1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm.h" 11 #include "dm-path-selector.h" 12 #include "dm-uevent.h" 13 14 #include <linux/ctype.h> 15 #include <linux/init.h> 16 #include <linux/mempool.h> 17 #include <linux/module.h> 18 #include <linux/pagemap.h> 19 #include <linux/slab.h> 20 #include <linux/time.h> 21 #include <linux/workqueue.h> 22 #include <linux/delay.h> 23 #include <scsi/scsi_dh.h> 24 #include <linux/atomic.h> 25 26 #define DM_MSG_PREFIX "multipath" 27 #define DM_PG_INIT_DELAY_MSECS 2000 28 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 29 30 /* Path properties */ 31 struct pgpath { 32 struct list_head list; 33 34 struct priority_group *pg; /* Owning PG */ 35 unsigned is_active; /* Path status */ 36 unsigned fail_count; /* Cumulative failure count */ 37 38 struct dm_path path; 39 struct delayed_work activate_path; 40 }; 41 42 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 43 44 /* 45 * Paths are grouped into Priority Groups and numbered from 1 upwards. 46 * Each has a path selector which controls which path gets used. 47 */ 48 struct priority_group { 49 struct list_head list; 50 51 struct multipath *m; /* Owning multipath instance */ 52 struct path_selector ps; 53 54 unsigned pg_num; /* Reference number */ 55 unsigned bypassed; /* Temporarily bypass this PG? */ 56 57 unsigned nr_pgpaths; /* Number of paths in PG */ 58 struct list_head pgpaths; 59 }; 60 61 /* Multipath context */ 62 struct multipath { 63 struct list_head list; 64 struct dm_target *ti; 65 66 const char *hw_handler_name; 67 char *hw_handler_params; 68 69 spinlock_t lock; 70 71 unsigned nr_priority_groups; 72 struct list_head priority_groups; 73 74 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 75 76 unsigned pg_init_required; /* pg_init needs calling? */ 77 unsigned pg_init_in_progress; /* Only one pg_init allowed at once */ 78 unsigned pg_init_delay_retry; /* Delay pg_init retry? */ 79 80 unsigned nr_valid_paths; /* Total number of usable paths */ 81 struct pgpath *current_pgpath; 82 struct priority_group *current_pg; 83 struct priority_group *next_pg; /* Switch to this PG if set */ 84 unsigned repeat_count; /* I/Os left before calling PS again */ 85 86 unsigned queue_io:1; /* Must we queue all I/O? */ 87 unsigned queue_if_no_path:1; /* Queue I/O if last path fails? */ 88 unsigned saved_queue_if_no_path:1; /* Saved state during suspension */ 89 unsigned retain_attached_hw_handler:1; /* If there's already a hw_handler present, don't change it. */ 90 unsigned pg_init_disabled:1; /* pg_init is not currently allowed */ 91 92 unsigned pg_init_retries; /* Number of times to retry pg_init */ 93 unsigned pg_init_count; /* Number of times pg_init called */ 94 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 95 96 struct work_struct trigger_event; 97 98 /* 99 * We must use a mempool of dm_mpath_io structs so that we 100 * can resubmit bios on error. 101 */ 102 mempool_t *mpio_pool; 103 104 struct mutex work_mutex; 105 }; 106 107 /* 108 * Context information attached to each bio we process. 109 */ 110 struct dm_mpath_io { 111 struct pgpath *pgpath; 112 size_t nr_bytes; 113 }; 114 115 typedef int (*action_fn) (struct pgpath *pgpath); 116 117 static struct kmem_cache *_mpio_cache; 118 119 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 120 static void trigger_event(struct work_struct *work); 121 static void activate_path(struct work_struct *work); 122 static int __pgpath_busy(struct pgpath *pgpath); 123 124 125 /*----------------------------------------------- 126 * Allocation routines 127 *-----------------------------------------------*/ 128 129 static struct pgpath *alloc_pgpath(void) 130 { 131 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 132 133 if (pgpath) { 134 pgpath->is_active = 1; 135 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path); 136 } 137 138 return pgpath; 139 } 140 141 static void free_pgpath(struct pgpath *pgpath) 142 { 143 kfree(pgpath); 144 } 145 146 static struct priority_group *alloc_priority_group(void) 147 { 148 struct priority_group *pg; 149 150 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 151 152 if (pg) 153 INIT_LIST_HEAD(&pg->pgpaths); 154 155 return pg; 156 } 157 158 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 159 { 160 struct pgpath *pgpath, *tmp; 161 struct multipath *m = ti->private; 162 163 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 164 list_del(&pgpath->list); 165 if (m->hw_handler_name) 166 scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev)); 167 dm_put_device(ti, pgpath->path.dev); 168 free_pgpath(pgpath); 169 } 170 } 171 172 static void free_priority_group(struct priority_group *pg, 173 struct dm_target *ti) 174 { 175 struct path_selector *ps = &pg->ps; 176 177 if (ps->type) { 178 ps->type->destroy(ps); 179 dm_put_path_selector(ps->type); 180 } 181 182 free_pgpaths(&pg->pgpaths, ti); 183 kfree(pg); 184 } 185 186 static struct multipath *alloc_multipath(struct dm_target *ti) 187 { 188 struct multipath *m; 189 unsigned min_ios = dm_get_reserved_rq_based_ios(); 190 191 m = kzalloc(sizeof(*m), GFP_KERNEL); 192 if (m) { 193 INIT_LIST_HEAD(&m->priority_groups); 194 spin_lock_init(&m->lock); 195 m->queue_io = 1; 196 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 197 INIT_WORK(&m->trigger_event, trigger_event); 198 init_waitqueue_head(&m->pg_init_wait); 199 mutex_init(&m->work_mutex); 200 m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache); 201 if (!m->mpio_pool) { 202 kfree(m); 203 return NULL; 204 } 205 m->ti = ti; 206 ti->private = m; 207 } 208 209 return m; 210 } 211 212 static void free_multipath(struct multipath *m) 213 { 214 struct