1024, "invalid number of priority groups"},
1116 		{0, 1024, "invalid initial priority group number"},
1117 	};
1118 
1119 	int r;
1120 	struct multipath *m;
1121 	struct dm_arg_set as;
1122 	unsigned pg_count = 0;
1123 	unsigned next_pg_num;
1124 
1125 	as.argc = argc;
1126 	as.argv = argv;
1127 
1128 	m = alloc_multipath(ti);
1129 	if (!m) {
1130 		ti->error = "can't allocate multipath";
1131 		return -EINVAL;
1132 	}
1133 
1134 	r = parse_features(&as, m);
1135 	if (r)
1136 		goto bad;
1137 
1138 	r = alloc_multipath_stage2(ti, m);
1139 	if (r)
1140 		goto bad;
1141 
1142 	r = parse_hw_handler(&as, m);
1143 	if (r)
1144 		goto bad;
1145 
1146 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1147 	if (r)
1148 		goto bad;
1149 
1150 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1151 	if (r)
1152 		goto bad;
1153 
1154 	if ((!m->nr_priority_groups && next_pg_num) ||
1155 	    (m->nr_priority_groups && !next_pg_num)) {
1156 		ti->error = "invalid initial priority group";
1157 		r = -EINVAL;
1158 		goto bad;
1159 	}
1160 
1161 	/* parse the priority groups */
1162 	while (as.argc) {
1163 		struct priority_group *pg;
1164 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1165 
1166 		pg = parse_priority_group(&as, m);
1167 		if (IS_ERR(pg)) {
1168 			r = PTR_ERR(pg);
1169 			goto bad;
1170 		}
1171 
1172 		nr_valid_paths += pg->nr_pgpaths;
1173 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1174 
1175 		list_add_tail(&pg->list, &m->priority_groups);
1176 		pg_count++;
1177 		pg->pg_num = pg_count;
1178 		if (!--next_pg_num)
1179 			m->next_pg = pg;
1180 	}
1181 
1182 	if (pg_count != m->nr_priority_groups) {
1183 		ti->error = "priority group count mismatch";
1184 		r = -EINVAL;
1185 		goto bad;
1186 	}
1187 
1188 	ti->num_flush_bios = 1;
1189 	ti->num_discard_bios = 1;
1190 	ti->num_write_same_bios = 1;
1191 	ti->num_write_zeroes_bios = 1;
1192 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1193 		ti->per_io_data_size = multipath_per_bio_data_size();
1194 	else
1195 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1196 
1197 	return 0;
1198 
1199  bad:
1200 	free_multipath(m);
1201 	return r;
1202 }
1203 
1204 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1205 {
1206 	DEFINE_WAIT(wait);
1207 
1208 	while (1) {
1209 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1210 
1211 		if (!atomic_read(&m->pg_init_in_progress))
1212 			break;
1213 
1214 		io_schedule();
1215 	}
1216 	finish_wait(&m->pg_init_wait, &wait);
1217 }
1218 
1219 static void flush_multipath_work(struct multipath *m)
1220 {
1221 	if (m->hw_handler_name) {
1222 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1223 		smp_mb__after_atomic();
1224 
1225 		flush_workqueue(kmpath_handlerd);
1226 		multipath_wait_for_pg_init_completion(m);
1227 
1228 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1229 		smp_mb__after_atomic();
1230 	}
1231 
1232 	flush_workqueue(kmultipathd);
1233 	flush_work(&m->trigger_event);
1234 }
1235 
1236 static void multipath_dtr(struct dm_target *ti)
1237 {
1238 	struct multipath *m = ti->private;
1239 
1240 	flush_multipath_work(m);
1241 	free_multipath(m);
1242 }
1243 
1244 /*
1245  * Take a path out of use.
