1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/timer.h> 24 #include <linux/workqueue.h> 25 #include <linux/delay.h> 26 #include <scsi/scsi_dh.h> 27 #include <linux/atomic.h> 28 #include <linux/blk-mq.h> 29 30 #define DM_MSG_PREFIX "multipath" 31 #define DM_PG_INIT_DELAY_MSECS 2000 32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0 34 35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT; 36 37 /* Path properties */ 38 struct pgpath { 39 struct list_head list; 40 41 struct priority_group *pg; /* Owning PG */ 42 unsigned fail_count; /* Cumulative failure count */ 43 44 struct dm_path path; 45 struct delayed_work activate_path; 46 47 bool is_active:1; /* Path status */ 48 }; 49 50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 51 52 /* 53 * Paths are grouped into Priority Groups and numbered from 1 upwards. 54 * Each has a path selector which controls which path gets used. 55 */ 56 struct priority_group { 57 struct list_head list; 58 59 struct multipath *m; /* Owning multipath instance */ 60 struct path_selector ps; 61 62 unsigned pg_num; /* Reference number */ 63 unsigned nr_pgpaths; /* Number of paths in PG */ 64 struct list_head pgpaths; 65 66 bool bypassed:1; /* Temporarily bypass this PG? */ 67 }; 68 69 /* Multipath context */ 70 struct multipath { 71 unsigned long flags; /* Multipath state flags */ 72 73 spinlock_t lock; 74 enum dm_queue_mode queue_mode; 75 76 struct pgpath *current_pgpath; 77 struct priority_group *current_pg; 78 struct priority_group *next_pg; /* Switch to this PG if set */ 79 80 atomic_t nr_valid_paths; /* Total number of usable paths */ 81 unsigned nr_priority_groups; 82 struct list_head priority_groups; 83 84 const char *hw_handler_name; 85 char *hw_handler_params; 86 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 87 unsigned pg_init_retries; /* Number of times to retry pg_init */ 88 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 89 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 90 atomic_t pg_init_count; /* Number of times pg_init called */ 91 92 struct mutex work_mutex; 93 struct work_struct trigger_event; 94 struct dm_target *ti; 95 96 struct work_struct process_queued_bios; 97 struct bio_list queued_bios; 98 99 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */ 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 static void queue_if_no_path_timeout_work(struct timer_list *t); 118 119 /*----------------------------------------------- 120 * Multipath state flags. 121 *-----------------------------------------------*/ 122 123 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 124 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 127 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 128 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 129 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 130 131 /*----------------------------------------------- 132 * Allocation routines 133 *-----------------------------------------------*/ 134 135 static struct pgpath *alloc_pgpath(void) 136 { 137 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 138 139 if (!pgpath) 140 return NULL; 141 142 pgpath->is_active = true; 143 144 return pgpath; 145 } 146 147 static void free_pgpath(struct pgpath *pgpath) 148 { 149 kfree(pgpath); 150 } 151 152 static struct priority_group *alloc_priority_group(void) 153 { 154 struct priority_group *pg; 155 156 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 157 158 if (pg) 159 INIT_LIST_HEAD(&pg->pgpaths); 160 161 return pg; 162 } 163 164 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 165 { 166 struct pgpath *pgpath, *tmp; 167 168 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 169 list_del(&pgpath->list); 170 dm_put_device(ti, pgpath->path.dev); 171 free_pgpath(pgpath); 172 } 173 } 174 175 static void free_priority_group(struct priority_group *pg, 176 struct dm_target *ti) 177 { 178 struct path_selector *ps = &pg->ps; 179 180 if (ps->type) { 181 ps->type->destroy(ps); 182 dm_put_path_selector(ps->type); 183 } 184 185 free_pgpaths(&pg->pgpaths, ti); 186 kfree(pg); 187 } 188 189 static struct multipath *alloc_multipath(struct dm_target *ti) 190 { 191 struct multipath *m; 192 193 m = kzalloc(sizeof(*m), GFP_KERNEL); 194 if (m) { 195 INIT_LIST_HEAD(&m->priority_groups); 196 spin_lock_init(&m->lock); 197 atomic_set(&m->nr_valid_paths, 0); 198 INIT_WORK(&m->trigger_event, trigger_event); 199 mutex_init(&m->work_mutex); 200 201 m->queue_mode = DM_TYPE_NONE; 202 203 m->ti = ti; 204 ti->private = m; 205 206 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0); 207 } 208 209 return m; 210 } 211 212 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 213 { 214 if (m->queue_mode == DM_TYPE_NONE) { 215 m->queue_mode = DM_TYPE_REQUEST_BASED; 216 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 217 INIT_WORK(&m->process_queued_bios, process_queued_bios); 218 /* 219 * bio-based doesn't support any direct scsi_dh management; 220 * it just discovers if a scsi_dh is attached. 221 */ 222 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 223 } 224 225 dm_table_set_type(ti->table, m->queue_mode); 226 227 /* 228 * Init fields that are only used when a scsi_dh is attached 229 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 230 */ 231 set_bit(MPATHF_QUEUE_IO, &m->flags); 232 atomic_set(&m->pg_init_in_progress, 0); 233 atomic_set(&m->pg_init_count, 0); 234 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 235 init_waitqueue_head(&m->pg_init_wait); 236 237 return 0; 238 } 239 240 static void free_multipath(struct multipath *m) 241 { 242 struct priority_group *pg, *tmp; 243 244 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 245 list_del(&pg->list); 246 free_priority_group(pg, m->ti); 247 } 248 249 kfree(m->hw_handler_name); 250 kfree(m->hw_handler_params); 251 mutex_destroy(&m->work_mutex); 252 kfree(m); 253 } 254 255 static struct dm_mpath_io *get_mpio(union map_info *info) 256 { 257 return info->ptr; 258 } 259 260 static size_t multipath_per_bio_data_size(void) 261 { 262 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 263 } 264 265 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 266 { 267 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 268 } 269 270 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 271 { 272 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 273 void *bio_details = mpio + 1; 274 return bio_details; 275 } 276 277 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 281 282 mpio->nr_bytes = bio->bi_iter.bi_size; 283 mpio->pgpath = NULL; 284 *mpio_p = mpio; 285 286 dm_bio_record(bio_details, bio); 287 } 288 289 /*----------------------------------------------- 290 * Path selection 291 *-----------------------------------------------*/ 292 293 static int __pg_init_all_paths(struct multipath *m) 294 { 295 struct pgpath *pgpath; 296 unsigned long pg_init_delay = 0; 297 298 lockdep_assert_held(&m->lock); 299 300 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 301 return 0; 302 303 atomic_inc(&m->pg_init_count); 304 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 305 306 /* Check