priority_group *pg, *tmp; 215 216 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 217 list_del(&pg->list); 218 free_priority_group(pg, m->ti); 219 } 220 221 kfree(m->hw_handler_name); 222 kfree(m->hw_handler_params); 223 mempool_destroy(m->mpio_pool); 224 kfree(m); 225 } 226 227 static int set_mapinfo(struct multipath *m, union map_info *info) 228 { 229 struct dm_mpath_io *mpio; 230 231 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 232 if (!mpio) 233 return -ENOMEM; 234 235 memset(mpio, 0, sizeof(*mpio)); 236 info->ptr = mpio; 237 238 return 0; 239 } 240 241 static void clear_mapinfo(struct multipath *m, union map_info *info) 242 { 243 struct dm_mpath_io *mpio = info->ptr; 244 245 info->ptr = NULL; 246 mempool_free(mpio, m->mpio_pool); 247 } 248 249 /*----------------------------------------------- 250 * Path selection 251 *-----------------------------------------------*/ 252 253 static int __pg_init_all_paths(struct multipath *m) 254 { 255 struct pgpath *pgpath; 256 unsigned long pg_init_delay = 0; 257 258 if (m->pg_init_in_progress || m->pg_init_disabled) 259 return 0; 260 261 m->pg_init_count++; 262 m->pg_init_required = 0; 263 264 /* Check here to reset pg_init_required */ 265 if (!m->current_pg) 266 return 0; 267 268 if (m->pg_init_delay_retry) 269 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 270 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 271 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 272 /* Skip failed paths */ 273 if (!pgpath->is_active) 274 continue; 275 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 276 pg_init_delay)) 277 m->pg_init_in_progress++; 278 } 279 return m->pg_init_in_progress; 280 } 281 282 static void __switch_pg(struct multipath *m, struct pgpath *pgpath) 283 { 284 m->current_pg = pgpath->pg; 285 286 /* Must we initialise the PG first, and queue I/O till it's ready? */ 287 if (m->hw_handler_name) { 288 m->pg_init_required = 1; 289 m->queue_io = 1; 290 } else { 291 m->pg_init_required = 0; 292 m->queue_io = 0; 293 } 294 295 m->pg_init_count = 0; 296 } 297 298 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg, 299 size_t nr_bytes) 300 { 301 struct dm_path *path; 302 303 path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes); 304 if (!path) 305 return -ENXIO; 306 307 m->current_pgpath = path_to_pgpath(path); 308 309 if (m->current_pg != pg) 310 __switch_pg(m, m->current_pgpath); 311 312 return 0; 313 } 314 315 static void __choose_pgpath(struct multipath *m, size_t nr_bytes) 316 { 317 struct priority_group *pg; 318 unsigned bypassed = 1; 319 320 if (!m->nr_valid_paths) 321 goto failed; 322 323 /* Were we instructed to switch PG? */ 324 if (m->next_pg) { 325 pg = m->next_pg; 326 m->next_pg = NULL; 327 if (!__choose_path_in_pg(m, pg, nr_bytes)) 328 return; 329 } 330 331 /* Don't change PG until it has no remaining paths */ 332 if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes)) 333 return; 334 335 /* 336 * Loop through priority groups until we find a valid path. 337 * First time we skip PGs marked 'bypassed'. 338 * Second time we only try the ones we skipped, but set 339 * pg_init_delay_retry so we do not hammer controllers. 340 */ 341 do { 342 list_for_each_entry(pg, &m->priority_groups, list) { 343 if (pg->bypassed == bypassed) 344 continue; 345 if (!__choose_path_in_pg(m, pg, nr_bytes)) { 346 if (!bypassed) 347 m->pg_init_delay_retry = 1; 348 return; 349 } 350 } 351 } while (bypassed--); 352 353 failed: 354 m->current_pgpath = NULL; 355 m->current_pg = NULL; 356 } 357 358 /* 359 * Check whether bios must be queued in the device-mapper core rather 360 * than here in the target. 361 * 362 * m->lock must be held on entry. 363 * 364 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 365 * same value then we are not between multipath_presuspend() 366 * and multipath_resume() calls and we have no need to check 367 * for the DMF_NOFLUSH_SUSPENDING flag. 368 */ 369 static int __must_push_back(struct multipath *m) 370 { 371 return (m->queue_if_no_path || 372 (m->queue_if_no_path != m->saved_queue_if_no_path && 373 dm_noflush_suspending(m->ti))); 374 } 375 376 #define pg_ready(m) (!(m)->queue_io && !(m)->pg_init_required) 377 378 /* 379 * Map cloned requests 380 */ 381 static int multipath_map(struct dm_target *ti, struct request *clone, 382 union map_info *map_context) 383 { 384 struct multipath *m = (struct multipath *) ti->private; 385 int r = DM_MAPIO_REQUEUE; 386 size_t nr_bytes = blk_rq_bytes(clone); 387 unsigned long flags; 388 struct pgpath *pgpath; 389 struct block_device *bdev; 390 struct dm_mpath_io *mpio; 391 392 spin_lock_irqsave(&m->lock, flags); 393 394 /* Do we need to select a new pgpath? */ 395 if (!m->current_pgpath || 396 (!m->queue_io && (m->repeat_count && --m->repeat_count == 0))) 397 __choose_pgpath(m, nr_bytes); 398 399 pgpath = m->current_pgpath; 400 401 if (!pgpath) { 402 if (!__must_push_back(m)) 403 r = -EIO; /* Failed */ 404 goto out_unlock; 405 } 406 if (!pg_ready(m)) { 407 __pg_init_all_paths(m); 408 goto out_unlock; 409 } 410 if (set_mapinfo(m, map_context) < 0) 411 /* ENOMEM, requeue */ 412 goto out_unlock; 413 414 bdev = pgpath->path.dev->bdev; 415 clone->q = bdev_get_queue(bdev); 416 clone->rq_disk = bdev->bd_disk; 417 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 418 mpio = map_context->ptr; 419 mpio->pgpath = pgpath; 420 mpio->nr_bytes = nr_bytes; 421 if (pgpath->pg->ps.type->start_io) 422 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 423 &pgpath->path, 424 nr_bytes); 425 r = DM_MAPIO_REMAPPED; 426 427 out_unlock: 428 spin_unlock_irqrestore(&m->lock, flags); 429 430 return r; 431 } 432 433 /* 434 * If we run out of usable paths, should we queue I/O or error it? 435 */ 436 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path, 437 unsigned save_old_value) 438 { 439 unsigned long flags; 440 441 spin_lock_irqsave(&m->lock, flags); 442 443 if (save_old_value) 444 m->saved_queue_if_no_path = m->queue_if_no_path; 445 else 446 m->saved_queue_if_no_path = queue_if_no_path; 447 m->queue_if_no_path = queue_if_no_path; 448 if (!m->queue_if_no_path) 449 dm_table_run_md_queue_async(m->ti->table); 450 451 spin_unlock_irqrestore(&m->lock, flags); 452 453 return 0; 454 } 455 456 /* 457 * An event is triggered whenever a path is taken out of use. 458 * Includes path failure and PG bypass. 