xref: /openbmc/linux/drivers/md/dm-log-writes.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * Copyright (C) 2014 Facebook. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include <linux/device-mapper.h>
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/blkdev.h>
12 #include <linux/bio.h>
13 #include <linux/dax.h>
14 #include <linux/slab.h>
15 #include <linux/kthread.h>
16 #include <linux/freezer.h>
17 #include <linux/uio.h>
18 
19 #define DM_MSG_PREFIX "log-writes"
20 
21 /*
22  * This target will sequentially log all writes to the target device onto the
23  * log device.  This is helpful for replaying writes to check for fs consistency
24  * at all times.  This target provides a mechanism to mark specific events to
25  * check data at a later time.  So for example you would:
26  *
27  * write data
28  * fsync
29  * dmsetup message /dev/whatever mark mymark
30  * unmount /mnt/test
31  *
32  * Then replay the log up to mymark and check the contents of the replay to
33  * verify it matches what was written.
34  *
35  * We log writes only after they have been flushed, this makes the log describe
36  * close to the order in which the data hits the actual disk, not its cache.  So
37  * for example the following sequence (W means write, C means complete)
38  *
39  * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40  *
41  * Would result in the log looking like this:
42  *
43  * c,a,flush,fuad,b,<other writes>,<next flush>
44  *
45  * This is meant to help expose problems where file systems do not properly wait
46  * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
47  * completes it is added to the log as it should be on disk.
48  *
49  * We treat DISCARDs as if they don't bypass cache so that they are logged in
50  * order of completion along with the normal writes.  If we didn't do it this
51  * way we would process all the discards first and then write all the data, when
52  * in fact we want to do the data and the discard in the order that they
53  * completed.
54  */
55 #define LOG_FLUSH_FLAG		(1 << 0)
56 #define LOG_FUA_FLAG		(1 << 1)
57 #define LOG_DISCARD_FLAG	(1 << 2)
58 #define LOG_MARK_FLAG		(1 << 3)
59 #define LOG_METADATA_FLAG	(1 << 4)
60 
61 #define WRITE_LOG_VERSION 1ULL
62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
63 
64 /*
65  * The disk format for this is braindead simple.
66  *
67  * At byte 0 we have our super, followed by the following sequence for
68  * nr_entries:
69  *
70  * [   1 sector    ][  entry->nr_sectors ]
71  * [log_write_entry][    data written    ]
72  *
73  * The log_write_entry takes up a full sector so we can have arbitrary length
74  * marks and it leaves us room for extra content in the future.
75  */
76 
77 /*
78  * Basic info about the log for userspace.
79  */
80 struct log_write_super {
81 	__le64 magic;
82 	__le64 version;
83 	__le64 nr_entries;
84 	__le32 sectorsize;
85 };
86 
87 /*
88  * sector - the sector we wrote.
89  * nr_sectors - the number of sectors we wrote.
90  * flags - flags for this log entry.
91  * data_len - the size of the data in this log entry, this is for private log
92  * entry stuff, the MARK data provided by userspace for example.