here to reset pg_init_required */ 307 if (!m->current_pg) 308 return 0; 309 310 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 311 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 312 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 313 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 314 /* Skip failed paths */ 315 if (!pgpath->is_active) 316 continue; 317 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 318 pg_init_delay)) 319 atomic_inc(&m->pg_init_in_progress); 320 } 321 return atomic_read(&m->pg_init_in_progress); 322 } 323 324 static int pg_init_all_paths(struct multipath *m) 325 { 326 int ret; 327 unsigned long flags; 328 329 spin_lock_irqsave(&m->lock, flags); 330 ret = __pg_init_all_paths(m); 331 spin_unlock_irqrestore(&m->lock, flags); 332 333 return ret; 334 } 335 336 static void __switch_pg(struct multipath *m, struct priority_group *pg) 337 { 338 m->current_pg = pg; 339 340 /* Must we initialise the PG first, and queue I/O till it's ready? */ 341 if (m->hw_handler_name) { 342 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 343 set_bit(MPATHF_QUEUE_IO, &m->flags); 344 } else { 345 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 clear_bit(MPATHF_QUEUE_IO, &m->flags); 347 } 348 349 atomic_set(&m->pg_init_count, 0); 350 } 351 352 static struct pgpath *choose_path_in_pg(struct multipath *m, 353 struct priority_group *pg, 354 size_t nr_bytes) 355 { 356 unsigned long flags; 357 struct dm_path *path; 358 struct pgpath *pgpath; 359 360 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 361 if (!path) 362 return ERR_PTR(-ENXIO); 363 364 pgpath = path_to_pgpath(path); 365 366 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 367 /* Only update current_pgpath if pg changed */ 368 spin_lock_irqsave(&m->lock, flags); 369 m->current_pgpath = pgpath; 370 __switch_pg(m, pg); 371 spin_unlock_irqrestore(&m->lock, flags); 372 } 373 374 return pgpath; 375 } 376 377 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 378 { 379 unsigned long flags; 380 struct priority_group *pg; 381 struct pgpath *pgpath; 382 unsigned bypassed = 1; 383 384 if (!atomic_read(&m->nr_valid_paths)) { 385 clear_bit(MPATHF_QUEUE_IO, &m->flags); 386 goto failed; 387 } 388 389 /* Were we instructed to switch PG? */ 390 if (READ_ONCE(m->next_pg)) { 391 spin_lock_irqsave(&m->lock, flags); 392 pg = m->next_pg; 393 if (!pg) { 394 spin_unlock_irqrestore(&m->lock, flags); 395 goto check_current_pg; 396 } 397 m->next_pg = NULL; 398 spin_unlock_irqrestore(&m->lock, flags); 399 pgpath = choose_path_in_pg(m, pg, nr_bytes); 400 if (!IS_ERR_OR_NULL(pgpath)) 401 return pgpath; 402 } 403 404 /* Don't change PG until it has no remaining paths */ 405 check_current_pg: 406 pg = READ_ONCE(m->current_pg); 407 if (pg) { 408 pgpath = choose_path_in_pg(m, pg, nr_bytes); 409 if (!IS_ERR_OR_NULL(pgpath)) 410 return pgpath; 411 } 412 413 /* 414 * Loop through priority groups until we find a valid path. 415 * First time we skip PGs marked 'bypassed'. 416 * Second time we only try the ones we skipped, but set 417 * pg_init_delay_retry so we do not hammer controllers. 418 */ 419 do { 420 list_for_each_entry(pg, &m->priority_groups, list) { 421 if (pg->bypassed == !!bypassed) 422 continue; 423 pgpath = choose_path_in_pg(m, pg, nr_bytes); 424 if (!IS_ERR_OR_NULL(pgpath)) { 425 if (!bypassed) 426 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 427 return pgpath; 428 } 429 } 430 } while (bypassed--); 431 432 failed: 433 spin_lock_irqsave(&m->lock, flags); 434 m->current_pgpath = NULL; 435 m->current_pg = NULL; 436 spin_unlock_irqrestore(&m->lock, flags); 437 438 return NULL; 439 } 440 441 /* 442 * dm_report_EIO() is a macro instead of a function to make pr_debug() 443 * report the function name and line number of the function from which 444 * it has been invoked. 445 */ 446 #define dm_report_EIO(m) \ 447 do { \ 448 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 449 \ 450 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 451 dm_device_name(md), \ 452 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 453 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 454 dm_noflush_suspending((m)->ti)); \ 455 } while (0) 456 457 /* 458 * Check whether bios must be queued in the device-mapper core rather 459 * than here in the target. 460 * 461 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 462 * the same value then we are not between multipath_presuspend() 463 * and multipath_resume() calls and we have no need to check 464 * for the DMF_NOFLUSH_SUSPENDING flag. 465 */ 466 static bool __must_push_back(struct multipath *m, unsigned long flags) 467 { 468 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 469 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 470 dm_noflush_suspending(m->ti)); 471 } 472 473 /* 474 * Following functions use READ_ONCE to get atomic access to 475 * all m->flags to avoid taking spinlock 476 */ 477 static bool must_push_back_rq(struct multipath *m) 478 { 479 unsigned long flags = READ_ONCE(m->flags); 480 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 481 } 482 483 static bool must_push_back_bio(struct multipath *m) 484 { 485 unsigned long flags = READ_ONCE(m->flags); 486 return __must_push_back(m, flags); 487 } 488 489 /* 490 * Map cloned requests (request-based multipath) 491 */ 492 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 493 union map_info *map_context, 494 struct request **__clone) 495 { 496 struct multipath *m = ti->private; 497 size_t nr_bytes = blk_rq_bytes(rq); 498 struct pgpath *pgpath; 499 struct block_device *bdev; 500 struct dm_mpath_io *mpio = get_mpio(map_context); 501 struct request_queue *q; 502 struct request *clone; 503 504 /* Do we need to select a new pgpath? */ 505 pgpath = READ_ONCE(m->current_pgpath); 506 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 507 pgpath = choose_pgpath(m, nr_bytes); 508 509 if (!pgpath) { 510 if (must_push_back_rq(m)) 511 return DM_MAPIO_DELAY_REQUEUE; 512 dm_report_EIO(m); /* Failed */ 513 return DM_MAPIO_KILL; 514 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 515 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 516 pg_init_all_paths(m); 517 return DM_MAPIO_DELAY_REQUEUE; 518 } 519 520 mpio->pgpath = pgpath; 521 mpio->nr_bytes = nr_bytes; 522 523 bdev = pgpath->path.dev->bdev; 524 q = bdev_get_queue(bdev); 525 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, 526 BLK_MQ_REQ_NOWAIT); 527 if (IS_ERR(clone)) { 528 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 529 if (blk_queue_dying(q)) { 530 atomic_inc(&m->pg_init_in_progress); 531 activate_or_offline_path(pgpath); 532 return DM_MAPIO_DELAY_REQUEUE; 533 } 534 535 /* 536 * blk-mq's SCHED_RESTART can cover this requeue, so we 537 * needn't deal with it by DELAY_REQUEUE. More importantly, 538 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 539 * get the queue busy feedback (via BLK_STS_RESOURCE), 540 * otherwise I/O merging can suffer. 