1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 enum dm_queue_mode queue_mode; 94 95 struct mutex work_mutex; 96 struct work_struct trigger_event; 97 98 struct work_struct process_queued_bios; 99 struct bio_list queued_bios; 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 118 /*----------------------------------------------- 119 * Multipath state flags. 120 *-----------------------------------------------*/ 121 122 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 123 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 126 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 127 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 128 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 129 130 /*----------------------------------------------- 131 * Allocation routines 132 *-----------------------------------------------*/ 133 134 static struct pgpath *alloc_pgpath(void) 135 { 136 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 137 138 if (pgpath) { 139 pgpath->is_active = true; 140 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work); 141 } 142 143 return pgpath; 144 } 145 146 static void free_pgpath(struct pgpath *pgpath) 147 { 148 kfree(pgpath); 149 } 150 151 static struct priority_group *alloc_priority_group(void) 152 { 153 struct priority_group *pg; 154 155 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 156 157 if (pg) 158 INIT_LIST_HEAD(&pg->pgpaths); 159 160 return pg; 161 } 162 163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 164 { 165 struct pgpath *pgpath, *tmp; 166 167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 168 list_del(&pgpath->list); 169 dm_put_device(ti, pgpath->path.dev); 170 free_pgpath(pgpath); 171 } 172 } 173 174 static void free_priority_group(struct priority_group *pg, 175 struct dm_target *ti) 176 { 177 struct path_selector *ps = &pg->ps; 178 179 if (ps->type) { 180 ps->type->destroy(ps); 181 dm_put_path_selector(ps->type); 182 } 183 184 free_pgpaths(&pg->pgpaths, ti); 185 kfree(pg); 186 } 187 188 static struct multipath *alloc_multipath(struct dm_target *ti) 189 { 190 struct multipath *m; 191 192 m = kzalloc(sizeof(*m), GFP_KERNEL); 193 if (m) { 194 INIT_LIST_HEAD(&m->priority_groups); 195 spin_lock_init(&m->lock); 196 set_bit(MPATHF_QUEUE_IO, &m->flags); 197 atomic_set(&m->nr_valid_paths, 0); 198 atomic_set(&m->pg_init_in_progress, 0); 199 atomic_set(&m->pg_init_count, 0); 200 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 201 INIT_WORK(&m->trigger_event, trigger_event); 202 init_waitqueue_head(&m->pg_init_wait); 203 mutex_init(&m->work_mutex); 204 205 m->queue_mode = DM_TYPE_NONE; 206 207 m->ti = ti; 208 ti->private = m; 209 } 210 211 return m; 212 } 213 214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 215 { 216 if (m->queue_mode == DM_TYPE_NONE) { 217 /* 218 * Default to request-based. 219 */ 220 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 221 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 222 else 223 m->queue_mode = DM_TYPE_REQUEST_BASED; 224 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 225 INIT_WORK(&m->process_queued_bios, process_queued_bios); 226 /* 227 * bio-based doesn't support any direct scsi_dh management; 228 * it just discovers if a scsi_dh is attached. 229 */ 230 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 231 } 232 233 dm_table_set_type(ti->table, m->queue_mode); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 kfree(m); 250 } 251 252 static struct dm_mpath_io *get_mpio(union map_info *info) 253 { 254 return info->ptr; 255 } 256 257 static size_t multipath_per_bio_data_size(void) 258 { 259 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 260 } 261 262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 263 { 264 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 265 } 266 267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 268 { 269 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 void *bio_details = mpio + 1; 272 273 return bio_details; 274 } 275 276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 277 struct dm_bio_details **bio_details_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 281 282 memset(mpio, 0, sizeof(*mpio)); 283 memset(bio_details, 0, sizeof(*bio_details)); 284 dm_bio_record(bio_details, bio); 285 286 if (mpio_p) 287 *mpio_p = mpio; 288 if (bio_details_p) 289 *bio_details_p = bio_details; 290 } 291 292 /*----------------------------------------------- 293 * Path selection 294 *-----------------------------------------------*/ 295 296 static int __pg_init_all_paths(struct multipath *m) 297 { 298 struct pgpath *pgpath; 299 unsigned long pg_init_delay = 0; 300 301 lockdep_assert_held(&m->lock); 302 303 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 304 return 0; 305 306 atomic_inc(&m->pg_init_count); 307 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 308 309 /* Check here to reset pg_init_required */ 310 if (!m->current_pg) 311 return 0; 312 313 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 314 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 315 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 316 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 317 /* Skip failed paths */ 318 if (!pgpath->is_active) 319 continue; 320 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 321 pg_init_delay)) 322 atomic_inc(&m->pg_init_in_progress); 323 } 324 return atomic_read(&m->pg_init_in_progress); 325 } 326 327 static int pg_init_all_paths(struct multipath *m) 328 { 329 int ret; 330 unsigned long flags; 331 332 spin_lock_irqsave(&m->lock, flags); 333 ret = __pg_init_all_paths(m); 334 spin_unlock_irqrestore(&m->lock, flags); 335 336 return ret; 337 } 338 339 static void __switch_pg(struct multipath *m, struct priority_group *pg) 340 { 341 m->current_pg = pg; 342 343 /* Must we initialise the PG first, and queue I/O till it's ready? */ 344 if (m->hw_handler_name) { 345 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 set_bit(MPATHF_QUEUE_IO, &m->flags); 347 } else { 348 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 349 clear_bit(MPATHF_QUEUE_IO, &m->flags); 350 } 351 352 atomic_set(&m->pg_init_count, 0); 353 } 354 355 static struct pgpath *choose_path_in_pg(struct multipath *m, 356 struct priority_group *pg, 357 size_t nr_bytes) 358 { 359 unsigned long flags; 360 struct dm_path *path; 361 struct pgpath *pgpath; 362 363 