1246  */
1247 static int fail_path(struct pgpath *pgpath)
1248 {
1249 	unsigned long flags;
1250 	struct multipath *m = pgpath->pg->m;
1251 
1252 	spin_lock_irqsave(&m->lock, flags);
1253 
1254 	if (!pgpath->is_active)
1255 		goto out;
1256 
1257 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1258 
1259 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1260 	pgpath->is_active = false;
1261 	pgpath->fail_count++;
1262 
1263 	atomic_dec(&m->nr_valid_paths);
1264 
1265 	if (pgpath == m->current_pgpath)
1266 		m->current_pgpath = NULL;
1267 
1268 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1269 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1270 
1271 	schedule_work(&m->trigger_event);
1272 
1273 out:
1274 	spin_unlock_irqrestore(&m->lock, flags);
1275 
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Reinstate a previously-failed path
1281  */
1282 static int reinstate_path(struct pgpath *pgpath)
1283 {
1284 	int r = 0, run_queue = 0;
1285 	unsigned long flags;
1286 	struct multipath *m = pgpath->pg->m;
1287 	unsigned nr_valid_paths;
1288 
1289 	spin_lock_irqsave(&m->lock, flags);
1290 
1291 	if (pgpath->is_active)
1292 		goto out;
1293 
1294 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1295 
1296 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1297 	if (r)
1298 		goto out;
1299 
1300 	pgpath->is_active = true;
1301 
1302 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1303 	if (nr_valid_paths == 1) {
1304 		m->current_pgpath = NULL;
1305 		run_queue = 1;
1306 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1307 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1308 			atomic_inc(&m->pg_init_in_progress);
1309 	}
1310 
1311 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1312 		       pgpath->path.dev->name, nr_valid_paths);
1313 
1314 	schedule_work(&m->trigger_event);
1315 
1316 out:
1317 	spin_unlock_irqrestore(&m->lock, flags);
1318 	if (run_queue) {
1319 		dm_table_run_md_queue_async(m->ti->table);
1320 		process_queued_io_list(m);
1321 	}
1322 
1323 	return r;
1324 }
1325 
1326 /*
1327  * Fail or reinstate all paths that match the provided struct dm_dev.
1328  */
1329 static int action_dev(struct multipath *m, struct dm_dev *dev,
1330 		      action_fn action)
1331 {
1332 	int r = -EINVAL;
1333 	struct pgpath *pgpath;
1334 	struct priority_group *pg;
1335 
1336 	list_for_each_entry(pg, &m->priority_groups, list) {
1337 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1338 			if (pgpath->path.dev == dev)
1339 				r = action(pgpath);
1340 		}
1341 	}
1342 
1343 	return r;
1344 }
1345 
1346 /*
1347  * Temporarily try to avoid having to use the specified PG
1348  */
1349 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1350 		      bool bypassed)
1351 {
1352 	unsigned long flags;
1353 
1354 	spin_lock_irqsave(&m->lock, flags);
1355 
1356 	pg->bypassed = bypassed;
1357 	m->current_pgpath = NULL;
1358 	m->current_pg = NULL;
1359 
1360 	spin_unlock_irqrestore(&m->lock, flags);
1361 
1362 	schedule_work(&m->trigger_event);
1363 }
1364 
1365 /*
1366  * Switch to using the specified PG from the next I/O that gets mapped
1367  */
1368 static int switch_pg_num(struct multipath *m, const char *pgstr)
1369 {
1370 	struct priority_group *pg;
1371 	unsigned pgnum;
1372 	unsigned long flags;
1373 	char dummy;
1374 
1375 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1376 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1377 		DMWARN("invalid PG number supplied to switch_pg_num");
1378 		return -EINVAL;
1379 	}
1380 
1381 	spin_lock_irqsave(&m->lock, flags);
1382 	list_for_each_entry(pg, &m->priority_groups, list) {
1383 		pg->bypassed = false;
1384 		if (--pgnum)
1385 			continue;
1386 
1387 		m->current_pgpath = NULL;
1388 		m->current_pg = NULL;
1389 		m->next_pg = pg;
1390 	}
1391 	spin_unlock_irqrestore(&m->lock, flags);
1392 
1393 	schedule_work(&m->trigger_event);
1394 	return 0;
1395 }
1396 
1397 /*
1398  * Set/clear bypassed status of a PG.