93  */
94 struct log_write_entry {
95 	__le64 sector;
96 	__le64 nr_sectors;
97 	__le64 flags;
98 	__le64 data_len;
99 };
100 
101 struct log_writes_c {
102 	struct dm_dev *dev;
103 	struct dm_dev *logdev;
104 	u64 logged_entries;
105 	u32 sectorsize;
106 	u32 sectorshift;
107 	atomic_t io_blocks;
108 	atomic_t pending_blocks;
109 	sector_t next_sector;
110 	sector_t end_sector;
111 	bool logging_enabled;
112 	bool device_supports_discard;
113 	spinlock_t blocks_lock;
114 	struct list_head unflushed_blocks;
115 	struct list_head logging_blocks;
116 	wait_queue_head_t wait;
117 	struct task_struct *log_kthread;
118 };
119 
120 struct pending_block {
121 	int vec_cnt;
122 	u64 flags;
123 	sector_t sector;
124 	sector_t nr_sectors;
125 	char *data;
126 	u32 datalen;
127 	struct list_head list;
128 	struct bio_vec vecs[0];
129 };
130 
131 struct per_bio_data {
132 	struct pending_block *block;
133 };
134 
135 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
136 					  sector_t sectors)
137 {
138 	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
139 }
140 
141 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
142 					  sector_t sectors)
143 {
144 	return sectors << (lc->sectorshift - SECTOR_SHIFT);
145 }
146 
147 static void put_pending_block(struct log_writes_c *lc)
148 {
149 	if (atomic_dec_and_test(&lc->pending_blocks)) {
150 		smp_mb__after_atomic();
151 		if (waitqueue_active(&lc->wait))
152 			wake_up(&lc->wait);
153 	}
154 }
155 
156 static void put_io_block(struct log_writes_c *lc)
157 {
158 	if (atomic_dec_and_test(&lc->io_blocks)) {
159 		smp_mb__after_atomic();
160 		if (waitqueue_active(&lc->wait))
161 			wake_up(&lc->wait);
162 	}
163 }
164 
165 static void log_end_io(struct bio *bio)
166 {
167 	struct log_writes_c *lc = bio->bi_private;
168 
169 	if (bio->bi_status) {
170 		unsigned long flags;
171 
172 		DMERR("Error writing log block, error=%d", bio->bi_status);
173 		spin_lock_irqsave(&lc->blocks_lock, flags);
174 		lc->logging_enabled = false;
175 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
176 	}
177 
178 	bio_free_pages(bio);
179 	put_io_block(lc);
180 	bio_put(bio);
181 }
182 
183 /*
184  * Meant to be called if there is an error, it will free all the pages
185  * associated with the block.
186  */
187 static void free_pending_block(struct log_writes_c *lc,
188 			       struct pending_block *block)
189 {
190 	int i;
191 
192 	for (i = 0; i < block->vec_cnt; i++) {
193 		if (block->vecs[i].bv_page)
194 			__free_page(block->vecs[i].bv_page);
195 	}
196 	kfree(block->data);
197 	kfree(block);
198 	put_pending_block(lc);
199 }
200 
201 static int write_metadata(struct log_writes_c *lc, void *entry,
202 			  size_t entrylen, void *data, size_t datalen,
203 			  sector_t sector)
204 {
205 	struct bio *bio;
206 	struct page *page;
207 	void *ptr;
208 	size_t ret;
209 
210 	bio = bio_alloc(GFP_KERNEL, 1);
211 	if (!bio) {
212 		DMERR("Couldn't alloc log bio");
213 		goto error;
214 	}
215 	bio->bi_iter.bi_size = 0;
216 	bio->bi_iter.bi_sector = sector;
217 	bio_set_dev(bio, lc->logdev->bdev);
218 	bio->bi_end_io = log_end_io;
219 	bio->bi_private = lc;
220 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
221 
222 	page = alloc_page(GFP_KERNEL);
223 	if (!page) {
224 		DMERR("Couldn't alloc log page");
225 		bio_put(bio);
226 		goto error;
227 	}
228 
229 	ptr = kmap_atomic(page);
230 	memcpy(ptr, entry, entrylen);
231 	if (datalen)
232 		memcpy(ptr + entrylen, data, datalen);
233 	memset(ptr + entrylen + datalen, 0,
234 	       lc->sectorsize - entrylen - datalen);
235 	kunmap_atomic(ptr);
236 
237 	ret = bio_add_page(bio, page, lc->sectorsize, 0);
238 	if (ret != lc->sectorsize) {