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 364 if (!path) 365 return ERR_PTR(-ENXIO); 366 367 pgpath = path_to_pgpath(path); 368 369 if (unlikely(lockless_dereference(m->current_pg) != pg)) { 370 /* Only update current_pgpath if pg changed */ 371 spin_lock_irqsave(&m->lock, flags); 372 m->current_pgpath = pgpath; 373 __switch_pg(m, pg); 374 spin_unlock_irqrestore(&m->lock, flags); 375 } 376 377 return pgpath; 378 } 379 380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 381 { 382 unsigned long flags; 383 struct priority_group *pg; 384 struct pgpath *pgpath; 385 unsigned bypassed = 1; 386 387 if (!atomic_read(&m->nr_valid_paths)) { 388 clear_bit(MPATHF_QUEUE_IO, &m->flags); 389 goto failed; 390 } 391 392 /* Were we instructed to switch PG? */ 393 if (lockless_dereference(m->next_pg)) { 394 spin_lock_irqsave(&m->lock, flags); 395 pg = m->next_pg; 396 if (!pg) { 397 spin_unlock_irqrestore(&m->lock, flags); 398 goto check_current_pg; 399 } 400 m->next_pg = NULL; 401 spin_unlock_irqrestore(&m->lock, flags); 402 pgpath = choose_path_in_pg(m, pg, nr_bytes); 403 if (!IS_ERR_OR_NULL(pgpath)) 404 return pgpath; 405 } 406 407 /* Don't change PG until it has no remaining paths */ 408 check_current_pg: 409 pg = lockless_dereference(m->current_pg); 410 if (pg) { 411 pgpath = choose_path_in_pg(m, pg, nr_bytes); 412 if (!IS_ERR_OR_NULL(pgpath)) 413 return pgpath; 414 } 415 416 /* 417 * Loop through priority groups until we find a valid path. 418 * First time we skip PGs marked 'bypassed'. 419 * Second time we only try the ones we skipped, but set 420 * pg_init_delay_retry so we do not hammer controllers. 421 */ 422 do { 423 list_for_each_entry(pg, &m->priority_groups, list) { 424 if (pg->bypassed == !!bypassed) 425 continue; 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) { 428 if (!bypassed) 429 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 430 return pgpath; 431 } 432 } 433 } while (bypassed--); 434 435 failed: 436 spin_lock_irqsave(&m->lock, flags); 437 m->current_pgpath = NULL; 438 m->current_pg = NULL; 439 spin_unlock_irqrestore(&m->lock, flags); 440 441 return NULL; 442 } 443 444 /* 445 * dm_report_EIO() is a macro instead of a function to make pr_debug() 446 * report the function name and line number of the function from which 447 * it has been invoked. 448 */ 449 #define dm_report_EIO(m) \ 450 ({ \ 451 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 452 \ 453 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 454 dm_device_name(md), \ 455 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 456 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 457 dm_noflush_suspending((m)->ti)); \ 458 -EIO; \ 459 }) 460 461 /* 462 * Map cloned requests (request-based multipath) 463 */ 464 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 465 union map_info *map_context, 466 struct request **__clone) 467 { 468 struct multipath *m = ti->private; 469 size_t nr_bytes = blk_rq_bytes(rq); 470 struct pgpath *pgpath; 471 struct block_device *bdev; 472 struct dm_mpath_io *mpio = get_mpio(map_context); 473 struct request_queue *q; 474 struct request *clone; 475 476 /* Do we need to select a new pgpath? */ 477 pgpath = lockless_dereference(m->current_pgpath); 478 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 479 pgpath = choose_pgpath(m, nr_bytes); 480 481 if (!pgpath) { 482 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 483 return DM_MAPIO_DELAY_REQUEUE; 484 return dm_report_EIO(m); /* Failed */ 485 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 486 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 487 if (pg_init_all_paths(m)) 488 return DM_MAPIO_DELAY_REQUEUE; 489 return DM_MAPIO_REQUEUE; 490 } 491 492 memset(mpio, 0, sizeof(*mpio)); 493 mpio->pgpath = pgpath; 494 mpio->nr_bytes = nr_bytes; 495 496 bdev = pgpath->path.dev->bdev; 497 q = bdev_get_queue(bdev); 498 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 499 if (IS_ERR(clone)) { 500 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 501 bool queue_dying = blk_queue_dying(q); 502 DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing", 503 PTR_ERR(clone), queue_dying ? " (path offline)" : ""); 504 if (queue_dying) { 505 atomic_inc(&m->pg_init_in_progress); 506 activate_or_offline_path(pgpath); 507 return DM_MAPIO_REQUEUE; 508 } 509 return DM_MAPIO_DELAY_REQUEUE; 510 } 511 clone->bio = clone->biotail = NULL; 512 clone->rq_disk = bdev->bd_disk; 513 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 514 *__clone = clone; 515 516 if (pgpath->pg->ps.type->start_io) 517 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 518 &pgpath->path, 519 nr_bytes); 520 return DM_MAPIO_REMAPPED; 521 } 522 523 static void multipath_release_clone(struct request *clone) 524 { 525 blk_put_request(clone); 526 } 527 528 /* 529 * Map cloned bios (bio-based multipath) 530 */ 531 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 532 { 533 size_t nr_bytes = bio->bi_iter.bi_size; 534 struct pgpath *pgpath; 535 unsigned long flags; 536 bool queue_io; 537 538 /* Do we need to select a new pgpath? */ 539 pgpath = lockless_dereference(m->current_pgpath); 540 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 541 if (!pgpath || !queue_io) 542 pgpath = choose_pgpath(m, nr_bytes); 543 544 if ((pgpath && queue_io) || 545 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 546 /* Queue for the daemon to resubmit */ 547 spin_lock_irqsave(&m->lock, flags); 548 bio_list_add(&m->queued_bios, bio); 549 spin_unlock_irqrestore(&m->lock, flags); 550 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 551 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 552 pg_init_all_paths(m); 553 else if (!queue_io) 554 queue_work(kmultipathd, &m->process_queued_bios); 555 return DM_MAPIO_SUBMITTED; 556 } 557 558 if (!pgpath) { 559 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 560 return DM_MAPIO_REQUEUE; 561 return dm_report_EIO(m); 562 } 563 564 mpio->pgpath = pgpath; 565 mpio->nr_bytes = nr_bytes; 566 567 bio->bi_error = 0; 568 bio->bi_bdev = pgpath->path.dev->bdev; 569 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 570 571 if (pgpath->pg->ps.type->start_io) 572 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 573 &pgpath->path, 574 nr_bytes); 575 return DM_MAPIO_REMAPPED; 576 } 577 578 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 579 { 580 struct multipath *m = ti->private; 581 struct