1399  * PGs are numbered upwards from 1 in the order they were declared.
1400  */
1401 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1402 {
1403 	struct priority_group *pg;
1404 	unsigned pgnum;
1405 	char dummy;
1406 
1407 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1408 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1409 		DMWARN("invalid PG number supplied to bypass_pg");
1410 		return -EINVAL;
1411 	}
1412 
1413 	list_for_each_entry(pg, &m->priority_groups, list) {
1414 		if (!--pgnum)
1415 			break;
1416 	}
1417 
1418 	bypass_pg(m, pg, bypassed);
1419 	return 0;
1420 }
1421 
1422 /*
1423  * Should we retry pg_init immediately?
1424  */
1425 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1426 {
1427 	unsigned long flags;
1428 	bool limit_reached = false;
1429 
1430 	spin_lock_irqsave(&m->lock, flags);
1431 
1432 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1433 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1434 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1435 	else
1436 		limit_reached = true;
1437 
1438 	spin_unlock_irqrestore(&m->lock, flags);
1439 
1440 	return limit_reached;
1441 }
1442 
1443 static void pg_init_done(void *data, int errors)
1444 {
1445 	struct pgpath *pgpath = data;
1446 	struct priority_group *pg = pgpath->pg;
1447 	struct multipath *m = pg->m;
1448 	unsigned long flags;
1449 	bool delay_retry = false;
1450 
1451 	/* device or driver problems */
1452 	switch (errors) {
1453 	case SCSI_DH_OK:
1454 		break;
1455 	case SCSI_DH_NOSYS:
1456 		if (!m->hw_handler_name) {
1457 			errors = 0;
1458 			break;
1459 		}
1460 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1461 		      "Error %d.", m->hw_handler_name, errors);
1462 		/*
1463 		 * Fail path for now, so we do not ping pong
1464 		 */
1465 		fail_path(pgpath);
1466 		break;
1467 	case SCSI_DH_DEV_TEMP_BUSY:
1468 		/*
1469 		 * Probably doing something like FW upgrade on the
1470 		 * controller so try the other pg.
1471 		 */
1472 		bypass_pg(m, pg, true);
1473 		break;
1474 	case SCSI_DH_RETRY:
1475 		/* Wait before retrying. */
1476 		delay_retry = 1;
1477 		/* fall through */
1478 	case SCSI_DH_IMM_RETRY:
1479 	case SCSI_DH_RES_TEMP_UNAVAIL:
1480 		if (pg_init_limit_reached(m, pgpath))
1481 			fail_path(pgpath);
1482 		errors = 0;
1483 		break;
1484 	case SCSI_DH_DEV_OFFLINED:
1485 	default:
1486 		/*
1487 		 * We probably do not want to fail the path for a device
1488 		 * error, but this is what the old dm did. In future
1489 		 * patches we can do more advanced handling.
1490 		 */
1491 		fail_path(pgpath);
1492 	}
1493 
1494 	spin_lock_irqsave(&m->lock, flags);
1495 	if (errors) {
1496 		if (pgpath == m->current_pgpath) {
1497 			DMERR("Could not failover device. Error %d.", errors);
1498 			m->current_pgpath = NULL;
1499 			m->current_pg = NULL;
1500 		}
1501 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1502 		pg->bypassed = false;
1503 
1504 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1505 		/* Activations of other paths are still on going */
1506 		goto out;
1507 
1508 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1509 		if (delay_retry)
1510 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1511 		else
1512 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1513 
1514 		if (__pg_init_all_paths(m))
1515 			goto out;
1516 	}
1517 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1518 
1519 	process_queued_io_list(m);
1520 
1521 	/*
1522 	 * Wake up any thread waiting to suspend.