239 		DMERR("Couldn't add page to the log block");
240 		goto error_bio;
241 	}
242 	submit_bio(bio);
243 	return 0;
244 error_bio:
245 	bio_put(bio);
246 	__free_page(page);
247 error:
248 	put_io_block(lc);
249 	return -1;
250 }
251 
252 static int write_inline_data(struct log_writes_c *lc, void *entry,
253 			     size_t entrylen, void *data, size_t datalen,
254 			     sector_t sector)
255 {
256 	int num_pages, bio_pages, pg_datalen, pg_sectorlen, i;
257 	struct page *page;
258 	struct bio *bio;
259 	size_t ret;
260 	void *ptr;
261 
262 	while (datalen) {
263 		num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT;
264 		bio_pages = min(num_pages, BIO_MAX_PAGES);
265 
266 		atomic_inc(&lc->io_blocks);
267 
268 		bio = bio_alloc(GFP_KERNEL, bio_pages);
269 		if (!bio) {
270 			DMERR("Couldn't alloc inline data bio");
271 			goto error;
272 		}
273 
274 		bio->bi_iter.bi_size = 0;
275 		bio->bi_iter.bi_sector = sector;
276 		bio_set_dev(bio, lc->logdev->bdev);
277 		bio->bi_end_io = log_end_io;
278 		bio->bi_private = lc;
279 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
280 
281 		for (i = 0; i < bio_pages; i++) {
282 			pg_datalen = min_t(int, datalen, PAGE_SIZE);
283 			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
284 
285 			page = alloc_page(GFP_KERNEL);
286 			if (!page) {
287 				DMERR("Couldn't alloc inline data page");
288 				goto error_bio;
289 			}
290 
291 			ptr = kmap_atomic(page);
292 			memcpy(ptr, data, pg_datalen);
293 			if (pg_sectorlen > pg_datalen)
294 				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
295 			kunmap_atomic(ptr);
296 
297 			ret = bio_add_page(bio, page, pg_sectorlen, 0);
298 			if (ret != pg_sectorlen) {
299 				DMERR("Couldn't add page of inline data");
300 				__free_page(page);
301 				goto error_bio;
302 			}
303 
304 			datalen -= pg_datalen;
305 			data	+= pg_datalen;
306 		}
307 		submit_bio(bio);
308 
309 		sector += bio_pages * PAGE_SECTORS;
310 	}
311 	return 0;
312 error_bio:
313 	bio_free_pages(bio);
314 	bio_put(bio);
315 error:
316 	put_io_block(lc);
317 	return -1;
318 }
319 
320 static int log_one_block(struct log_writes_c *lc,
321 			 struct pending_block *block, sector_t sector)
322 {
323 	struct bio *bio;
324 	struct log_write_entry entry;
325 	size_t metadatalen, ret;
326 	int i;
327 
328 	entry.sector = cpu_to_le64(block->sector);
329 	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
330 	entry.flags = cpu_to_le64(block->flags);
331 	entry.data_len = cpu_to_le64(block->datalen);
332 
333 	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
334 	if (write_metadata(lc, &entry, sizeof(entry), block->data,
335 			   metadatalen, sector)) {
336 		free_pending_block(lc, block);
337 		return -1;
338 	}
339 
340 	sector += dev_to_bio_sectors(lc, 1);
341 
342 	if (block->datalen && metadatalen == 0) {
343 		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
344 				      block->datalen, sector)) {
345 			free_pending_block(lc, block);
346 			return -1;
347 		}
348 		/* we don't support both inline data & bio data */
349 		goto out;
350 	}
351 
352 	if (!block->vec_cnt)
353 		goto out;
354 
355 	atomic_inc(&lc->io_blocks);
356 	bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES));
357 	if (!bio) {
358 		DMERR("Couldn't alloc log bio");
359 		goto error;
360 	}
361 	bio->bi_iter.bi_size = 0;
362 	bio->bi_iter.bi_sector = sector;
363 	bio_set_dev(bio, lc->logdev->bdev);
364 	bio->bi_end_io = log_end_io;
365 	bio->bi_private = lc;
366 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
367 
368 	for (i = 0; i < block->vec_cnt; i++) {
369 		/*
370 		 * The page offset is always 0 because we allocate a new page
371 		 * for every bvec in the original bio for simplicity sake.
