xref: /openbmc/linux/drivers/md/dm-log.c (revision a09d2831)
1 /*
2  * Copyright (C) 2003 Sistina Software
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the LGPL.
6  */
7 
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-dirty-log.h>
14 
15 #include <linux/device-mapper.h>
16 
17 #define DM_MSG_PREFIX "dirty region log"
18 
19 static LIST_HEAD(_log_types);
20 static DEFINE_SPINLOCK(_lock);
21 
22 static struct dm_dirty_log_type *__find_dirty_log_type(const char *name)
23 {
24 	struct dm_dirty_log_type *log_type;
25 
26 	list_for_each_entry(log_type, &_log_types, list)
27 		if (!strcmp(name, log_type->name))
28 			return log_type;
29 
30 	return NULL;
31 }
32 
33 static struct dm_dirty_log_type *_get_dirty_log_type(const char *name)
34 {
35 	struct dm_dirty_log_type *log_type;
36 
37 	spin_lock(&_lock);
38 
39 	log_type = __find_dirty_log_type(name);
40 	if (log_type && !try_module_get(log_type->module))
41 		log_type = NULL;
42 
43 	spin_unlock(&_lock);
44 
45 	return log_type;
46 }
47 
48 /*
49  * get_type
50  * @type_name
51  *
52  * Attempt to retrieve the dm_dirty_log_type by name.  If not already
53  * available, attempt to load the appropriate module.
54  *
55  * Log modules are named "dm-log-" followed by the 'type_name'.
56  * Modules may contain multiple types.
57  * This function will first try the module "dm-log-<type_name>",
58  * then truncate 'type_name' on the last '-' and try again.
59  *
60  * For example, if type_name was "clustered-disk", it would search
61  * 'dm-log-clustered-disk' then 'dm-log-clustered'.
62  *
63  * Returns: dirty_log_type* on success, NULL on failure
64  */
65 static struct dm_dirty_log_type *get_type(const char *type_name)
66 {
67 	char *p, *type_name_dup;
68 	struct dm_dirty_log_type *log_type;
69 
70 	if (!type_name)
71 		return NULL;
72 
73 	log_type = _get_dirty_log_type(type_name);
74 	if (log_type)
75 		return log_type;
76 
77 	type_name_dup = kstrdup(type_name, GFP_KERNEL);
78 	if (!type_name_dup) {
79 		DMWARN("No memory left to attempt log module load for \"%s\"",
80 		       type_name);
81 		return NULL;
82 	}
83 
84 	while (request_module("dm-log-%s", type_name_dup) ||
85 	       !(log_type = _get_dirty_log_type(type_name))) {
86 		p = strrchr(type_name_dup, '-');
87 		if (!p)
88 			break;
89 		p[0] = '\0';
90 	}
91 
92 	if (!log_type)
93 		DMWARN("Module for logging type \"%s\" not found.", type_name);
94 
95 	kfree(type_name_dup);
96 
97 	return log_type;
98 }
99 
100 static void put_type(struct dm_dirty_log_type *type)
101 {
102 	if (!type)
103 		return;
104 
105 	spin_lock(&_lock);
106 	if (!__find_dirty_log_type(type->name))
107 		goto out;
108 
109 	module_put(type->module);
110 
111 out:
112 	spin_unlock(&_lock);
113 }
114 
115 int dm_dirty_log_type_register(struct dm_dirty_log_type *type)
116 {
117 	int r = 0;
118 
119 	spin_lock(&_lock);
120 	if (!__find_dirty_log_type(type->name))
121 		list_add(&type->list, &_log_types);
122 	else
123 		r = -EEXIST;
124 	spin_unlock(&_lock);
125 
126 	return r;
127 }
128 EXPORT_SYMBOL(dm_dirty_log_type_register);
129 
130 int dm_dirty_log_type_unregister(struct dm_dirty_log_type *type)
131 {
132 	spin_lock(&_lock);
133 
134 	if (!__find_dirty_log_type(type->name)) {
135 		spin_unlock(&_lock);
136 		return -EINVAL;
137 	}
138 
139 	list_del(&type->list);
140 
141 	spin_unlock(&_lock);
142 
143 	return 0;
144 }
145 EXPORT_SYMBOL(dm_dirty_log_type_unregister);
146 
147 struct dm_dirty_log *dm_dirty_log_create(const char *type_name,
148 			struct dm_target *ti,
149 			int (*flush_callback_fn)(struct dm_target *ti),
150 			unsigned int argc, char **argv)
151 {
152 	struct dm_dirty_log_type *type;
153 	struct dm_dirty_log *log;
154 
155 	log = kmalloc(sizeof(*log), GFP_KERNEL);
156 	if (!log)
157 		return NULL;
158 
159 	type = get_type(type_name);
160 	if (!type) {
161 		kfree(log);
162 		return NULL;
163 	}
164 
165 	log->flush_callback_fn = flush_callback_fn;
166 	log->type = type;
167 	if (type->ctr(log, ti, argc, argv)) {
168 		kfree(log);
169 		put_type(type);
170 		return NULL;
171 	}
172 
173 	return log;
174 }
175 EXPORT_SYMBOL(dm_dirty_log_create);
176 
177 void dm_dirty_log_destroy(struct dm_dirty_log *log)
178 {
179 	log->type->dtr(log);
180 	put_type(log->type);
181 	kfree(log);
182 }
183 EXPORT_SYMBOL(dm_dirty_log_destroy);
184 
185 /*-----------------------------------------------------------------
186  * Persistent and core logs share a lot of their implementation.
