xref: /openbmc/linux/drivers/md/dm-log-writes.c (revision 60772e48)
1 /*
2  * Copyright (C) 2014 Facebook. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include <linux/device-mapper.h>
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/blkdev.h>
12 #include <linux/bio.h>
13 #include <linux/dax.h>
14 #include <linux/slab.h>
15 #include <linux/kthread.h>
16 #include <linux/freezer.h>
17 #include <linux/uio.h>
18 
19 #define DM_MSG_PREFIX "log-writes"
20 
21 /*
22  * This target will sequentially log all writes to the target device onto the
23  * log device.  This is helpful for replaying writes to check for fs consistency
24  * at all times.  This target provides a mechanism to mark specific events to
25  * check data at a later time.  So for example you would:
26  *
27  * write data
28  * fsync
29  * dmsetup message /dev/whatever mark mymark
30  * unmount /mnt/test
31  *
32  * Then replay the log up to mymark and check the contents of the replay to
33  * verify it matches what was written.
34  *
35  * We log writes only after they have been flushed, this makes the log describe
36  * close to the order in which the data hits the actual disk, not its cache.  So
37  * for example the following sequence (W means write, C means complete)
38  *
39  * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40  *
41  * Would result in the log looking like this:
42  *
43  * c,a,flush,fuad,b,<other writes>,<next flush>
44  *
45  * This is meant to help expose problems where file systems do not properly wait
46  * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
47  * completes it is added to the log as it should be on disk.
48  *
49  * We treat DISCARDs as if they don't bypass cache so that they are logged in
50  * order of completion along with the normal writes.  If we didn't do it this
51  * way we would process all the discards first and then write all the data, when
52  * in fact we want to do the data and the discard in the order that they
53  * completed.
54  */
55 #define LOG_FLUSH_FLAG (1 << 0)
56 #define LOG_FUA_FLAG (1 << 1)
57 #define LOG_DISCARD_FLAG (1 << 2)
58 #define LOG_MARK_FLAG (1 << 3)
59 
60 #define WRITE_LOG_VERSION 1ULL
61 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
62 
63 /*
64  * The disk format for this is braindead simple.
65  *
66  * At byte 0 we have our super, followed by the following sequence for
67  * nr_entries:
68  *
69  * [   1 sector    ][  entry->nr_sectors ]
70  * [log_write_entry][    data written    ]
71  *
72  * The log_write_entry takes up a full sector so we can have arbitrary length
73  * marks and it leaves us room for extra content in the future.
74  */
75 
76 /*
77  * Basic info about the log for userspace.
78  */
79 struct log_write_super {
80 	__le64 magic;
81 	__le64 version;
82 	__le64 nr_entries;
83 	__le32 sectorsize;
84 };
85 
86 /*
87  * sector - the sector we wrote.
88  * nr_sectors - the number of sectors we wrote.
89  * flags - flags for this log entry.
90  * data_len - the size of the data in this log entry, this is for private log
91  * entry stuff, the MARK data provided by userspace for example.
92  */
93 struct log_write_entry {
94 	__le64 sector;
95 	__le64 nr_sectors;
96 	__le64 flags;
97 	__le64 data_len;
98 };
99 
100 struct log_writes_c {
101 	struct dm_dev *dev;
102 	struct dm_dev *logdev;
103 	u64 logged_entries;
104 	u32 sectorsize;
105 	u32 sectorshift;
106 	atomic_t io_blocks;
107 	atomic_t pending_blocks;
108 	sector_t next_sector;
109 	sector_t end_sector;
110 	bool logging_enabled;
111 	bool device_supports_discard;
112 	spinlock_t blocks_lock;
113 	struct list_head unflushed_blocks;
114 	struct list_head logging_blocks;
115 	wait_queue_head_t wait;
116 	struct task_struct *log_kthread;
117 };
118 
119 struct pending_block {
120 	int vec_cnt;
121 	u64 flags;
122 	sector_t sector;
123 	sector_t nr_sectors;
124 	char *data;
125 	u32 datalen;
126 	struct list_head list;
127 	struct bio_vec vecs[0];
128 };
129 
130 struct per_bio_data {
131 	struct pending_block *block;
132 };
133 
134 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
135 					  sector_t sectors)
136 {
137 	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
138 }
139 
140 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
141 					  sector_t sectors)
142 {
143 	return sectors << (lc->sectorshift - SECTOR_SHIFT);
144 }
145 
146 static void put_pending_block(struct log_writes_c *lc)
147 {
148 	if (atomic_dec_and_test(&lc->pending_blocks)) {
149 		smp_mb__after_atomic();
150 		if (waitqueue_active(&lc->wait))
151 			wake_up(&lc->wait);
152 	}
153 }
154 
155 static void put_io_block(struct log_writes_c *lc)
156 {
157 	if (atomic_dec_and_test(&lc->io_blocks)) {
158 		smp_mb__after_atomic();
159 		if (waitqueue_active(&lc->wait))
160 			wake_up(&lc->wait);
161 	}
162 }
163 
164 static void log_end_io(struct bio *bio)
165 {
166 	struct log_writes_c *lc = bio->bi_private;
167 
168 	if (bio->bi_status) {
169 		unsigned long flags;
170 
171 		DMERR("Error writing log block, error=%d", bio->bi_status);
172 		spin_lock_irqsave(&lc->blocks_lock, flags);
173 		lc->logging_enabled = false;
174 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
175 	}
176 
177 	bio_free_pages(bio);
178 	put_io_block(lc);
179 	bio_put(bio);
180 }
181 
182 /*
183  * Meant to be called if there is an error, it will free all the pages
184  * associated with the block.