372 		 */
373 		ret = bio_add_page(bio, block->vecs[i].bv_page,
374 				   block->vecs[i].bv_len, 0);
375 		if (ret != block->vecs[i].bv_len) {
376 			atomic_inc(&lc->io_blocks);
377 			submit_bio(bio);
378 			bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES));
379 			if (!bio) {
380 				DMERR("Couldn't alloc log bio");
381 				goto error;
382 			}
383 			bio->bi_iter.bi_size = 0;
384 			bio->bi_iter.bi_sector = sector;
385 			bio_set_dev(bio, lc->logdev->bdev);
386 			bio->bi_end_io = log_end_io;
387 			bio->bi_private = lc;
388 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
389 
390 			ret = bio_add_page(bio, block->vecs[i].bv_page,
391 					   block->vecs[i].bv_len, 0);
392 			if (ret != block->vecs[i].bv_len) {
393 				DMERR("Couldn't add page on new bio?");
394 				bio_put(bio);
395 				goto error;
396 			}
397 		}
398 		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
399 	}
400 	submit_bio(bio);
401 out:
402 	kfree(block->data);
403 	kfree(block);
404 	put_pending_block(lc);
405 	return 0;
406 error:
407 	free_pending_block(lc, block);
408 	put_io_block(lc);
409 	return -1;
410 }
411 
412 static int log_super(struct log_writes_c *lc)
413 {
414 	struct log_write_super super;
415 
416 	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
417 	super.version = cpu_to_le64(WRITE_LOG_VERSION);
418 	super.nr_entries = cpu_to_le64(lc->logged_entries);
419 	super.sectorsize = cpu_to_le32(lc->sectorsize);
420 
421 	if (write_metadata(lc, &super, sizeof(super), NULL, 0, 0)) {
422 		DMERR("Couldn't write super");
423 		return -1;
424 	}
425 
426 	return 0;
427 }
428 
429 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
430 {
431 	return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
432 }
433 
434 static int log_writes_kthread(void *arg)
435 {
436 	struct log_writes_c *lc = (struct log_writes_c *)arg;
437 	sector_t sector = 0;
438 
439 	while (!kthread_should_stop()) {
440 		bool super = false;
441 		bool logging_enabled;
442 		struct pending_block *block = NULL;
443 		int ret;
444 
445 		spin_lock_irq(&lc->blocks_lock);
446 		if (!list_empty(&lc->logging_blocks)) {
447 			block = list_first_entry(&lc->logging_blocks,
448 						 struct pending_block, list);
449 			list_del_init(&block->list);
450 			if (!lc->logging_enabled)
451 				goto next;
452 
453 			sector = lc->next_sector;
454 			if (!(block->flags & LOG_DISCARD_FLAG))
455 				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
456 			lc->next_sector += dev_to_bio_sectors(lc, 1);
457 
458 			/*
459 			 * Apparently the size of the device may not be known
460 			 * right away, so handle this properly.
461 			 */
462 			if (!lc->end_sector)
463 				lc->end_sector = logdev_last_sector(lc);
464 			if (lc->end_sector &&
465 			    lc->next_sector >= lc->end_sector) {
466 				DMERR("Ran out of space on the logdev");
467 				lc->logging_enabled = false;
468 				goto next;
469 			}
470 			lc->logged_entries++;
471 			atomic_inc(&lc->io_blocks);
472 
473 			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
474 			if (super)
475 				atomic_inc(&lc->io_blocks);
476 		}
477 next:
478 		logging_enabled = lc->logging_enabled;
479 		spin_unlock_irq(&lc->blocks_lock);
480 		if (block) {
481 			if (logging_enabled) {
482 				ret = log_one_block(lc, block, sector);
483 				if (!ret && super)
484 					ret = log_super(lc);
485 				if (ret) {
486 					spin_lock_irq(&lc->blocks_lock);
487 					lc->logging_enabled = false;
488 					spin_unlock_irq(&lc->blocks_lock);
489 				}
490 			} else
491 				free_pending_block(lc, block);
492 			continue;
493 		}
494 
495 		if (!try_to_freeze()) {
496 			set_current_state(TASK_INTERRUPTIBLE);
497 			if (!kthread_should_stop() &&
498 			    list_empty(&lc->logging_blocks))
499 				schedule();
500 			__set_current_state(TASK_RUNNING);
501 		}
502 	}
503 	return 0;
504 }
505 
506 /*
507  * Construct a log-writes mapping:
508  * log-writes <dev_path> <log_dev_path>
509  */
510 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
511 {
512 	struct log_writes_c *lc;
513 	struct dm_arg_set as;
514 	const char *devname, *logdevname;
515 	int ret;
516 
517 	as.argc = argc;
518 	as.argv = argv;
519 
520 	if (argc < 2) {
521 		ti->error = "Invalid argument count";
522 		return -EINVAL;
523 	}
524 
525 	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