dm_mpath_io *mpio = NULL; 582 583 multipath_init_per_bio_data(bio, &mpio, NULL); 584 585 return __multipath_map_bio(m, bio, mpio); 586 } 587 588 static void process_queued_io_list(struct multipath *m) 589 { 590 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 591 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 592 else if (m->queue_mode == DM_TYPE_BIO_BASED) 593 queue_work(kmultipathd, &m->process_queued_bios); 594 } 595 596 static void process_queued_bios(struct work_struct *work) 597 { 598 int r; 599 unsigned long flags; 600 struct bio *bio; 601 struct bio_list bios; 602 struct blk_plug plug; 603 struct multipath *m = 604 container_of(work, struct multipath, process_queued_bios); 605 606 bio_list_init(&bios); 607 608 spin_lock_irqsave(&m->lock, flags); 609 610 if (bio_list_empty(&m->queued_bios)) { 611 spin_unlock_irqrestore(&m->lock, flags); 612 return; 613 } 614 615 bio_list_merge(&bios, &m->queued_bios); 616 bio_list_init(&m->queued_bios); 617 618 spin_unlock_irqrestore(&m->lock, flags); 619 620 blk_start_plug(&plug); 621 while ((bio = bio_list_pop(&bios))) { 622 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 623 if (r < 0 || r == DM_MAPIO_REQUEUE) { 624 bio->bi_error = r; 625 bio_endio(bio); 626 } else if (r == DM_MAPIO_REMAPPED) 627 generic_make_request(bio); 628 } 629 blk_finish_plug(&plug); 630 } 631 632 static void assign_bit(bool value, long nr, unsigned long *addr) 633 { 634 if (value) 635 set_bit(nr, addr); 636 else 637 clear_bit(nr, addr); 638 } 639 640 /* 641 * If we run out of usable paths, should we queue I/O or error it? 642 */ 643 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 644 bool save_old_value) 645 { 646 unsigned long flags; 647 648 spin_lock_irqsave(&m->lock, flags); 649 assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 650 (!save_old_value && queue_if_no_path), 651 MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 652 assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti), 653 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 654 spin_unlock_irqrestore(&m->lock, flags); 655 656 if (!queue_if_no_path) { 657 dm_table_run_md_queue_async(m->ti->table); 658 process_queued_io_list(m); 659 } 660 661 return 0; 662 } 663 664 /* 665 * An event is triggered whenever a path is taken out of use. 666 * Includes path failure and PG bypass. 667 */ 668 static void trigger_event(struct work_struct *work) 669 { 670 struct multipath *m = 671 container_of(work, struct multipath, trigger_event); 672 673 dm_table_event(m->ti->table); 674 } 675 676 /*----------------------------------------------------------------- 677 * Constructor/argument parsing: 678 * <#multipath feature args> [<arg>]* 679 * <#hw_handler args> [hw_handler [<arg>]*] 680 * <#priority groups> 681 * <initial priority group> 682 * [<selector> <#selector args> [<arg>]* 683 * <#paths> <#per-path selector args> 684 * [<path> [<arg>]* ]+ ]+ 685 *---------------------------------------------------------------*/ 686 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 687 struct dm_target *ti) 688 { 689 int r; 690 struct path_selector_type *pst; 691 unsigned ps_argc; 692 693 static struct dm_arg _args[] = { 694 {0, 1024, "invalid number of path selector args"}, 695 }; 696 697 pst = dm_get_path_selector(dm_shift_arg(as)); 698 if (!pst) { 699 ti->error = "unknown path selector type"; 700 return -EINVAL; 701 } 702 703 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 704 if (r) { 705 dm_put_path_selector(pst); 706 return -EINVAL; 707 } 708 709 r = pst->create(&pg->ps, ps_argc, as->argv); 710 if (r) { 711 dm_put_path_selector(pst); 712 ti->error = "path selector constructor failed"; 713 return r; 714 } 715 716 pg->ps.type = pst; 717 dm_consume_args(as, ps_argc); 718 719 return 0; 720 } 721 722 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 723 struct dm_target *ti) 724 { 725 int r; 726 struct pgpath *p; 727 struct multipath *m = ti->private; 728 struct request_queue *q = NULL; 729 const char *attached_handler_name; 730 731 /* we need at least a path arg */ 732 if (as->argc < 1) { 733 ti->error = "no device given"; 734 return ERR_PTR(-EINVAL); 735 } 736 737 p = alloc_pgpath(); 738 if (!p) 739 return ERR_PTR(-ENOMEM); 740 741 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 742 &p->path.dev); 743 if (r) { 744 ti->error = "error getting device"; 745 goto bad; 746 } 747 748 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 749 q = bdev_get_queue(p->path.dev->bdev); 750 751 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 752 retain: 753 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 754 if (attached_handler_name) { 755 /* 756 * Clear any hw_handler_params associated with a 757 * handler that isn't already attached. 758 */ 759 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 760 kfree(m->hw_handler_params); 761 m->hw_handler_params = NULL; 762 } 763 764 /* 765 * Reset hw_handler_name to match the attached handler 766 * 767 * NB. This modifies the table line to show the actual 768 * handler instead of the original table passed in. 769 */ 770 kfree(m->hw_handler_name); 771 m->hw_handler_name = attached_handler_name; 772 } 773 } 774 775 if (m->hw_handler_name) { 776 r = scsi_dh_attach(q, m->hw_handler_name); 777 if (r == -EBUSY) { 778 char b[BDEVNAME_SIZE]; 779 780 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 781 bdevname(p->path.dev->bdev, b)); 782 goto retain; 783 } 784 if (r < 0) { 785 ti->error = "error attaching hardware handler"; 786 dm_put_device(ti, p->path.dev); 787 goto bad; 788 } 789 790 if (m->hw_handler_params) { 791 r = scsi_dh_set_params(q, m->hw_handler_params); 792 if (r < 0) { 793 ti->error = "unable to set hardware " 794 "handler parameters"; 795 dm_put_device(ti, p->path.dev); 796 goto bad; 797 } 798 } 799 } 800 801 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 802 if (r) { 803 dm_put_device(ti, p->path.dev); 804 goto bad; 805 } 806 807 return p; 808 809 bad: 810 free_pgpath(p); 811 return ERR_PTR(r); 812 } 813 814 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 815 struct multipath *m) 816 { 817 static struct dm_arg _args[] = { 818 {1, 1024, "invalid number of paths"}, 819 {0, 1024, "invalid number of selector args"} 820 }; 821 822 int r; 823 unsigned i, nr_selector_args, nr_args; 824 struct priority_group *pg; 825 struct dm_target *ti = m->ti; 826 827 if (as->argc < 2) { 828 as->argc = 0; 829 