187  * FIXME: need a reload method to be called from a resume
188  *---------------------------------------------------------------*/
189 /*
190  * Magic for persistent mirrors: "MiRr"
191  */
192 #define MIRROR_MAGIC 0x4D695272
193 
194 /*
195  * The on-disk version of the metadata.
196  */
197 #define MIRROR_DISK_VERSION 2
198 #define LOG_OFFSET 2
199 
200 struct log_header {
201 	uint32_t magic;
202 
203 	/*
204 	 * Simple, incrementing version. no backward
205 	 * compatibility.
206 	 */
207 	uint32_t version;
208 	sector_t nr_regions;
209 };
210 
211 struct log_c {
212 	struct dm_target *ti;
213 	int touched_dirtied;
214 	int touched_cleaned;
215 	int flush_failed;
216 	uint32_t region_size;
217 	unsigned int region_count;
218 	region_t sync_count;
219 
220 	unsigned bitset_uint32_count;
221 	uint32_t *clean_bits;
222 	uint32_t *sync_bits;
223 	uint32_t *recovering_bits;	/* FIXME: this seems excessive */
224 
225 	int sync_search;
226 
227 	/* Resync flag */
228 	enum sync {
229 		DEFAULTSYNC,	/* Synchronize if necessary */
230 		NOSYNC,		/* Devices known to be already in sync */
231 		FORCESYNC,	/* Force a sync to happen */
232 	} sync;
233 
234 	struct dm_io_request io_req;
235 
236 	/*
237 	 * Disk log fields
238 	 */
239 	int log_dev_failed;
240 	int log_dev_flush_failed;
241 	struct dm_dev *log_dev;
242 	struct log_header header;
243 
244 	struct dm_io_region header_location;
245 	struct log_header *disk_header;
246 };
247 
248 /*
249  * The touched member needs to be updated every time we access
250  * one of the bitsets.