541 */ 542 return DM_MAPIO_REQUEUE; 543 } 544 clone->bio = clone->biotail = NULL; 545 clone->rq_disk = bdev->bd_disk; 546 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 547 *__clone = clone; 548 549 if (pgpath->pg->ps.type->start_io) 550 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 551 &pgpath->path, 552 nr_bytes); 553 return DM_MAPIO_REMAPPED; 554 } 555 556 static void multipath_release_clone(struct request *clone, 557 union map_info *map_context) 558 { 559 if (unlikely(map_context)) { 560 /* 561 * non-NULL map_context means caller is still map 562 * method; must undo multipath_clone_and_map() 563 */ 564 struct dm_mpath_io *mpio = get_mpio(map_context); 565 struct pgpath *pgpath = mpio->pgpath; 566 567 if (pgpath && pgpath->pg->ps.type->end_io) 568 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 569 &pgpath->path, 570 mpio->nr_bytes); 571 } 572 573 blk_put_request(clone); 574 } 575 576 /* 577 * Map cloned bios (bio-based multipath) 578 */ 579 580 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 581 { 582 struct pgpath *pgpath; 583 unsigned long flags; 584 bool queue_io; 585 586 /* Do we need to select a new pgpath? */ 587 pgpath = READ_ONCE(m->current_pgpath); 588 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 589 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 590 591 /* MPATHF_QUEUE_IO might have been cleared by choose_pgpath. */ 592 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 593 594 if ((pgpath && queue_io) || 595 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 596 /* Queue for the daemon to resubmit */ 597 spin_lock_irqsave(&m->lock, flags); 598 bio_list_add(&m->queued_bios, bio); 599 spin_unlock_irqrestore(&m->lock, flags); 600 601 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 602 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 603 pg_init_all_paths(m); 604 else if (!queue_io) 605 queue_work(kmultipathd, &m->process_queued_bios); 606 607 return ERR_PTR(-EAGAIN); 608 } 609 610 return pgpath; 611 } 612 613 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 614 struct dm_mpath_io *mpio) 615 { 616 struct pgpath *pgpath = __map_bio(m, bio); 617 618 if (IS_ERR(pgpath)) 619 return DM_MAPIO_SUBMITTED; 620 621 if (!pgpath) { 622 if (must_push_back_bio(m)) 623 return DM_MAPIO_REQUEUE; 624 dm_report_EIO(m); 625 return DM_MAPIO_KILL; 626 } 627 628 mpio->pgpath = pgpath; 629 630 bio->bi_status = 0; 631 bio_set_dev(bio, pgpath->path.dev->bdev); 632 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 633 634 if (pgpath->pg->ps.type->start_io) 635 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 636 &pgpath->path, 637 mpio->nr_bytes); 638 return DM_MAPIO_REMAPPED; 639 } 640 641 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 642 { 643 struct multipath *m = ti->private; 644 struct dm_mpath_io *mpio = NULL; 645 646 multipath_init_per_bio_data(bio, &mpio); 647 return __multipath_map_bio(m, bio, mpio); 648 } 649 650 static void process_queued_io_list(struct multipath *m) 651 { 652 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 653 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 654 else if (m->queue_mode == DM_TYPE_BIO_BASED) 655 queue_work(kmultipathd, &m->process_queued_bios); 656 } 657 658 static void process_queued_bios(struct work_struct *work) 659 { 660 int r; 661 unsigned long flags; 662 struct bio *bio; 663 struct bio_list bios; 664 struct blk_plug plug; 665 struct multipath *m = 666 container_of(work, struct multipath, process_queued_bios); 667 668 bio_list_init(&bios); 669 670 spin_lock_irqsave(&m->lock, flags); 671 672 if (bio_list_empty(&m->queued_bios)) { 673 spin_unlock_irqrestore(&m->lock, flags); 674 return; 675 } 676 677 bio_list_merge(&bios, &m->queued_bios); 678 bio_list_init(&m->queued_bios); 679 680 spin_unlock_irqrestore(&m->lock, flags); 681 682 blk_start_plug(&plug); 683 while ((bio = bio_list_pop(&bios))) { 684 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 685 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 686 r = __multipath_map_bio(m, bio, mpio); 687 switch (r) { 688 case DM_MAPIO_KILL: 689 bio->bi_status = BLK_STS_IOERR; 690 bio_endio(bio); 691 break; 692 case DM_MAPIO_REQUEUE: 693 bio->bi_status = BLK_STS_DM_REQUEUE; 694 bio_endio(bio); 695 break; 696 case DM_MAPIO_REMAPPED: 697 generic_make_request(bio); 698 break; 699 case DM_MAPIO_SUBMITTED: 700 break; 701 default: 702 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 703 } 704 } 705 blk_finish_plug(&plug); 706 } 707 708 /* 709 * If we run out of usable paths, should we queue I/O or error it? 710 */ 711 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 712 bool save_old_value) 713 { 714 unsigned long flags; 715 716 spin_lock_irqsave(&m->lock, flags); 717 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 718 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 719 (!save_old_value && queue_if_no_path)); 720 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 721 spin_unlock_irqrestore(&m->lock, flags); 722 723 if (!queue_if_no_path) { 724 dm_table_run_md_queue_async(m->ti->table); 725 process_queued_io_list(m); 726 } 727 728 return 0; 729 } 730 731 /* 732 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and 733 * process any queued I/O. 734 */ 735 static void queue_if_no_path_timeout_work(struct timer_list *t) 736 { 737 struct multipath *m = from_timer(m, t, nopath_timer); 738 struct mapped_device *md = dm_table_get_md(m->ti->table); 739 740 DMWARN("queue_if_no_path timeout on %s, failing queued IO", dm_device_name(md)); 741 queue_if_no_path(m, false, false); 742 } 743 744 /* 745 * Enable the queue_if_no_path timeout if necessary. 746 * Called with m->lock held. 747 */ 748 static void enable_nopath_timeout(struct multipath *m) 749 { 750 unsigned long queue_if_no_path_timeout = 751 READ_ONCE(queue_if_no_path_timeout_secs) * HZ; 752 753 lockdep_assert_held(&m->lock); 754 755 if (queue_if_no_path_timeout > 0 && 756 atomic_read(&m->nr_valid_paths) == 0 && 757 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 758 mod_timer(&m->nopath_timer, 759 jiffies + queue_if_no_path_timeout); 760 } 761 } 762 763 static void disable_nopath_timeout(struct multipath *m) 764 { 765 del_timer_sync(&m->nopath_timer); 766 } 767 768 /* 769 * An event is triggered whenever a path is taken out of use. 770 * Includes path failure and PG bypass. 