xref: /openbmc/linux/drivers/md/dm-log-writes.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 /*
2  * Copyright (C) 2014 Facebook. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include <linux/device-mapper.h>
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/blkdev.h>
12 #include <linux/bio.h>
13 #include <linux/dax.h>
14 #include <linux/slab.h>
15 #include <linux/kthread.h>
16 #include <linux/freezer.h>
17 #include <linux/uio.h>
18 
19 #define DM_MSG_PREFIX "log-writes"
20 
21 /*
22  * This target will sequentially log all writes to the target device onto the
23  * log device.  This is helpful for replaying writes to check for fs consistency
24  * at all times.  This target provides a mechanism to mark specific events to
25  * check data at a later time.  So for example you would:
26  *
27  * write data
28  * fsync
29  * dmsetup message /dev/whatever mark mymark
30  * unmount /mnt/test
31  *
32  * Then replay the log up to mymark and check the contents of the replay to
33  * verify it matches what was written.
34  *
35  * We log writes only after they have been flushed, this makes the log describe
36  * close to the order in which the data hits the actual disk, not its cache.  So
37  * for example the following sequence (W means write, C means complete)
38  *
39  * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40  *
41  * Would result in the log looking like this:
42  *
43  * c,a,b,flush,fuad,<other writes>,<next flush>
44  *
45  * This is meant to help expose problems where file systems do not properly wait
46  * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
47  * completes it is added to the log as it should be on disk.
48  *
49  * We treat DISCARDs as if they don't bypass cache so that they are logged in
50  * order of completion along with the normal writes.  If we didn't do it this
51  * way we would process all the discards first and then write all the data, when
52  * in fact we want to do the data and the discard in the order that they
53  * completed.
54  */
55 #define LOG_FLUSH_FLAG		(1 << 0)
56 #define LOG_FUA_FLAG		(1 << 1)
57 #define LOG_DISCARD_FLAG	(1 << 2)
58 #define LOG_MARK_FLAG		(1 << 3)
59 #define LOG_METADATA_FLAG	(1 << 4)
60 
61 #define WRITE_LOG_VERSION 1ULL
62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
63 #define WRITE_LOG_SUPER_SECTOR 0
64 
65 /*
66  * The disk format for this is braindead simple.
67  *
68  * At byte 0 we have our super, followed by the following sequence for
69  * nr_entries:
70  *
71  * [   1 sector    ][  entry->nr_sectors ]
72  * [log_write_entry][    data written    ]
73  *
74  * The log_write_entry takes up a full sector so we can have arbitrary length
75  * marks and it leaves us room for extra content in the future.
76  */
77 
78 /*
79  * Basic info about the log for userspace.
80  */
81 struct log_write_super {
82 	__le64 magic;
83 	__le64 version;
84 	__le64 nr_entries;
85 	__le32 sectorsize;
86 };
87 
88 /*
89  * sector - the sector we wrote.
90  * nr_sectors - the number of sectors we wrote.
91  * flags - flags for this log entry.
92  * data_len - the size of the data in this log entry, this is for private log
93  * entry stuff, the MARK data provided by userspace for example.