251  */
252 static inline int log_test_bit(uint32_t *bs, unsigned bit)
253 {
254 	return ext2_test_bit(bit, (unsigned long *) bs) ? 1 : 0;
255 }
256 
257 static inline void log_set_bit(struct log_c *l,
258 			       uint32_t *bs, unsigned bit)
259 {
260 	ext2_set_bit(bit, (unsigned long *) bs);
261 	l->touched_cleaned = 1;
262 }
263 
264 static inline void log_clear_bit(struct log_c *l,
265 				 uint32_t *bs, unsigned bit)
266 {
267 	ext2_clear_bit(bit, (unsigned long *) bs);
268 	l->touched_dirtied = 1;
269 }
270 
271 /*----------------------------------------------------------------
272  * Header IO
273  *--------------------------------------------------------------*/
274 static void header_to_disk(struct log_header *core, struct log_header *disk)
275 {
276 	disk->magic = cpu_to_le32(core->magic);
277 	disk->version = cpu_to_le32(core->version);
278 	disk->nr_regions = cpu_to_le64(core->nr_regions);
279 }
280 
281 static void header_from_disk(struct log_header *core, struct log_header *disk)
282 {
283 	core->magic = le32_to_cpu(disk->magic);
284 	core->version = le32_to_cpu(disk->version);
285 	core->nr_regions = le64_to_cpu(disk->nr_regions);
286 }
287 
288 static int rw_header(struct log_c *lc, int rw)
289 {
290 	lc->io_req.bi_rw = rw;
291 
292 	return dm_io(&lc->io_req, 1, &lc->header_location, NULL);
293 }
294 
295 static int flush_header(struct log_c *lc)
296 {
297 	struct dm_io_region null_location = {
298 		.bdev = lc->header_location.bdev,
299 		.sector = 0,
300 		.count = 0,
301 	};
302 
303 	lc->io_req.bi_rw = WRITE_BARRIER;
304 
305 	return dm_io(&lc->io_req, 1, &null_location, NULL);
306 }
307 
308 static int read_header(struct log_c *log)
309 {
310 	int r;
311 
312 	r = rw_header(log, READ);
313 	if (r)
314 		return r;
315 
316 	header_from_disk(&log->header, log->disk_header);
317 
318 	/* New log required? */
319 	if (log->sync != DEFAULTSYNC || log->header.magic != MIRROR_MAGIC) {
320 		log->header.magic = MIRROR_MAGIC;
321 		log->header.version = MIRROR_DISK_VERSION;
322 		log->header.nr_regions = 0;
323 	}
324 
325 #ifdef __LITTLE_ENDIAN
326 	if (log->header.version == 1)
327 		log->header.version = 2;
328 #endif
329 
330 	if (log->header.version != MIRROR_DISK_VERSION) {
331 		DMWARN("incompatible disk log version");
332 		return -EINVAL;
333 	}
334 
335 	return 0;
336 }
337 
338 static int _check_region_size(struct dm_target *ti, uint32_t region_size)
339 {
340 	if (region_size < 2 || region_size > ti->len)
341 		return 0;
342 
343 	if (!is_power_of_2(region_size))
344 		return 0;
345 
346 	return 1;
347 }
348 
349 /*----------------------------------------------------------------
350  * core log constructor/destructor
351  *
352  * argv contains region_size followed optionally by [no]sync
353  *--------------------------------------------------------------*/
354 #define BYTE_SHIFT 3
355 static int create_log_context(struct dm_dirty_log *log, struct dm_target *ti,
356 			      unsigned int argc, char **argv,
357 			      struct dm_dev *dev)
358 {
359 	enum sync sync = DEFAULTSYNC;
360 
361 	struct log_c *lc;
362 	uint32_t region_size;
363 	unsigned int region_count;
364 	size_t bitset_size, buf_size;
365 	int r;
366 
367 	if (argc < 1 || argc > 2) {
368 		DMWARN("wrong number of arguments to dirty region log");
369 		return -EINVAL;
370 	}
371 
372 	if (argc > 1) {
373 		if (!strcmp(argv[1], "sync"))
374 			sync = FORCESYNC;
375 		else if (!strcmp(argv[1], "nosync"))
376 			sync = NOSYNC;
377 		else {
378 			DMWARN("unrecognised sync argument to "
379 			       "dirty region log: %s", argv[1]);
380 			return -EINVAL;
381 		}
382 	}
383 
384 	if (sscanf(argv[0], "%u", &region_size) != 1 ||
385 	    !_check_region_size(ti, region_size)) {
386 		DMWARN("invalid region size %s", argv[0]);
387 		return -EINVAL;
388 	}
389 
390 	region_count = dm_sector_div_up(ti->len, region_size);
391 
392 	lc = kmalloc(sizeof(*lc), GFP_KERNEL);
393 	if (!lc) {
394 		DMWARN("couldn't allocate core log");
395 		return -ENOMEM;
396 	}
397 
398 	lc->ti = ti;
399 	lc->touched_dirtied = 0;
400 	lc->touched_cleaned = 0;
401 	lc->flush_failed = 0;
402 	lc->region_size = region_size;
403 	lc->region_count = region_count;
404 	lc->sync = sync;
405 
406 	/*
407 	 * Work out how many "unsigned long"s we need to hold the bitset.
408 	 */
409 	bitset_size = dm_round_up(region_count,
410 				  sizeof(*lc->clean_bits) << BYTE_SHIFT);
411 	bitset_size >>= BYTE_SHIFT;
412 
413 	lc->bitset_uint32_count = bitset_size / sizeof(*lc->clean_bits);
414 
415 	/*
416 	 * Disk log?
