xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		m->queue_mode = DM_TYPE_REQUEST_BASED;
207 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
208 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
209 		/*
210 		 * bio-based doesn't support any direct scsi_dh management;
211 		 * it just discovers if a scsi_dh is attached.
212 		 */
213 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
214 	}
215 
216 	dm_table_set_type(ti->table, m->queue_mode);
217 
218 	/*
219 	 * Init fields that are only used when a scsi_dh is attached
220 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
221 	 */
222 	set_bit(MPATHF_QUEUE_IO, &m->flags);
223 	atomic_set(&m->pg_init_in_progress, 0);
224 	atomic_set(&m->pg_init_count, 0);
225 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
226 	init_waitqueue_head(&m->pg_init_wait);
227 
228 	return 0;
229 }
230 
231 static void free_multipath(struct multipath *m)
232 {
233 	struct priority_group *pg, *tmp;
234 
235 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
236 		list_del(&pg->list);
237 		free_priority_group(pg, m->ti);
238 	}
239 
240 	kfree(m->hw_handler_name);
241 	kfree(m->hw_handler_params);
242 	mutex_destroy(&m->work_mutex);
243 	kfree(m);
244 }
245 
246 static struct dm_mpath_io *get_mpio(union map_info *info)
247 {
248 	return info->ptr;
249 }
250 
251 static size_t multipath_per_bio_data_size(void)
252 {
253 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
254 }
255 
256 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
257 {
258 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
259 }
260 
261 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
262 {
263 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
264 	void *bio_details = mpio + 1;
265 	return bio_details;
266 }
267 
268 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
269 {
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
272 
273 	mpio->nr_bytes = bio->bi_iter.bi_size;
274 	mpio->pgpath = NULL;
275 	*mpio_p = mpio;
276 
277 	dm_bio_record(bio_details, bio);
278 }
279 
280 /*-----------------------------------------------
281  * Path selection
282  *-----------------------------------------------*/
283 
284 static int __pg_init_all_paths(struct multipath *m)
285 {
286 	struct pgpath *pgpath;
287 	unsigned long pg_init_delay = 0;
288 
289 	lockdep_assert_held(&m->lock);
290 
291 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
292 		return 0;
293 
294 	atomic_inc(&m->pg_init_count);
295 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
296 
297 	/* Check here to reset pg_init_required */
298 	if (!m->current_pg)
299 		return 0;
300 
301 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
302 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
303 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
304 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
305 		/* Skip failed paths */
306 		if (!pgpath->is_active)
307 			continue;
308 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
309 				       pg_init_delay))
310 			atomic_inc(&m->pg_init_in_progress);
311 	}
312 	return atomic_read(&m->pg_init_in_progress);
313 }
314 
315 static int pg_init_all_paths(struct multipath *m)
316 {
317 	int ret;
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&m->lock, flags);
321 	ret = __pg_init_all_paths(m);
322 	spin_unlock_irqrestore(&m->lock, flags);
323 
324 	return ret;
325 }
326 
327 static void __switch_pg(struct multipath *m, struct priority_group *pg)
328 {
329 	m->current_pg = pg;
330 
331 	/* Must we initialise the PG first, and queue I/O till it's ready? */
332 	if (m->hw_handler_name) {
333 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
334 		set_bit(MPATHF_QUEUE_IO, &m->flags);
335 	} else {
336 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
337 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
338 	}
339 
340 	atomic_set(&m->pg_init_count, 0);
341 }
342 
343 static struct pgpath *choose_path_in_pg(struct multipath *m,
344 					struct priority_group *pg,
345 					size_t nr_bytes)
346 {
347 	unsigned long flags;
348 	struct dm_path *path;
349 	struct pgpath *pgpath;
350 
351 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
352 	if (!path)
353 		return ERR_PTR(-ENXIO);
354 
355 	pgpath = path_to_pgpath(path);
356 
357 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
358 		/* Only update current_pgpath if pg changed */
359 		spin_lock_irqsave(&m->lock, flags);
360 		m->current_pgpath = pgpath;
361 		__switch_pg(m, pg);
362 		spin_unlock_irqrestore(&m->lock, flags);
363 	}
364 
365 	return pgpath;
366 }
367 
368 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
369 {
370 	unsigned long flags;
371 	struct priority_group *pg;
372 	struct pgpath *pgpath;
373 	unsigned bypassed = 1;
374 
375 	if (!atomic_read(&m->nr_valid_paths)) {
376 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
377 		goto failed;
378 	}
379 
380 	/* Were we instructed to switch PG? */
381 	if (READ_ONCE(m->next_pg)) {
382 		spin_lock_irqsave(&m->lock, flags);
383 		pg = m->next_pg;
384 		if (!pg) {
385 			spin_unlock_irqrestore(&m->lock, flags);
386 			goto check_current_pg;
387 		}
388 		m->next_pg = NULL;
389 		spin_unlock_irqrestore(&m->lock, flags);
390 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
391 		if (!IS_ERR_OR_NULL(pgpath))
392 			return pgpath;
393 	}
394 
395 	/* Don't change PG until it has no remaining paths */
396 check_current_pg:
397 	pg = READ_ONCE(m->current_pg);
398 	if (pg) {
399 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
400 		if (!IS_ERR_OR_NULL(pgpath))
401 			return pgpath;
402 	}
403 
404 	/*
405 	 * Loop through priority groups until we find a valid path.
406 	 * First time we skip PGs marked 'bypassed'.
407 	 * Second time we only try the ones we skipped, but set
408 	 * pg_init_delay_retry so we do not hammer controllers.
409 	 */
410 	do {
411 		list_for_each_entry(pg, &m->priority_groups, list) {
412 			if (pg->bypassed == !!bypassed)
413 				continue;
414 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
415 			if (!IS_ERR_OR_NULL(pgpath)) {
416 				if (!bypassed)
417 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
418 				return pgpath;
419 			}
420 		}
421 	} while (bypassed--);
422 
423 failed:
424 	spin_lock_irqsave(&m->lock, flags);
425 	m->current_pgpath = NULL;
426 	m->current_pg = NULL;
427 	spin_unlock_irqrestore(&m->lock, flags);
428 
429 	return NULL;
430 }
431 
432 /*
433  * dm_report_EIO() is a macro instead of a function to make pr_debug()
434  * report the function name and line number of the function from which
435  * it has been invoked.
436  */
437 #define dm_report_EIO(m)						\
438 do {									\
439 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
440 									\
441 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
442 		 dm_device_name(md),					\
443 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
444 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
445 		 dm_noflush_suspending((m)->ti));			\
446 } while (0)
447 
448 /*
449  * Check whether bios must be queued in the device-mapper core rather
450  * than here in the target.
451  *
452  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
453  * the same value then we are not between multipath_presuspend()
454  * and multipath_resume() calls and we have no need to check
455  * for the DMF_NOFLUSH_SUSPENDING flag.