771 */ 772 static void trigger_event(struct work_struct *work) 773 { 774 struct multipath *m = 775 container_of(work, struct multipath, trigger_event); 776 777 dm_table_event(m->ti->table); 778 } 779 780 /*----------------------------------------------------------------- 781 * Constructor/argument parsing: 782 * <#multipath feature args> [<arg>]* 783 * <#hw_handler args> [hw_handler [<arg>]*] 784 * <#priority groups> 785 * <initial priority group> 786 * [<selector> <#selector args> [<arg>]* 787 * <#paths> <#per-path selector args> 788 * [<path> [<arg>]* ]+ ]+ 789 *---------------------------------------------------------------*/ 790 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 791 struct dm_target *ti) 792 { 793 int r; 794 struct path_selector_type *pst; 795 unsigned ps_argc; 796 797 static const struct dm_arg _args[] = { 798 {0, 1024, "invalid number of path selector args"}, 799 }; 800 801 pst = dm_get_path_selector(dm_shift_arg(as)); 802 if (!pst) { 803 ti->error = "unknown path selector type"; 804 return -EINVAL; 805 } 806 807 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 808 if (r) { 809 dm_put_path_selector(pst); 810 return -EINVAL; 811 } 812 813 r = pst->create(&pg->ps, ps_argc, as->argv); 814 if (r) { 815 dm_put_path_selector(pst); 816 ti->error = "path selector constructor failed"; 817 return r; 818 } 819 820 pg->ps.type = pst; 821 dm_consume_args(as, ps_argc); 822 823 return 0; 824 } 825 826 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 827 const char **attached_handler_name, char **error) 828 { 829 struct request_queue *q = bdev_get_queue(bdev); 830 int r; 831 832 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 833 retain: 834 if (*attached_handler_name) { 835 /* 836 * Clear any hw_handler_params associated with a 837 * handler that isn't already attached. 838 */ 839 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 840 kfree(m->hw_handler_params); 841 m->hw_handler_params = NULL; 842 } 843 844 /* 845 * Reset hw_handler_name to match the attached handler 846 * 847 * NB. This modifies the table line to show the actual 848 * handler instead of the original table passed in. 849 */ 850 kfree(m->hw_handler_name); 851 m->hw_handler_name = *attached_handler_name; 852 *attached_handler_name = NULL; 853 } 854 } 855 856 if (m->hw_handler_name) { 857 r = scsi_dh_attach(q, m->hw_handler_name); 858 if (r == -EBUSY) { 859 char b[BDEVNAME_SIZE]; 860 861 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 862 bdevname(bdev, b)); 863 goto retain; 864 } 865 if (r < 0) { 866 *error = "error attaching hardware handler"; 867 return r; 868 } 869 870 if (m->hw_handler_params) { 871 r = scsi_dh_set_params(q, m->hw_handler_params); 872 if (r < 0) { 873 *error = "unable to set hardware handler parameters"; 874 return r; 875 } 876 } 877 } 878 879 return 0; 880 } 881 882 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 883 struct dm_target *ti) 884 { 885 int r; 886 struct pgpath *p; 887 struct multipath *m = ti->private; 888 struct request_queue *q; 889 const char *attached_handler_name = NULL; 890 891 /* we need at least a path arg */ 892 if (as->argc < 1) { 893 ti->error = "no device given"; 894 return ERR_PTR(-EINVAL); 895 } 896 897 p = alloc_pgpath(); 898 if (!p) 899 return ERR_PTR(-ENOMEM); 900 901 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 902 &p->path.dev); 903 if (r) { 904 ti->error = "error getting device"; 905 goto bad; 906 } 907 908 q = bdev_get_queue(p->path.dev->bdev); 909 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 910 if (attached_handler_name || m->hw_handler_name) { 911 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 912 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 913 kfree(attached_handler_name); 914 if (r) { 915 dm_put_device(ti, p->path.dev); 916 goto bad; 917 } 918 } 919 920 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 921 if (r) { 922 dm_put_device(ti, p->path.dev); 923 goto bad; 924 } 925 926 return p; 927 bad: 928 free_pgpath(p); 929 return ERR_PTR(r); 930 } 931 932 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 933 struct multipath *m) 934 { 935 static const struct dm_arg _args[] = { 936 {1, 1024, "invalid number of paths"}, 937 {0, 1024, "invalid number of selector args"} 938 }; 939 940 int r; 941 unsigned i, nr_selector_args, nr_args; 942 struct priority_group *pg; 943 struct dm_target *ti = m->ti; 944 945 if (as->argc < 2) { 946 as->argc = 0; 947 ti->error = "not enough priority group arguments"; 948 return ERR_PTR(-EINVAL); 949 } 950 951 pg = alloc_priority_group(); 952 if (!pg) { 953 ti->error = "couldn't allocate priority group"; 954 return ERR_PTR(-ENOMEM); 955 } 956 pg->m = m; 957 958 r = parse_path_selector(as, pg, ti); 959 if (r) 960 goto bad; 961 962 /* 963 * read the paths 964 */ 965 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 966 if (r) 967 goto bad; 968 969 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 970 if (r) 971 goto bad; 972 973 nr_args = 1 + nr_selector_args; 974 for (i = 0; i < pg->nr_pgpaths; i++) { 975 struct pgpath *pgpath; 976 struct dm_arg_set path_args; 977 978 if (as->argc < nr_args) { 979 ti->error = "not enough path parameters"; 980 r = -EINVAL; 981 goto bad; 982 } 983 984 path_args.argc = nr_args; 985 path_args.argv = as->argv; 986 987 pgpath = parse_path(&path_args, &pg->ps, ti); 988 if (IS_ERR(pgpath)) { 989 r = PTR_ERR(pgpath); 990 goto bad; 991 } 992 993 pgpath->pg = pg; 994 list_add_tail(&pgpath->list, &pg->pgpaths); 995 dm_consume_args(as, nr_args); 996 } 997 998 return pg; 999 1000 bad: 1001 free_priority_group(pg, ti); 1002 return ERR_PTR(r); 1003 } 1004 1005 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 1006 { 1007 unsigned hw_argc; 1008 int ret; 1009 struct dm_target *ti = m->ti; 1010 1011 static const struct dm_arg _args[] = { 1012 {0, 1024, "invalid number of hardware handler args"}, 1013 }; 1014 1015 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 1016 return -EINVAL; 1017 1018 if (!hw_argc) 1019 return 0; 1020 1021 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1022 dm_consume_args(as, hw_argc); 1023 DMERR("bio-based multipath doesn't allow hardware handler args"); 1024 return 0; 1025 } 1026 1027 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1028 if (!m->hw_handler_name) 1029 return -EINVAL; 1030 1031 if (hw_argc > 1) { 1032 char *p; 1033 int i, j, len = 4; 1034 1035 for (i = 0; i <= hw_argc - 2; i++) 1036 len += strlen(as->argv[i]) + 1; 1037 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1038 if (!p) { 1039 ti->error = "memory allocation failed"; 1040 ret = -ENOMEM; 1041 goto fail; 1042 } 1043 j = sprintf(p, "%d", hw_argc - 1); 1044 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1045 j = sprintf(p, "%s", as->argv[i]); 1046 } 1047 dm_consume_args(as, hw_argc - 1); 1048 1049 return 0; 1050 fail: 1051 kfree(m->hw_handler_name); 1052 m->hw_handler_name = NULL; 1053 return ret; 1054 } 1055 1056 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1057 { 1058 int r; 1059 unsigned argc; 1060 struct dm_target *ti = m->ti; 1061 const char *arg_name; 1062 1063 static const struct dm_arg _args[] = { 1064 {0, 8, "invalid number of feature args"}, 1065 {1, 50, "pg_init_retries must be between 1 and 50"}, 1066 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1067 }; 1068 1069 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1070 if (r) 1071 return -EINVAL; 1072 1073 if (!argc) 1074 return 0; 1075 1076 do { 1077 arg_name = dm_shift_arg(as); 1078 argc--; 1079 1080 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1081 r = queue_if_no_path(m, true, false); 1082 continue; 1083 } 1084 1085 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1086 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1087 continue; 1088 } 1089 1090 if (!strcasecmp(arg_name, "pg_init_retries") && 1091 (argc >= 1)) { 1092 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1093 argc--; 1094 continue; 1095 } 1096 1097 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1098 (argc >= 1)) { 1099 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1100 argc--; 1101 continue; 1102 } 1103 1104 if (!strcasecmp(arg_name, "queue_mode") && 1105 (argc >= 1)) { 1106 const char *queue_mode_name = dm_shift_arg(as); 1107 1108 if (!strcasecmp(queue_mode_name, "bio")) 1109 m->queue_mode = DM_TYPE_BIO_BASED; 1110 else if (!strcasecmp(queue_mode_name, "rq") || 1111 !strcasecmp(queue_mode_name, "mq")) 1112 m->queue_mode = DM_TYPE_REQUEST_BASED; 1113 else { 1114 ti->error = "Unknown 'queue_mode' requested"; 1115 r = -EINVAL; 1116 } 1117 argc--; 1118 continue; 1119 } 1120 1121 ti->error = "Unrecognised multipath feature request"; 1122 r = -EINVAL; 1123 } while (argc && !r); 1124 1125 return r; 1126 } 1127 1128 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1129 { 1130 /* target arguments */ 1131 static const struct dm_arg _args[] = { 1132 {0, 1024, "invalid number of priority groups"}, 1133 {0, 1024, "invalid initial priority group number"}, 1134 }; 1135 1136 int r; 1137 struct multipath *m; 1138 struct dm_arg_set as; 1139 unsigned pg_count = 0; 1140 unsigned next_pg_num; 1141 unsigned long flags; 1142 1143 as.argc = argc; 1144 as.argv = argv; 1145 1146 m = alloc_multipath(ti); 1147 if (!m) { 1148 ti->error = "can't allocate multipath"; 1149 return -EINVAL; 1150 } 1151 1152 r = parse_features(&as, m); 1153 if (r) 1154 goto bad; 1155 1156 r = alloc_multipath_stage2(ti, m); 1157 if (r) 1158 goto bad; 1159 1160 r = parse_hw_handler(&as, m); 1161 if (r) 1162 goto bad; 1163 1164 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1165 if (r) 1166 goto bad; 1167 1168 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1169 if (r) 1170 goto bad; 1171 1172 if ((!m->nr_priority_groups && next_pg_num) || 1173 (m->nr_priority_groups && !next_pg_num)) { 1174 ti->error = "invalid initial priority group"; 1175 r = -EINVAL; 1176 goto bad; 1177 } 1178 1179 /* parse the priority groups */ 1180 while (as.argc) { 1181 struct priority_group *pg; 1182 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1183 1184 pg = parse_priority_group(&as, m); 1185 if (IS_ERR(pg)) { 1186 r = PTR_ERR(pg); 1187 goto bad; 1188 } 1189 1190 nr_valid_paths += pg->nr_pgpaths; 1191 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1192 1193 list_add_tail(&pg->list, &m->priority_groups); 1194 pg_count++; 1195 pg->pg_num = pg_count; 1196 if (!--next_pg_num) 1197 m->next_pg = pg; 1198 } 1199 1200 if (pg_count != m->nr_priority_groups) { 1201 ti->error = "priority group count mismatch"; 1202 r = -EINVAL; 1203 goto bad; 1204 } 1205 1206 spin_lock_irqsave(&m->lock, flags); 1207 enable_nopath_timeout(m); 1208 spin_unlock_irqrestore(&m->lock, flags); 1209 1210 ti->num_flush_bios = 1; 1211 ti->num_discard_bios = 1; 1212 ti->num_write_same_bios = 1; 1213 ti->num_write_zeroes_bios = 1; 1214 if (m->queue_mode == DM_TYPE_BIO_BASED) 1215 ti->per_io_data_size = multipath_per_bio_data_size(); 1216 else 1217 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1218 1219 return 0; 1220 1221 bad: 1222 free_multipath(m); 1223 return r; 1224 } 1225 1226 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1227 { 1228 DEFINE_WAIT(wait); 1229 1230 while (1) { 1231 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1232 1233 if (!atomic_read(&m->pg_init_in_progress)) 1234 break; 1235 1236 io_schedule(); 1237 } 1238 finish_wait(&m->pg_init_wait, &wait); 1239 } 1240 1241 static void flush_multipath_work(struct multipath *m) 1242 { 1243 if (m->hw_handler_name) { 1244 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1245 smp_mb__after_atomic(); 1246 1247 if (atomic_read(&m->pg_init_in_progress)) 1248 flush_workqueue(kmpath_handlerd); 1249 multipath_wait_for_pg_init_completion(m); 1250 1251 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1252 smp_mb__after_atomic(); 1253 } 1254 1255 if (m->queue_mode == DM_TYPE_BIO_BASED) 1256 flush_work(&m->process_queued_bios); 1257 flush_work(&m->trigger_event); 1258 } 1259 1260 static void multipath_dtr(struct dm_target *ti) 1261 { 1262 struct multipath *m = ti->private; 1263 1264 disable_nopath_timeout(m); 1265 flush_multipath_work(m); 1266 free_multipath(m); 1267 } 1268 1269 /* 1270 * Take a path out of use. 1271 */ 1272 static int fail_path(struct pgpath *pgpath) 1273 { 1274 unsigned long flags; 1275 struct multipath *m = pgpath->pg->m; 1276 1277 spin_lock_irqsave(&m->lock, flags); 1278 1279 if (!pgpath->is_active) 1280 goto out; 1281 1282 DMWARN("Failing path %s.", pgpath->path.dev->name); 1283 1284 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1285 pgpath->is_active = false; 1286 pgpath->fail_count++; 1287 1288 atomic_dec(&m->nr_valid_paths); 1289 1290 if (pgpath == m->current_pgpath) 1291 m->current_pgpath = NULL; 1292 1293 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1294 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1295 1296 schedule_work(&m->trigger_event); 1297 1298 enable_nopath_timeout(m); 1299 1300 out: 1301 spin_unlock_irqrestore(&m->lock, flags); 1302 1303 return 0; 1304 } 1305 1306 /* 1307 * Reinstate a previously-failed path 1308 */ 1309 static int reinstate_path(struct pgpath *pgpath) 1310 { 1311 int r = 0, run_queue = 0; 1312 unsigned long flags; 1313 struct multipath *m = pgpath->pg->m; 1314 unsigned nr_valid_paths; 1315 1316 spin_lock_irqsave(&m->lock, flags); 1317 1318 if (pgpath->is_active) 1319 goto out; 1320 1321 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1322 1323 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1324 if (r) 1325 goto out; 1326 1327 pgpath->is_active = true; 1328 1329 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1330 if (nr_valid_paths == 1) { 1331 m->current_pgpath = NULL; 1332 run_queue = 1; 1333 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1334 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1335 atomic_inc(&m->pg_init_in_progress); 1336 } 1337 1338 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1339 pgpath->path.dev->name, nr_valid_paths); 1340 1341 schedule_work(&m->trigger_event); 1342 1343 out: 1344 spin_unlock_irqrestore(&m->lock, flags); 1345 if (run_queue) { 1346 dm_table_run_md_queue_async(m->ti->table); 1347 process_queued_io_list(m); 1348 } 1349 1350 if (pgpath->is_active) 1351 disable_nopath_timeout(m); 1352 1353 return r; 1354 } 1355 1356 /* 1357 * Fail or reinstate all paths that match the provided struct dm_dev. 1358 */ 1359 static int action_dev(struct multipath *m, struct dm_dev *dev, 1360 action_fn action) 1361 { 1362 int r = -EINVAL; 1363 struct pgpath *pgpath; 1364 struct priority_group *pg; 1365 1366 list_for_each_entry(pg, &m->priority_groups, list) { 1367 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1368 if (pgpath->path.dev == dev) 1369 r = action(pgpath); 1370 } 1371 } 1372 1373 return r; 1374 } 1375 1376 /* 1377 * Temporarily try to avoid having to use the specified PG 1378 */ 1379 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1380 bool bypassed) 1381 { 1382 unsigned long flags; 1383 1384 spin_lock_irqsave(&m->lock, flags); 1385 1386 pg->bypassed = bypassed; 1387 m->current_pgpath = NULL; 1388 