417 	 */
418 	if (!dev) {
419 		lc->clean_bits = vmalloc(bitset_size);
420 		if (!lc->clean_bits) {
421 			DMWARN("couldn't allocate clean bitset");
422 			kfree(lc);
423 			return -ENOMEM;
424 		}
425 		lc->disk_header = NULL;
426 	} else {
427 		lc->log_dev = dev;
428 		lc->log_dev_failed = 0;
429 		lc->log_dev_flush_failed = 0;
430 		lc->header_location.bdev = lc->log_dev->bdev;
431 		lc->header_location.sector = 0;
432 
433 		/*
434 		 * Buffer holds both header and bitset.
435 		 */
436 		buf_size =
437 		    dm_round_up((LOG_OFFSET << SECTOR_SHIFT) + bitset_size,
438 				bdev_logical_block_size(lc->header_location.
439 							    bdev));
440 
441 		if (buf_size > i_size_read(dev->bdev->bd_inode)) {
442 			DMWARN("log device %s too small: need %llu bytes",
443 				dev->name, (unsigned long long)buf_size);
444 			kfree(lc);
445 			return -EINVAL;
446 		}
447 
448 		lc->header_location.count = buf_size >> SECTOR_SHIFT;
449 
450 		lc->io_req.mem.type = DM_IO_VMA;
451 		lc->io_req.notify.fn = NULL;
452 		lc->io_req.client = dm_io_client_create(dm_div_up(buf_size,
453 								   PAGE_SIZE));
454 		if (IS_ERR(lc->io_req.client)) {
455 			r = PTR_ERR(lc->io_req.client);
456 			DMWARN("couldn't allocate disk io client");
457 			kfree(lc);
458 			return -ENOMEM;
459 		}
460 
461 		lc->disk_header = vmalloc(buf_size);
462 		if (!lc->disk_header) {
463 			DMWARN("couldn't allocate disk log buffer");
464 			dm_io_client_destroy(lc->io_req.client);
465 			kfree(lc);
466 			return -ENOMEM;
467 		}
468 
469 		lc->io_req.mem.ptr.vma = lc->disk_header;
470 		lc->clean_bits = (void *)lc->disk_header +
471 				 (LOG_OFFSET << SECTOR_SHIFT);
472 	}
473 
474 	memset(lc->clean_bits, -1, bitset_size);
475 
476 	lc->sync_bits = vmalloc(bitset_size);
477 	if (!lc->sync_bits) {
478 		DMWARN("couldn't allocate sync bitset");
479 		if (!dev)
480 			vfree(lc->clean_bits);
481 		else
482 			dm_io_client_destroy(lc->io_req.client);
483 		vfree(lc->disk_header);
484 		kfree(lc);
485 		return -ENOMEM;
486 	}
487 	memset(lc->sync_bits, (sync == NOSYNC) ? -1 : 0, bitset_size);
488 	lc->sync_count = (sync == NOSYNC) ? region_count : 0;
489 
490 	lc->recovering_bits = vmalloc(bitset_size);
491 	if (!lc->recovering_bits) {
492 		DMWARN("couldn't allocate sync bitset");
493 		vfree(lc->sync_bits);
494 		if (!dev)
495 			vfree(lc->clean_bits);
496 		else
497 			dm_io_client_destroy(lc->io_req.client);
498 		vfree(lc->disk_header);
499 		kfree(lc);
500 		return -ENOMEM;
501 	}
502 	memset(lc->recovering_bits, 0, bitset_size);
503 	lc->sync_search = 0;
504 	log->context = lc;
505 
506 	return 0;
507 }
508 
509 static int core_ctr(struct dm_dirty_log *log, struct dm_target *ti,
510 		    unsigned int argc, char **argv)
511 {
512 	return create_log_context(log, ti, argc, argv, NULL);
513 }
514 
515 static void destroy_log_context(struct log_c *lc)
516 {
517 	vfree(lc->sync_bits);
518 	vfree(lc->recovering_bits);
519 	kfree(lc);
520 }
521 
522 static void core_dtr(struct dm_dirty_log *log)
523 {
524 	struct log_c *lc = (struct log_c *) log->context;
525 
526 	vfree(lc->clean_bits);
527 	destroy_log_context(lc);
528 }
529 
530 /*----------------------------------------------------------------
531  * disk log constructor/destructor
532  *
533  * argv contains log_device region_size followed optionally by [no]sync