ti->error = "not enough priority group arguments"; 830 return ERR_PTR(-EINVAL); 831 } 832 833 pg = alloc_priority_group(); 834 if (!pg) { 835 ti->error = "couldn't allocate priority group"; 836 return ERR_PTR(-ENOMEM); 837 } 838 pg->m = m; 839 840 r = parse_path_selector(as, pg, ti); 841 if (r) 842 goto bad; 843 844 /* 845 * read the paths 846 */ 847 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 848 if (r) 849 goto bad; 850 851 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 852 if (r) 853 goto bad; 854 855 nr_args = 1 + nr_selector_args; 856 for (i = 0; i < pg->nr_pgpaths; i++) { 857 struct pgpath *pgpath; 858 struct dm_arg_set path_args; 859 860 if (as->argc < nr_args) { 861 ti->error = "not enough path parameters"; 862 r = -EINVAL; 863 goto bad; 864 } 865 866 path_args.argc = nr_args; 867 path_args.argv = as->argv; 868 869 pgpath = parse_path(&path_args, &pg->ps, ti); 870 if (IS_ERR(pgpath)) { 871 r = PTR_ERR(pgpath); 872 goto bad; 873 } 874 875 pgpath->pg = pg; 876 list_add_tail(&pgpath->list, &pg->pgpaths); 877 dm_consume_args(as, nr_args); 878 } 879 880 return pg; 881 882 bad: 883 free_priority_group(pg, ti); 884 return ERR_PTR(r); 885 } 886 887 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 888 { 889 unsigned hw_argc; 890 int ret; 891 struct dm_target *ti = m->ti; 892 893 static struct dm_arg _args[] = { 894 {0, 1024, "invalid number of hardware handler args"}, 895 }; 896 897 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 898 return -EINVAL; 899 900 if (!hw_argc) 901 return 0; 902 903 if (m->queue_mode == DM_TYPE_BIO_BASED) { 904 dm_consume_args(as, hw_argc); 905 DMERR("bio-based multipath doesn't allow hardware handler args"); 906 return 0; 907 } 908 909 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 910 if (!m->hw_handler_name) 911 return -EINVAL; 912 913 if (hw_argc > 1) { 914 char *p; 915 int i, j, len = 4; 916 917 for (i = 0; i <= hw_argc - 2; i++) 918 len += strlen(as->argv[i]) + 1; 919 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 920 if (!p) { 921 ti->error = "memory allocation failed"; 922 ret = -ENOMEM; 923 goto fail; 924 } 925 j = sprintf(p, "%d", hw_argc - 1); 926 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 927 j = sprintf(p, "%s", as->argv[i]); 928 } 929 dm_consume_args(as, hw_argc - 1); 930 931 return 0; 932 fail: 933 kfree(m->hw_handler_name); 934 m->hw_handler_name = NULL; 935 return ret; 936 } 937 938 static int parse_features(struct dm_arg_set *as, struct multipath *m) 939 { 940 int r; 941 unsigned argc; 942 struct dm_target *ti = m->ti; 943 const char *arg_name; 944 945 static struct dm_arg _args[] = { 946 {0, 8, "invalid number of feature args"}, 947 {1, 50, "pg_init_retries must be between 1 and 50"}, 948 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 949 }; 950 951 r = dm_read_arg_group(_args, as, &argc, &ti->error); 952 if (r) 953 return -EINVAL; 954 955 if (!argc) 956 return 0; 957 958 do { 959 arg_name = dm_shift_arg(as); 960 argc--; 961 962 if (!strcasecmp(arg_name, "queue_if_no_path")) { 963 r = queue_if_no_path(m, true, false); 964 continue; 965 } 966 967 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 968 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 969 continue; 970 } 971 972 if (!strcasecmp(arg_name, "pg_init_retries") && 973 (argc >= 1)) { 974 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 975 argc--; 976 continue; 977 } 978 979 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 980 (argc >= 1)) { 981 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 982 argc--; 983 continue; 984 } 985 986 if (!strcasecmp(arg_name, "queue_mode") && 987 (argc >= 1)) { 988 const char *queue_mode_name = dm_shift_arg(as); 989 990 if (!strcasecmp(queue_mode_name, "bio")) 991 m->queue_mode = DM_TYPE_BIO_BASED; 992 else if (!strcasecmp(queue_mode_name, "rq")) 993 m->queue_mode = DM_TYPE_REQUEST_BASED; 994 else if (!strcasecmp(queue_mode_name, "mq")) 995 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 996 else { 997 ti->error = "Unknown 'queue_mode' requested"; 998 r = -EINVAL; 999 } 1000 argc--; 1001 continue; 1002 } 1003 1004 ti->error = "Unrecognised multipath feature request"; 1005 r = -EINVAL; 1006 } while (argc && !r); 1007 1008 return r; 1009 } 1010 1011 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1012 { 1013 /* target arguments */ 1014 static struct dm_arg _args[] = { 1015 {0, 1024, "invalid number of priority groups"}, 1016 {0, 1024, "invalid initial priority group number"}, 1017 }; 1018 1019 int r; 1020 struct multipath *m; 1021 struct dm_arg_set as; 1022 unsigned pg_count = 0; 1023 unsigned next_pg_num; 1024 1025 as.argc = argc; 1026 as.argv = argv; 1027 1028 m = alloc_multipath(ti); 1029 if (!m) { 1030 ti->error = "can't allocate multipath"; 1031 return -EINVAL; 1032 } 1033 1034 r = parse_features(&as, m); 1035 if (r) 1036 goto bad; 1037 1038 r = alloc_multipath_stage2(ti, m); 1039 if (r) 1040 goto bad; 1041 1042 r = parse_hw_handler(&as, m); 1043 if (r) 1044 goto bad; 1045 1046 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1047 if (r) 1048 goto bad; 1049 1050 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1051 if (r) 1052 goto bad; 1053 1054 if ((!m->nr_priority_groups && next_pg_num) || 1055 (m->nr_priority_groups && !next_pg_num)) { 1056 ti->error = "invalid initial priority group"; 1057 r = -EINVAL; 1058 goto bad; 1059 } 1060 1061 /* parse the priority groups */ 1062 while (as.argc) { 1063 struct priority_group *pg; 1064 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1065 1066 pg = parse_priority_group(&as, m); 1067 if (IS_ERR(pg)) { 1068 r = PTR_ERR(pg); 1069 goto bad; 1070 } 1071 1072 nr_valid_paths += pg->nr_pgpaths; 1073 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1074 1075 list_add_tail(&pg->list, &m->priority_groups); 1076 pg_count++; 1077 pg->pg_num = pg_count; 1078 if (!