m->current_pg = NULL; 1389 1390 spin_unlock_irqrestore(&m->lock, flags); 1391 1392 schedule_work(&m->trigger_event); 1393 } 1394 1395 /* 1396 * Switch to using the specified PG from the next I/O that gets mapped 1397 */ 1398 static int switch_pg_num(struct multipath *m, const char *pgstr) 1399 { 1400 struct priority_group *pg; 1401 unsigned pgnum; 1402 unsigned long flags; 1403 char dummy; 1404 1405 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1406 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1407 DMWARN("invalid PG number supplied to switch_pg_num"); 1408 return -EINVAL; 1409 } 1410 1411 spin_lock_irqsave(&m->lock, flags); 1412 list_for_each_entry(pg, &m->priority_groups, list) { 1413 pg->bypassed = false; 1414 if (--pgnum) 1415 continue; 1416 1417 m->current_pgpath = NULL; 1418 m->current_pg = NULL; 1419 m->next_pg = pg; 1420 } 1421 spin_unlock_irqrestore(&m->lock, flags); 1422 1423 schedule_work(&m->trigger_event); 1424 return 0; 1425 } 1426 1427 /* 1428 * Set/clear bypassed status of a PG. 1429 * PGs are numbered upwards from 1 in the order they were declared. 1430 */ 1431 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1432 { 1433 struct priority_group *pg; 1434 unsigned pgnum; 1435 char dummy; 1436 1437 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1438 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1439 DMWARN("invalid PG number supplied to bypass_pg"); 1440 return -EINVAL; 1441 } 1442 1443 list_for_each_entry(pg, &m->priority_groups, list) { 1444 if (!--pgnum) 1445 break; 1446 } 1447 1448 bypass_pg(m, pg, bypassed); 1449 return 0; 1450 } 1451 1452 /* 1453 * Should we retry pg_init immediately? 1454 */ 1455 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1456 { 1457 unsigned long flags; 1458 bool limit_reached = false; 1459 1460 spin_lock_irqsave(&m->lock, flags); 1461 1462 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1463 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1464 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1465 else 1466 limit_reached = true; 1467 1468 spin_unlock_irqrestore(&m->lock, flags); 1469 1470 return limit_reached; 1471 } 1472 1473 static void pg_init_done(void *data, int errors) 1474 { 1475 struct pgpath *pgpath = data; 1476 struct priority_group *pg = pgpath->pg; 1477 struct multipath *m = pg->m; 1478 unsigned long flags; 1479 bool delay_retry = false; 1480 1481 /* device or driver problems */ 1482 switch (errors) { 1483 case SCSI_DH_OK: 1484 break; 1485 case SCSI_DH_NOSYS: 1486 if (!m->hw_handler_name) { 1487 errors = 0; 1488 break; 1489 } 1490 DMERR("Could not failover the device: Handler scsi_dh_%s " 1491 "Error %d.", m->hw_handler_name, errors); 1492 /* 1493 * Fail path for now, so we do not ping pong 1494 */ 1495 fail_path(pgpath); 1496 break; 1497 case SCSI_DH_DEV_TEMP_BUSY: 1498 /* 1499 * Probably doing something like FW upgrade on the 1500 * controller so try the other pg. 1501 */ 1502 bypass_pg(m, pg, true); 1503 break; 1504 case SCSI_DH_RETRY: 1505 /* Wait before retrying. */ 1506 delay_retry = true; 1507 /* fall through */ 1508 case SCSI_DH_IMM_RETRY: 1509 case SCSI_DH_RES_TEMP_UNAVAIL: 1510 if (pg_init_limit_reached(m, pgpath)) 1511 fail_path(pgpath); 1512 errors = 0; 1513 break; 1514 case SCSI_DH_DEV_OFFLINED: 1515 default: 1516 /* 1517 * We probably do not want to fail the path for a device 1518 * error, but this is what the old dm did. In future 1519 * patches we can do more advanced handling. 1520 */ 1521 fail_path(pgpath); 1522 } 1523 1524 spin_lock_irqsave(&m->lock, flags); 1525 if (errors) { 1526 if (pgpath == m->current_pgpath) { 1527 DMERR("Could not failover device. Error %d.", errors); 1528 m->current_pgpath = NULL; 1529 m->current_pg = NULL; 1530 } 1531 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1532 pg->bypassed = false; 1533 1534 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1535 /* Activations of other paths are still on going */ 1536 goto out; 1537 1538 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1539 if (delay_retry) 1540 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1541 else 1542 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1543 1544 if (__pg_init_all_paths(m)) 1545 goto out; 1546 } 1547 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1548 1549 process_queued_io_list(m); 1550 1551 /* 1552 * Wake up any thread waiting to suspend. 1553 */ 1554 wake_up(&m->pg_init_wait); 1555 1556 out: 1557 spin_unlock_irqrestore(&m->lock, flags); 1558 } 1559 1560 static void activate_or_offline_path(struct pgpath *pgpath) 1561 { 1562 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1563 1564 if (pgpath->is_active && !blk_queue_dying(q)) 1565 scsi_dh_activate(q, pg_init_done, pgpath); 1566 else 1567 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1568 } 1569 1570 static void activate_path_work(struct work_struct *work) 1571 { 1572 struct pgpath *pgpath = 1573 container_of(work, struct pgpath, activate_path.work); 1574 1575 activate_or_offline_path(pgpath); 1576 } 1577 1578 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1579 blk_status_t error, union map_info *map_context) 1580 { 1581 struct dm_mpath_io *mpio = get_mpio(map_context); 1582 struct pgpath *pgpath = mpio->pgpath; 1583 int r = DM_ENDIO_DONE; 1584 1585 /* 1586 * We don't queue any clone request inside the multipath target 1587 * during end I/O handling, since those clone requests don't have 1588 * bio clones. If we queue them inside the multipath target, 1589 * we need to make bio clones, that requires memory allocation. 1590 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1591 * don't have bio clones.) 1592 * Instead of queueing the clone request here, we queue the original 1593 * request into dm core, which will remake a clone request and 1594 * clone bios for it and resubmit it later. 1595 */ 1596 if (error && blk_path_error(error)) { 1597 struct multipath *m = ti->private; 1598 1599 if (error == BLK_STS_RESOURCE) 1600 r = DM_ENDIO_DELAY_REQUEUE; 1601 else 1602 r = DM_ENDIO_REQUEUE; 1603 1604 if (pgpath) 1605 fail_path(pgpath); 1606 1607 if (atomic_read(&m->nr_valid_paths) == 0 && 1608 !must_push_back_rq(m)) { 1609 if (error == BLK_STS_IOERR) 1610 dm_report_EIO(m); 1611 /* complete with the original error */ 1612 r = DM_ENDIO_DONE; 1613 } 1614 } 1615 1616 if (pgpath) { 1617 struct path_selector *ps = &pgpath->pg->ps; 1618 1619 if (ps->type->end_io) 1620 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1621 } 1622 1623 return r; 1624 } 1625 1626 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1627 blk_status_t *error) 1628 { 1629 struct multipath *m = ti->private; 1630 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1631 struct pgpath *pgpath = mpio->pgpath; 1632 unsigned long flags; 1633 int r = DM_ENDIO_DONE; 1634 1635 if (!