534  *--------------------------------------------------------------*/
535 static int disk_ctr(struct dm_dirty_log *log, struct dm_target *ti,
536 		    unsigned int argc, char **argv)
537 {
538 	int r;
539 	struct dm_dev *dev;
540 
541 	if (argc < 2 || argc > 3) {
542 		DMWARN("wrong number of arguments to disk dirty region log");
543 		return -EINVAL;
544 	}
545 
546 	r = dm_get_device(ti, argv[0], 0, 0 /* FIXME */,
547 			  FMODE_READ | FMODE_WRITE, &dev);
548 	if (r)
549 		return r;
550 
551 	r = create_log_context(log, ti, argc - 1, argv + 1, dev);
552 	if (r) {
553 		dm_put_device(ti, dev);
554 		return r;
555 	}
556 
557 	return 0;
558 }
559 
560 static void disk_dtr(struct dm_dirty_log *log)
561 {
562 	struct log_c *lc = (struct log_c *) log->context;
563 
564 	dm_put_device(lc->ti, lc->log_dev);
565 	vfree(lc->disk_header);
566 	dm_io_client_destroy(lc->io_req.client);
567 	destroy_log_context(lc);
568 }
569 
570 static int count_bits32(uint32_t *addr, unsigned size)
571 {
572 	int count = 0, i;
573 
574 	for (i = 0; i < size; i++) {
575 		count += hweight32(*(addr+i));
576 	}
577 	return count;
578 }
579 
580 static void fail_log_device(struct log_c *lc)
581 {
582 	if (lc->log_dev_failed)
583 		return;
584 
585 	lc->log_dev_failed = 1;
586 	dm_table_event(lc->ti->table);
587 }
588 
589 static int disk_resume(struct dm_dirty_log *log)
590 {
591 	int r;
592 	unsigned i;
593 	struct log_c *lc = (struct log_c *) log->context;
594 	size_t size = lc->bitset_uint32_count * sizeof(uint32_t);
595 
596 	/* read the disk header */
597 	r = read_header(lc);
598 	if (r) {
599 		DMWARN("%s: Failed to read header on dirty region log device",
600 		       lc->log_dev->name);
601 		fail_log_device(lc);
602 		/*
603 		 * If the log device cannot be read, we must assume
604 		 * all regions are out-of-sync.  If we simply return
605 		 * here, the state will be uninitialized and could
606 		 * lead us to return 'in-sync' status for regions
607 		 * that are actually 'out-of-sync'.
608 		 */
609 		lc->header.nr_regions = 0;
610 	}
611 
612 	/* set or clear any new bits -- device has grown */
613 	if (lc->sync == NOSYNC)
614 		for (i = lc->header.nr_regions; i < lc->region_count; i++)
615 			/* FIXME: amazingly inefficient */
616 			log_set_bit(lc, lc->clean_bits, i);
617 	else
618 		for (i = lc->header.nr_regions; i < lc->region_count; i++)
619 			/* FIXME: amazingly inefficient */
620 			log_clear_bit(lc, lc->clean_bits, i);
621 
622 	/* clear any old bits -- device has shrunk */
623 	for (i = lc->region_count; i % (sizeof(*lc->clean_bits) << BYTE_SHIFT); i++)
624 		log_clear_bit(lc, lc->clean_bits, i);
625 
626 	/* copy clean across to sync */
627 	memcpy(lc->sync_bits, lc->clean_bits, size);
628 	lc->sync_count = count_bits32(lc->clean_bits, lc->bitset_uint32_count);
629 	lc->sync_search = 0;
630 
631 	/* set the correct number of regions in the header */
632 	lc->header.nr_regions = lc->region_count;
633 
634 	header_to_disk(&lc->header, lc->disk_header);
635 
636 	/* write the new header */
637 	r = rw_header(lc, WRITE);
638 	if (!r) {
639 		r = flush_header(lc);
640 		if (r)
641 			lc->log_dev_flush_failed = 1;
642 	}
643 	if (r) {
644 		DMWARN("%s: Failed to write header on dirty region log device",
645 		       lc->log_dev->name);
646 		fail_log_device(lc);
647 	}
648 
649 	return r;
650 }
651 
652 static uint32_t core_get_region_size(struct dm_dirty_log *log)