459 */ 460 static void trigger_event(struct work_struct *work) 461 { 462 struct multipath *m = 463 container_of(work, struct multipath, trigger_event); 464 465 dm_table_event(m->ti->table); 466 } 467 468 /*----------------------------------------------------------------- 469 * Constructor/argument parsing: 470 * <#multipath feature args> [<arg>]* 471 * <#hw_handler args> [hw_handler [<arg>]*] 472 * <#priority groups> 473 * <initial priority group> 474 * [<selector> <#selector args> [<arg>]* 475 * <#paths> <#per-path selector args> 476 * [<path> [<arg>]* ]+ ]+ 477 *---------------------------------------------------------------*/ 478 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 479 struct dm_target *ti) 480 { 481 int r; 482 struct path_selector_type *pst; 483 unsigned ps_argc; 484 485 static struct dm_arg _args[] = { 486 {0, 1024, "invalid number of path selector args"}, 487 }; 488 489 pst = dm_get_path_selector(dm_shift_arg(as)); 490 if (!pst) { 491 ti->error = "unknown path selector type"; 492 return -EINVAL; 493 } 494 495 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 496 if (r) { 497 dm_put_path_selector(pst); 498 return -EINVAL; 499 } 500 501 r = pst->create(&pg->ps, ps_argc, as->argv); 502 if (r) { 503 dm_put_path_selector(pst); 504 ti->error = "path selector constructor failed"; 505 return r; 506 } 507 508 pg->ps.type = pst; 509 dm_consume_args(as, ps_argc); 510 511 return 0; 512 } 513 514 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 515 struct dm_target *ti) 516 { 517 int r; 518 struct pgpath *p; 519 struct multipath *m = ti->private; 520 struct request_queue *q = NULL; 521 const char *attached_handler_name; 522 523 /* we need at least a path arg */ 524 if (as->argc < 1) { 525 ti->error = "no device given"; 526 return ERR_PTR(-EINVAL); 527 } 528 529 p = alloc_pgpath(); 530 if (!p) 531 return ERR_PTR(-ENOMEM); 532 533 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 534 &p->path.dev); 535 if (r) { 536 ti->error = "error getting device"; 537 goto bad; 538 } 539 540 if (m->retain_attached_hw_handler || m->hw_handler_name) 541 q = bdev_get_queue(p->path.dev->bdev); 542 543 if (m->retain_attached_hw_handler) { 544 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 545 if (attached_handler_name) { 546 /* 547 * Reset hw_handler_name to match the attached handler 548 * and clear any hw_handler_params associated with the 549 * ignored handler. 550 * 551 * NB. This modifies the table line to show the actual 552 * handler instead of the original table passed in. 553 */ 554 kfree(m->hw_handler_name); 555 m->hw_handler_name = attached_handler_name; 556 557 kfree(m->hw_handler_params); 558 m->hw_handler_params = NULL; 559 } 560 } 561 562 if (m->hw_handler_name) { 563 /* 564 * Increments scsi_dh reference, even when using an 565 * already-attached handler. 566 */ 567 r = scsi_dh_attach(q, m->hw_handler_name); 568 if (r == -EBUSY) { 569 /* 570 * Already attached to different hw_handler: 571 * try to reattach with correct one. 572 */ 573 scsi_dh_detach(q); 574 r = scsi_dh_attach(q, m->hw_handler_name); 575 } 576 577 if (r < 0) { 578 ti->error = "error attaching hardware handler"; 579 dm_put_device(ti, p->path.dev); 580 goto bad; 581 } 582 583 if (m->hw_handler_params) { 584 r = scsi_dh_set_params(q, m->hw_handler_params); 585 if (r < 0) { 586 ti->error = "unable to set hardware " 587 "handler parameters"; 588 scsi_dh_detach(q); 589 dm_put_device(ti, p->path.dev); 590 goto bad; 591 } 592 } 593 } 594 595 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 596 if (r) { 597 dm_put_device(ti, p->path.dev); 598 goto bad; 599 } 600 601 return p; 602 603 bad: 604 free_pgpath(p); 605 return ERR_PTR(r); 606 } 607 608 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 609 struct multipath *m) 610 { 611 static struct dm_arg _args[] = { 612 {1, 1024, "invalid number of paths"}, 613 {0, 1024, "invalid number of selector args"} 614 }; 615 616 int r; 617 unsigned i, nr_selector_args, nr_args; 618 struct priority_group *pg; 619 struct dm_target *ti = m->ti; 620 621 if (as->argc < 2) { 622 as->argc = 0; 623 ti->error = "not enough priority group arguments"; 624 return ERR_PTR(-EINVAL); 625 } 626 627 pg = alloc_priority_group(); 628 if (!pg) { 629 ti->error = "couldn't allocate priority group"; 630 return ERR_PTR(-ENOMEM); 631 } 632 pg->m = m; 633 634 r = parse_path_selector(as, pg, ti); 635 if (r) 636 goto bad; 637 638 /* 639 * read the paths 640 */ 641 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 642 if (r) 643 goto bad; 644 645 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 646 if (r) 647 goto bad; 648 649 nr_args = 1 + nr_selector_args; 650 for (i = 0; i < pg->nr_pgpaths; i++) { 651 struct pgpath *pgpath; 652 struct dm_arg_set path_args; 653 654 if (as->argc < nr_args) { 655 ti->error = "not enough path parameters"; 656 r = -EINVAL; 657 goto bad; 658 } 659 660 path_args.argc = nr_args; 661 path_args.argv = as->argv; 662 663 pgpath = parse_path(&path_args, &pg->ps, ti); 664 if (IS_ERR(pgpath)) { 665 r = PTR_ERR(pgpath); 666 goto bad; 667 } 668 669 pgpath->pg = pg; 670 list_add_tail(&pgpath->list, &pg->pgpaths); 671 dm_consume_args(as, nr_args); 672 } 673 674 return pg; 675 676 bad: 677 free_priority_group(pg, ti); 678 return ERR_PTR(r); 679 } 680 681 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 682 { 683 unsigned hw_argc; 684 int ret; 685 struct dm_target *ti = m->ti; 686 687 static struct dm_arg _args[] = { 688 {0, 1024, "invalid number of hardware handler args"}, 689 }; 690 691 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 692 return -EINVAL; 693 694 if (!hw_argc) 695 return 0; 696 697 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 698 if (!try_then_request_module(scsi_dh_handler_exist(m->hw_handler_name), 699 "scsi_dh_%s", m->hw_handler_name)) { 700 ti->error = "unknown hardware handler type"; 701 ret = -EINVAL; 702 goto fail; 703 } 704 705 if (hw_argc > 1) { 706 char *p; 707 int i, j, len = 4; 708 709 for (i = 0; i <= hw_argc - 2; i++) 710 len += strlen(as->argv[i]) + 1; 711 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 712 if (!p) { 713 ti->error = "memory allocation failed"; 714 ret = -ENOMEM; 715 goto fail; 716 } 717 j = sprintf(p, "%d", hw_argc - 1); 718 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 719 j = sprintf(p, "%s", as->argv[i]); 720 } 721 dm_consume_args(as, hw_argc - 1); 722 723 return 0; 724 fail: 725 kfree(m->hw_handler_name); 726 m->hw_handler_name = NULL; 727 return ret; 728 } 729 730 static int parse_features(struct dm_arg_set *as, struct multipath *m) 731 { 732 int r; 733 unsigned argc; 734 struct dm_target *ti = m->ti; 735 const char *arg_name; 736 737 static struct dm_arg _args[] = { 738 {0, 6, "invalid number of feature args"}, 739 {1, 50, "pg_init_retries must be between 1 and 50"}, 740 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 741 }; 742 743 r = dm_read_arg_group(_args, as, &argc, &ti->error); 744 if (r) 745 return -EINVAL; 746 747 if (!argc) 748 return 0; 749 750 do { 751 arg_name = dm_shift_arg(as); 752 argc--; 753 754 if (!strcasecmp(arg_name, "queue_if_no_path")) { 755 r = queue_if_no_path(m, 1, 0); 756 continue; 757 } 758 759 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 760 m->retain_attached_hw_handler = 1; 761 continue; 762 } 763 764 if (!strcasecmp(arg_name, "pg_init_retries") && 765 (argc >= 1)) { 766 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 767 argc--; 768 continue; 769 } 770 771 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 772 (argc >= 1)) { 773 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 774 argc--; 775 continue; 776 } 777 778 ti->error = "Unrecognised multipath feature request"; 779 r = -EINVAL; 780 } while (argc && !r); 781 782 return r; 783 } 784 785 static int multipath_ctr(struct dm_target *ti, unsigned int argc, 786 char **argv) 787 { 788 /* target arguments */ 789 static struct dm_arg _args[] = { 790 {0, 1024, "invalid number of priority groups"}, 791 {0, 1024, "invalid initial priority group number"}, 792 }; 793 794 int r; 795 struct multipath *m; 796 struct dm_arg_set as; 797 unsigned pg_count = 0; 798 unsigned next_pg_num; 799 800 as.argc = argc; 801 as.argv = argv; 802 803 m = alloc_multipath(ti); 804 if (!m) { 805 ti->error = "can't allocate multipath"; 806 return -EINVAL; 807 } 808 809 r = parse_features(&as, m); 810 if (r) 811 goto bad; 812 813 r = parse_hw_handler(&as, m); 814 if (r) 815 goto bad; 816 817 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 818 if (r) 819 goto bad; 820 821 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 822 if (r) 823 goto bad; 824 825 if ((!m->nr_priority_groups && next_pg_num) || 826 (m->nr_priority_groups && !next_pg_num)) { 827 ti->error = "invalid initial priority group"; 828 r = -EINVAL; 829 goto bad; 830 } 831 832 /* parse the priority groups */ 833 while (as.argc) { 834 struct priority_group *pg; 835 836 pg = parse_priority_group(&as, m); 837 if (IS_ERR(pg)) { 838 r = PTR_ERR(pg); 839 goto bad; 840 } 841 842 m->nr_valid_paths += pg->nr_pgpaths; 843 list_add_tail(&pg->list, &m->priority_groups); 844 pg_count++; 845 pg->pg_num = pg_count; 846 if (!--next_pg_num) 847 m->next_pg = pg; 848 } 849 850 if (pg_count != m->nr_priority_groups) { 851 ti->error = "priority group count mismatch"; 852 r = -EINVAL; 853 goto bad; 854 } 855 856 ti->num_flush_bios = 1; 857 ti->num_discard_bios = 1; 858 ti->num_write_same_bios = 1; 859 860 return 0; 861 862 bad: 863 free_multipath(m); 864 return r; 865 } 866 867 static void multipath_wait_for_pg_init_completion(struct multipath *m) 868 { 869 DECLARE_WAITQUEUE(wait, current); 870 unsigned long flags; 871 872 add_wait_queue(&m->pg_init_wait, &wait); 873 874 while (1) { 875 set_current_state(TASK_UNINTERRUPTIBLE); 876 877 spin_lock_irqsave(&m->lock, flags); 878 if (!m->pg_init_in_progress) { 879 spin_unlock_irqrestore(&m->lock, flags); 880 break; 881 } 882 spin_unlock_irqrestore(&m->lock, flags); 883 884 io_schedule(); 885 } 886 set_current_state(TASK_RUNNING); 887 888 remove_wait_queue(&m->pg_init_wait, &wait); 889 } 890 891 static void flush_multipath_work(struct multipath *m) 892 { 893 unsigned long flags; 894 895 spin_lock_irqsave(&m->lock, flags); 896 m->pg_init_disabled = 1; 897 spin_unlock_irqrestore(&m->lock, flags); 898 899 flush_workqueue(kmpath_handlerd); 900 multipath_wait_for_pg_init_completion(m); 901 flush_workqueue(kmultipathd); 902 flush_work(&m->trigger_event); 903 904 spin_lock_irqsave(&m->lock, flags); 905 m->pg_init_disabled = 0; 906 spin_unlock_irqrestore(&m->lock, flags); 907 } 908 909 static void multipath_dtr(struct dm_target *ti) 910 { 911 