1523 	 */
1524 	wake_up(&m->pg_init_wait);
1525 
1526 out:
1527 	spin_unlock_irqrestore(&m->lock, flags);
1528 }
1529 
1530 static void activate_or_offline_path(struct pgpath *pgpath)
1531 {
1532 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1533 
1534 	if (pgpath->is_active && !blk_queue_dying(q))
1535 		scsi_dh_activate(q, pg_init_done, pgpath);
1536 	else
1537 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1538 }
1539 
1540 static void activate_path_work(struct work_struct *work)
1541 {
1542 	struct pgpath *pgpath =
1543 		container_of(work, struct pgpath, activate_path.work);
1544 
1545 	activate_or_offline_path(pgpath);
1546 }
1547 
1548 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1549 			    blk_status_t error, union map_info *map_context)
1550 {
1551 	struct dm_mpath_io *mpio = get_mpio(map_context);
1552 	struct pgpath *pgpath = mpio->pgpath;
1553 	int r = DM_ENDIO_DONE;
1554 
1555 	/*
1556 	 * We don't queue any clone request inside the multipath target
1557 	 * during end I/O handling, since those clone requests don't have
1558 	 * bio clones.  If we queue them inside the multipath target,
1559 	 * we need to make bio clones, that requires memory allocation.
1560 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1561 	 *  don't have bio clones.)
1562 	 * Instead of queueing the clone request here, we queue the original
1563 	 * request into dm core, which will remake a clone request and
1564 	 * clone bios for it and resubmit it later.
1565 	 */
1566 	if (error && blk_path_error(error)) {
1567 		struct multipath *m = ti->private;
1568 
1569 		if (error == BLK_STS_RESOURCE)
1570 			r = DM_ENDIO_DELAY_REQUEUE;
1571 		else
1572 			r = DM_ENDIO_REQUEUE;
1573 
1574 		if (pgpath)
1575 			fail_path(pgpath);
1576 
1577 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1578 		    !must_push_back_rq(m)) {
1579 			if (error == BLK_STS_IOERR)
1580 				dm_report_EIO(m);
1581 			/* complete with the original error */
1582 			r = DM_ENDIO_DONE;
1583 		}
1584 	}
1585 
1586 	if (pgpath) {
1587 		struct path_selector *ps = &pgpath->pg->ps;
1588 
1589 		if (ps->type->end_io)
1590 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1591 	}
1592 
1593 	return r;
1594 }
1595 
1596 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1597 				blk_status_t *error)
1598 {
1599 	struct multipath *m = ti->private;
1600 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1601 	struct pgpath *pgpath = mpio->pgpath;
1602 	unsigned long flags;
1603 	int r = DM_ENDIO_DONE;
1604 
1605 	if (!*error || !blk_path_error(*error))
1606 		goto done;
1607 
1608 	if (pgpath)
1609 		fail_path(pgpath);
1610 
1611 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1612 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1613 		if (must_push_back_bio(m)) {
1614 			r = DM_ENDIO_REQUEUE;
1615 		} else {
1616 			dm_report_EIO(m);
1617 			*error = BLK_STS_IOERR;
1618 		}
1619 		goto done;
1620 	}
1621 
1622 	spin_lock_irqsave(&m->lock, flags);
1623 	bio_list_add(&m->queued_bios, clone);
1624 	spin_unlock_irqrestore(&m->lock, flags);
1625 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1626 		queue_work(kmultipathd, &m->process_queued_bios);
1627 
1628 	r = DM_ENDIO_INCOMPLETE;
1629 done:
1630 	if (pgpath) {
1631 		struct path_selector *ps = &pgpath->pg->ps;
1632 
1633 		if (ps->type->end_io)
1634 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1635 	}
1636 
1637 	return r;
1638 }
1639 
1640 /*
1641  * Suspend can't complete until all the I/O is processed so if
1642  * the last path fails we must error any remaining I/O.