653 {
654 	struct log_c *lc = (struct log_c *) log->context;
655 	return lc->region_size;
656 }
657 
658 static int core_resume(struct dm_dirty_log *log)
659 {
660 	struct log_c *lc = (struct log_c *) log->context;
661 	lc->sync_search = 0;
662 	return 0;
663 }
664 
665 static int core_is_clean(struct dm_dirty_log *log, region_t region)
666 {
667 	struct log_c *lc = (struct log_c *) log->context;
668 	return log_test_bit(lc->clean_bits, region);
669 }
670 
671 static int core_in_sync(struct dm_dirty_log *log, region_t region, int block)
672 {
673 	struct log_c *lc = (struct log_c *) log->context;
674 	return log_test_bit(lc->sync_bits, region);
675 }
676 
677 static int core_flush(struct dm_dirty_log *log)
678 {
679 	/* no op */
680 	return 0;
681 }
682 
683 static int disk_flush(struct dm_dirty_log *log)
684 {
685 	int r, i;
686 	struct log_c *lc = log->context;
687 
688 	/* only write if the log has changed */
689 	if (!lc->touched_cleaned && !lc->touched_dirtied)
690 		return 0;
691 
692 	if (lc->touched_cleaned && log->flush_callback_fn &&
693 	    log->flush_callback_fn(lc->ti)) {
694 		/*
695 		 * At this point it is impossible to determine which
696 		 * regions are clean and which are dirty (without
697 		 * re-reading the log off disk). So mark all of them
698 		 * dirty.
699 		 */
700 		lc->flush_failed = 1;
701 		for (i = 0; i < lc->region_count; i++)
702 			log_clear_bit(lc, lc->clean_bits, i);
703 	}
704 
705 	r = rw_header(lc, WRITE);
706 	if (r)
707 		fail_log_device(lc);
708 	else {
709 		if (lc->touched_dirtied) {
710 			r = flush_header(lc);
711 			if (r) {
712 				lc->log_dev_flush_failed = 1;
713 				fail_log_device(lc);
714 			} else
715 				lc->touched_dirtied = 0;
716 		}
717 		lc->touched_cleaned = 0;
718 	}
719 
720 	return r;
721 }
722 
723 static void core_mark_region(struct dm_dirty_log *log, region_t region)
724 {
725 	struct log_c *lc = (struct log_c *) log->context;
726 	log_clear_bit(lc, lc->clean_bits, region);
727 }
728 
729 static void core_clear_region(struct dm_dirty_log *log, region_t region)
730 {
731 	struct log_c *lc = (struct log_c *) log->context;
732 	if (likely(!lc->flush_failed))
733 		log_set_bit(lc, lc->clean_bits, region);
734 }
735 
736 static int core_get_resync_work(struct dm_dirty_log *log, region_t *region)
737 {
738 	struct log_c *lc = (struct log_c *) log->context;
739 
740 	if (lc->sync_search >= lc->region_count)
741 		return 0;
742 
743 	do {
744 		*region = ext2_find_next_zero_bit(
745 					     (unsigned long *) lc->sync_bits,
746 					     lc->region_count,
747 					     lc->sync_search);
748 		lc->sync_search = *region + 1;
749 
750 		if (*region >= lc->region_count)
751 			return 0;
752 
753 	} while (log_test_bit(lc->recovering_bits, *region));
754 
755 	log_set_bit(lc, lc->recovering_bits, *region);
756 	return 1;
757 }
758 
759 static void core_set_region_sync(struct dm_dirty_log *log, region_t region,
760 				 int in_sync)
761 {
762 	struct log_c *lc = (struct log_c *) log->context;
763 
764 	log_clear_bit(lc, lc->recovering_bits, region);
765 	if (in_sync) {
766 		log_set_bit(lc, lc->sync_bits, region);
767                 lc->sync_count++;
768         } else if (log_test_bit(lc->sync_bits, region)) {
769 		lc->sync_count--;
770 		log_clear_bit(lc, lc->sync_bits, region);
771 	}
772 }
773 