94  */
95 struct log_write_entry {
96 	__le64 sector;
97 	__le64 nr_sectors;
98 	__le64 flags;
99 	__le64 data_len;
100 };
101 
102 struct log_writes_c {
103 	struct dm_dev *dev;
104 	struct dm_dev *logdev;
105 	u64 logged_entries;
106 	u32 sectorsize;
107 	u32 sectorshift;
108 	atomic_t io_blocks;
109 	atomic_t pending_blocks;
110 	sector_t next_sector;
111 	sector_t end_sector;
112 	bool logging_enabled;
113 	bool device_supports_discard;
114 	spinlock_t blocks_lock;
115 	struct list_head unflushed_blocks;
116 	struct list_head logging_blocks;
117 	wait_queue_head_t wait;
118 	struct task_struct *log_kthread;
119 	struct completion super_done;
120 };
121 
122 struct pending_block {
123 	int vec_cnt;
124 	u64 flags;
125 	sector_t sector;
126 	sector_t nr_sectors;
127 	char *data;
128 	u32 datalen;
129 	struct list_head list;
130 	struct bio_vec vecs[];
131 };
132 
133 struct per_bio_data {
134 	struct pending_block *block;
135 };
136 
137 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
138 					  sector_t sectors)
139 {
140 	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
141 }
142 
143 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
144 					  sector_t sectors)
145 {
146 	return sectors << (lc->sectorshift - SECTOR_SHIFT);
147 }
148 
149 static void put_pending_block(struct log_writes_c *lc)
150 {
151 	if (atomic_dec_and_test(&lc->pending_blocks)) {
152 		smp_mb__after_atomic();
153 		if (waitqueue_active(&lc->wait))
154 			wake_up(&lc->wait);
155 	}
156 }
157 
158 static void put_io_block(struct log_writes_c *lc)
159 {
160 	if (atomic_dec_and_test(&lc->io_blocks)) {
161 		smp_mb__after_atomic();
162 		if (waitqueue_active(&lc->wait))
163 			wake_up(&lc->wait);
164 	}
165 }
166 
167 static void log_end_io(struct bio *bio)
168 {
169 	struct log_writes_c *lc = bio->bi_private;
170 
171 	if (bio->bi_status) {
172 		unsigned long flags;
173 
174 		DMERR("Error writing log block, error=%d", bio->bi_status);
175 		spin_lock_irqsave(&lc->blocks_lock, flags);
176 		lc->logging_enabled = false;
177 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
178 	}
179 
180 	bio_free_pages(bio);
181 	put_io_block(lc);
182 	bio_put(bio);
183 }
184 
185 static void log_end_super(struct bio *bio)
186 {
187 	struct log_writes_c *lc = bio->bi_private;
188 
189 	complete(&lc->super_done);
190 	log_end_io(bio);
191 }
192 
193 /*
194  * Meant to be called if there is an error, it will free all the pages
195  * associated with the block.
196  */
197 static void free_pending_block(struct log_writes_c *lc,
198 			       struct pending_block *block)
199 {
200 	int i;
201 
202 	for (i = 0; i < block->vec_cnt; i++) {
203 		if (block->vecs[i].bv_page)
204 			__free_page(block->vecs[i].bv_page);
205 	}
206 	kfree(block->data);
207 	kfree(block);
208 	put_pending_block(lc);
209 }
210 
211 static int write_metadata(struct log_writes_c *lc, void *entry,
212 			  size_t entrylen, void *data, size_t datalen,
213 			  sector_t sector)
214 {
215 	struct bio *bio;
216 	struct page *page;
217 	void *ptr;
218 	size_t ret;
219 
220 	bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL);
221 	bio->bi_iter.bi_size = 0;
222 	bio->bi_iter.bi_sector = sector;
223 	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
224 			  log_end_super : log_end_io;
225 	bio->bi_private = lc;
226 
227 	page = alloc_page(GFP_KERNEL);
228 	if (!page) {
229 		DMERR("Couldn't alloc log page");
230 		bio_put(bio);
231 		goto error;
232 	}
233 
234 	ptr = kmap_atomic(page);
235 	memcpy(ptr, entry, entrylen);
236 	if (datalen)
237 		memcpy(ptr + entrylen, data, datalen);