1643  * Note that if the freeze_bdev fails while suspending, the
1644  * queue_if_no_path state is lost - userspace should reset it.
1645  */
1646 static void multipath_presuspend(struct dm_target *ti)
1647 {
1648 	struct multipath *m = ti->private;
1649 
1650 	queue_if_no_path(m, false, true);
1651 }
1652 
1653 static void multipath_postsuspend(struct dm_target *ti)
1654 {
1655 	struct multipath *m = ti->private;
1656 
1657 	mutex_lock(&m->work_mutex);
1658 	flush_multipath_work(m);
1659 	mutex_unlock(&m->work_mutex);
1660 }
1661 
1662 /*
1663  * Restore the queue_if_no_path setting.
1664  */
1665 static void multipath_resume(struct dm_target *ti)
1666 {
1667 	struct multipath *m = ti->private;
1668 	unsigned long flags;
1669 
1670 	spin_lock_irqsave(&m->lock, flags);
1671 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1672 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1673 	spin_unlock_irqrestore(&m->lock, flags);
1674 }
1675 
1676 /*
1677  * Info output has the following format:
1678  * num_multipath_feature_args [multipath_feature_args]*
1679  * num_handler_status_args [handler_status_args]*
1680  * num_groups init_group_number
1681  *            [A|D|E num_ps_status_args [ps_status_args]*
1682  *             num_paths num_selector_args
1683  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1684  *
1685  * Table output has the following format (identical to the constructor string):
1686  * num_feature_args [features_args]*
1687  * num_handler_args hw_handler [hw_handler_args]*
1688  * num_groups init_group_number
1689  *     [priority selector-name num_ps_args [ps_args]*
1690  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1691  */
1692 static void multipath_status(struct dm_target *ti, status_type_t type,
1693 			     unsigned status_flags, char *result, unsigned maxlen)
1694 {
1695 	int sz = 0;
1696 	unsigned long flags;
1697 	struct multipath *m = ti->private;
1698 	struct priority_group *pg;
1699 	struct pgpath *p;
1700 	unsigned pg_num;
1701 	char state;
1702 
1703 	spin_lock_irqsave(&m->lock, flags);
1704 
1705 	/* Features */
1706 	if (type == STATUSTYPE_INFO)
1707 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1708 		       atomic_read(&m->pg_init_count));
1709 	else {
1710 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1711 			      (m->pg_init_retries > 0) * 2 +
1712 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1713 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1714 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1715 
1716 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1717 			DMEMIT("queue_if_no_path ");
1718 		if (m->pg_init_retries)
1719 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1720 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1721 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1722 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1723 			DMEMIT("retain_attached_hw_handler ");
1724 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1725 			switch(m->queue_mode) {
1726 			case DM_TYPE_BIO_BASED:
1727 				DMEMIT("queue_mode bio ");
1728 				break;
1729 			case DM_TYPE_MQ_REQUEST_BASED:
1730 				DMEMIT("queue_mode mq ");
1731 				break;
1732 			default:
1733 				WARN_ON_ONCE(true);
1734 				break;
1735 			}
1736 		}
1737 	}
1738 
1739 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1740 		DMEMIT("0 ");
1741 	else
1742 		DMEMIT("1 %s ", m->hw_handler_name);
1743 
1744 	DMEMIT("%u ", m->nr_priority_groups);
1745 
1746 	if (m->next_pg)
1747 		pg_num = m->next_pg->pg_num;