--next_pg_num) 1079 m->next_pg = pg; 1080 } 1081 1082 if (pg_count != m->nr_priority_groups) { 1083 ti->error = "priority group count mismatch"; 1084 r = -EINVAL; 1085 goto bad; 1086 } 1087 1088 ti->num_flush_bios = 1; 1089 ti->num_discard_bios = 1; 1090 ti->num_write_same_bios = 1; 1091 ti->num_write_zeroes_bios = 1; 1092 if (m->queue_mode == DM_TYPE_BIO_BASED) 1093 ti->per_io_data_size = multipath_per_bio_data_size(); 1094 else 1095 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1096 1097 return 0; 1098 1099 bad: 1100 free_multipath(m); 1101 return r; 1102 } 1103 1104 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1105 { 1106 DEFINE_WAIT(wait); 1107 1108 while (1) { 1109 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1110 1111 if (!atomic_read(&m->pg_init_in_progress)) 1112 break; 1113 1114 io_schedule(); 1115 } 1116 finish_wait(&m->pg_init_wait, &wait); 1117 } 1118 1119 static void flush_multipath_work(struct multipath *m) 1120 { 1121 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1122 smp_mb__after_atomic(); 1123 1124 flush_workqueue(kmpath_handlerd); 1125 multipath_wait_for_pg_init_completion(m); 1126 flush_workqueue(kmultipathd); 1127 flush_work(&m->trigger_event); 1128 1129 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1130 smp_mb__after_atomic(); 1131 } 1132 1133 static void multipath_dtr(struct dm_target *ti) 1134 { 1135 struct multipath *m = ti->private; 1136 1137 flush_multipath_work(m); 1138 free_multipath(m); 1139 } 1140 1141 /* 1142 * Take a path out of use. 1143 */ 1144 static int fail_path(struct pgpath *pgpath) 1145 { 1146 unsigned long flags; 1147 struct multipath *m = pgpath->pg->m; 1148 1149 spin_lock_irqsave(&m->lock, flags); 1150 1151 if (!pgpath->is_active) 1152 goto out; 1153 1154 DMWARN("Failing path %s.", pgpath->path.dev->name); 1155 1156 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1157 pgpath->is_active = false; 1158 pgpath->fail_count++; 1159 1160 atomic_dec(&m->nr_valid_paths); 1161 1162 if (pgpath == m->current_pgpath) 1163 m->current_pgpath = NULL; 1164 1165 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1166 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1167 1168 schedule_work(&m->trigger_event); 1169 1170 out: 1171 spin_unlock_irqrestore(&m->lock, flags); 1172 1173 return 0; 1174 } 1175 1176 /* 1177 * Reinstate a previously-failed path 1178 */ 1179 static int reinstate_path(struct pgpath *pgpath) 1180 { 1181 int r = 0, run_queue = 0; 1182 unsigned long flags; 1183 struct multipath *m = pgpath->pg->m; 1184 unsigned nr_valid_paths; 1185 1186 spin_lock_irqsave(&m->lock, flags); 1187 1188 if (pgpath->is_active) 1189 goto out; 1190 1191 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1192 1193 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1194 if (r) 1195 goto out; 1196 1197 pgpath->is_active = true; 1198 1199 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1200 if (nr_valid_paths == 1) { 1201 m->current_pgpath = NULL; 1202 run_queue = 1; 1203 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1204 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1205 atomic_inc(&m->pg_init_in_progress); 1206 } 1207 1208 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1209 pgpath->path.dev->name, nr_valid_paths); 1210 1211 schedule_work(&m->trigger_event); 1212 1213 out: 1214 spin_unlock_irqrestore(&m->lock, flags); 1215 if (run_queue) { 1216 dm_table_run_md_queue_async(m->ti->table); 1217 process_queued_io_list(m); 1218 } 1219 1220 return r; 1221 } 1222 1223 /* 1224 * Fail or reinstate all paths that match the provided struct dm_dev. 1225 */ 1226 static int action_dev(struct multipath *m, struct dm_dev *dev, 1227 action_fn action) 1228 { 1229 int r = -EINVAL; 1230 struct pgpath *pgpath; 1231 struct priority_group *pg; 1232 1233 list_for_each_entry(pg, &m->priority_groups, list) { 1234 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1235 if (pgpath->path.dev == dev) 1236 r = action(pgpath); 1237 } 1238 } 1239 1240 return r; 1241 } 1242 1243 /* 1244 * Temporarily try to avoid having to use the specified PG 1245 */ 1246 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1247 bool bypassed) 1248 { 1249 unsigned long flags; 1250 1251 spin_lock_irqsave(&m->lock, flags); 1252 1253 pg->bypassed = bypassed; 1254 m->current_pgpath = NULL; 1255 m->current_pg = NULL; 1256 1257 spin_unlock_irqrestore(&m->lock, flags); 1258 1259 schedule_work(&m->trigger_event); 1260 } 1261 1262 /* 1263 * Switch to using the specified PG from the next I/O that gets mapped 1264 */ 1265 static int switch_pg_num(struct multipath *m, const char *pgstr) 1266 { 1267 struct priority_group *pg; 1268 unsigned pgnum; 1269 unsigned long flags; 1270 char dummy; 1271 1272 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1273 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1274 DMWARN("invalid PG number supplied to switch_pg_num"); 1275 return -EINVAL; 1276 } 1277 1278 spin_lock_irqsave(&m->lock, flags); 1279 list_for_each_entry(pg, &m->priority_groups, list) { 1280 pg->bypassed = false; 1281 if (--pgnum) 1282 continue; 1283 1284 m->current_pgpath = NULL; 1285 m->current_pg = NULL; 1286 m->next_pg = pg; 1287 } 1288 spin_unlock_irqrestore(&m->lock, flags); 1289 1290 schedule_work(&m->trigger_event); 1291 return 0; 1292 } 1293 1294 /* 1295 * Set/clear bypassed status of a PG. 1296 * PGs are numbered upwards from 1 in the order they were declared. 1297 */ 1298 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1299 { 1300 struct priority_group *pg; 1301 unsigned pgnum; 1302 char dummy; 1303 1304 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1305 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1306 DMWARN("invalid PG number supplied to bypass_pg"); 1307 return -EINVAL; 1308 } 1309 1310 list_for_each_entry(pg, &m->priority_groups, list) { 1311 if (!--pgnum) 1312 break; 1313 } 1314 1315 bypass_pg(m, pg, bypassed); 1316 return 0; 1317 } 1318 1319 /* 1320 * Should we retry pg_init immediately? 1321 */ 1322 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1323 { 1324 unsigned long flags; 1325 bool limit_reached = false; 1326 1327 spin_lock_irqsave(&m->lock, flags); 1328 1329 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1330 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1331 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1332 else 1333 limit_reached = true; 1334 1335 spin_unlock_irqrestore(&m->lock, flags); 1336 1337 return limit_reached; 1338 } 1339 1340 static void pg_init_done(void *data, int errors) 1341 { 1342 struct pgpath *pgpath = data; 1343 struct priority_group *pg = pgpath->pg; 1344 struct multipath *m = pg->m; 1345 unsigned long flags; 1346 bool delay_retry = false; 1347 1348 /* device or driver problems */ 1349 switch (errors) { 1350 case SCSI_DH_OK: 1351 break; 1352 case SCSI_DH_NOSYS: 1353 if (!m->hw_handler_name) { 1354 errors = 0; 1355 break; 1356 } 1357 DMERR("Could not failover the device: Handler scsi_dh_%s " 1358 "Error %d.", m->hw_handler_name, errors); 1359 /* 1360 * Fail path for now, so we do not ping pong 1361 */ 1362 fail_path(pgpath); 1363 break; 1364 case SCSI_DH_DEV_TEMP_BUSY: 1365 /* 1366 * Probably doing something like FW upgrade on the 1367 * controller so try the other pg. 1368 */ 1369 bypass_pg(m, pg, true); 1370 break; 1371 case SCSI_DH_RETRY: 1372 /* Wait before retrying. */ 1373 delay_retry = 1; 1374 case SCSI_DH_IMM_RETRY: 1375 case SCSI_DH_RES_TEMP_UNAVAIL: 1376 if (pg_init_limit_reached(m, pgpath)) 1377 fail_path(pgpath); 1378 errors = 0; 1379 break; 1380 case SCSI_DH_DEV_OFFLINED: 1381 default: 1382 /* 1383 * We probably do not want to fail the path for a device 1384 * error, but this is what the old dm did. In future 1385 * patches we can do more advanced handling. 