456  */
457 static bool __must_push_back(struct multipath *m, unsigned long flags)
458 {
459 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
460 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
461 		dm_noflush_suspending(m->ti));
462 }
463 
464 /*
465  * Following functions use READ_ONCE to get atomic access to
466  * all m->flags to avoid taking spinlock
467  */
468 static bool must_push_back_rq(struct multipath *m)
469 {
470 	unsigned long flags = READ_ONCE(m->flags);
471 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
472 }
473 
474 static bool must_push_back_bio(struct multipath *m)
475 {
476 	unsigned long flags = READ_ONCE(m->flags);
477 	return __must_push_back(m, flags);
478 }
479 
480 /*
481  * Map cloned requests (request-based multipath)
482  */
483 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
484 				   union map_info *map_context,
485 				   struct request **__clone)
486 {
487 	struct multipath *m = ti->private;
488 	size_t nr_bytes = blk_rq_bytes(rq);
489 	struct pgpath *pgpath;
490 	struct block_device *bdev;
491 	struct dm_mpath_io *mpio = get_mpio(map_context);
492 	struct request_queue *q;
493 	struct request *clone;
494 
495 	/* Do we need to select a new pgpath? */
496 	pgpath = READ_ONCE(m->current_pgpath);
497 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
498 		pgpath = choose_pgpath(m, nr_bytes);
499 
500 	if (!pgpath) {
501 		if (must_push_back_rq(m))
502 			return DM_MAPIO_DELAY_REQUEUE;
503 		dm_report_EIO(m);	/* Failed */
504 		return DM_MAPIO_KILL;
505 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
506 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
507 		pg_init_all_paths(m);
508 		return DM_MAPIO_DELAY_REQUEUE;
509 	}
510 
511 	mpio->pgpath = pgpath;
512 	mpio->nr_bytes = nr_bytes;
513 
514 	bdev = pgpath->path.dev->bdev;
515 	q = bdev_get_queue(bdev);
516 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
517 			BLK_MQ_REQ_NOWAIT);
518 	if (IS_ERR(clone)) {
519 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
520 		if (blk_queue_dying(q)) {
521 			atomic_inc(&m->pg_init_in_progress);
522 			activate_or_offline_path(pgpath);
523 			return DM_MAPIO_DELAY_REQUEUE;
524 		}
525 
526 		/*
527 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
528 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
529 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
530 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
531 		 * otherwise I/O merging can suffer.
532 		 */
533 		return DM_MAPIO_REQUEUE;
534 	}
535 	clone->bio = clone->biotail = NULL;
536 	clone->rq_disk = bdev->bd_disk;
537 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
538 	*__clone = clone;
539 
540 	if (pgpath->pg->ps.type->start_io)
541 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
542 					      &pgpath->path,
543 					      nr_bytes);
544 	return DM_MAPIO_REMAPPED;
545 }
546 
547 static void multipath_release_clone(struct request *clone)
548 {
549 	blk_put_request(clone);
550 }
551 
552 /*
553  * Map cloned bios (bio-based multipath)
554  */
555 
556 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
557 {
558 	struct pgpath *pgpath;
559 	unsigned long flags;
560 	bool queue_io;
561 
562 	/* Do we need to select a new pgpath? */
563 	pgpath = READ_ONCE(m->current_pgpath);
564 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
565 	if (!pgpath || !queue_io)
566 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
567 
568 	if ((pgpath && queue_io) ||
569 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
570 		/* Queue for the daemon to resubmit */
571 		spin_lock_irqsave(&m->lock, flags);
572 		bio_list_add(&m->queued_bios, bio);
573 		spin_unlock_irqrestore(&m->lock, flags);
574 
575 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
576 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
577 			pg_init_all_paths(m);
578 		else if (!queue_io)
579 			queue_work(kmultipathd, &m->process_queued_bios);
580 
581 		return ERR_PTR(-EAGAIN);
582 	}
583 
584 	return pgpath;
585 }
586 
587 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio)
588 {
589 	struct pgpath *pgpath;
590 	unsigned long flags;
591 
592 	/* Do we need to select a new pgpath? */
593 	/*
594 	 * FIXME: currently only switching path if no path (due to failure, etc)
595 	 * - which negates the point of using a path selector
596 	 */
597 	pgpath = READ_ONCE(m->current_pgpath);
598 	if (!pgpath)
599 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
600 
601 	if (!pgpath) {
602 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
603 			/* Queue for the daemon to resubmit */
604 			spin_lock_irqsave(&m->lock, flags);
605 			bio_list_add(&m->queued_bios, bio);
606 			spin_unlock_irqrestore(&m->lock, flags);
607 			queue_work(kmultipathd, &m->process_queued_bios);
608 
609 			return ERR_PTR(-EAGAIN);
610 		}
611 		return NULL;
612 	}
613 
614 	return pgpath;
615 }
616 
617 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
618 			       struct dm_mpath_io *mpio)
619 {
620 	struct pgpath *pgpath;
621 
622 	if (!m->hw_handler_name)
623 		pgpath = __map_bio_fast(m, bio);
624 	else
625 		pgpath = __map_bio(m, bio);
626 
627 	if (IS_ERR(pgpath))
628 		return DM_MAPIO_SUBMITTED;
629 
630 	if (!pgpath) {
631 		if (must_push_back_bio(m))
632 			return DM_MAPIO_REQUEUE;
633 		dm_report_EIO(m);
634 		return DM_MAPIO_KILL;
635 	}
636 
637 	mpio->pgpath = pgpath;
638 
639 	bio->bi_status = 0;
640 	bio_set_dev(bio, pgpath->path.dev->bdev);
641 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
642 
643 	if (pgpath->pg->ps.type->start_io)
644 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
645 					      &pgpath->path,
646 					      mpio->nr_bytes);
647 	return DM_MAPIO_REMAPPED;
648 }
649 
650 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
651 {
652 	struct multipath *m = ti->private;
653 	struct dm_mpath_io *mpio = NULL;
654 
655 	multipath_init_per_bio_data(bio, &mpio);
656 	return __multipath_map_bio(m, bio, mpio);
657 }
658 
659 static void process_queued_io_list(struct multipath *m)
660 {
661 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
662 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
663 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
664 		queue_work(kmultipathd, &m->process_queued_bios);
665 }
666 
667 static void process_queued_bios(struct work_struct *work)
668 {
669 	int r;
670 	unsigned long flags;
671 	struct bio *bio;
672 	struct bio_list bios;
673 	struct blk_plug plug;
674 	struct multipath *m =
675 		container_of(work, struct multipath, process_queued_bios);
676 
677 	bio_list_init(&bios);
678 
679 	spin_lock_irqsave(&m->lock, flags);
680 
681 	if (bio_list_empty(&m->queued_bios)) {
682 		spin_unlock_irqrestore(&m->lock, flags);
683 		return;
684 	}
685 
686 	bio_list_merge(&bios, &m->queued_bios);
687 	bio_list_init(&m->queued_bios);
688 
689 	spin_unlock_irqrestore(&m->lock, flags);
690 
691 	blk_start_plug(&plug);
692 	while ((bio = bio_list_pop(&bios))) {
693 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
694 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
695 		r = __multipath_map_bio(m, bio, mpio);
696 		switch (r) {
697 		case DM_MAPIO_KILL:
698 			bio->bi_status = BLK_STS_IOERR;
699 			bio_endio(bio);
700 			break;
701 		case DM_MAPIO_REQUEUE:
702 			bio->bi_status = BLK_STS_DM_REQUEUE;
703 			bio_endio(bio);
704 			break;
705 		case DM_MAPIO_REMAPPED:
706 			generic_make_request(bio);
707 			break;
708 		case DM_MAPIO_SUBMITTED:
709 			break;
710 		default:
711 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
712 		}
713 	}
714 	blk_finish_plug(&plug);
715 }
716 
717 /*
718  * If we run out of usable paths, should we queue I/O or error it?