526 	if (!lc) {
527 		ti->error = "Cannot allocate context";
528 		return -ENOMEM;
529 	}
530 	spin_lock_init(&lc->blocks_lock);
531 	INIT_LIST_HEAD(&lc->unflushed_blocks);
532 	INIT_LIST_HEAD(&lc->logging_blocks);
533 	init_waitqueue_head(&lc->wait);
534 	atomic_set(&lc->io_blocks, 0);
535 	atomic_set(&lc->pending_blocks, 0);
536 
537 	devname = dm_shift_arg(&as);
538 	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
539 	if (ret) {
540 		ti->error = "Device lookup failed";
541 		goto bad;
542 	}
543 
544 	logdevname = dm_shift_arg(&as);
545 	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
546 			    &lc->logdev);
547 	if (ret) {
548 		ti->error = "Log device lookup failed";
549 		dm_put_device(ti, lc->dev);
550 		goto bad;
551 	}
552 
553 	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
554 	lc->sectorshift = ilog2(lc->sectorsize);
555 	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
556 	if (IS_ERR(lc->log_kthread)) {
557 		ret = PTR_ERR(lc->log_kthread);
558 		ti->error = "Couldn't alloc kthread";
559 		dm_put_device(ti, lc->dev);
560 		dm_put_device(ti, lc->logdev);
561 		goto bad;
562 	}
563 
564 	/*
565 	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
566 	 * The super starts at sector 0, and the next_sector is the next logical
567 	 * one based on the sectorsize of the device.
568 	 */
569 	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
570 	lc->logging_enabled = true;
571 	lc->end_sector = logdev_last_sector(lc);
572 	lc->device_supports_discard = true;
573 
574 	ti->num_flush_bios = 1;
575 	ti->flush_supported = true;
576 	ti->num_discard_bios = 1;
577 	ti->discards_supported = true;
578 	ti->per_io_data_size = sizeof(struct per_bio_data);
579 	ti->private = lc;
580 	return 0;
581 
582 bad:
583 	kfree(lc);
584 	return ret;
585 }
586 
587 static int log_mark(struct log_writes_c *lc, char *data)
588 {
589 	struct pending_block *block;
590 	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
591 
592 	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
593 	if (!block) {
594 		DMERR("Error allocating pending block");
595 		return -ENOMEM;
596 	}
597 
598 	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
599 	if (!block->data) {
600 		DMERR("Error copying mark data");
601 		kfree(block);
602 		return -ENOMEM;
603 	}
604 	atomic_inc(&lc->pending_blocks);
605 	block->datalen = strlen(block->data);
606 	block->flags |= LOG_MARK_FLAG;
607 	spin_lock_irq(&lc->blocks_lock);
608 	list_add_tail(&block->list, &lc->logging_blocks);
609 	spin_unlock_irq(&lc->blocks_lock);
610 	wake_up_process(lc->log_kthread);
611 	return 0;
612 }
613 
614 static void log_writes_dtr(struct dm_target *ti)
615 {
616 	struct log_writes_c *lc = ti->private;
617 
618 	spin_lock_irq(&lc->blocks_lock);
619 	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
620 	spin_unlock_irq(&lc->blocks_lock);
621 
622 	/*
623 	 * This is just nice to have since it'll update the super to include the
624 	 * unflushed blocks, if it fails we don't really care.
625 	 */
626 	log_mark(lc, "dm-log-writes-end");
627 	wake_up_process(lc->log_kthread);
628 	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
629 		   !atomic_read(&lc->pending_blocks));
630 	kthread_stop(lc->log_kthread);
631 
632 	WARN_ON(!list_empty(&lc->logging_blocks));
633 	WARN_ON(!list_empty(&lc->unflushed_blocks));
634 	dm_put_device(ti, lc->dev);
635 	dm_put_device(ti, lc->logdev);
636 	kfree(lc);
637 }
638 
639 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
640 {
641 	struct log_writes_c *lc = ti->private;
642 
643 	bio_set_dev(bio, lc->dev->bdev);
644 }
645 
646 static int log_writes_map(struct dm_target *ti, struct bio *bio)
647 {
648 	struct log_writes_c *lc = ti->private;
649 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
650 	struct pending_block *block;
651 	struct bvec_iter iter;
652 	struct bio_vec bv;
653 	size_t alloc_size;
654 	int i = 0;
655 	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
656 	bool fua_bio = (bio->bi_opf & REQ_FUA);
657 	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
658 	bool meta_bio = (bio->bi_opf & REQ_META);
659 
660 	pb->block = NULL;
661 
662 	/* Don't bother doing anything if logging has been disabled */
663 	if (!lc->logging_enabled)
664 		goto map_bio;
665 
666 	/*
667 	 * Map reads as normal.