1386 */ 1387 fail_path(pgpath); 1388 } 1389 1390 spin_lock_irqsave(&m->lock, flags); 1391 if (errors) { 1392 if (pgpath == m->current_pgpath) { 1393 DMERR("Could not failover device. Error %d.", errors); 1394 m->current_pgpath = NULL; 1395 m->current_pg = NULL; 1396 } 1397 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1398 pg->bypassed = false; 1399 1400 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1401 /* Activations of other paths are still on going */ 1402 goto out; 1403 1404 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1405 if (delay_retry) 1406 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1407 else 1408 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1409 1410 if (__pg_init_all_paths(m)) 1411 goto out; 1412 } 1413 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1414 1415 process_queued_io_list(m); 1416 1417 /* 1418 * Wake up any thread waiting to suspend. 1419 */ 1420 wake_up(&m->pg_init_wait); 1421 1422 out: 1423 spin_unlock_irqrestore(&m->lock, flags); 1424 } 1425 1426 static void activate_or_offline_path(struct pgpath *pgpath) 1427 { 1428 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1429 1430 if (pgpath->is_active && !blk_queue_dying(q)) 1431 scsi_dh_activate(q, pg_init_done, pgpath); 1432 else 1433 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1434 } 1435 1436 static void activate_path_work(struct work_struct *work) 1437 { 1438 struct pgpath *pgpath = 1439 container_of(work, struct pgpath, activate_path.work); 1440 1441 activate_or_offline_path(pgpath); 1442 } 1443 1444 static int noretry_error(int error) 1445 { 1446 switch (error) { 1447 case -EBADE: 1448 /* 1449 * EBADE signals an reservation conflict. 1450 * We shouldn't fail the path here as we can communicate with 1451 * the target. We should failover to the next path, but in 1452 * doing so we might be causing a ping-pong between paths. 1453 * So just return the reservation conflict error. 1454 */ 1455 case -EOPNOTSUPP: 1456 case -EREMOTEIO: 1457 case -EILSEQ: 1458 case -ENODATA: 1459 case -ENOSPC: 1460 return 1; 1461 } 1462 1463 /* Anything else could be a path failure, so should be retried */ 1464 return 0; 1465 } 1466 1467 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1468 int error, union map_info *map_context) 1469 { 1470 struct dm_mpath_io *mpio = get_mpio(map_context); 1471 struct pgpath *pgpath = mpio->pgpath; 1472 int r = DM_ENDIO_DONE; 1473 1474 /* 1475 * We don't queue any clone request inside the multipath target 1476 * during end I/O handling, since those clone requests don't have 1477 * bio clones. If we queue them inside the multipath target, 1478 * we need to make bio clones, that requires memory allocation. 1479 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1480 * don't have bio clones.) 1481 * Instead of queueing the clone request here, we queue the original 1482 * request into dm core, which will remake a clone request and 1483 * clone bios for it and resubmit it later. 1484 */ 1485 if (error && !noretry_error(error)) { 1486 struct multipath *m = ti->private; 1487 1488 r = DM_ENDIO_REQUEUE; 1489 1490 if (pgpath) 1491 fail_path(pgpath); 1492 1493 if (atomic_read(&m->nr_valid_paths) == 0 && 1494 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1495 if (error == -EIO) 1496 error = dm_report_EIO(m); 1497 /* complete with the original error */ 1498 r = DM_ENDIO_DONE; 1499 } 1500 } 1501 1502 if (pgpath) { 1503 struct path_selector *ps = &pgpath->pg->ps; 1504 1505 if (ps->type->end_io) 1506 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1507 } 1508 1509 return r; 1510 } 1511 1512 static int do_end_io_bio(struct multipath *m, struct bio *clone, 1513 int error, struct dm_mpath_io *mpio) 1514 { 1515 unsigned long flags; 1516 1517 if (!error) 1518 return 0; /* I/O complete */ 1519 1520 if (noretry_error(error)) 1521 return error; 1522 1523 if (mpio->pgpath) 1524 fail_path(mpio->pgpath); 1525 1526 if (atomic_read(&m->nr_valid_paths) == 0 && 1527 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1528 return dm_report_EIO(m); 1529 1530 /* Queue for the daemon to resubmit */ 1531 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1532 1533 spin_lock_irqsave(&m->lock, flags); 1534 bio_list_add(&m->queued_bios, clone); 1535 spin_unlock_irqrestore(&m->lock, flags); 1536 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1537 queue_work(kmultipathd, &m->process_queued_bios); 1538 1539 return DM_ENDIO_INCOMPLETE; 1540 } 1541 1542 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error) 1543 { 1544 struct multipath *m = ti->private; 1545 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1546 struct pgpath *pgpath; 1547 struct path_selector *ps; 1548 int r; 1549 1550 BUG_ON(!mpio); 1551 1552 r = do_end_io_bio(m, clone, error, mpio); 1553 pgpath = mpio->pgpath; 1554 if (pgpath) { 1555 ps = &pgpath->pg->ps; 1556 if (ps->type->end_io) 1557 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1558 } 1559 1560 return r; 1561 } 1562 1563 /* 1564 * Suspend can't complete until all the I/O is processed so if 1565 * the last path fails we must error any remaining I/O. 1566 * Note that if the freeze_bdev fails while suspending, the 1567 * queue_if_no_path state is lost - userspace should reset it. 1568 */ 1569 static void multipath_presuspend(struct dm_target *ti) 1570 { 1571 struct multipath *m = ti->private; 1572 1573 queue_if_no_path(m, false, true); 1574 } 1575 1576 static void multipath_postsuspend(struct dm_target *ti) 1577 { 1578 struct multipath *m = ti->private; 1579 1580 mutex_lock(&m->work_mutex); 1581 flush_multipath_work(m); 1582 mutex_unlock(&m->work_mutex); 1583 } 1584 1585 /* 1586 * Restore the queue_if_no_path setting. 