719  */
720 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
721 			    bool save_old_value)
722 {
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&m->lock, flags);
726 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
727 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
728 		   (!save_old_value && queue_if_no_path));
729 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
730 	spin_unlock_irqrestore(&m->lock, flags);
731 
732 	if (!queue_if_no_path) {
733 		dm_table_run_md_queue_async(m->ti->table);
734 		process_queued_io_list(m);
735 	}
736 
737 	return 0;
738 }
739 
740 /*
741  * An event is triggered whenever a path is taken out of use.
742  * Includes path failure and PG bypass.
743  */
744 static void trigger_event(struct work_struct *work)
745 {
746 	struct multipath *m =
747 		container_of(work, struct multipath, trigger_event);
748 
749 	dm_table_event(m->ti->table);
750 }
751 
752 /*-----------------------------------------------------------------
753  * Constructor/argument parsing:
754  * <#multipath feature args> [<arg>]*
755  * <#hw_handler args> [hw_handler [<arg>]*]
756  * <#priority groups>
757  * <initial priority group>
758  *     [<selector> <#selector args> [<arg>]*
759  *      <#paths> <#per-path selector args>
760  *         [<path> [<arg>]* ]+ ]+
761  *---------------------------------------------------------------*/
762 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
763 			       struct dm_target *ti)
764 {
765 	int r;
766 	struct path_selector_type *pst;
767 	unsigned ps_argc;
768 
769 	static const struct dm_arg _args[] = {
770 		{0, 1024, "invalid number of path selector args"},
771 	};
772 
773 	pst = dm_get_path_selector(dm_shift_arg(as));
774 	if (!pst) {
775 		ti->error = "unknown path selector type";
776 		return -EINVAL;
777 	}
778 
779 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
780 	if (r) {
781 		dm_put_path_selector(pst);
782 		return -EINVAL;
783 	}
784 
785 	r = pst->create(&pg->ps, ps_argc, as->argv);
786 	if (r) {
787 		dm_put_path_selector(pst);
788 		ti->error = "path selector constructor failed";
789 		return r;
790 	}
791 
792 	pg->ps.type = pst;
793 	dm_consume_args(as, ps_argc);
794 
795 	return 0;
796 }
797 
798 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
799 			 const char **attached_handler_name, char **error)
800 {
801 	struct request_queue *q = bdev_get_queue(bdev);
802 	int r;
803 
804 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
805 retain:
806 		if (*attached_handler_name) {
807 			/*
808 			 * Clear any hw_handler_params associated with a
809 			 * handler that isn't already attached.
810 			 */
811 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
812 				kfree(m->hw_handler_params);
813 				m->hw_handler_params = NULL;
814 			}
815 
816 			/*
817 			 * Reset hw_handler_name to match the attached handler
818 			 *
819 			 * NB. This modifies the table line to show the actual
820 			 * handler instead of the original table passed in.
821 			 */
822 			kfree(m->hw_handler_name);
823 			m->hw_handler_name = *attached_handler_name;
824 			*attached_handler_name = NULL;
825 		}
826 	}
827 
828 	if (m->hw_handler_name) {
829 		r = scsi_dh_attach(q, m->hw_handler_name);
830 		if (r == -EBUSY) {
831 			char b[BDEVNAME_SIZE];
832 
833 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
834 			       bdevname(bdev, b));
835 			goto retain;
836 		}
837 		if (r < 0) {
838 			*error = "error attaching hardware handler";
839 			return r;
840 		}
841 
842 		if (m->hw_handler_params) {
843 			r = scsi_dh_set_params(q, m->hw_handler_params);
844 			if (r < 0) {
845 				*error = "unable to set hardware handler parameters";
846 				return r;
847 			}
848 		}
849 	}
850 
851 	return 0;
852 }
853 
854 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
855 				 struct dm_target *ti)
856 {
857 	int r;
858 	struct pgpath *p;
859 	struct multipath *m = ti->private;
860 	struct request_queue *q;
861 	const char *attached_handler_name = NULL;
862 
863 	/* we need at least a path arg */
864 	if (as->argc < 1) {
865 		ti->error = "no device given";
866 		return ERR_PTR(-EINVAL);
867 	}
868 
869 	p = alloc_pgpath();
870 	if (!p)
871 		return ERR_PTR(-ENOMEM);
872 
873 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
874 			  &p->path.dev);
875 	if (r) {
876 		ti->error = "error getting device";
877 		goto bad;
878 	}
879 
880 	q = bdev_get_queue(p->path.dev->bdev);
881 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
882 	if (attached_handler_name || m->hw_handler_name) {
883 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
884 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
885 		if (r) {
886 			dm_put_device(ti, p->path.dev);
887 			goto bad;
888 		}
889 	}
890 
891 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
892 	if (r) {
893 		dm_put_device(ti, p->path.dev);
894 		goto bad;
895 	}
896 
897 	return p;
898  bad:
899 	kfree(attached_handler_name);
900 	free_pgpath(p);
901 	return ERR_PTR(r);
902 }
903 
904 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
905 						   struct multipath *m)
906 {
907 	static const struct dm_arg _args[] = {
908 		{1, 1024, "invalid number of paths"},
909 		{0, 1024, "invalid number of selector args"}
910 	};
911 
912 	int r;
913 	unsigned i, nr_selector_args, nr_args;
914 	struct priority_group *pg;
915 	struct dm_target *ti = m->ti;
916 
917 	if (as->argc < 2) {
918 		as->argc = 0;
919 		ti->error = "not enough priority group arguments";
920 		return ERR_PTR(-EINVAL);
921 	}
922 
923 	pg = alloc_priority_group();
924 	if (!pg) {
925 		ti->error = "couldn't allocate priority group";
926 		return ERR_PTR(-ENOMEM);
927 	}
928 	pg->m = m;
929 
930 	r = parse_path_selector(as, pg, ti);
931 	if (r)
932 		goto bad;
933 
934 	/*
935 	 * read the paths
936 	 */
937 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
938 	if (r)
939 		goto bad;
940 
941 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
942 	if (r)
943 		goto bad;
944 
945 	nr_args = 1 + nr_selector_args;
946 	for (i = 0; i < pg->nr_pgpaths; i++) {
947 		struct pgpath *pgpath;
948 		struct dm_arg_set path_args;
949 
950 		if (as->argc < nr_args) {
951 			ti->error = "not enough path parameters";
952 			r = -EINVAL;
953 			goto bad;
954 		}
955 
956 		path_args.argc = nr_args;
957 		path_args.argv = as->argv;
958 
959 		pgpath = parse_path(&path_args, &pg->ps, ti);
960 		if (IS_ERR(pgpath)) {
961 			r = PTR_ERR(pgpath);
962 			goto bad;
963 		}
964 
965 		pgpath->pg = pg;
966 		list_add_tail(&pgpath->list, &pg->pgpaths);
967 		dm_consume_args(as, nr_args);
968 	}
969 
970 	return pg;
971 
972  bad:
973 	free_priority_group(pg, ti);
974 	return ERR_PTR(r);
975 }
976 