238 	memset(ptr + entrylen + datalen, 0,
239 	       lc->sectorsize - entrylen - datalen);
240 	kunmap_atomic(ptr);
241 
242 	ret = bio_add_page(bio, page, lc->sectorsize, 0);
243 	if (ret != lc->sectorsize) {
244 		DMERR("Couldn't add page to the log block");
245 		goto error_bio;
246 	}
247 	submit_bio(bio);
248 	return 0;
249 error_bio:
250 	bio_put(bio);
251 	__free_page(page);
252 error:
253 	put_io_block(lc);
254 	return -1;
255 }
256 
257 static int write_inline_data(struct log_writes_c *lc, void *entry,
258 			     size_t entrylen, void *data, size_t datalen,
259 			     sector_t sector)
260 {
261 	int bio_pages, pg_datalen, pg_sectorlen, i;
262 	struct page *page;
263 	struct bio *bio;
264 	size_t ret;
265 	void *ptr;
266 
267 	while (datalen) {
268 		bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
269 
270 		atomic_inc(&lc->io_blocks);
271 
272 		bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE,
273 				GFP_KERNEL);
274 		bio->bi_iter.bi_size = 0;
275 		bio->bi_iter.bi_sector = sector;
276 		bio->bi_end_io = log_end_io;
277 		bio->bi_private = lc;
278 
279 		for (i = 0; i < bio_pages; i++) {
280 			pg_datalen = min_t(int, datalen, PAGE_SIZE);
281 			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
282 
283 			page = alloc_page(GFP_KERNEL);
284 			if (!page) {
285 				DMERR("Couldn't alloc inline data page");
286 				goto error_bio;
287 			}
288 
289 			ptr = kmap_atomic(page);
290 			memcpy(ptr, data, pg_datalen);
291 			if (pg_sectorlen > pg_datalen)
292 				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
293 			kunmap_atomic(ptr);
294 
295 			ret = bio_add_page(bio, page, pg_sectorlen, 0);
296 			if (ret != pg_sectorlen) {
297 				DMERR("Couldn't add page of inline data");
298 				__free_page(page);
299 				goto error_bio;
300 			}
301 
302 			datalen -= pg_datalen;
303 			data	+= pg_datalen;
304 		}
305 		submit_bio(bio);
306 
307 		sector += bio_pages * PAGE_SECTORS;
308 	}
309 	return 0;
310 error_bio:
311 	bio_free_pages(bio);
312 	bio_put(bio);
313 	put_io_block(lc);
314 	return -1;
315 }
316 
317 static int log_one_block(struct log_writes_c *lc,
318 			 struct pending_block *block, sector_t sector)
319 {
320 	struct bio *bio;
321 	struct log_write_entry entry;
322 	size_t metadatalen, ret;
323 	int i;
324 
325 	entry.sector = cpu_to_le64(block->sector);
326 	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
327 	entry.flags = cpu_to_le64(block->flags);
328 	entry.data_len = cpu_to_le64(block->datalen);
329 
330 	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
331 	if (write_metadata(lc, &entry, sizeof(entry), block->data,
332 			   metadatalen, sector)) {
333 		free_pending_block(lc, block);
334 		return -1;
335 	}
336 
337 	sector += dev_to_bio_sectors(lc, 1);
338 
339 	if (block->datalen && metadatalen == 0) {
340 		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
341 				      block->datalen, sector)) {
342 			free_pending_block(lc, block);
343 			return -1;
344 		}
345 		/* we don't support both inline data & bio data */
346 		goto out;
347 	}
348 
349 	if (!block->vec_cnt)
350 		goto out;
351 
352 	atomic_inc(&lc->io_blocks);
353 	bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt),
354 			REQ_OP_WRITE, GFP_KERNEL);
355 	bio->bi_iter.bi_size = 0;
356 	bio->bi_iter.bi_sector = sector;
357 	bio->bi_end_io = log_end_io;
358 	bio->bi_private = lc;
359 
360 	for (i = 0; i < block->vec_cnt; i++) {
361 		/*
362 		 * The page offset is always 0 because we allocate a new page
363 		 * for every bvec in the original bio for simplicity sake.