1748 	else if (m->current_pg)
1749 		pg_num = m->current_pg->pg_num;
1750 	else
1751 		pg_num = (m->nr_priority_groups ? 1 : 0);
1752 
1753 	DMEMIT("%u ", pg_num);
1754 
1755 	switch (type) {
1756 	case STATUSTYPE_INFO:
1757 		list_for_each_entry(pg, &m->priority_groups, list) {
1758 			if (pg->bypassed)
1759 				state = 'D';	/* Disabled */
1760 			else if (pg == m->current_pg)
1761 				state = 'A';	/* Currently Active */
1762 			else
1763 				state = 'E';	/* Enabled */
1764 
1765 			DMEMIT("%c ", state);
1766 
1767 			if (pg->ps.type->status)
1768 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1769 							  result + sz,
1770 							  maxlen - sz);
1771 			else
1772 				DMEMIT("0 ");
1773 
1774 			DMEMIT("%u %u ", pg->nr_pgpaths,
1775 			       pg->ps.type->info_args);
1776 
1777 			list_for_each_entry(p, &pg->pgpaths, list) {
1778 				DMEMIT("%s %s %u ", p->path.dev->name,
1779 				       p->is_active ? "A" : "F",
1780 				       p->fail_count);
1781 				if (pg->ps.type->status)
1782 					sz += pg->ps.type->status(&pg->ps,
1783 					      &p->path, type, result + sz,
1784 					      maxlen - sz);
1785 			}
1786 		}
1787 		break;
1788 
1789 	case STATUSTYPE_TABLE:
1790 		list_for_each_entry(pg, &m->priority_groups, list) {
1791 			DMEMIT("%s ", pg->ps.type->name);
1792 
1793 			if (pg->ps.type->status)
1794 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1795 							  result + sz,
1796 							  maxlen - sz);
1797 			else
1798 				DMEMIT("0 ");
1799 
1800 			DMEMIT("%u %u ", pg->nr_pgpaths,
1801 			       pg->ps.type->table_args);
1802 
1803 			list_for_each_entry(p, &pg->pgpaths, list) {
1804 				DMEMIT("%s ", p->path.dev->name);
1805 				if (pg->ps.type->status)
1806 					sz += pg->ps.type->status(&pg->ps,
1807 					      &p->path, type, result + sz,
1808 					      maxlen - sz);
1809 			}
1810 		}
1811 		break;
1812 	}
1813 
1814 	spin_unlock_irqrestore(&m->lock, flags);
1815 }
1816 
1817 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1818 			     char *result, unsigned maxlen)
1819 {
1820 	int r = -EINVAL;
1821 	struct dm_dev *dev;
1822 	struct multipath *m = ti->private;
1823 	action_fn action;
1824 
1825 	mutex_lock(&m->work_mutex);
1826 
1827 	if (dm_suspended(ti)) {
1828 		r = -EBUSY;
1829 		goto out;
1830 	}
1831 
1832 	if (argc == 1) {
1833 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1834 			r = queue_if_no_path(m, true, false);
1835 			goto out;
1836 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1837 			r = queue_if_no_path(m, false, false);
1838 			goto out;
1839 		}
1840 	}
1841 
1842 	if (argc != 2) {
1843 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1844 		goto out;
1845 	}
1846 
1847 	if (!strcasecmp(argv[0], "disable_group")) {
1848 		r = bypass_pg_num(m, argv[1], true);
1849 		goto out;
1850 	} else if (!strcasecmp(argv[0], "enable_group")) {
1851 		r = bypass_pg_num(m, argv[1], false);
1852 		goto out;
1853 	} else if (!strcasecmp(argv[0], "switch_group")) {
1854 		r = switch_pg_num(m, argv[1]);
1855 		goto out;
1856 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1857 		action = reinstate_path;
1858 	else if (!strcasecmp(argv[0], "fail_path"))
1859 		action = fail_path;
1860 	else {
1861 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1862 		goto out;
1863 	}
1864 
1865 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1866 	if (r) {
1867 		DMWARN("message: error getting device %s",
1868 		       argv[1]);
1869 		goto out;
1870 	}
1871 
1872 	r = action_dev(m, dev, action);
1873 
1874 	dm_put_device(ti, dev);
1875 