668 	 */
669 	if (bio_data_dir(bio) == READ)
670 		goto map_bio;
671 
672 	/* No sectors and not a flush?  Don't care */
673 	if (!bio_sectors(bio) && !flush_bio)
674 		goto map_bio;
675 
676 	/*
677 	 * Discards will have bi_size set but there's no actual data, so just
678 	 * allocate the size of the pending block.
679 	 */
680 	if (discard_bio)
681 		alloc_size = sizeof(struct pending_block);
682 	else
683 		alloc_size = sizeof(struct pending_block) + sizeof(struct bio_vec) * bio_segments(bio);
684 
685 	block = kzalloc(alloc_size, GFP_NOIO);
686 	if (!block) {
687 		DMERR("Error allocating pending block");
688 		spin_lock_irq(&lc->blocks_lock);
689 		lc->logging_enabled = false;
690 		spin_unlock_irq(&lc->blocks_lock);
691 		return DM_MAPIO_KILL;
692 	}
693 	INIT_LIST_HEAD(&block->list);
694 	pb->block = block;
695 	atomic_inc(&lc->pending_blocks);
696 
697 	if (flush_bio)
698 		block->flags |= LOG_FLUSH_FLAG;
699 	if (fua_bio)
700 		block->flags |= LOG_FUA_FLAG;
701 	if (discard_bio)
702 		block->flags |= LOG_DISCARD_FLAG;
703 	if (meta_bio)
704 		block->flags |= LOG_METADATA_FLAG;
705 
706 	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
707 	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
708 
709 	/* We don't need the data, just submit */
710 	if (discard_bio) {
711 		WARN_ON(flush_bio || fua_bio);
712 		if (lc->device_supports_discard)
713 			goto map_bio;
714 		bio_endio(bio);
715 		return DM_MAPIO_SUBMITTED;
716 	}
717 
718 	/* Flush bio, splice the unflushed blocks onto this list and submit */
719 	if (flush_bio && !bio_sectors(bio)) {
720 		spin_lock_irq(&lc->blocks_lock);
721 		list_splice_init(&lc->unflushed_blocks, &block->list);
722 		spin_unlock_irq(&lc->blocks_lock);
723 		goto map_bio;
724 	}
725 
726 	/*
727 	 * We will write this bio somewhere else way later so we need to copy
728 	 * the actual contents into new pages so we know the data will always be
729 	 * there.
730 	 *
731 	 * We do this because this could be a bio from O_DIRECT in which case we
732 	 * can't just hold onto the page until some later point, we have to
733 	 * manually copy the contents.