*error || !blk_path_error(*error)) 1636 goto done; 1637 1638 if (pgpath) 1639 fail_path(pgpath); 1640 1641 if (atomic_read(&m->nr_valid_paths) == 0 && 1642 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1643 if (must_push_back_bio(m)) { 1644 r = DM_ENDIO_REQUEUE; 1645 } else { 1646 dm_report_EIO(m); 1647 *error = BLK_STS_IOERR; 1648 } 1649 goto done; 1650 } 1651 1652 spin_lock_irqsave(&m->lock, flags); 1653 bio_list_add(&m->queued_bios, clone); 1654 spin_unlock_irqrestore(&m->lock, flags); 1655 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1656 queue_work(kmultipathd, &m->process_queued_bios); 1657 1658 r = DM_ENDIO_INCOMPLETE; 1659 done: 1660 if (pgpath) { 1661 struct path_selector *ps = &pgpath->pg->ps; 1662 1663 if (ps->type->end_io) 1664 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1665 } 1666 1667 return r; 1668 } 1669 1670 /* 1671 * Suspend can't complete until all the I/O is processed so if 1672 * the last path fails we must error any remaining I/O. 1673 * Note that if the freeze_bdev fails while suspending, the 1674 * queue_if_no_path state is lost - userspace should reset it. 1675 */ 1676 static void multipath_presuspend(struct dm_target *ti) 1677 { 1678 struct multipath *m = ti->private; 1679 1680 queue_if_no_path(m, false, true); 1681 } 1682 1683 static void multipath_postsuspend(struct dm_target *ti) 1684 { 1685 struct multipath *m = ti->private; 1686 1687 mutex_lock(&m->work_mutex); 1688 flush_multipath_work(m); 1689 mutex_unlock(&m->work_mutex); 1690 } 1691 1692 /* 1693 * Restore the queue_if_no_path setting. 1694 */ 1695 static void multipath_resume(struct dm_target *ti) 1696 { 1697 struct multipath *m = ti->private; 1698 unsigned long flags; 1699 1700 spin_lock_irqsave(&m->lock, flags); 1701 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1702 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1703 spin_unlock_irqrestore(&m->lock, flags); 1704 } 1705 1706 /* 1707 * Info output has the following format: 1708 * num_multipath_feature_args [multipath_feature_args]* 1709 * num_handler_status_args [handler_status_args]* 1710 * num_groups init_group_number 1711 * [A|D|E num_ps_status_args [ps_status_args]* 1712 * num_paths num_selector_args 1713 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1714 * 1715 * Table output has the following format (identical to the constructor string): 1716 * num_feature_args [features_args]* 1717 * num_handler_args hw_handler [hw_handler_args]* 1718 * num_groups init_group_number 1719 * [priority selector-name num_ps_args [ps_args]* 1720 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1721 */ 1722 static void multipath_status(struct dm_target *ti, status_type_t type, 1723 unsigned status_flags, char *result, unsigned maxlen) 1724 { 1725 int sz = 0; 1726 unsigned long flags; 1727 struct multipath *m = ti->private; 1728 struct priority_group *pg; 1729 struct pgpath *p; 1730 unsigned pg_num; 1731 char state; 1732 1733 spin_lock_irqsave(&m->lock, flags); 1734 1735 /* Features */ 1736 if (type == STATUSTYPE_INFO) 1737 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1738 atomic_read(&m->pg_init_count)); 1739 else { 1740 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1741 (m->pg_init_retries > 0) * 2 + 1742 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1743 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1744 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1745 1746 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1747 DMEMIT("queue_if_no_path "); 1748 if (m->pg_init_retries) 1749 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1750 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1751 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1752 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1753 DMEMIT("retain_attached_hw_handler "); 1754 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1755 switch(m->queue_mode) { 1756 case DM_TYPE_BIO_BASED: 1757 DMEMIT("queue_mode bio "); 1758 break; 1759 default: 1760 WARN_ON_ONCE(true); 1761 break; 1762 } 1763 } 1764 } 1765 1766 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1767 DMEMIT("0 "); 1768 else 1769 DMEMIT("1 %s ", m->hw_handler_name); 1770 1771 DMEMIT("%u ", m->nr_priority_groups); 1772 1773 if (m->next_pg) 1774 pg_num = m->next_pg->pg_num; 1775 else if (m->current_pg) 1776 pg_num = m->current_pg->pg_num; 1777 else 1778 pg_num = (m->nr_priority_groups ? 1 : 0); 1779 1780 DMEMIT("%u ", pg_num); 1781 1782 switch (type) { 1783 case STATUSTYPE_INFO: 1784 list_for_each_entry(pg, &m->priority_groups, list) { 1785 if (pg->bypassed) 1786 state = 'D'; /* Disabled */ 1787 else if (pg == m->current_pg) 1788 state = 'A'; /* Currently Active */ 1789 else 1790 state = 'E'; /* Enabled */ 1791 1792 DMEMIT("%c ", state); 1793 1794 if (pg->ps.type->status) 1795 sz += pg->ps.type->status(&pg->ps, NULL, type, 1796 result + sz, 1797 maxlen - sz); 1798 else 1799 DMEMIT("0 "); 1800 1801 DMEMIT("%u %u ", pg->nr_pgpaths, 1802 pg->ps.type->info_args); 1803 1804 list_for_each_entry(p, &pg->pgpaths, list) { 1805 DMEMIT("%s %s %u ", p->path.dev->name, 1806 p->is_active ? "A" : "F", 1807 p->fail_count); 1808 if (pg->ps.type->status) 1809 sz += pg->ps.type->status(&pg->ps, 1810 &p->path, type, result + sz, 1811 maxlen - sz); 1812 } 1813 } 1814 break; 1815 1816 case STATUSTYPE_TABLE: 1817 list_for_each_entry(pg, &m->priority_groups, list) { 1818 DMEMIT("%s ", pg->ps.type->name); 1819 1820 if (pg->ps.type->status) 1821 sz += pg->ps.type->status(&pg->ps, NULL, type, 1822 result + sz, 1823 maxlen - sz); 1824 else 1825 DMEMIT("0 "); 1826 1827 DMEMIT("%u %u ", pg->nr_pgpaths, 1828 pg->ps.type->table_args); 1829 1830 list_for_each_entry(p, &pg->pgpaths, list) { 1831 DMEMIT("%s ", p->path.dev->name); 1832 if (pg->ps.type->status) 1833 sz += pg->ps.type->status(&pg->ps, 1834 &p->path, type, result + sz, 1835 maxlen - sz); 1836 } 1837 } 1838 break; 1839 } 1840 1841 spin_unlock_irqrestore(&m->lock, flags); 1842 } 1843 1844 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1845 char *result, unsigned maxlen) 1846 { 1847 int r = -EINVAL; 1848 struct dm_dev *dev; 1849 struct multipath *m = ti->private; 1850 action_fn action; 1851 unsigned long flags; 1852 1853 mutex_lock(&m->work_mutex); 1854 1855 if (dm_suspended(ti)) { 1856 r = -EBUSY; 1857 goto out; 1858 } 1859 1860 if (argc == 1) { 1861 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1862 r = queue_if_no_path(m, true, false); 1863 spin_lock_irqsave(&m->lock, flags); 1864 enable_nopath_timeout(m); 1865 spin_unlock_irqrestore(&m->lock, flags); 1866 goto out; 1867 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1868 r = queue_if_no_path(m, false, false); 1869 disable_nopath_timeout(m); 1870 goto out; 1871 } 1872 } 1873 1874 if (argc != 2) { 1875 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1876 goto out; 1877 } 1878 1879 if (!strcasecmp(argv[0], "disable_group")) { 1880 r = bypass_pg_num(m, argv[1], true); 1881 goto out; 1882 } else if (!strcasecmp(argv[0], "enable_group")) { 1883 r = bypass_pg_num(m, argv[1], false); 1884 goto out; 1885 } else if (!strcasecmp(argv[0], "switch_group")) { 1886 r = switch_pg_num(m, argv[1]); 1887 goto out; 1888 } else if (!strcasecmp(argv[0], "reinstate_path")) 1889 action = reinstate_path; 1890 else if (!strcasecmp(argv[0], "fail_path")) 1891 action = fail_path; 1892 else { 1893 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1894 