1876 out:
1877 	mutex_unlock(&m->work_mutex);
1878 	return r;
1879 }
1880 
1881 static int multipath_prepare_ioctl(struct dm_target *ti,
1882 				   struct block_device **bdev)
1883 {
1884 	struct multipath *m = ti->private;
1885 	struct pgpath *current_pgpath;
1886 	int r;
1887 
1888 	current_pgpath = READ_ONCE(m->current_pgpath);
1889 	if (!current_pgpath)
1890 		current_pgpath = choose_pgpath(m, 0);
1891 
1892 	if (current_pgpath) {
1893 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1894 			*bdev = current_pgpath->path.dev->bdev;
1895 			r = 0;
1896 		} else {
1897 			/* pg_init has not started or completed */
1898 			r = -ENOTCONN;
1899 		}
1900 	} else {
1901 		/* No path is available */
1902 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1903 			r = -ENOTCONN;
1904 		else
1905 			r = -EIO;
1906 	}
1907 
1908 	if (r == -ENOTCONN) {
1909 		if (!READ_ONCE(m->current_pg)) {
1910 			/* Path status changed, redo selection */
1911 			(void) choose_pgpath(m, 0);
1912 		}
1913 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1914 			pg_init_all_paths(m);
1915 		dm_table_run_md_queue_async(m->ti->table);
1916 		process_queued_io_list(m);
1917 	}
1918 
1919 	/*
1920 	 * Only pass ioctls through if the device sizes match exactly.
1921 	 */
1922 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1923 		return 1;
1924 	return r;
1925 }
1926 
1927 static int multipath_iterate_devices(struct dm_target *ti,
1928 				     iterate_devices_callout_fn fn, void *data)
1929 {
1930 	struct multipath *m = ti->private;
1931 	struct priority_group *pg;
1932 	struct pgpath *p;
1933 	int ret = 0;
1934 
1935 	list_for_each_entry(pg, &m->priority_groups, list) {
1936 		list_for_each_entry(p, &pg->pgpaths, list) {
1937 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1938 			if (ret)
1939 				goto out;
1940 		}
1941 	}
1942 
1943 out:
1944 	return ret;
1945 }
1946 
1947 static int pgpath_busy(struct pgpath *pgpath)
1948 {
1949 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1950 
1951 	return blk_lld_busy(q);
1952 }
1953 
1954 /*
1955  * We return "busy", only when we can map I/Os but underlying devices
1956  * are busy (so even if we map I/Os now, the I/Os will wait on
1957  * the underlying queue).
1958  * In other words, if we want to kill I/Os or queue them inside us
1959  * due to map unavailability, we don't return "busy".  Otherwise,
1960  * dm core won't give us the I/Os and we can't do what we want.
1961  */
1962 static int multipath_busy(struct dm_target *ti)
1963 {
1964 	bool busy = false, has_active = false;
1965 	struct multipath *m = ti->private;
1966 	struct priority_group *pg, *next_pg;
1967 	struct pgpath *pgpath;
1968 
1969 	/* pg_init in progress */
1970 	if (atomic_read(&m->pg_init_in_progress))
1971 		return true;
1972 
1973 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1974 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1975 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1976 
1977 	/* Guess which priority_group will be used at next mapping time */
1978 	pg = READ_ONCE(m->current_pg);
1979 	next_pg = READ_ONCE(m->next_pg);
1980 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1981 		pg = next_pg;
1982 
1983 	if (!pg) {
1984 		/*
1985 		 * We don't know which pg will be used at next mapping time.
1986 		 * We don't call choose_pgpath() here to avoid to trigger
1987 		 * pg_init just by busy checking.
1988 		 * So we don't know whether underlying devices we will be using
1989 		 * at next mapping time are busy or not. Just try mapping.