struct multipath *m = ti->private; 912 913 flush_multipath_work(m); 914 free_multipath(m); 915 } 916 917 /* 918 * Take a path out of use. 919 */ 920 static int fail_path(struct pgpath *pgpath) 921 { 922 unsigned long flags; 923 struct multipath *m = pgpath->pg->m; 924 925 spin_lock_irqsave(&m->lock, flags); 926 927 if (!pgpath->is_active) 928 goto out; 929 930 DMWARN("Failing path %s.", pgpath->path.dev->name); 931 932 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 933 pgpath->is_active = 0; 934 pgpath->fail_count++; 935 936 m->nr_valid_paths--; 937 938 if (pgpath == m->current_pgpath) 939 m->current_pgpath = NULL; 940 941 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 942 pgpath->path.dev->name, m->nr_valid_paths); 943 944 schedule_work(&m->trigger_event); 945 946 out: 947 spin_unlock_irqrestore(&m->lock, flags); 948 949 return 0; 950 } 951 952 /* 953 * Reinstate a previously-failed path 954 */ 955 static int reinstate_path(struct pgpath *pgpath) 956 { 957 int r = 0; 958 unsigned long flags; 959 struct multipath *m = pgpath->pg->m; 960 961 spin_lock_irqsave(&m->lock, flags); 962 963 if (pgpath->is_active) 964 goto out; 965 966 if (!pgpath->pg->ps.type->reinstate_path) { 967 DMWARN("Reinstate path not supported by path selector %s", 968 pgpath->pg->ps.type->name); 969 r = -EINVAL; 970 goto out; 971 } 972 973 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 974 if (r) 975 goto out; 976 977 pgpath->is_active = 1; 978 979 if (!m->nr_valid_paths++) { 980 m->current_pgpath = NULL; 981 dm_table_run_md_queue_async(m->ti->table); 982 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 983 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 984 m->pg_init_in_progress++; 985 } 986 987 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 988 pgpath->path.dev->name, m->nr_valid_paths); 989 990 schedule_work(&m->trigger_event); 991 992 out: 993 spin_unlock_irqrestore(&m->lock, flags); 994 995 return r; 996 } 997 998 /* 999 * Fail or reinstate all paths that match the provided struct dm_dev. 1000 */ 1001 static int action_dev(struct multipath *m, struct dm_dev *dev, 1002 action_fn action) 1003 { 1004 int r = -EINVAL; 1005 struct pgpath *pgpath; 1006 struct priority_group *pg; 1007 1008 list_for_each_entry(pg, &m->priority_groups, list) { 1009 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1010 if (pgpath->path.dev == dev) 1011 r = action(pgpath); 1012 } 1013 } 1014 1015 return r; 1016 } 1017 1018 /* 1019 * Temporarily try to avoid having to use the specified PG 1020 */ 1021 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1022 int bypassed) 1023 { 1024 unsigned long flags; 1025 1026 spin_lock_irqsave(&m->lock, flags); 1027 1028 pg->bypassed = bypassed; 1029 m->current_pgpath = NULL; 1030 m->current_pg = NULL; 1031 1032 spin_unlock_irqrestore(&m->lock, flags); 1033 1034 schedule_work(&m->trigger_event); 1035 } 1036 1037 /* 1038 * Switch to using the specified PG from the next I/O that gets mapped 1039 */ 1040 static int switch_pg_num(struct multipath *m, const char *pgstr) 1041 { 1042 struct priority_group *pg; 1043 unsigned pgnum; 1044 unsigned long flags; 1045 char dummy; 1046 1047 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1048 (pgnum > m->nr_priority_groups)) { 1049 DMWARN("invalid PG number supplied to switch_pg_num"); 1050 return -EINVAL; 1051 } 1052 1053 spin_lock_irqsave(&m->lock, flags); 1054 list_for_each_entry(pg, &m->priority_groups, list) { 1055 pg->bypassed = 0; 1056 if (--pgnum) 1057 continue; 1058 1059 m->current_pgpath = NULL; 1060 m->current_pg = NULL; 1061 m->next_pg = pg; 1062 } 1063 spin_unlock_irqrestore(&m->lock, flags); 1064 1065 schedule_work(&m->trigger_event); 1066 return 0; 1067 } 1068 1069 /* 1070 * Set/clear bypassed status of a PG. 1071 * PGs are numbered upwards from 1 in the order they were declared. 1072 */ 1073 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed) 1074 { 1075 struct priority_group *pg; 1076 unsigned pgnum; 1077 char dummy; 1078 1079 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1080 (pgnum > m->nr_priority_groups)) { 1081 DMWARN("invalid PG number supplied to bypass_pg"); 1082 return -EINVAL; 1083 } 1084 1085 list_for_each_entry(pg, &m->priority_groups, list) { 1086 if (!--pgnum) 1087 break; 1088 } 1089 1090 bypass_pg(m, pg, bypassed); 1091 return 0; 1092 } 1093 1094 /* 1095 * Should we retry pg_init immediately? 1096 */ 1097 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1098 { 1099 unsigned long flags; 1100 int limit_reached = 0; 1101 1102 spin_lock_irqsave(&m->lock, flags); 1103 1104 if (m->pg_init_count <= m->pg_init_retries && !m->pg_init_disabled) 1105 m->pg_init_required = 1; 1106 else 1107 limit_reached = 1; 1108 1109 spin_unlock_irqrestore(&m->lock, flags); 1110 1111 return limit_reached; 1112 } 1113 1114 static void pg_init_done(void *data, int errors) 1115 { 1116 struct pgpath *pgpath = data; 1117 struct priority_group *pg = pgpath->pg; 1118 struct multipath *m = pg->m; 1119 unsigned long flags; 1120 unsigned delay_retry = 0; 1121 1122 /* device or driver problems */ 1123 switch (errors) { 1124 case SCSI_DH_OK: 1125 break; 1126 case SCSI_DH_NOSYS: 1127 if (!m->hw_handler_name) { 1128 errors = 0; 1129 break; 1130 } 1131 DMERR("Could not failover the device: Handler scsi_dh_%s " 1132 "Error %d.", m->hw_handler_name, errors); 1133 /* 1134 * Fail path for now, so we do not ping pong 1135 */ 1136 fail_path(pgpath); 1137 break; 1138 case SCSI_DH_DEV_TEMP_BUSY: 1139 /* 1140 * Probably doing something like FW upgrade on the 1141 * controller so try the other pg. 1142 */ 1143 bypass_pg(m, pg, 1); 1144 break; 1145 case SCSI_DH_RETRY: 1146 /* Wait before retrying. */ 1147 delay_retry = 1; 1148 case SCSI_DH_IMM_RETRY: 1149 case SCSI_DH_RES_TEMP_UNAVAIL: 1150 if (pg_init_limit_reached(m, pgpath)) 1151 fail_path(pgpath); 1152 errors = 0; 1153 break; 1154 default: 1155 /* 1156 * We probably do not want to fail the path for a device 1157 * error, but this is what the old dm did. In future 1158 * patches we can do more advanced handling. 