364 		 */
365 		ret = bio_add_page(bio, block->vecs[i].bv_page,
366 				   block->vecs[i].bv_len, 0);
367 		if (ret != block->vecs[i].bv_len) {
368 			atomic_inc(&lc->io_blocks);
369 			submit_bio(bio);
370 			bio = bio_alloc(lc->logdev->bdev,
371 					bio_max_segs(block->vec_cnt - i),
372 					REQ_OP_WRITE, GFP_KERNEL);
373 			bio->bi_iter.bi_size = 0;
374 			bio->bi_iter.bi_sector = sector;
375 			bio->bi_end_io = log_end_io;
376 			bio->bi_private = lc;
377 
378 			ret = bio_add_page(bio, block->vecs[i].bv_page,
379 					   block->vecs[i].bv_len, 0);
380 			if (ret != block->vecs[i].bv_len) {
381 				DMERR("Couldn't add page on new bio?");
382 				bio_put(bio);
383 				goto error;
384 			}
385 		}
386 		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
387 	}
388 	submit_bio(bio);
389 out:
390 	kfree(block->data);
391 	kfree(block);
392 	put_pending_block(lc);
393 	return 0;
394 error:
395 	free_pending_block(lc, block);
396 	put_io_block(lc);
397 	return -1;
398 }
399 
400 static int log_super(struct log_writes_c *lc)
401 {
402 	struct log_write_super super;
403 
404 	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
405 	super.version = cpu_to_le64(WRITE_LOG_VERSION);
406 	super.nr_entries = cpu_to_le64(lc->logged_entries);
407 	super.sectorsize = cpu_to_le32(lc->sectorsize);
408 
409 	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
410 			   WRITE_LOG_SUPER_SECTOR)) {
411 		DMERR("Couldn't write super");
412 		return -1;
413 	}
414 
415 	/*
416 	 * Super sector should be writen in-order, otherwise the
417 	 * nr_entries could be rewritten incorrectly by an old bio.
418 	 */
419 	wait_for_completion_io(&lc->super_done);
420 
421 	return 0;
422 }
423 
424 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
425 {
426 	return bdev_nr_sectors(lc->logdev->bdev);
427 }
428 
429 static int log_writes_kthread(void *arg)
430 {
431 	struct log_writes_c *lc = (struct log_writes_c *)arg;
432 	sector_t sector = 0;
433 
434 	while (!kthread_should_stop()) {
435 		bool super = false;
436 		bool logging_enabled;
437 		struct pending_block *block = NULL;
438 		int ret;
439 
440 		spin_lock_irq(&lc->blocks_lock);
441 		if (!list_empty(&lc->logging_blocks)) {
442 			block = list_first_entry(&lc->logging_blocks,
443 						 struct pending_block, list);
444 			list_del_init(&block->list);
445 			if (!lc->logging_enabled)
446 				goto next;
447 
448 			sector = lc->next_sector;
449 			if (!(block->flags & LOG_DISCARD_FLAG))
450 				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
451 			lc->next_sector += dev_to_bio_sectors(lc, 1);
452 
453 			/*
454 			 * Apparently the size of the device may not be known
455 			 * right away, so handle this properly.