goto out; 1895 } 1896 1897 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1898 if (r) { 1899 DMWARN("message: error getting device %s", 1900 argv[1]); 1901 goto out; 1902 } 1903 1904 r = action_dev(m, dev, action); 1905 1906 dm_put_device(ti, dev); 1907 1908 out: 1909 mutex_unlock(&m->work_mutex); 1910 return r; 1911 } 1912 1913 static int multipath_prepare_ioctl(struct dm_target *ti, 1914 struct block_device **bdev) 1915 { 1916 struct multipath *m = ti->private; 1917 struct pgpath *current_pgpath; 1918 int r; 1919 1920 current_pgpath = READ_ONCE(m->current_pgpath); 1921 if (!current_pgpath) 1922 current_pgpath = choose_pgpath(m, 0); 1923 1924 if (current_pgpath) { 1925 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1926 *bdev = current_pgpath->path.dev->bdev; 1927 r = 0; 1928 } else { 1929 /* pg_init has not started or completed */ 1930 r = -ENOTCONN; 1931 } 1932 } else { 1933 /* No path is available */ 1934 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1935 r = -ENOTCONN; 1936 else 1937 r = -EIO; 1938 } 1939 1940 if (r == -ENOTCONN) { 1941 if (!READ_ONCE(m->current_pg)) { 1942 /* Path status changed, redo selection */ 1943 (void) choose_pgpath(m, 0); 1944 } 1945 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1946 pg_init_all_paths(m); 1947 dm_table_run_md_queue_async(m->ti->table); 1948 process_queued_io_list(m); 1949 } 1950 1951 /* 1952 * Only pass ioctls through if the device sizes match exactly. 1953 */ 1954 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1955 return 1; 1956 return r; 1957 } 1958 1959 static int multipath_iterate_devices(struct dm_target *ti, 1960 iterate_devices_callout_fn fn, void *data) 1961 { 1962 struct multipath *m = ti->private; 1963 struct priority_group *pg; 1964 struct pgpath *p; 1965 int ret = 0; 1966 1967 list_for_each_entry(pg, &m->priority_groups, list) { 1968 list_for_each_entry(p, &pg->pgpaths, list) { 1969 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1970 if (ret) 1971 goto out; 1972 } 1973 } 1974 1975 out: 1976 return ret; 1977 } 1978 1979 static int pgpath_busy(struct pgpath *pgpath) 1980 { 1981 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1982 1983 return blk_lld_busy(q); 1984 } 1985 1986 /* 1987 * We return "busy", only when we can map I/Os but underlying devices 1988 * are busy (so even if we map I/Os now, the I/Os will wait on 1989 * the underlying queue). 1990 * In other words, if we want to kill I/Os or queue them inside us 1991 * due to map unavailability, we don't return "busy". Otherwise, 1992 * dm core won't give us the I/Os and we can't do what we want. 1993 */ 1994 static int multipath_busy(struct dm_target *ti) 1995 { 1996 bool busy = false, has_active = false; 1997 struct multipath *m = ti->private; 1998 struct priority_group *pg, *next_pg; 1999 struct pgpath *pgpath; 2000 2001 /* pg_init in progress */ 2002 if (atomic_read(&m->pg_init_in_progress)) 2003 return true; 2004 2005 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2006 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2007 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 2008 2009 /* Guess which priority_group will be used at next mapping time */ 2010 pg = READ_ONCE(m->current_pg); 2011 next_pg = READ_ONCE(m->next_pg); 2012 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 2013 pg = next_pg; 2014 2015 if (!pg) { 2016 /* 2017 * We don't know which pg will be used at next mapping time. 2018 * We don't call choose_pgpath() here to avoid to trigger 2019 * pg_init just by busy checking. 2020 * So we don't know whether underlying devices we will be using 2021 * at next mapping time are busy or not. Just try mapping. 2022 */ 2023 return busy; 2024 } 2025 2026 /* 2027 * If there is one non-busy active path at least, the path selector 2028 * will be able to select it. So we consider such a pg as not busy. 2029 */ 2030 busy = true; 2031 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2032 if (pgpath->is_active) { 2033 has_active = true; 2034 if (!pgpath_busy(pgpath)) { 2035 busy = false; 2036 break; 2037 } 2038 } 2039 } 2040 2041 if (!has_active) { 2042 /* 2043 * No active path in this pg, so this pg won't be used and 2044 * the current_pg will be changed at next mapping time. 2045 * We need to try mapping to determine it. 2046 */ 2047 busy = false; 2048 } 2049 2050 return busy; 2051 } 2052 2053 /*----------------------------------------------------------------- 2054 * Module setup 2055 *---------------------------------------------------------------*/ 2056 static struct target_type multipath_target = { 2057 .name = "multipath", 2058 .version = {1, 14, 0}, 2059 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2060 DM_TARGET_PASSES_INTEGRITY, 2061 .module = THIS_MODULE, 2062 .ctr = multipath_ctr, 2063 .dtr = multipath_dtr, 2064 .clone_and_map_rq = multipath_clone_and_map, 2065 .release_clone_rq = multipath_release_clone, 2066 .rq_end_io = multipath_end_io, 2067 .map = multipath_map_bio, 2068 .end_io = multipath_end_io_bio, 2069 .presuspend = multipath_presuspend, 2070 .postsuspend = multipath_postsuspend, 2071 .resume = multipath_resume, 2072 .status = multipath_status, 2073 .message = multipath_message, 2074 .prepare_ioctl = multipath_prepare_ioctl, 2075 .iterate_devices = multipath_iterate_devices, 2076 .busy = multipath_busy, 2077 }; 2078 2079 static int __init dm_multipath_init(void) 2080 { 2081 int r; 2082 2083 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2084 if (!kmultipathd) { 2085 DMERR("failed to create workqueue kmpathd"); 2086 r = -ENOMEM; 2087 goto bad_alloc_kmultipathd; 2088 } 2089 2090 /* 2091 * A separate workqueue is used to handle the device handlers 2092 * to avoid overloading existing workqueue. Overloading the 2093 * old workqueue would also create a bottleneck in the 2094 * path of the storage hardware device activation. 2095 */ 2096 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2097 WQ_MEM_RECLAIM); 2098 if (!kmpath_handlerd) { 2099 DMERR("failed to create workqueue kmpath_handlerd"); 2100 r = -ENOMEM; 2101 goto bad_alloc_kmpath_handlerd; 2102 } 2103 2104 r = dm_register_target(&multipath_target); 2105 if (r < 0) { 2106 DMERR("request-based register failed %d", r); 2107 r = -EINVAL; 2108 goto bad_register_target; 2109 } 2110 2111 return 0; 2112 2113 bad_register_target: 2114 destroy_workqueue(kmpath_handlerd); 2115 bad_alloc_kmpath_handlerd: 2116 destroy_workqueue(kmultipathd); 2117 bad_alloc_kmultipathd: 2118 return r; 2119 } 2120 2121 static void __exit dm_multipath_exit(void) 2122 { 2123 destroy_workqueue(kmpath_handlerd); 2124 destroy_workqueue(kmultipathd); 2125 2126 dm_unregister_target(&multipath_target); 2127 } 2128 2129 module_init(dm_multipath_init); 2130 module_exit(dm_multipath_exit); 2131 2132 module_param_named(queue_if_no_path_timeout_secs, 2133 queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR); 2134 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds"); 2135 2136 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2137 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2138 MODULE_LICENSE("GPL"); 2139