977 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
978 {
979 	unsigned hw_argc;
980 	int ret;
981 	struct dm_target *ti = m->ti;
982 
983 	static const struct dm_arg _args[] = {
984 		{0, 1024, "invalid number of hardware handler args"},
985 	};
986 
987 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
988 		return -EINVAL;
989 
990 	if (!hw_argc)
991 		return 0;
992 
993 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
994 		dm_consume_args(as, hw_argc);
995 		DMERR("bio-based multipath doesn't allow hardware handler args");
996 		return 0;
997 	}
998 
999 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1000 	if (!m->hw_handler_name)
1001 		return -EINVAL;
1002 
1003 	if (hw_argc > 1) {
1004 		char *p;
1005 		int i, j, len = 4;
1006 
1007 		for (i = 0; i <= hw_argc - 2; i++)
1008 			len += strlen(as->argv[i]) + 1;
1009 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1010 		if (!p) {
1011 			ti->error = "memory allocation failed";
1012 			ret = -ENOMEM;
1013 			goto fail;
1014 		}
1015 		j = sprintf(p, "%d", hw_argc - 1);
1016 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1017 			j = sprintf(p, "%s", as->argv[i]);
1018 	}
1019 	dm_consume_args(as, hw_argc - 1);
1020 
1021 	return 0;
1022 fail:
1023 	kfree(m->hw_handler_name);
1024 	m->hw_handler_name = NULL;
1025 	return ret;
1026 }
1027 
1028 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1029 {
1030 	int r;
1031 	unsigned argc;
1032 	struct dm_target *ti = m->ti;
1033 	const char *arg_name;
1034 
1035 	static const struct dm_arg _args[] = {
1036 		{0, 8, "invalid number of feature args"},
1037 		{1, 50, "pg_init_retries must be between 1 and 50"},
1038 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1039 	};
1040 
1041 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1042 	if (r)
1043 		return -EINVAL;
1044 
1045 	if (!argc)
1046 		return 0;
1047 
1048 	do {
1049 		arg_name = dm_shift_arg(as);
1050 		argc--;
1051 
1052 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1053 			r = queue_if_no_path(m, true, false);
1054 			continue;
1055 		}
1056 
1057 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1058 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1059 			continue;
1060 		}
1061 
1062 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1063 		    (argc >= 1)) {
1064 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1065 			argc--;
1066 			continue;
1067 		}
1068 
1069 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1070 		    (argc >= 1)) {
1071 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1072 			argc--;
1073 			continue;
1074 		}
1075 
1076 		if (!strcasecmp(arg_name, "queue_mode") &&
1077 		    (argc >= 1)) {
1078 			const char *queue_mode_name = dm_shift_arg(as);
1079 
1080 			if (!strcasecmp(queue_mode_name, "bio"))
1081 				m->queue_mode = DM_TYPE_BIO_BASED;
1082 			else if (!strcasecmp(queue_mode_name, "rq") ||
1083 				 !strcasecmp(queue_mode_name, "mq"))
1084 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1085 			else {
1086 				ti->error = "Unknown 'queue_mode' requested";
1087 				r = -EINVAL;
1088 			}
1089 			argc--;
1090 			continue;
1091 		}
1092 
1093 		ti->error = "Unrecognised multipath feature request";
1094 		r = -EINVAL;
1095 	} while (argc && !r);
1096 
1097 	return r;
1098 }
1099 
1100 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1101 {
1102 	/* target arguments */
1103 	static const struct dm_arg _args[] = {
1104 		{0, 1024, "invalid number of priority groups"},
1105 		{0, 1024, "invalid initial priority group number"},
1106 	};
1107 
1108 	int r;
1109 	struct multipath *m;
1110 	struct dm_arg_set as;
1111 	unsigned pg_count = 0;
1112 	unsigned next_pg_num;
1113 
1114 	as.argc = argc;
1115 	as.argv = argv;
1116 
1117 	m = alloc_multipath(ti);
1118 	if (!m) {
1119 		ti->error = "can't allocate multipath";
1120 		return -EINVAL;
1121 	}
1122 
1123 	r = parse_features(&as, m);
1124 	if (r)
1125 		goto bad;
1126 
1127 	r = alloc_multipath_stage2(ti, m);
1128 	if (r)
1129 		goto bad;
1130 
1131 	r = parse_hw_handler(&as, m);
1132 	if (r)
1133 		goto bad;
1134 
1135 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1136 	if (r)
1137 		goto bad;
1138 
1139 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1140 	if (r)
1141 		goto bad;
1142 
1143 	if ((!m->nr_priority_groups && next_pg_num) ||
1144 	    (m->nr_priority_groups && !next_pg_num)) {
1145 		ti->error = "invalid initial priority group";
1146 		r = -EINVAL;
1147 		goto bad;
1148 	}
1149 
1150 	/* parse the priority groups */
1151 	while (as.argc) {
1152 		struct priority_group *pg;
1153 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1154 
1155 		pg = parse_priority_group(&as, m);
1156 		if (IS_ERR(pg)) {
1157 			r = PTR_ERR(pg);
1158 			goto bad;
1159 		}
1160 
1161 		nr_valid_paths += pg->nr_pgpaths;
1162 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1163 
1164 		list_add_tail(&pg->list, &m->priority_groups);
1165 		pg_count++;
1166 		pg->pg_num = pg_count;
1167 		if (!--next_pg_num)
1168 			m->next_pg = pg;
1169 	}
1170 
1171 	if (pg_count != m->nr_priority_groups) {
1172 		ti->error = "priority group count mismatch";
1173 		r = -EINVAL;
1174 		goto bad;
1175 	}
1176 
1177 	ti->num_flush_bios = 1;
1178 	ti->num_discard_bios = 1;
1179 	ti->num_write_same_bios = 1;
1180 	ti->num_write_zeroes_bios = 1;
1181 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1182 		ti->per_io_data_size = multipath_per_bio_data_size();
1183 	else
1184 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1185 
1186 	return 0;
1187 
1188  bad:
1189 	free_multipath(m);
1190 	return r;
1191 }
1192 
1193 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1194 {
1195 	DEFINE_WAIT(wait);
1196 
1197 	while (1) {
1198 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1199 
1200 		if (!atomic_read(&m->pg_init_in_progress))
1201 			break;
1202 
1203 		io_schedule();
1204 	}
1205 	finish_wait(&m->pg_init_wait, &wait);
1206 }
1207 
1208 static void flush_multipath_work(struct multipath *m)
1209 {
1210 	if (m->hw_handler_name) {
1211 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1212 		smp_mb__after_atomic();
1213 
1214 		if (atomic_read(&m->pg_init_in_progress))
1215 			flush_workqueue(kmpath_handlerd);
1216 		multipath_wait_for_pg_init_completion(m);
1217 
1218 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1219 		smp_mb__after_atomic();
1220 	}
1221 
1222 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1223 		flush_work(&m->process_queued_bios);
1224 	flush_work(&m->trigger_event);
1225 }
1226 
1227 static void multipath_dtr(struct dm_target *ti)
1228 {
1229 	struct multipath *m = ti->private;
1230 
1231 	flush_multipath_work(m);
1232 	free_multipath(m);
1233 }
1234 
1235 /*
1236  * Take a path out of use.