456 			 */
457 			if (!lc->end_sector)
458 				lc->end_sector = logdev_last_sector(lc);
459 			if (lc->end_sector &&
460 			    lc->next_sector >= lc->end_sector) {
461 				DMERR("Ran out of space on the logdev");
462 				lc->logging_enabled = false;
463 				goto next;
464 			}
465 			lc->logged_entries++;
466 			atomic_inc(&lc->io_blocks);
467 
468 			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
469 			if (super)
470 				atomic_inc(&lc->io_blocks);
471 		}
472 next:
473 		logging_enabled = lc->logging_enabled;
474 		spin_unlock_irq(&lc->blocks_lock);
475 		if (block) {
476 			if (logging_enabled) {
477 				ret = log_one_block(lc, block, sector);
478 				if (!ret && super)
479 					ret = log_super(lc);
480 				if (ret) {
481 					spin_lock_irq(&lc->blocks_lock);
482 					lc->logging_enabled = false;
483 					spin_unlock_irq(&lc->blocks_lock);
484 				}
485 			} else
486 				free_pending_block(lc, block);
487 			continue;
488 		}
489 
490 		if (!try_to_freeze()) {
491 			set_current_state(TASK_INTERRUPTIBLE);
492 			if (!kthread_should_stop() &&
493 			    list_empty(&lc->logging_blocks))
494 				schedule();
495 			__set_current_state(TASK_RUNNING);
496 		}
497 	}
498 	return 0;
499 }
500 
501 /*
502  * Construct a log-writes mapping:
503  * log-writes <dev_path> <log_dev_path>
504  */
505 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
506 {
507 	struct log_writes_c *lc;
508 	struct dm_arg_set as;
509 	const char *devname, *logdevname;
510 	int ret;
511 
512 	as.argc = argc;
513 	as.argv = argv;
514 
515 	if (argc < 2) {
516 		ti->error = "Invalid argument count";
517 		return -EINVAL;
518 	}
519 
520 	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
521 	if (!lc) {
522 		ti->error = "Cannot allocate context";
523 		return -ENOMEM;
524 	}
525 	spin_lock_init(&lc->blocks_lock);
526 	INIT_LIST_HEAD(&lc->unflushed_blocks);
527 	INIT_LIST_HEAD(&lc->logging_blocks);
528 	init_waitqueue_head(&lc->wait);
529 	init_completion(&lc->super_done);
530 	atomic_set(&lc->io_blocks, 0);
531 	atomic_set(&lc->pending_blocks, 0);
532 
533 	devname = dm_shift_arg(&as);
534 	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
535 	if (ret) {
536 		ti->error = "Device lookup failed";
537 		goto bad;
538 	}
539 
540 	logdevname = dm_shift_arg(&as);
541 	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
542 			    &lc->logdev);
543 	if (ret) {
544 		ti->error = "Log device lookup failed";
545 		dm_put_device(ti, lc->dev);
546 		goto bad;
547 	}
548 
549 	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
550 	lc->sectorshift = ilog2(lc->sectorsize);
551 	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
552 	if (IS_ERR(lc->log_kthread)) {
553 		ret = PTR_ERR(lc->log_kthread);
554 		ti->error = "Couldn't alloc kthread";
555 		dm_put_device(ti, lc->dev);
556 		dm_put_device(ti, lc->logdev);
557 		goto bad;
558 	}
559 
560 	/*
561 	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
562 	 * The super starts at sector 0, and the next_sector is the next logical
563 	 * one based on the sectorsize of the device.
564 	 */
565 	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
566 	lc->logging_enabled = true;
567 	lc->end_sector = logdev_last_sector(lc);
568 	lc->device_supports_discard = true;
569 
570 	ti->num_flush_bios = 1;
571 	ti->flush_supported = true;
572 	ti->num_discard_bios = 1;
573 	ti->discards_supported = true;
574 	ti->per_io_data_size = sizeof(struct per_bio_data);
575 	ti->private = lc;
576 	return 0;
577 
578 bad:
579 	kfree(lc);
580 	return ret;
581 }
582 
583 static int log_mark(struct log_writes_c *lc, char *data)
584 {
585 	struct pending_block *block;
586 	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
587 
588 	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
589 	if (!block) {
590 		DMERR("Error allocating pending block");
591 		return -ENOMEM;
592 	}
593 
594 	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
595 	if (!block->data) {
596 		DMERR("Error copying mark data");
597 		kfree(block);
598 		return -ENOMEM;
599 	}
600 	atomic_inc(&lc->pending_blocks);
601 	block->datalen = strlen(block->data);
602 	block->flags |= LOG_MARK_FLAG;
603 	spin_lock_irq(&lc->blocks_lock);
604 	list_add_tail(&block->list, &lc->logging_blocks);
605 	spin_unlock_irq(&lc->blocks_lock);
606 	wake_up_process(lc->log_kthread);
607 	return 0;
608 }
609 
610 static void log_writes_dtr(struct dm_target *ti)
611 {
612 	struct log_writes_c *lc = ti->private;
613 
614 	spin_lock_irq(&lc->blocks_lock);
615 	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
616 	spin_unlock_irq(&lc->blocks_lock);
617 
618 	/*
619 	 * This is just nice to have since it'll update the super to include the
620 	 * unflushed blocks, if it fails we don't really care.