774 static region_t core_get_sync_count(struct dm_dirty_log *log)
775 {
776         struct log_c *lc = (struct log_c *) log->context;
777 
778         return lc->sync_count;
779 }
780 
781 #define	DMEMIT_SYNC \
782 	if (lc->sync != DEFAULTSYNC) \
783 		DMEMIT("%ssync ", lc->sync == NOSYNC ? "no" : "")
784 
785 static int core_status(struct dm_dirty_log *log, status_type_t status,
786 		       char *result, unsigned int maxlen)
787 {
788 	int sz = 0;
789 	struct log_c *lc = log->context;
790 
791 	switch(status) {
792 	case STATUSTYPE_INFO:
793 		DMEMIT("1 %s", log->type->name);
794 		break;
795 
796 	case STATUSTYPE_TABLE:
797 		DMEMIT("%s %u %u ", log->type->name,
798 		       lc->sync == DEFAULTSYNC ? 1 : 2, lc->region_size);
799 		DMEMIT_SYNC;
800 	}
801 
802 	return sz;
803 }
804 
805 static int disk_status(struct dm_dirty_log *log, status_type_t status,
806 		       char *result, unsigned int maxlen)
807 {
808 	int sz = 0;
809 	struct log_c *lc = log->context;
810 
811 	switch(status) {
812 	case STATUSTYPE_INFO:
813 		DMEMIT("3 %s %s %c", log->type->name, lc->log_dev->name,
814 		       lc->log_dev_flush_failed ? 'F' :
815 		       lc->log_dev_failed ? 'D' :
816 		       'A');
817 		break;
818 
819 	case STATUSTYPE_TABLE:
820 		DMEMIT("%s %u %s %u ", log->type->name,
821 		       lc->sync == DEFAULTSYNC ? 2 : 3, lc->log_dev->name,
822 		       lc->region_size);
823 		DMEMIT_SYNC;
824 	}
825 
826 	return sz;
827 }
828 
829 static struct dm_dirty_log_type _core_type = {
830 	.name = "core",
831 	.module = THIS_MODULE,
832 	.ctr = core_ctr,
833 	.dtr = core_dtr,
834 	.resume = core_resume,
835 	.get_region_size = core_get_region_size,
836 	.is_clean = core_is_clean,
837 	.in_sync = core_in_sync,
838 	.flush = core_flush,
839 	.mark_region = core_mark_region,
840 	.clear_region = core_clear_region,
841 	.get_resync_work = core_get_resync_work,
842 	.set_region_sync = core_set_region_sync,
843 	.get_sync_count = core_get_sync_count,
844 	.status = core_status,
845 };
846 
847 static struct dm_dirty_log_type _disk_type = {
848 	.name = "disk",
849 	.module = THIS_MODULE,
850 	.ctr = disk_ctr,
851 	.dtr = disk_dtr,
852 	.postsuspend = disk_flush,
853 	.resume = disk_resume,
854 	.get_region_size = core_get_region_size,
855 	.is_clean = core_is_clean,
856 	.in_sync = core_in_sync,
857 	.flush = disk_flush,
858 	.mark_region = core_mark_region,
859 	.clear_region = core_clear_region,
860 	.get_resync_work = core_get_resync_work,
861 	.set_region_sync = core_set_region_sync,
862 	.get_sync_count = core_get_sync_count,
863 	.status = disk_status,
864 };
865 
866 static int __init dm_dirty_log_init(void)
867 {
868 	int r;
869 
870 	r = dm_dirty_log_type_register(&_core_type);
871 	if (r)
872 		DMWARN("couldn't register core log");
873 
874 	r = dm_dirty_log_type_register(&_disk_type);
875 	if (r) {
876 		DMWARN("couldn't register disk type");
877 		dm_dirty_log_type_unregister(&_core_type);
878 	}
879 
880 	return r;
881 }
882 
883 static void __exit dm_dirty_log_exit(void)
884 {
885 	dm_dirty_log_type_unregister(&_disk_type);
886 	dm_dirty_log_type_unregister(&_core_type);
887 }
888 
889 module_init(dm_dirty_log_init);
890 module_exit(dm_dirty_log_exit);
891 
892 MODULE_DESCRIPTION(DM_NAME " dirty region log");
893 MODULE_AUTHOR("Joe Thornber, Heinz Mauelshagen <dm-devel@redhat.com>");
894 MODULE_LICENSE("GPL");
895