1587 */ 1588 static void multipath_resume(struct dm_target *ti) 1589 { 1590 struct multipath *m = ti->private; 1591 unsigned long flags; 1592 1593 spin_lock_irqsave(&m->lock, flags); 1594 assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 1595 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1596 spin_unlock_irqrestore(&m->lock, flags); 1597 } 1598 1599 /* 1600 * Info output has the following format: 1601 * num_multipath_feature_args [multipath_feature_args]* 1602 * num_handler_status_args [handler_status_args]* 1603 * num_groups init_group_number 1604 * [A|D|E num_ps_status_args [ps_status_args]* 1605 * num_paths num_selector_args 1606 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1607 * 1608 * Table output has the following format (identical to the constructor string): 1609 * num_feature_args [features_args]* 1610 * num_handler_args hw_handler [hw_handler_args]* 1611 * num_groups init_group_number 1612 * [priority selector-name num_ps_args [ps_args]* 1613 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1614 */ 1615 static void multipath_status(struct dm_target *ti, status_type_t type, 1616 unsigned status_flags, char *result, unsigned maxlen) 1617 { 1618 int sz = 0; 1619 unsigned long flags; 1620 struct multipath *m = ti->private; 1621 struct priority_group *pg; 1622 struct pgpath *p; 1623 unsigned pg_num; 1624 char state; 1625 1626 spin_lock_irqsave(&m->lock, flags); 1627 1628 /* Features */ 1629 if (type == STATUSTYPE_INFO) 1630 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1631 atomic_read(&m->pg_init_count)); 1632 else { 1633 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1634 (m->pg_init_retries > 0) * 2 + 1635 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1636 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1637 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1638 1639 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1640 DMEMIT("queue_if_no_path "); 1641 if (m->pg_init_retries) 1642 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1643 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1644 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1645 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1646 DMEMIT("retain_attached_hw_handler "); 1647 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1648 switch(m->queue_mode) { 1649 case DM_TYPE_BIO_BASED: 1650 DMEMIT("queue_mode bio "); 1651 break; 1652 case DM_TYPE_MQ_REQUEST_BASED: 1653 DMEMIT("queue_mode mq "); 1654 break; 1655 default: 1656 WARN_ON_ONCE(true); 1657 break; 1658 } 1659 } 1660 } 1661 1662 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1663 DMEMIT("0 "); 1664 else 1665 DMEMIT("1 %s ", m->hw_handler_name); 1666 1667 DMEMIT("%u ", m->nr_priority_groups); 1668 1669 if (m->next_pg) 1670 pg_num = m->next_pg->pg_num; 1671 else if (m->current_pg) 1672 pg_num = m->current_pg->pg_num; 1673 else 1674 pg_num = (m->nr_priority_groups ? 1 : 0); 1675 1676 DMEMIT("%u ", pg_num); 1677 1678 switch (type) { 1679 case STATUSTYPE_INFO: 1680 list_for_each_entry(pg, &m->priority_groups, list) { 1681 if (pg->bypassed) 1682 state = 'D'; /* Disabled */ 1683 else if (pg == m->current_pg) 1684 state = 'A'; /* Currently Active */ 1685 else 1686 state = 'E'; /* Enabled */ 1687 1688 DMEMIT("%c ", state); 1689 1690 if (pg->ps.type->status) 1691 sz += pg->ps.type->status(&pg->ps, NULL, type, 1692 result + sz, 1693 maxlen - sz); 1694 else 1695 DMEMIT("0 "); 1696 1697 DMEMIT("%u %u ", pg->nr_pgpaths, 1698 pg->ps.type->info_args); 1699 1700 list_for_each_entry(p, &pg->pgpaths, list) { 1701 DMEMIT("%s %s %u ", p->path.dev->name, 1702 p->is_active ? "A" : "F", 1703 p->fail_count); 1704 if (pg->ps.type->status) 1705 sz += pg->ps.type->status(&pg->ps, 1706 &p->path, type, result + sz, 1707 maxlen - sz); 1708 } 1709 } 1710 break; 1711 1712 case STATUSTYPE_TABLE: 1713 list_for_each_entry(pg, &m->priority_groups, list) { 1714 DMEMIT("%s ", pg->ps.type->name); 1715 1716 if (pg->ps.type->status) 1717 sz += pg->ps.type->status(&pg->ps, NULL, type, 1718 result + sz, 1719 maxlen - sz); 1720 else 1721 DMEMIT("0 "); 1722 1723 DMEMIT("%u %u ", pg->nr_pgpaths, 1724 pg->ps.type->table_args); 1725 1726 list_for_each_entry(p, &pg->pgpaths, list) { 1727 DMEMIT("%s ", p->path.dev->name); 1728 if (pg->ps.type->status) 1729 sz += pg->ps.type->status(&pg->ps, 1730 &p->path, type, result + sz, 1731 maxlen - sz); 1732 } 1733 } 1734 break; 1735 } 1736 1737 spin_unlock_irqrestore(&m->lock, flags); 1738 } 1739 1740 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1741 { 1742 int r = -EINVAL; 1743 struct dm_dev *dev; 1744 struct multipath *m = ti->private; 1745 action_fn action; 1746 1747 mutex_lock(&m->work_mutex); 1748 1749 if (dm_suspended(ti)) { 1750 r = -EBUSY; 1751 goto out; 1752 } 1753 1754 if (argc == 1) { 1755 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1756 r = queue_if_no_path(m, true, false); 1757 goto out; 1758 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1759 r = queue_if_no_path(m, false, false); 1760 goto out; 1761 } 1762 } 1763 1764 if (argc != 2) { 1765 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1766 goto out; 1767 } 1768 1769 if (!strcasecmp(argv[0], "disable_group")) { 1770 r = bypass_pg_num(m, argv[1], true); 1771 goto out; 1772 } else if (!strcasecmp(argv[0], "enable_group")) { 1773 r = bypass_pg_num(m, argv[1], false); 1774 goto out; 1775 } else if (!strcasecmp(argv[0], "switch_group")) { 1776 r = switch_pg_num(m, argv[1]); 1777 goto out; 1778 } else if (!strcasecmp(argv[0], "reinstate_path")) 1779 action = reinstate_path; 1780 else if (!strcasecmp(argv[0], "fail_path")) 1781 action = fail_path; 1782 else { 1783 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1784 goto out; 1785 } 1786 1787 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1788 if (r) { 1789 DMWARN("message: error getting device %s", 1790 argv[1]); 1791 goto out; 1792 } 1793 1794 r = action_dev(m, dev, action); 1795 1796 dm_put_device(ti, dev); 1797 1798 out: 1799 mutex_unlock(&m->work_mutex); 1800 return r; 1801 } 1802 1803 static int multipath_prepare_ioctl(struct dm_target *ti, 1804 struct block_device **bdev, fmode_t *mode) 1805 { 1806 struct multipath *m = ti->private; 1807 struct pgpath *current_pgpath; 1808 int r; 1809 1810 current_pgpath = lockless_dereference(m->current_pgpath); 1811 if (!current_pgpath) 1812 current_pgpath = choose_pgpath(m, 0); 1813 1814 if (current_pgpath) { 1815 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1816 *bdev = current_pgpath->path.dev->bdev; 1817 *mode = current_pgpath->path.dev->mode; 1818 r = 0; 1819 } else { 1820 /* pg_init has not started or completed */ 1821 r = -ENOTCONN; 1822 } 1823 } else { 1824 /* No path is available */ 1825 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1826 r = -ENOTCONN; 1827 else 1828 r = -EIO; 1829 } 1830 1831 if (r == -ENOTCONN) { 1832 if (!lockless_dereference(m->current_pg)) { 1833 /* Path status changed, redo selection */ 1834 (void) choose_pgpath(m, 0); 1835 } 1836 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1837 pg_init_all_paths(m); 1838 dm_table_run_md_queue_async(m->ti->table); 1839 process_queued_io_list(m); 1840 } 1841 1842 /* 1843 * Only pass ioctls through if the device sizes match exactly. 