621 	 */
622 	log_mark(lc, "dm-log-writes-end");
623 	wake_up_process(lc->log_kthread);
624 	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
625 		   !atomic_read(&lc->pending_blocks));
626 	kthread_stop(lc->log_kthread);
627 
628 	WARN_ON(!list_empty(&lc->logging_blocks));
629 	WARN_ON(!list_empty(&lc->unflushed_blocks));
630 	dm_put_device(ti, lc->dev);
631 	dm_put_device(ti, lc->logdev);
632 	kfree(lc);
633 }
634 
635 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
636 {
637 	struct log_writes_c *lc = ti->private;
638 
639 	bio_set_dev(bio, lc->dev->bdev);
640 }
641 
642 static int log_writes_map(struct dm_target *ti, struct bio *bio)
643 {
644 	struct log_writes_c *lc = ti->private;
645 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
646 	struct pending_block *block;
647 	struct bvec_iter iter;
648 	struct bio_vec bv;
649 	size_t alloc_size;
650 	int i = 0;
651 	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
652 	bool fua_bio = (bio->bi_opf & REQ_FUA);
653 	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
654 	bool meta_bio = (bio->bi_opf & REQ_META);
655 
656 	pb->block = NULL;
657 
658 	/* Don't bother doing anything if logging has been disabled */
659 	if (!lc->logging_enabled)
660 		goto map_bio;
661 
662 	/*
663 	 * Map reads as normal.
664 	 */
665 	if (bio_data_dir(bio) == READ)
666 		goto map_bio;
667 
668 	/* No sectors and not a flush?  Don't care */
669 	if (!bio_sectors(bio) && !flush_bio)
670 		goto map_bio;
671 
672 	/*
673 	 * Discards will have bi_size set but there's no actual data, so just
674 	 * allocate the size of the pending block.
675 	 */
676 	if (discard_bio)
677 		alloc_size = sizeof(struct pending_block);
678 	else
679 		alloc_size = struct_size(block, vecs, bio_segments(bio));
680 
681 	block = kzalloc(alloc_size, GFP_NOIO);
682 	if (!block) {
683 		DMERR("Error allocating pending block");
684 		spin_lock_irq(&lc->blocks_lock);
685 		lc->logging_enabled = false;
686 		spin_unlock_irq(&lc->blocks_lock);
687 		return DM_MAPIO_KILL;
688 	}
689 	INIT_LIST_HEAD(&block->list);
690 	pb->block = block;
691 	atomic_inc(&lc->pending_blocks);
692 
693 	if (flush_bio)
694 		block->flags |= LOG_FLUSH_FLAG;
695 	if (fua_bio)
696 		block->flags |= LOG_FUA_FLAG;
697 	if (discard_bio)
698 		block->flags |= LOG_DISCARD_FLAG;
699 	if (meta_bio)
700 		block->flags |= LOG_METADATA_FLAG;
701 
702 	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
703 	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
704 
705 	/* We don't need the data, just submit */
706 	if (discard_bio) {
707 		WARN_ON(flush_bio || fua_bio);
708 		if (lc->device_supports_discard)
709 			goto map_bio;
710 		bio_endio(bio);
711 		return DM_MAPIO_SUBMITTED;
712 	}
713 
714 	/* Flush bio, splice the unflushed blocks onto this list and submit */
715 	if (flush_bio && !bio_sectors(bio)) {
716 		spin_lock_irq(&lc->blocks_lock);
717 		list_splice_init(&lc->unflushed_blocks, &block->list);
718 		spin_unlock_irq(&lc->blocks_lock);
719 		goto map_bio;
720 	}
721 
722 	/*
723 	 * We will write this bio somewhere else way later so we need to copy
724 	 * the actual contents into new pages so we know the data will always be
725 	 * there.