1237  */
1238 static int fail_path(struct pgpath *pgpath)
1239 {
1240 	unsigned long flags;
1241 	struct multipath *m = pgpath->pg->m;
1242 
1243 	spin_lock_irqsave(&m->lock, flags);
1244 
1245 	if (!pgpath->is_active)
1246 		goto out;
1247 
1248 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1249 
1250 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1251 	pgpath->is_active = false;
1252 	pgpath->fail_count++;
1253 
1254 	atomic_dec(&m->nr_valid_paths);
1255 
1256 	if (pgpath == m->current_pgpath)
1257 		m->current_pgpath = NULL;
1258 
1259 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1260 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1261 
1262 	schedule_work(&m->trigger_event);
1263 
1264 out:
1265 	spin_unlock_irqrestore(&m->lock, flags);
1266 
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Reinstate a previously-failed path
1272  */
1273 static int reinstate_path(struct pgpath *pgpath)
1274 {
1275 	int r = 0, run_queue = 0;
1276 	unsigned long flags;
1277 	struct multipath *m = pgpath->pg->m;
1278 	unsigned nr_valid_paths;
1279 
1280 	spin_lock_irqsave(&m->lock, flags);
1281 
1282 	if (pgpath->is_active)
1283 		goto out;
1284 
1285 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1286 
1287 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1288 	if (r)
1289 		goto out;
1290 
1291 	pgpath->is_active = true;
1292 
1293 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1294 	if (nr_valid_paths == 1) {
1295 		m->current_pgpath = NULL;
1296 		run_queue = 1;
1297 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1298 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1299 			atomic_inc(&m->pg_init_in_progress);
1300 	}
1301 
1302 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1303 		       pgpath->path.dev->name, nr_valid_paths);
1304 
1305 	schedule_work(&m->trigger_event);
1306 
1307 out:
1308 	spin_unlock_irqrestore(&m->lock, flags);
1309 	if (run_queue) {
1310 		dm_table_run_md_queue_async(m->ti->table);
1311 		process_queued_io_list(m);
1312 	}
1313 
1314 	return r;
1315 }
1316 
1317 /*
1318  * Fail or reinstate all paths that match the provided struct dm_dev.
1319  */
1320 static int action_dev(struct multipath *m, struct dm_dev *dev,
1321 		      action_fn action)
1322 {
1323 	int r = -EINVAL;
1324 	struct pgpath *pgpath;
1325 	struct priority_group *pg;
1326 
1327 	list_for_each_entry(pg, &m->priority_groups, list) {
1328 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1329 			if (pgpath->path.dev == dev)
1330 				r = action(pgpath);
1331 		}
1332 	}
1333 
1334 	return r;
1335 }
1336 
1337 /*
1338  * Temporarily try to avoid having to use the specified PG
1339  */
1340 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1341 		      bool bypassed)
1342 {
1343 	unsigned long flags;
1344 
1345 	spin_lock_irqsave(&m->lock, flags);
1346 
1347 	pg->bypassed = bypassed;
1348 	m->current_pgpath = NULL;
1349 	m->current_pg = NULL;
1350 
1351 	spin_unlock_irqrestore(&m->lock, flags);
1352 
1353 	schedule_work(&m->trigger_event);
1354 }
1355 
1356 /*
1357  * Switch to using the specified PG from the next I/O that gets mapped
1358  */
1359 static int switch_pg_num(struct multipath *m, const char *pgstr)
1360 {
1361 	struct priority_group *pg;
1362 	unsigned pgnum;
1363 	unsigned long flags;
1364 	char dummy;
1365 
1366 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1367 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1368 		DMWARN("invalid PG number supplied to switch_pg_num");
1369 		return -EINVAL;
1370 	}
1371 
1372 	spin_lock_irqsave(&m->lock, flags);
1373 	list_for_each_entry(pg, &m->priority_groups, list) {
1374 		pg->bypassed = false;
1375 		if (--pgnum)
1376 			continue;
1377 
1378 		m->current_pgpath = NULL;
1379 		m->current_pg = NULL;
1380 		m->next_pg = pg;
1381 	}
1382 	spin_unlock_irqrestore(&m->lock, flags);
1383 
1384 	schedule_work(&m->trigger_event);
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Set/clear bypassed status of a PG.
1390  * PGs are numbered upwards from 1 in the order they were declared.
1391  */
1392 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1393 {
1394 	struct priority_group *pg;
1395 	unsigned pgnum;
1396 	char dummy;
1397 
1398 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1399 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1400 		DMWARN("invalid PG number supplied to bypass_pg");
1401 		return -EINVAL;
1402 	}
1403 
1404 	list_for_each_entry(pg, &m->priority_groups, list) {
1405 		if (!--pgnum)
1406 			break;
1407 	}
1408 
1409 	bypass_pg(m, pg, bypassed);
1410 	return 0;
1411 }
1412 
1413 /*
1414  * Should we retry pg_init immediately?
1415  */
1416 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1417 {
1418 	unsigned long flags;
1419 	bool limit_reached = false;
1420 
1421 	spin_lock_irqsave(&m->lock, flags);
1422 
1423 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1424 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1425 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1426 	else
1427 		limit_reached = true;
1428 
1429 	spin_unlock_irqrestore(&m->lock, flags);
1430 
1431 	return limit_reached;
1432 }
1433 
1434 static void pg_init_done(void *data, int errors)
1435 {
1436 	struct pgpath *pgpath = data;
1437 	struct priority_group *pg = pgpath->pg;
1438 	struct multipath *m = pg->m;
1439 	unsigned long flags;
1440 	bool delay_retry = false;
1441 
1442 	/* device or driver problems */
1443 	switch (errors) {
1444 	case SCSI_DH_OK:
1445 		break;
1446 	case SCSI_DH_NOSYS:
1447 		if (!m->hw_handler_name) {
1448 			errors = 0;
1449 			break;
1450 		}
1451 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1452 		      "Error %d.", m->hw_handler_name, errors);
1453 		/*
1454 		 * Fail path for now, so we do not ping pong
1455 		 */
1456 		fail_path(pgpath);
1457 		break;
1458 	case SCSI_DH_DEV_TEMP_BUSY:
1459 		/*
1460 		 * Probably doing something like FW upgrade on the
1461 		 * controller so try the other pg.