734 	 */
735 	bio_for_each_segment(bv, bio, iter) {
736 		struct page *page;
737 		void *src, *dst;
738 
739 		page = alloc_page(GFP_NOIO);
740 		if (!page) {
741 			DMERR("Error allocing page");
742 			free_pending_block(lc, block);
743 			spin_lock_irq(&lc->blocks_lock);
744 			lc->logging_enabled = false;
745 			spin_unlock_irq(&lc->blocks_lock);
746 			return DM_MAPIO_KILL;
747 		}
748 
749 		src = kmap_atomic(bv.bv_page);
750 		dst = kmap_atomic(page);
751 		memcpy(dst, src + bv.bv_offset, bv.bv_len);
752 		kunmap_atomic(dst);
753 		kunmap_atomic(src);
754 		block->vecs[i].bv_page = page;
755 		block->vecs[i].bv_len = bv.bv_len;
756 		block->vec_cnt++;
757 		i++;
758 	}
759 
760 	/* Had a flush with data in it, weird */
761 	if (flush_bio) {
762 		spin_lock_irq(&lc->blocks_lock);
763 		list_splice_init(&lc->unflushed_blocks, &block->list);
764 		spin_unlock_irq(&lc->blocks_lock);
765 	}
766 map_bio:
767 	normal_map_bio(ti, bio);
768 	return DM_MAPIO_REMAPPED;
769 }
770 
771 static int normal_end_io(struct dm_target *ti, struct bio *bio,
772 		blk_status_t *error)
773 {
774 	struct log_writes_c *lc = ti->private;
775 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
776 
777 	if (bio_data_dir(bio) == WRITE && pb->block) {
778 		struct pending_block *block = pb->block;
779 		unsigned long flags;
780 
781 		spin_lock_irqsave(&lc->blocks_lock, flags);
782 		if (block->flags & LOG_FLUSH_FLAG) {
783 			list_splice_tail_init(&block->list, &lc->logging_blocks);
784 			list_add_tail(&block->list, &lc->logging_blocks);
785 			wake_up_process(lc->log_kthread);
786 		} else if (block->flags & LOG_FUA_FLAG) {
787 			list_add_tail(&block->list, &lc->logging_blocks);
788 			wake_up_process(lc->log_kthread);
789 		} else
790 			list_add_tail(&block->list, &lc->unflushed_blocks);
791 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
792 	}
793 
794 	return DM_ENDIO_DONE;
795 }
796 
797 /*
798  * INFO format: <logged entries> <highest allocated sector>
799  */
800 static void log_writes_status(struct dm_target *ti, status_type_t type,
801 			      unsigned status_flags, char *result,
802 			      unsigned maxlen)
803 {
804 	unsigned sz = 0;
805 	struct log_writes_c *lc = ti->private;
806 
807 	switch (type) {
808 	case STATUSTYPE_INFO:
809 		DMEMIT("%llu %llu", lc->logged_entries,
810 		       (unsigned long long)lc->next_sector - 1);
811 		if (!lc->logging_enabled)
812 			DMEMIT(" logging_disabled");
813 		break;
814 
815 	case STATUSTYPE_TABLE:
816 		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
817 		break;
818 	}
819 }
820 
821 static int log_writes_prepare_ioctl(struct dm_target *ti,
822 				    struct block_device **bdev)
823 {
824 	struct log_writes_c *lc = ti->private;
825 	struct dm_dev *dev = lc->dev;
826 
827 	*bdev = dev->bdev;
828 	/*
829 	 * Only pass ioctls through if the device sizes match exactly.
830 	 */
831 	if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
832 		return 1;
833 	return 0;
834 }
835 
836 static int log_writes_iterate_devices(struct dm_target *ti,
837 				      iterate_devices_callout_fn fn,
838 				      void *data)
839 {
840 	struct log_writes_c *lc = ti->private;
841 
842 	return fn(ti, lc->dev, 0, ti->len, data);
843 }
844 
845 /*
846  * Messages supported:
847  *   mark <mark data> - specify the marked data.