1159 */ 1160 fail_path(pgpath); 1161 } 1162 1163 spin_lock_irqsave(&m->lock, flags); 1164 if (errors) { 1165 if (pgpath == m->current_pgpath) { 1166 DMERR("Could not failover device. Error %d.", errors); 1167 m->current_pgpath = NULL; 1168 m->current_pg = NULL; 1169 } 1170 } else if (!m->pg_init_required) 1171 pg->bypassed = 0; 1172 1173 if (--m->pg_init_in_progress) 1174 /* Activations of other paths are still on going */ 1175 goto out; 1176 1177 if (m->pg_init_required) { 1178 m->pg_init_delay_retry = delay_retry; 1179 if (__pg_init_all_paths(m)) 1180 goto out; 1181 } 1182 m->queue_io = 0; 1183 1184 /* 1185 * Wake up any thread waiting to suspend. 1186 */ 1187 wake_up(&m->pg_init_wait); 1188 1189 out: 1190 spin_unlock_irqrestore(&m->lock, flags); 1191 } 1192 1193 static void activate_path(struct work_struct *work) 1194 { 1195 struct pgpath *pgpath = 1196 container_of(work, struct pgpath, activate_path.work); 1197 1198 if (pgpath->is_active) 1199 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), 1200 pg_init_done, pgpath); 1201 else 1202 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1203 } 1204 1205 static int noretry_error(int error) 1206 { 1207 switch (error) { 1208 case -EOPNOTSUPP: 1209 case -EREMOTEIO: 1210 case -EILSEQ: 1211 case -ENODATA: 1212 case -ENOSPC: 1213 return 1; 1214 } 1215 1216 /* Anything else could be a path failure, so should be retried */ 1217 return 0; 1218 } 1219 1220 /* 1221 * end_io handling 1222 */ 1223 static int do_end_io(struct multipath *m, struct request *clone, 1224 int error, struct dm_mpath_io *mpio) 1225 { 1226 /* 1227 * We don't queue any clone request inside the multipath target 1228 * during end I/O handling, since those clone requests don't have 1229 * bio clones. If we queue them inside the multipath target, 1230 * we need to make bio clones, that requires memory allocation. 1231 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests 1232 * don't have bio clones.) 1233 * Instead of queueing the clone request here, we queue the original 1234 * request into dm core, which will remake a clone request and 1235 * clone bios for it and resubmit it later. 1236 */ 1237 int r = DM_ENDIO_REQUEUE; 1238 unsigned long flags; 1239 1240 if (!error && !clone->errors) 1241 return 0; /* I/O complete */ 1242 1243 if (noretry_error(error)) { 1244 if ((clone->cmd_flags & REQ_WRITE_SAME) && 1245 !clone->q->limits.max_write_same_sectors) { 1246 struct queue_limits *limits; 1247 1248 /* device doesn't really support WRITE SAME, disable it */ 1249 limits = dm_get_queue_limits(dm_table_get_md(m->ti->table)); 1250 limits->max_write_same_sectors = 0; 1251 } 1252 return error; 1253 } 1254 1255 if (mpio->pgpath) 1256 fail_path(mpio->pgpath); 1257 1258 spin_lock_irqsave(&m->lock, flags); 1259 if (!m->nr_valid_paths) { 1260 if (!m->queue_if_no_path) { 1261 if (!__must_push_back(m)) 1262 r = -EIO; 1263 } else { 1264 if (error == -EBADE) 1265 r = error; 1266 } 1267 } 1268 spin_unlock_irqrestore(&m->lock, flags); 1269 1270 return r; 1271 } 1272 1273 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1274 int error, union map_info *map_context) 1275 { 1276 struct multipath *m = ti->private; 1277 struct dm_mpath_io *mpio = map_context->ptr; 1278 struct pgpath *pgpath; 1279 struct path_selector *ps; 1280 int r; 1281 1282 BUG_ON(!mpio); 1283 1284 r = do_end_io(m, clone, error, mpio); 1285 pgpath = mpio->pgpath; 1286 if (pgpath) { 1287 ps = &pgpath->pg->ps; 1288 if (ps->type->end_io) 1289 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1290 } 1291 clear_mapinfo(m, map_context); 1292 1293 return r; 1294 } 1295 1296 /* 1297 * Suspend can't complete until all the I/O is processed so if 1298 * the last path fails we must error any remaining I/O. 1299 * Note that if the freeze_bdev fails while suspending, the 1300 * queue_if_no_path state is lost - userspace should reset it. 1301 */ 1302 static void multipath_presuspend(struct dm_target *ti) 1303 { 1304 struct multipath *m = (struct multipath *) ti->private; 1305 1306 queue_if_no_path(m, 0, 1); 1307 } 1308 1309 static void multipath_postsuspend(struct dm_target *ti) 1310 { 1311 struct multipath *m = ti->private; 1312 1313 mutex_lock(&m->work_mutex); 1314 flush_multipath_work(m); 1315 mutex_unlock(&m->work_mutex); 1316 } 1317 1318 /* 1319 * Restore the queue_if_no_path setting. 1320 */ 1321 static void multipath_resume(struct dm_target *ti) 1322 { 1323 struct multipath *m = (struct multipath *) ti->private; 1324 unsigned long flags; 1325 1326 spin_lock_irqsave(&m->lock, flags); 1327 m->queue_if_no_path = m->saved_queue_if_no_path; 1328 spin_unlock_irqrestore(&m->lock, flags); 1329 } 1330 1331 /* 1332 * Info output has the following format: 1333 * num_multipath_feature_args [multipath_feature_args]* 1334 * num_handler_status_args [handler_status_args]* 1335 * num_groups init_group_number 1336 * [A|D|E num_ps_status_args [ps_status_args]* 1337 * num_paths num_selector_args 1338 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1339 * 1340 * Table output has the following format (identical to the constructor string): 1341 * num_feature_args [features_args]* 1342 * num_handler_args hw_handler [hw_handler_args]* 1343 * num_groups init_group_number 1344 * [priority selector-name num_ps_args [ps_args]* 