726 	 *
727 	 * We do this because this could be a bio from O_DIRECT in which case we
728 	 * can't just hold onto the page until some later point, we have to
729 	 * manually copy the contents.
730 	 */
731 	bio_for_each_segment(bv, bio, iter) {
732 		struct page *page;
733 		void *dst;
734 
735 		page = alloc_page(GFP_NOIO);
736 		if (!page) {
737 			DMERR("Error allocing page");
738 			free_pending_block(lc, block);
739 			spin_lock_irq(&lc->blocks_lock);
740 			lc->logging_enabled = false;
741 			spin_unlock_irq(&lc->blocks_lock);
742 			return DM_MAPIO_KILL;
743 		}
744 
745 		dst = kmap_atomic(page);
746 		memcpy_from_bvec(dst, &bv);
747 		kunmap_atomic(dst);
748 		block->vecs[i].bv_page = page;
749 		block->vecs[i].bv_len = bv.bv_len;
750 		block->vec_cnt++;
751 		i++;
752 	}
753 
754 	/* Had a flush with data in it, weird */
755 	if (flush_bio) {
756 		spin_lock_irq(&lc->blocks_lock);
757 		list_splice_init(&lc->unflushed_blocks, &block->list);
758 		spin_unlock_irq(&lc->blocks_lock);
759 	}
760 map_bio:
761 	normal_map_bio(ti, bio);
762 	return DM_MAPIO_REMAPPED;
763 }
764 
765 static int normal_end_io(struct dm_target *ti, struct bio *bio,
766 		blk_status_t *error)
767 {
768 	struct log_writes_c *lc = ti->private;
769 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
770 
771 	if (bio_data_dir(bio) == WRITE && pb->block) {
772 		struct pending_block *block = pb->block;
773 		unsigned long flags;
774 
775 		spin_lock_irqsave(&lc->blocks_lock, flags);
776 		if (block->flags & LOG_FLUSH_FLAG) {
777 			list_splice_tail_init(&block->list, &lc->logging_blocks);
778 			list_add_tail(&block->list, &lc->logging_blocks);
779 			wake_up_process(lc->log_kthread);
780 		} else if (block->flags & LOG_FUA_FLAG) {
781 			list_add_tail(&block->list, &lc->logging_blocks);
782 			wake_up_process(lc->log_kthread);
783 		} else
784 			list_add_tail(&block->list, &lc->unflushed_blocks);
785 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
786 	}
787 
788 	return DM_ENDIO_DONE;
789 }
790 
791 /*
792  * INFO format: <logged entries> <highest allocated sector>
793  */
794 static void log_writes_status(struct dm_target *ti, status_type_t type,
795 			      unsigned status_flags, char *result,
796 			      unsigned maxlen)
797 {
798 	unsigned sz = 0;
799 	struct log_writes_c *lc = ti->private;
800 
801 	switch (type) {
802 	case STATUSTYPE_INFO:
803 		DMEMIT("%llu %llu", lc->logged_entries,
804 		       (unsigned long long)lc->next_sector - 1);
805 		if (!lc->logging_enabled)
806 			DMEMIT(" logging_disabled");
807 		break;
808 
809 	case STATUSTYPE_TABLE:
810 		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
811 		break;
812 
813 	case STATUSTYPE_IMA:
814 		*result = '\0';
815 		break;
816 	}
817 }
818 
819 static int log_writes_prepare_ioctl(struct dm_target *ti,
820 				    struct block_device **bdev)
821 {
822 	struct log_writes_c *lc = ti->private;
823 	struct dm_dev *dev = lc->dev;
824 
825 	*bdev = dev->bdev;
826 	/*
827 	 * Only pass ioctls through if the device sizes match exactly.