1462 		 */
1463 		bypass_pg(m, pg, true);
1464 		break;
1465 	case SCSI_DH_RETRY:
1466 		/* Wait before retrying. */
1467 		delay_retry = 1;
1468 		/* fall through */
1469 	case SCSI_DH_IMM_RETRY:
1470 	case SCSI_DH_RES_TEMP_UNAVAIL:
1471 		if (pg_init_limit_reached(m, pgpath))
1472 			fail_path(pgpath);
1473 		errors = 0;
1474 		break;
1475 	case SCSI_DH_DEV_OFFLINED:
1476 	default:
1477 		/*
1478 		 * We probably do not want to fail the path for a device
1479 		 * error, but this is what the old dm did. In future
1480 		 * patches we can do more advanced handling.
1481 		 */
1482 		fail_path(pgpath);
1483 	}
1484 
1485 	spin_lock_irqsave(&m->lock, flags);
1486 	if (errors) {
1487 		if (pgpath == m->current_pgpath) {
1488 			DMERR("Could not failover device. Error %d.", errors);
1489 			m->current_pgpath = NULL;
1490 			m->current_pg = NULL;
1491 		}
1492 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1493 		pg->bypassed = false;
1494 
1495 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1496 		/* Activations of other paths are still on going */
1497 		goto out;
1498 
1499 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1500 		if (delay_retry)
1501 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1502 		else
1503 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1504 
1505 		if (__pg_init_all_paths(m))
1506 			goto out;
1507 	}
1508 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1509 
1510 	process_queued_io_list(m);
1511 
1512 	/*
1513 	 * Wake up any thread waiting to suspend.
1514 	 */
1515 	wake_up(&m->pg_init_wait);
1516 
1517 out:
1518 	spin_unlock_irqrestore(&m->lock, flags);
1519 }
1520 
1521 static void activate_or_offline_path(struct pgpath *pgpath)
1522 {
1523 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1524 
1525 	if (pgpath->is_active && !blk_queue_dying(q))
1526 		scsi_dh_activate(q, pg_init_done, pgpath);
1527 	else
1528 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1529 }
1530 
1531 static void activate_path_work(struct work_struct *work)
1532 {
1533 	struct pgpath *pgpath =
1534 		container_of(work, struct pgpath, activate_path.work);
1535 
1536 	activate_or_offline_path(pgpath);
1537 }
1538 
1539 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1540 			    blk_status_t error, union map_info *map_context)
1541 {
1542 	struct dm_mpath_io *mpio = get_mpio(map_context);
1543 	struct pgpath *pgpath = mpio->pgpath;
1544 	int r = DM_ENDIO_DONE;
1545 
1546 	/*
1547 	 * We don't queue any clone request inside the multipath target
1548 	 * during end I/O handling, since those clone requests don't have
1549 	 * bio clones.  If we queue them inside the multipath target,
1550 	 * we need to make bio clones, that requires memory allocation.
1551 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1552 	 *  don't have bio clones.)
1553 	 * Instead of queueing the clone request here, we queue the original
1554 	 * request into dm core, which will remake a clone request and
1555 	 * clone bios for it and resubmit it later.
1556 	 */
1557 	if (error && blk_path_error(error)) {
1558 		struct multipath *m = ti->private;
1559 
1560 		if (error == BLK_STS_RESOURCE)
1561 			r = DM_ENDIO_DELAY_REQUEUE;
1562 		else
1563 			r = DM_ENDIO_REQUEUE;
1564 
1565 		if (pgpath)
1566 			fail_path(pgpath);
1567 
1568 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1569 		    !must_push_back_rq(m)) {
1570 			if (error == BLK_STS_IOERR)
1571 				dm_report_EIO(m);
1572 			/* complete with the original error */
1573 			r = DM_ENDIO_DONE;
1574 		}
1575 	}
1576 
1577 	if (pgpath) {
1578 		struct path_selector *ps = &pgpath->pg->ps;
1579 
1580 		if (ps->type->end_io)
1581 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1582 	}
1583 
1584 	return r;
1585 }
1586 
1587 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1588 				blk_status_t *error)
1589 {
1590 	struct multipath *m = ti->private;
1591 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1592 	struct pgpath *pgpath = mpio->pgpath;
1593 	unsigned long flags;
1594 	int r = DM_ENDIO_DONE;
1595 
1596 	if (!*error || !blk_path_error(*error))
1597 		goto done;
1598 
1599 	if (pgpath)
1600 		fail_path(pgpath);
1601 
1602 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1603 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1604 		if (must_push_back_bio(m)) {
1605 			r = DM_ENDIO_REQUEUE;
1606 		} else {
1607 			dm_report_EIO(m);
1608 			*error = BLK_STS_IOERR;
1609 		}
1610 		goto done;
1611 	}
1612 
1613 	spin_lock_irqsave(&m->lock, flags);
1614 	bio_list_add(&m->queued_bios, clone);
1615 	spin_unlock_irqrestore(&m->lock, flags);
1616 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1617 		queue_work(kmultipathd, &m->process_queued_bios);
1618 
1619 	r = DM_ENDIO_INCOMPLETE;
1620 done:
1621 	if (pgpath) {
1622 		struct path_selector *ps = &pgpath->pg->ps;
1623 
1624 		if (ps->type->end_io)
1625 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1626 	}
1627 
1628 	return r;
1629 }
1630 
1631 /*
1632  * Suspend can't complete until all the I/O is processed so if
1633  * the last path fails we must error any remaining I/O.
1634  * Note that if the freeze_bdev fails while suspending, the
1635  * queue_if_no_path state is lost - userspace should reset it.
1636  */
1637 static void multipath_presuspend(struct dm_target *ti)
1638 {
1639 	struct multipath *m = ti->private;
1640 
1641 	queue_if_no_path(m, false, true);
1642 }
1643 
1644 static void multipath_postsuspend(struct dm_target *ti)
1645 {
1646 	struct multipath *m = ti->private;
1647 
1648 	mutex_lock(&m->work_mutex);
1649 	flush_multipath_work(m);
1650 	mutex_unlock(&m->work_mutex);
1651 }
1652 
1653 /*
1654  * Restore the queue_if_no_path setting.