1844 */ 1845 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1846 return 1; 1847 return r; 1848 } 1849 1850 static int multipath_iterate_devices(struct dm_target *ti, 1851 iterate_devices_callout_fn fn, void *data) 1852 { 1853 struct multipath *m = ti->private; 1854 struct priority_group *pg; 1855 struct pgpath *p; 1856 int ret = 0; 1857 1858 list_for_each_entry(pg, &m->priority_groups, list) { 1859 list_for_each_entry(p, &pg->pgpaths, list) { 1860 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1861 if (ret) 1862 goto out; 1863 } 1864 } 1865 1866 out: 1867 return ret; 1868 } 1869 1870 static int pgpath_busy(struct pgpath *pgpath) 1871 { 1872 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1873 1874 return blk_lld_busy(q); 1875 } 1876 1877 /* 1878 * We return "busy", only when we can map I/Os but underlying devices 1879 * are busy (so even if we map I/Os now, the I/Os will wait on 1880 * the underlying queue). 1881 * In other words, if we want to kill I/Os or queue them inside us 1882 * due to map unavailability, we don't return "busy". Otherwise, 1883 * dm core won't give us the I/Os and we can't do what we want. 1884 */ 1885 static int multipath_busy(struct dm_target *ti) 1886 { 1887 bool busy = false, has_active = false; 1888 struct multipath *m = ti->private; 1889 struct priority_group *pg, *next_pg; 1890 struct pgpath *pgpath; 1891 1892 /* pg_init in progress */ 1893 if (atomic_read(&m->pg_init_in_progress)) 1894 return true; 1895 1896 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1897 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1898 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1899 1900 /* Guess which priority_group will be used at next mapping time */ 1901 pg = lockless_dereference(m->current_pg); 1902 next_pg = lockless_dereference(m->next_pg); 1903 if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg)) 1904 pg = next_pg; 1905 1906 if (!pg) { 1907 /* 1908 * We don't know which pg will be used at next mapping time. 1909 * We don't call choose_pgpath() here to avoid to trigger 1910 * pg_init just by busy checking. 1911 * So we don't know whether underlying devices we will be using 1912 * at next mapping time are busy or not. Just try mapping. 1913 */ 1914 return busy; 1915 } 1916 1917 /* 1918 * If there is one non-busy active path at least, the path selector 1919 * will be able to select it. So we consider such a pg as not busy. 1920 */ 1921 busy = true; 1922 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1923 if (pgpath->is_active) { 1924 has_active = true; 1925 if (!pgpath_busy(pgpath)) { 1926 busy = false; 1927 break; 1928 } 1929 } 1930 } 1931 1932 if (!has_active) { 1933 /* 1934 * No active path in this pg, so this pg won't be used and 1935 * the current_pg will be changed at next mapping time. 1936 * We need to try mapping to determine it. 1937 */ 1938 busy = false; 1939 } 1940 1941 return busy; 1942 } 1943 1944 /*----------------------------------------------------------------- 1945 * Module setup 1946 *---------------------------------------------------------------*/ 1947 static struct target_type multipath_target = { 1948 .name = "multipath", 1949 .version = {1, 12, 0}, 1950 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1951 .module = THIS_MODULE, 1952 .ctr = multipath_ctr, 1953 .dtr = multipath_dtr, 1954 .clone_and_map_rq = multipath_clone_and_map, 1955 .release_clone_rq = multipath_release_clone, 1956 .rq_end_io = multipath_end_io, 1957 .map = multipath_map_bio, 1958 .end_io = multipath_end_io_bio, 1959 .presuspend = multipath_presuspend, 1960 .postsuspend = multipath_postsuspend, 1961 .resume = multipath_resume, 1962 .status = multipath_status, 1963 .message = multipath_message, 1964 .prepare_ioctl = multipath_prepare_ioctl, 1965 .iterate_devices = multipath_iterate_devices, 1966 .busy = multipath_busy, 1967 }; 1968 1969 static int __init dm_multipath_init(void) 1970 { 1971 int r; 1972 1973 r = dm_register_target(&multipath_target); 1974 if (r < 0) { 1975 DMERR("request-based register failed %d", r); 1976 r = -EINVAL; 1977 goto bad_register_target; 1978 } 1979 1980 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1981 if (!kmultipathd) { 1982 DMERR("failed to create workqueue kmpathd"); 1983 r = -ENOMEM; 1984 goto bad_alloc_kmultipathd; 1985 } 1986 1987 /* 1988 * A separate workqueue is used to handle the device handlers 1989 * to avoid overloading existing workqueue. Overloading the 1990 * old workqueue would also create a bottleneck in the 1991 * path of the storage hardware device activation. 1992 */ 1993 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1994 WQ_MEM_RECLAIM); 1995 if (!kmpath_handlerd) { 1996 DMERR("failed to create workqueue kmpath_handlerd"); 1997 r = -ENOMEM; 1998 goto bad_alloc_kmpath_handlerd; 1999 } 2000 2001 return 0; 2002 2003 bad_alloc_kmpath_handlerd: 2004 destroy_workqueue(kmultipathd); 2005 bad_alloc_kmultipathd: 2006 dm_unregister_target(&multipath_target); 2007 bad_register_target: 2008 return r; 2009 } 2010 2011 static void __exit dm_multipath_exit(void) 2012 { 2013 destroy_workqueue(kmpath_handlerd); 2014 destroy_workqueue(kmultipathd); 2015 2016 dm_unregister_target(&multipath_target); 2017 } 2018 2019 module_init(dm_multipath_init); 2020 module_exit(dm_multipath_exit); 2021 2022 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2023 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2024 MODULE_LICENSE("GPL"); 2025