1345 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1346 */ 1347 static void multipath_status(struct dm_target *ti, status_type_t type, 1348 unsigned status_flags, char *result, unsigned maxlen) 1349 { 1350 int sz = 0; 1351 unsigned long flags; 1352 struct multipath *m = (struct multipath *) ti->private; 1353 struct priority_group *pg; 1354 struct pgpath *p; 1355 unsigned pg_num; 1356 char state; 1357 1358 spin_lock_irqsave(&m->lock, flags); 1359 1360 /* Features */ 1361 if (type == STATUSTYPE_INFO) 1362 DMEMIT("2 %u %u ", m->queue_io, m->pg_init_count); 1363 else { 1364 DMEMIT("%u ", m->queue_if_no_path + 1365 (m->pg_init_retries > 0) * 2 + 1366 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1367 m->retain_attached_hw_handler); 1368 if (m->queue_if_no_path) 1369 DMEMIT("queue_if_no_path "); 1370 if (m->pg_init_retries) 1371 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1372 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1373 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1374 if (m->retain_attached_hw_handler) 1375 DMEMIT("retain_attached_hw_handler "); 1376 } 1377 1378 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1379 DMEMIT("0 "); 1380 else 1381 DMEMIT("1 %s ", m->hw_handler_name); 1382 1383 DMEMIT("%u ", m->nr_priority_groups); 1384 1385 if (m->next_pg) 1386 pg_num = m->next_pg->pg_num; 1387 else if (m->current_pg) 1388 pg_num = m->current_pg->pg_num; 1389 else 1390 pg_num = (m->nr_priority_groups ? 1 : 0); 1391 1392 DMEMIT("%u ", pg_num); 1393 1394 switch (type) { 1395 case STATUSTYPE_INFO: 1396 list_for_each_entry(pg, &m->priority_groups, list) { 1397 if (pg->bypassed) 1398 state = 'D'; /* Disabled */ 1399 else if (pg == m->current_pg) 1400 state = 'A'; /* Currently Active */ 1401 else 1402 state = 'E'; /* Enabled */ 1403 1404 DMEMIT("%c ", state); 1405 1406 if (pg->ps.type->status) 1407 sz += pg->ps.type->status(&pg->ps, NULL, type, 1408 result + sz, 1409 maxlen - sz); 1410 else 1411 DMEMIT("0 "); 1412 1413 DMEMIT("%u %u ", pg->nr_pgpaths, 1414 pg->ps.type->info_args); 1415 1416 list_for_each_entry(p, &pg->pgpaths, list) { 1417 DMEMIT("%s %s %u ", p->path.dev->name, 1418 p->is_active ? "A" : "F", 1419 p->fail_count); 1420 if (pg->ps.type->status) 1421 sz += pg->ps.type->status(&pg->ps, 1422 &p->path, type, result + sz, 1423 maxlen - sz); 1424 } 1425 } 1426 break; 1427 1428 case STATUSTYPE_TABLE: 1429 list_for_each_entry(pg, &m->priority_groups, list) { 1430 DMEMIT("%s ", pg->ps.type->name); 1431 1432 if (pg->ps.type->status) 1433 sz += pg->ps.type->status(&pg->ps, NULL, type, 1434 result + sz, 1435 maxlen - sz); 1436 else 1437 DMEMIT("0 "); 1438 1439 DMEMIT("%u %u ", pg->nr_pgpaths, 1440 pg->ps.type->table_args); 1441 1442 list_for_each_entry(p, &pg->pgpaths, list) { 1443 DMEMIT("%s ", p->path.dev->name); 1444 if (pg->ps.type->status) 1445 sz += pg->ps.type->status(&pg->ps, 1446 &p->path, type, result + sz, 1447 maxlen - sz); 1448 } 1449 } 1450 break; 1451 } 1452 1453 spin_unlock_irqrestore(&m->lock, flags); 1454 } 1455 1456 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1457 { 1458 int r = -EINVAL; 1459 struct dm_dev *dev; 1460 struct multipath *m = (struct multipath *) ti->private; 1461 action_fn action; 1462 1463 mutex_lock(&m->work_mutex); 1464 1465 if (dm_suspended(ti)) { 1466 r = -EBUSY; 1467 goto out; 1468 } 1469 1470 if (argc == 1) { 1471 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1472 r = queue_if_no_path(m, 1, 0); 1473 goto out; 1474 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1475 r = queue_if_no_path(m, 0, 0); 1476 goto out; 1477 } 1478 } 1479 1480 if (argc != 2) { 1481 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1482 goto out; 1483 } 1484 1485 if (!strcasecmp(argv[0], "disable_group")) { 1486 r = bypass_pg_num(m, argv[1], 1); 1487 goto out; 1488 } else if (!strcasecmp(argv[0], "enable_group")) { 1489 r = bypass_pg_num(m, argv[1], 0); 1490 goto out; 1491 } else if (!strcasecmp(argv[0], "switch_group")) { 1492 r = switch_pg_num(m, argv[1]); 1493 goto out; 1494 } else if (!strcasecmp(argv[0], "reinstate_path")) 1495 action = reinstate_path; 1496 else if (!strcasecmp(argv[0], "fail_path")) 1497 action = fail_path; 1498 else { 1499 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1500 goto out; 1501 } 1502 1503 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1504 if (r) { 1505 DMWARN("message: error getting device %s", 1506 argv[1]); 1507 goto out; 1508 } 1509 1510 r = action_dev(m, dev, action); 1511 1512 dm_put_device(ti, dev); 1513 1514 out: 1515 mutex_unlock(&m->work_mutex); 1516 return r; 1517 } 1518 1519 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd, 1520 unsigned long arg) 1521 { 1522 struct multipath *m = ti->private; 1523 struct pgpath *pgpath; 1524 struct block_device *bdev; 1525 fmode_t mode; 1526 unsigned long flags; 1527 int r; 1528 1529 bdev = NULL; 1530 mode = 0; 1531 r = 0; 1532 1533 spin_lock_irqsave(&m->lock, flags); 1534 1535 if (!m->current_pgpath) 1536 __choose_pgpath(m, 0); 1537 1538 pgpath = m->current_pgpath; 1539 1540 if (pgpath) { 1541 bdev = pgpath->path.dev->bdev; 1542 mode = pgpath->path.dev->mode; 1543 } 1544 1545 if ((pgpath && m->queue_io) || (!pgpath && m->queue_if_no_path)) 1546 r = -ENOTCONN; 1547 else if (!bdev) 1548 r = -EIO; 1549 1550 spin_unlock_irqrestore(&m->lock, flags); 1551 1552 /* 1553 * Only pass ioctls through if the device sizes match exactly. 1554 */ 1555 if (!bdev || ti->len != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT) { 1556 int err = scsi_verify_blk_ioctl(NULL, cmd); 1557 if (err) 1558 r = err; 1559 } 1560 1561 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 1562 spin_lock_irqsave(&m->lock, flags); 1563 if (!m->current_pg) { 1564 /* Path status changed, redo selection */ 1565 __choose_pgpath(m, 0); 1566 } 1567 if (m->pg_init_required) 1568 __pg_init_all_paths(m); 1569 spin_unlock_irqrestore(&m->lock, flags); 1570 dm_table_run_md_queue_async(m->ti->table); 1571 } 1572 1573 return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg); 1574 } 1575 1576 static int multipath_iterate_devices(struct dm_target *ti, 1577 iterate_devices_callout_fn fn, void *data) 1578 { 1579 struct multipath *m = ti->private; 1580 struct priority_group *pg; 1581 struct pgpath *p; 1582 int ret = 0; 1583 1584 list_for_each_entry(pg, &m->priority_groups, list) { 1585 list_for_each_entry(p, &pg->pgpaths, list) { 1586 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1587 if (ret) 1588 goto out; 1589 } 1590 } 1591 1592 out: 1593 return ret; 1594 } 1595 1596 static int __pgpath_busy(struct pgpath *pgpath) 1597 { 1598 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1599 1600 return dm_underlying_device_busy(q); 1601 } 1602 1603 /* 1604 * We return "busy", only when we can map I/Os but underlying devices 1605 * are busy (so even if we map I/Os now, the I/Os will wait on 1606 * the underlying queue). 1607 * In other words, if we want to kill I/Os or queue them inside us 1608 * due to map unavailability, we don't return "busy". Otherwise, 1609 * dm core won't give us the I/Os and we can't do what we want. 1610 */ 1611 static int multipath_busy(struct dm_target *ti) 1612 { 1613 int busy = 0, has_active = 0; 1614 struct multipath *m = ti->private; 1615 struct priority_group *pg; 1616 struct pgpath *pgpath; 1617 unsigned long flags; 1618 1619 spin_lock_irqsave(&m->lock, flags); 1620 1621 /* pg_init in progress, requeue until done */ 1622 if (!pg_ready(m)) { 1623 busy = 1; 1624 goto out; 1625 } 1626 /* Guess which priority_group will be used at next mapping time */ 1627 if (unlikely(!m->current_pgpath && m->next_pg)) 1628 pg = m->next_pg; 1629 else if (likely(m->current_pg)) 1630 pg = m->current_pg; 1631 else 1632 /* 1633 * We don't know which pg will be used at next mapping time. 1634 * We don't call __choose_pgpath() here to avoid to trigger 1635 * pg_init just by busy checking. 1636 * So we don't know whether underlying devices we will be using 1637 * at next mapping time are busy or not. Just try mapping. 1638 */ 1639 goto out; 1640 1641 /* 1642 * If there is one non-busy active path at least, the path selector 1643 * will be able to select it. So we consider such a pg as not busy. 1644 */ 1645 busy = 1; 1646 list_for_each_entry(pgpath, &pg->pgpaths, list) 1647 if (pgpath->is_active) { 1648 has_active = 1; 1649 1650 if (!__pgpath_busy(pgpath)) { 1651 busy = 0; 1652 break; 1653 } 1654 } 1655 1656 if (!has_active) 1657 /* 1658 * No active path in this pg, so this pg won't be used and 1659 * the current_pg will be changed at next mapping time. 1660 * We need to try mapping to determine it. 1661 */ 1662 busy = 0; 1663 1664 out: 1665 spin_unlock_irqrestore(&m->lock, flags); 1666 1667 return busy; 1668 } 1669 1670 /*----------------------------------------------------------------- 1671 * Module setup 1672 *---------------------------------------------------------------*/ 1673 static struct target_type multipath_target = { 1674 .name = "multipath", 1675 .version = {1, 7, 0}, 1676 .module = THIS_MODULE, 1677 .ctr = multipath_ctr, 1678 .dtr = multipath_dtr, 1679 .map_rq = multipath_map, 1680 .rq_end_io = multipath_end_io, 1681 .presuspend = multipath_presuspend, 1682 .postsuspend = multipath_postsuspend, 1683 .resume = multipath_resume, 1684 .status = multipath_status, 1685 .message = multipath_message, 1686 .ioctl = multipath_ioctl, 1687 .iterate_devices = multipath_iterate_devices, 1688 .busy = multipath_busy, 1689 }; 1690 1691 static int __init dm_multipath_init(void) 1692 { 1693 int r; 1694 1695 /* allocate a slab for the dm_ios */ 1696 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 1697 if (!_mpio_cache) 1698 return -ENOMEM; 1699 1700 r = dm_register_target(&multipath_target); 1701 if (r < 0) { 1702 DMERR("register failed %d", r); 1703 kmem_cache_destroy(_mpio_cache); 1704 return -EINVAL; 1705 } 1706 1707 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1708 if (!kmultipathd) { 1709 DMERR("failed to create workqueue kmpathd"); 1710 dm_unregister_target(&multipath_target); 1711 kmem_cache_destroy(_mpio_cache); 1712 return -ENOMEM; 1713 } 1714 1715 /* 1716 * A separate workqueue is used to handle the device handlers 1717 * to avoid overloading existing workqueue. Overloading the 1718 * old workqueue would also create a bottleneck in the 1719 * path of the storage hardware device activation. 1720 */ 1721 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1722 WQ_MEM_RECLAIM); 1723 if (!kmpath_handlerd) { 1724 DMERR("failed to create workqueue kmpath_handlerd"); 1725 destroy_workqueue(kmultipathd); 1726 dm_unregister_target(&multipath_target); 1727 kmem_cache_destroy(_mpio_cache); 1728 return -ENOMEM; 1729 } 1730 1731 DMINFO("version %u.%u.%u loaded", 1732 multipath_target.version[0], multipath_target.version[1], 1733 multipath_target.version[2]); 1734 1735 return r; 1736 } 1737 1738 static void __exit dm_multipath_exit(void) 1739 { 1740 destroy_workqueue(kmpath_handlerd); 1741 destroy_workqueue(kmultipathd); 1742 1743 dm_unregister_target(&multipath_target); 1744 kmem_cache_destroy(_mpio_cache); 1745 } 1746 1747 module_init(dm_multipath_init); 1748 module_exit(dm_multipath_exit); 1749 1750 MODULE_DESCRIPTION(DM_NAME " multipath target"); 1751 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 1752 MODULE_LICENSE("GPL"); 1753