1655  */
1656 static void multipath_resume(struct dm_target *ti)
1657 {
1658 	struct multipath *m = ti->private;
1659 	unsigned long flags;
1660 
1661 	spin_lock_irqsave(&m->lock, flags);
1662 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1663 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1664 	spin_unlock_irqrestore(&m->lock, flags);
1665 }
1666 
1667 /*
1668  * Info output has the following format:
1669  * num_multipath_feature_args [multipath_feature_args]*
1670  * num_handler_status_args [handler_status_args]*
1671  * num_groups init_group_number
1672  *            [A|D|E num_ps_status_args [ps_status_args]*
1673  *             num_paths num_selector_args
1674  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1675  *
1676  * Table output has the following format (identical to the constructor string):
1677  * num_feature_args [features_args]*
1678  * num_handler_args hw_handler [hw_handler_args]*
1679  * num_groups init_group_number
1680  *     [priority selector-name num_ps_args [ps_args]*
1681  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1682  */
1683 static void multipath_status(struct dm_target *ti, status_type_t type,
1684 			     unsigned status_flags, char *result, unsigned maxlen)
1685 {
1686 	int sz = 0;
1687 	unsigned long flags;
1688 	struct multipath *m = ti->private;
1689 	struct priority_group *pg;
1690 	struct pgpath *p;
1691 	unsigned pg_num;
1692 	char state;
1693 
1694 	spin_lock_irqsave(&m->lock, flags);
1695 
1696 	/* Features */
1697 	if (type == STATUSTYPE_INFO)
1698 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1699 		       atomic_read(&m->pg_init_count));
1700 	else {
1701 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1702 			      (m->pg_init_retries > 0) * 2 +
1703 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1704 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1705 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1706 
1707 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1708 			DMEMIT("queue_if_no_path ");
1709 		if (m->pg_init_retries)
1710 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1711 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1712 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1713 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1714 			DMEMIT("retain_attached_hw_handler ");
1715 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1716 			switch(m->queue_mode) {
1717 			case DM_TYPE_BIO_BASED:
1718 				DMEMIT("queue_mode bio ");
1719 				break;
1720 			default:
1721 				WARN_ON_ONCE(true);
1722 				break;
1723 			}
1724 		}
1725 	}
1726 
1727 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1728 		DMEMIT("0 ");
1729 	else
1730 		DMEMIT("1 %s ", m->hw_handler_name);
1731 
1732 	DMEMIT("%u ", m->nr_priority_groups);
1733 
1734 	if (m->next_pg)
1735 		pg_num = m->next_pg->pg_num;
1736 	else if (m->current_pg)
1737 		pg_num = m->current_pg->pg_num;
1738 	else
1739 		pg_num = (m->nr_priority_groups ? 1 : 0);
1740 
1741 	DMEMIT("%u ", pg_num);
1742 
1743 	switch (type) {
1744 	case STATUSTYPE_INFO:
1745 		list_for_each_entry(pg, &m->priority_groups, list) {
1746 			if (pg->bypassed)
1747 				state = 'D';	/* Disabled */
1748 			else if (pg == m->current_pg)
1749 				state = 'A';	/* Currently Active */
1750 			else
1751 				state = 'E';	/* Enabled */
1752 
1753 			DMEMIT("%c ", state);
1754 
1755 			if (pg->ps.type->status)
1756 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1757 							  result + sz,
1758 							  maxlen - sz);
1759 			else
1760 				DMEMIT("0 ");
1761 
1762 			DMEMIT("%u %u ", pg->nr_pgpaths,
1763 			       pg->ps.type->info_args);
1764 
1765 			list_for_each_entry(p, &pg->pgpaths, list) {
1766 				DMEMIT("%s %s %u ", p->path.dev->name,
1767 				       p->is_active ? "A" : "F",
1768 				       p->fail_count);
1769 				if (pg->ps.type->status)
1770 					sz += pg->ps.type->status(&pg->ps,
1771 					      &p->path, type, result + sz,
1772 					      maxlen - sz);
1773 			}
1774 		}
1775 		break;
1776 
1777 	case STATUSTYPE_TABLE:
1778 		list_for_each_entry(pg, &m->priority_groups, list) {
1779 			DMEMIT("%s ", pg->ps.type->name);
1780 
1781 			if (pg->ps.type->status)
1782 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1783 							  result + sz,
1784 							  maxlen - sz);
1785 			else
1786 				DMEMIT("0 ");
1787 
1788 			DMEMIT("%u %u ", pg->nr_pgpaths,
1789 			       pg->ps.type->table_args);
1790 
1791 			list_for_each_entry(p, &pg->pgpaths, list) {
1792 				DMEMIT("%s ", p->path.dev->name);
1793 				if (pg->ps.type->status)
1794 					sz += pg->ps.type->status(&pg->ps,
1795 					      &p->path, type, result + sz,
1796 					      maxlen - sz);
1797 			}
1798 		}
1799 		break;
1800 	}
1801 
1802 	spin_unlock_irqrestore(&m->lock, flags);
1803 }
1804 
1805 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1806 			     char *result, unsigned maxlen)
1807 {
1808 	int r = -EINVAL;
1809 	struct dm_dev *dev;
1810 	struct multipath *m = ti->private;
1811 	action_fn action;
1812 
1813 	mutex_lock(&m->work_mutex);
1814 
1815 	if (dm_suspended(ti)) {
1816 		r = -EBUSY;
1817 		goto out;
1818 	}
1819 
1820 	if (argc == 1) {
1821 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1822 			r = queue_if_no_path(m, true, false);
1823 			goto out;
1824 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1825 			r = queue_if_no_path(m, false, false);
1826 			goto out;
1827 		}
1828 	}
1829 
1830 	if (argc != 2) {
1831 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1832 		goto out;
1833 	}
1834 
1835 	if (!strcasecmp(argv[0], "disable_group")) {
1836 		r = bypass_pg_num(m, argv[1], true);
1837 		goto out;
1838 	} else if (!strcasecmp(argv[0], "enable_group")) {
1839 		r = bypass_pg_num(m, argv[1], false);
1840 		goto out;
1841 	} else if (!strcasecmp(argv[0], "switch_group")) {
1842 		r = switch_pg_num(m, argv[1]);
1843 		goto out;
1844 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1845 		action = reinstate_path;
1846 	else if (!strcasecmp(argv[0], "fail_path"))
1847 		action = fail_path;
1848 	else {
1849 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1850 		goto out;
1851 	}
1852 
1853 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1854 	if (r) {
1855 		DMWARN("message: error getting device %s",
1856 		       argv[1]);
1857 		goto out;
1858 	}
1859 
1860 	r = action_dev(m, dev, action);
1861 
1862 	dm_put_device(ti, dev);
1863 
1864 out:
1865 	mutex_unlock(&m->work_mutex);
1866 	return r;
1867 }
1868 
1869 static int multipath_prepare_ioctl(struct dm_target *ti,
1870 				   struct block_device **bdev)
1871 {
1872 	struct multipath *m = ti->private;
1873 	struct pgpath *current_pgpath;
1874 	int r;
1875 
1876 	current_pgpath = READ_ONCE(m->current_pgpath);
1877 	if (!current_pgpath)
1878 		current_pgpath = choose_pgpath(m, 0);
1879 
1880 	if (current_pgpath) {
1881 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1882 			*bdev = current_pgpath->path.dev->bdev;
1883 			r = 0;
1884 		} else {
1885 			/* pg_init has not started or completed */
1886 			r = -ENOTCONN;
1887 		}
1888 	} else {
1889 		/* No path is available */
1890 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1891 			r = -ENOTCONN;
1892 		else
1893 			r = -EIO;
1894 	}
1895 
1896 	if (r == -ENOTCONN) {
1897 		if (!READ_ONCE(m->current_pg)) {
1898 			/* Path status changed, redo selection */
1899 			(void) choose_pgpath(m, 0);
1900 		}
1901 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1902 			pg_init_all_paths(m);
1903 		dm_table_run_md_queue_async(m->ti->table);
1904 		process_queued_io_list(m);
1905 	}
1906 
1907 	/*
1908 	 * Only pass ioctls through if the device sizes match exactly.