848  */
849 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
850 			      char *result, unsigned maxlen)
851 {
852 	int r = -EINVAL;
853 	struct log_writes_c *lc = ti->private;
854 
855 	if (argc != 2) {
856 		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
857 		return r;
858 	}
859 
860 	if (!strcasecmp(argv[0], "mark"))
861 		r = log_mark(lc, argv[1]);
862 	else
863 		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
864 
865 	return r;
866 }
867 
868 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
869 {
870 	struct log_writes_c *lc = ti->private;
871 	struct request_queue *q = bdev_get_queue(lc->dev->bdev);
872 
873 	if (!q || !blk_queue_discard(q)) {
874 		lc->device_supports_discard = false;
875 		limits->discard_granularity = lc->sectorsize;
876 		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
877 	}
878 	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
879 	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
880 	limits->io_min = limits->physical_block_size;
881 }
882 
883 #if IS_ENABLED(CONFIG_DAX_DRIVER)
884 static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
885 		   struct iov_iter *i)
886 {
887 	struct pending_block *block;
888 
889 	if (!bytes)
890 		return 0;
891 
892 	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
893 	if (!block) {
894 		DMERR("Error allocating dax pending block");
895 		return -ENOMEM;
896 	}
897 
898 	block->data = kzalloc(bytes, GFP_KERNEL);
899 	if (!block->data) {
900 		DMERR("Error allocating dax data space");
901 		kfree(block);
902 		return -ENOMEM;
903 	}
904 
905 	/* write data provided via the iterator */
906 	if (!copy_from_iter(block->data, bytes, i)) {
907 		DMERR("Error copying dax data");
908 		kfree(block->data);
909 		kfree(block);
910 		return -EIO;
911 	}
912 
913 	/* rewind the iterator so that the block driver can use it */
914 	iov_iter_revert(i, bytes);
915 
916 	block->datalen = bytes;
917 	block->sector = bio_to_dev_sectors(lc, sector);
918 	block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
919 
920 	atomic_inc(&lc->pending_blocks);
921 	spin_lock_irq(&lc->blocks_lock);
922 	list_add_tail(&block->list, &lc->unflushed_blocks);
923 	spin_unlock_irq(&lc->blocks_lock);
924 	wake_up_process(lc->log_kthread);
925 
926 	return 0;
927 }
928 
929 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
930 					 long nr_pages, void **kaddr, pfn_t *pfn)
931 {
932 	struct log_writes_c *lc = ti->private;
933 	sector_t sector = pgoff * PAGE_SECTORS;
934 	int ret;
935 
936 	ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
937 	if (ret)
938 		return ret;
939 	return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
940 }
941 
942 static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
943 					    pgoff_t pgoff, void *addr, size_t bytes,
944 					    struct iov_iter *i)
945 {
946 	struct log_writes_c *lc = ti->private;
947 	sector_t sector = pgoff * PAGE_SECTORS;
948 	int err;
949 
950 	if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
951 		return 0;
952 
953 	/* Don't bother doing anything if logging has been disabled */
954 	if (!lc->logging_enabled)
955 		goto dax_copy;
956 
957 	err = log_dax(lc, sector, bytes, i);
958 	if (err) {
959 		DMWARN("Error %d logging DAX write", err);
960 		return 0;
961 	}
962 dax_copy:
963 	return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
964 }
965 
966 static size_t log_writes_dax_copy_to_iter(struct dm_target *ti,
967 					  pgoff_t pgoff, void *addr, size_t bytes,
968 					  struct iov_iter *i)
969 {
970 	struct log_writes_c *lc = ti->private;
971 	sector_t sector = pgoff * PAGE_SECTORS;
972 
973 	if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
974 		return 0;
975 	return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
976 }
977 
978 #else
979 #define log_writes_dax_direct_access NULL
980 #define log_writes_dax_copy_from_iter NULL
981 #define log_writes_dax_copy_to_iter NULL
982 #endif
983 
984 static struct target_type log_writes_target = {
985 	.name   = "log-writes",
986 	.version = {1, 1, 0},
987 	.module = THIS_MODULE,
988 	.ctr    = log_writes_ctr,
989 	.dtr    = log_writes_dtr,
990 	.map    = log_writes_map,
991 	.end_io = normal_end_io,
992 	.status = log_writes_status,
993 	.prepare_ioctl = log_writes_prepare_ioctl,
994 	.message = log_writes_message,
995 	.iterate_devices = log_writes_iterate_devices,
996 	.io_hints = log_writes_io_hints,
997 	.direct_access = log_writes_dax_direct_access,
998 	.dax_copy_from_iter = log_writes_dax_copy_from_iter,
999 	.dax_copy_to_iter = log_writes_dax_copy_to_iter,
1000 };
1001 
1002 static int __init dm_log_writes_init(void)
1003 {
1004 	int r = dm_register_target(&log_writes_target);
1005 
1006 	if (r < 0)
1007 		DMERR("register failed %d", r);
1008 
1009 	return r;
1010 }
1011 
1012 static void __exit dm_log_writes_exit(void)
1013 {
1014 	dm_unregister_target(&log_writes_target);
1015 }
1016 
1017 module_init(dm_log_writes_init);
1018 module_exit(dm_log_writes_exit);
1019 
1020 MODULE_DESCRIPTION(DM_NAME " log writes target");
1021 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
1022 MODULE_LICENSE("GPL");
1023