828 	 */
829 	if (ti->len != bdev_nr_sectors(dev->bdev))
830 		return 1;
831 	return 0;
832 }
833 
834 static int log_writes_iterate_devices(struct dm_target *ti,
835 				      iterate_devices_callout_fn fn,
836 				      void *data)
837 {
838 	struct log_writes_c *lc = ti->private;
839 
840 	return fn(ti, lc->dev, 0, ti->len, data);
841 }
842 
843 /*
844  * Messages supported:
845  *   mark <mark data> - specify the marked data.
846  */
847 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
848 			      char *result, unsigned maxlen)
849 {
850 	int r = -EINVAL;
851 	struct log_writes_c *lc = ti->private;
852 
853 	if (argc != 2) {
854 		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
855 		return r;
856 	}
857 
858 	if (!strcasecmp(argv[0], "mark"))
859 		r = log_mark(lc, argv[1]);
860 	else
861 		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
862 
863 	return r;
864 }
865 
866 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
867 {
868 	struct log_writes_c *lc = ti->private;
869 
870 	if (!bdev_max_discard_sectors(lc->dev->bdev)) {
871 		lc->device_supports_discard = false;
872 		limits->discard_granularity = lc->sectorsize;
873 		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
874 	}
875 	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
876 	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
877 	limits->io_min = limits->physical_block_size;
878 	limits->dma_alignment = limits->logical_block_size - 1;
879 }
880 
881 #if IS_ENABLED(CONFIG_FS_DAX)
882 static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
883 		pgoff_t *pgoff)
884 {
885 	struct log_writes_c *lc = ti->private;
886 
887 	*pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
888 	return lc->dev->dax_dev;
889 }
890 
891 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
892 		long nr_pages, enum dax_access_mode mode, void **kaddr,
893 		pfn_t *pfn)
894 {
895 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
896 
897 	return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
898 }
899 
900 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
901 					  size_t nr_pages)
902 {
903 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
904 
905 	return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
906 }
907 
908 static size_t log_writes_dax_recovery_write(struct dm_target *ti,
909 		pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i)
910 {
911 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
912 
913 	return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
914 }
915 
916 #else
917 #define log_writes_dax_direct_access NULL
918 #define log_writes_dax_zero_page_range NULL
919 #define log_writes_dax_recovery_write NULL
920 #endif
921 
922 static struct target_type log_writes_target = {
923 	.name   = "log-writes",
924 	.version = {1, 1, 0},
925 	.module = THIS_MODULE,
926 	.ctr    = log_writes_ctr,
927 	.dtr    = log_writes_dtr,
928 	.map    = log_writes_map,
929 	.end_io = normal_end_io,
930 	.status = log_writes_status,
931 	.prepare_ioctl = log_writes_prepare_ioctl,
932 	.message = log_writes_message,
933 	.iterate_devices = log_writes_iterate_devices,
934 	.io_hints = log_writes_io_hints,
935 	.direct_access = log_writes_dax_direct_access,
936 	.dax_zero_page_range = log_writes_dax_zero_page_range,
937 	.dax_recovery_write = log_writes_dax_recovery_write,
938 };
939 
940 static int __init dm_log_writes_init(void)
941 {
942 	int r = dm_register_target(&log_writes_target);
943 
944 	if (r < 0)
945 		DMERR("register failed %d", r);
946 
947 	return r;
948 }
949 
950 static void __exit dm_log_writes_exit(void)
951 {
952 	dm_unregister_target(&log_writes_target);
953 }
954 
955 module_init(dm_log_writes_init);
956 module_exit(dm_log_writes_exit);
957 
958 MODULE_DESCRIPTION(DM_NAME " log writes target");
959 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
960 MODULE_LICENSE("GPL");
961