1909 	 */
1910 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1911 		return 1;
1912 	return r;
1913 }
1914 
1915 static int multipath_iterate_devices(struct dm_target *ti,
1916 				     iterate_devices_callout_fn fn, void *data)
1917 {
1918 	struct multipath *m = ti->private;
1919 	struct priority_group *pg;
1920 	struct pgpath *p;
1921 	int ret = 0;
1922 
1923 	list_for_each_entry(pg, &m->priority_groups, list) {
1924 		list_for_each_entry(p, &pg->pgpaths, list) {
1925 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1926 			if (ret)
1927 				goto out;
1928 		}
1929 	}
1930 
1931 out:
1932 	return ret;
1933 }
1934 
1935 static int pgpath_busy(struct pgpath *pgpath)
1936 {
1937 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1938 
1939 	return blk_lld_busy(q);
1940 }
1941 
1942 /*
1943  * We return "busy", only when we can map I/Os but underlying devices
1944  * are busy (so even if we map I/Os now, the I/Os will wait on
1945  * the underlying queue).
1946  * In other words, if we want to kill I/Os or queue them inside us
1947  * due to map unavailability, we don't return "busy".  Otherwise,
1948  * dm core won't give us the I/Os and we can't do what we want.
1949  */
1950 static int multipath_busy(struct dm_target *ti)
1951 {
1952 	bool busy = false, has_active = false;
1953 	struct multipath *m = ti->private;
1954 	struct priority_group *pg, *next_pg;
1955 	struct pgpath *pgpath;
1956 
1957 	/* pg_init in progress */
1958 	if (atomic_read(&m->pg_init_in_progress))
1959 		return true;
1960 
1961 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1962 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1963 		return (m->queue_mode != DM_TYPE_REQUEST_BASED);
1964 
1965 	/* Guess which priority_group will be used at next mapping time */
1966 	pg = READ_ONCE(m->current_pg);
1967 	next_pg = READ_ONCE(m->next_pg);
1968 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1969 		pg = next_pg;
1970 
1971 	if (!pg) {
1972 		/*
1973 		 * We don't know which pg will be used at next mapping time.
1974 		 * We don't call choose_pgpath() here to avoid to trigger
1975 		 * pg_init just by busy checking.
1976 		 * So we don't know whether underlying devices we will be using
1977 		 * at next mapping time are busy or not. Just try mapping.
1978 		 */
1979 		return busy;
1980 	}
1981 
1982 	/*
1983 	 * If there is one non-busy active path at least, the path selector
1984 	 * will be able to select it. So we consider such a pg as not busy.
1985 	 */
1986 	busy = true;
1987 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1988 		if (pgpath->is_active) {
1989 			has_active = true;
1990 			if (!pgpath_busy(pgpath)) {
1991 				busy = false;
1992 				break;
1993 			}
1994 		}
1995 	}
1996 
1997 	if (!has_active) {
1998 		/*
1999 		 * No active path in this pg, so this pg won't be used and
2000 		 * the current_pg will be changed at next mapping time.
2001 		 * We need to try mapping to determine it.
2002 		 */
2003 		busy = false;
2004 	}
2005 
2006 	return busy;
2007 }
2008 
2009 /*-----------------------------------------------------------------
2010  * Module setup
2011  *---------------------------------------------------------------*/
2012 static struct target_type multipath_target = {
2013 	.name = "multipath",
2014 	.version = {1, 13, 0},
2015 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2016 		    DM_TARGET_PASSES_INTEGRITY,
2017 	.module = THIS_MODULE,
2018 	.ctr = multipath_ctr,
2019 	.dtr = multipath_dtr,
2020 	.clone_and_map_rq = multipath_clone_and_map,
2021 	.release_clone_rq = multipath_release_clone,
2022 	.rq_end_io = multipath_end_io,
2023 	.map = multipath_map_bio,
2024 	.end_io = multipath_end_io_bio,
2025 	.presuspend = multipath_presuspend,
2026 	.postsuspend = multipath_postsuspend,
2027 	.resume = multipath_resume,
2028 	.status = multipath_status,
2029 	.message = multipath_message,
2030 	.prepare_ioctl = multipath_prepare_ioctl,
2031 	.iterate_devices = multipath_iterate_devices,
2032 	.busy = multipath_busy,
2033 };
2034 
2035 static int __init dm_multipath_init(void)
2036 {
2037 	int r;
2038 
2039 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2040 	if (!kmultipathd) {
2041 		DMERR("failed to create workqueue kmpathd");
2042 		r = -ENOMEM;
2043 		goto bad_alloc_kmultipathd;
2044 	}
2045 
2046 	/*
2047 	 * A separate workqueue is used to handle the device handlers
2048 	 * to avoid overloading existing workqueue. Overloading the
2049 	 * old workqueue would also create a bottleneck in the
2050 	 * path of the storage hardware device activation.
2051 	 */
2052 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2053 						  WQ_MEM_RECLAIM);
2054 	if (!kmpath_handlerd) {
2055 		DMERR("failed to create workqueue kmpath_handlerd");
2056 		r = -ENOMEM;
2057 		goto bad_alloc_kmpath_handlerd;
2058 	}
2059 
2060 	r = dm_register_target(&multipath_target);
2061 	if (r < 0) {
2062 		DMERR("request-based register failed %d", r);
2063 		r = -EINVAL;
2064 		goto bad_register_target;
2065 	}
2066 
2067 	return 0;
2068 
2069 bad_register_target:
2070 	destroy_workqueue(kmpath_handlerd);
2071 bad_alloc_kmpath_handlerd:
2072 	destroy_workqueue(kmultipathd);
2073 bad_alloc_kmultipathd:
2074 	return r;
2075 }
2076 
2077 static void __exit dm_multipath_exit(void)
2078 {
2079 	destroy_workqueue(kmpath_handlerd);
2080 	destroy_workqueue(kmultipathd);
2081 
2082 	dm_unregister_target(&multipath_target);
2083 }
2084 
2085 module_init(dm_multipath_init);
2086 module_exit(dm_multipath_exit);
2087 
2088 MODULE_DESCRIPTION(DM_NAME " multipath target");
2089 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2090 MODULE_LICENSE("GPL");
2091