1990 		 */
1991 		return busy;
1992 	}
1993 
1994 	/*
1995 	 * If there is one non-busy active path at least, the path selector
1996 	 * will be able to select it. So we consider such a pg as not busy.
1997 	 */
1998 	busy = true;
1999 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2000 		if (pgpath->is_active) {
2001 			has_active = true;
2002 			if (!pgpath_busy(pgpath)) {
2003 				busy = false;
2004 				break;
2005 			}
2006 		}
2007 	}
2008 
2009 	if (!has_active) {
2010 		/*
2011 		 * No active path in this pg, so this pg won't be used and
2012 		 * the current_pg will be changed at next mapping time.
2013 		 * We need to try mapping to determine it.
2014 		 */
2015 		busy = false;
2016 	}
2017 
2018 	return busy;
2019 }
2020 
2021 /*-----------------------------------------------------------------
2022  * Module setup
2023  *---------------------------------------------------------------*/
2024 static struct target_type multipath_target = {
2025 	.name = "multipath",
2026 	.version = {1, 13, 0},
2027 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2028 		    DM_TARGET_PASSES_INTEGRITY,
2029 	.module = THIS_MODULE,
2030 	.ctr = multipath_ctr,
2031 	.dtr = multipath_dtr,
2032 	.clone_and_map_rq = multipath_clone_and_map,
2033 	.release_clone_rq = multipath_release_clone,
2034 	.rq_end_io = multipath_end_io,
2035 	.map = multipath_map_bio,
2036 	.end_io = multipath_end_io_bio,
2037 	.presuspend = multipath_presuspend,
2038 	.postsuspend = multipath_postsuspend,
2039 	.resume = multipath_resume,
2040 	.status = multipath_status,
2041 	.message = multipath_message,
2042 	.prepare_ioctl = multipath_prepare_ioctl,
2043 	.iterate_devices = multipath_iterate_devices,
2044 	.busy = multipath_busy,
2045 };
2046 
2047 static int __init dm_multipath_init(void)
2048 {
2049 	int r;
2050 
2051 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2052 	if (!kmultipathd) {
2053 		DMERR("failed to create workqueue kmpathd");
2054 		r = -ENOMEM;
2055 		goto bad_alloc_kmultipathd;
2056 	}
2057 
2058 	/*
2059 	 * A separate workqueue is used to handle the device handlers
2060 	 * to avoid overloading existing workqueue. Overloading the
2061 	 * old workqueue would also create a bottleneck in the
2062 	 * path of the storage hardware device activation.
2063 	 */
2064 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2065 						  WQ_MEM_RECLAIM);
2066 	if (!kmpath_handlerd) {
2067 		DMERR("failed to create workqueue kmpath_handlerd");
2068 		r = -ENOMEM;
2069 		goto bad_alloc_kmpath_handlerd;
2070 	}
2071 
2072 	r = dm_register_target(&multipath_target);
2073 	if (r < 0) {
2074 		DMERR("request-based register failed %d", r);
2075 		r = -EINVAL;
2076 		goto bad_register_target;
2077 	}
2078 
2079 	return 0;
2080 
2081 bad_register_target:
2082 	destroy_workqueue(kmpath_handlerd);
2083 bad_alloc_kmpath_handlerd:
2084 	destroy_workqueue(kmultipathd);
2085 bad_alloc_kmultipathd:
2086 	return r;
2087 }
2088 
2089 static void __exit dm_multipath_exit(void)
2090 {
2091 	destroy_workqueue(kmpath_handlerd);
2092 	destroy_workqueue(kmultipathd);
2093 
2094 	dm_unregister_target(&multipath_target);
2095 }
2096 
2097 module_init(dm_multipath_init);
2098 module_exit(dm_multipath_exit);
2099 
2100 MODULE_DESCRIPTION(DM_NAME " multipath target");
2101 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2102 MODULE_LICENSE("GPL");
2103