185  */
186 static void free_pending_block(struct log_writes_c *lc,
187 			       struct pending_block *block)
188 {
189 	int i;
190 
191 	for (i = 0; i < block->vec_cnt; i++) {
192 		if (block->vecs[i].bv_page)
193 			__free_page(block->vecs[i].bv_page);
194 	}
195 	kfree(block->data);
196 	kfree(block);
197 	put_pending_block(lc);
198 }
199 
200 static int write_metadata(struct log_writes_c *lc, void *entry,
201 			  size_t entrylen, void *data, size_t datalen,
202 			  sector_t sector)
203 {
204 	struct bio *bio;
205 	struct page *page;
206 	void *ptr;
207 	size_t ret;
208 
209 	bio = bio_alloc(GFP_KERNEL, 1);
210 	if (!bio) {
211 		DMERR("Couldn't alloc log bio");
212 		goto error;
213 	}
214 	bio->bi_iter.bi_size = 0;
215 	bio->bi_iter.bi_sector = sector;
216 	bio_set_dev(bio, lc->logdev->bdev);
217 	bio->bi_end_io = log_end_io;
218 	bio->bi_private = lc;
219 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
220 
221 	page = alloc_page(GFP_KERNEL);
222 	if (!page) {
223 		DMERR("Couldn't alloc log page");
224 		bio_put(bio);
225 		goto error;
226 	}
227 
228 	ptr = kmap_atomic(page);
229 	memcpy(ptr, entry, entrylen);
230 	if (datalen)
231 		memcpy(ptr + entrylen, data, datalen);
232 	memset(ptr + entrylen + datalen, 0,
233 	       lc->sectorsize - entrylen - datalen);
234 	kunmap_atomic(ptr);
235 
236 	ret = bio_add_page(bio, page, lc->sectorsize, 0);
237 	if (ret != lc->sectorsize) {
238 		DMERR("Couldn't add page to the log block");
239 		goto error_bio;
240 	}
241 	submit_bio(bio);
242 	return 0;
243 error_bio:
244 	bio_put(bio);
245 	__free_page(page);
246 error:
247 	put_io_block(lc);
248 	return -1;
249 }
250 
251 static int write_inline_data(struct log_writes_c *lc, void *entry,
252 			     size_t entrylen, void *data, size_t datalen,
253 			     sector_t sector)
254 {
255 	int num_pages, bio_pages, pg_datalen, pg_sectorlen, i;
256 	struct page *page;
257 	struct bio *bio;
258 	size_t ret;
259 	void *ptr;
260 
261 	while (datalen) {
262 		num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT;
263 		bio_pages = min(num_pages, BIO_MAX_PAGES);
264 
265 		atomic_inc(&lc->io_blocks);
266 
267 		bio = bio_alloc(GFP_KERNEL, bio_pages);
268 		if (!bio) {
269 			DMERR("Couldn't alloc inline data bio");
270 			goto error;
271 		}
272 
273 		bio->bi_iter.bi_size = 0;
274 		bio->bi_iter.bi_sector = sector;
275 		bio_set_dev(bio, lc->logdev->bdev);
276 		bio->bi_end_io = log_end_io;
277 		bio->bi_private = lc;
278 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
279 
280 		for (i = 0; i < bio_pages; i++) {
281 			pg_datalen = min_t(int, datalen, PAGE_SIZE);
282 			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
283 
284 			page = alloc_page(GFP_KERNEL);
285 			if (!page) {
286 				DMERR("Couldn't alloc inline data page");
287 				goto error_bio;
288 			}
289 
290 			ptr = kmap_atomic(page);
291 			memcpy(ptr, data, pg_datalen);
292 			if (pg_sectorlen > pg_datalen)
293 				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
294 			kunmap_atomic(ptr);
295 
296 			ret = bio_add_page(bio, page, pg_sectorlen, 0);
297 			if (ret != pg_sectorlen) {
298 				DMERR("Couldn't add page of inline data");
299 				__free_page(page);
300 				goto error_bio;
301 			}
302 
303 			datalen -= pg_datalen;
304 			data	+= pg_datalen;
305 		}
306 		submit_bio(bio);
307 
308 		sector += bio_pages * PAGE_SECTORS;
309 	}
310 	return 0;
311 error_bio:
312 	bio_free_pages(bio);
313 	bio_put(bio);
314 error:
315 	put_io_block(lc);
316 	return -1;
317 }
318 
319 static int log_one_block(struct log_writes_c *lc,
320 			 struct pending_block *block, sector_t sector)
321 {
322 	struct bio *bio;
323 	struct log_write_entry entry;
324 	size_t metadatalen, ret;
325 	int i;
326 
327 	entry.sector = cpu_to_le64(block->sector);
328 	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
329 	entry.flags = cpu_to_le64(block->flags);
330 	entry.data_len = cpu_to_le64(block->datalen);
331 
332 	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
333 	if (write_metadata(lc, &entry, sizeof(entry), block->data,
334 			   metadatalen, sector)) {
335 		free_pending_block(lc, block);
336 		return -1;
337 	}
338 
339 	sector += dev_to_bio_sectors(lc, 1);
340 
341 	if (block->datalen && metadatalen == 0) {
342 		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
343 				      block->datalen, sector)) {
344 			free_pending_block(lc, block);
345 			return -1;
346 		}
347 		/* we don't support both inline data & bio data */
348 		goto out;
349 	}
350 
351 	if (!block->vec_cnt)
352 		goto out;
353 
354 	atomic_inc(&lc->io_blocks);
355 	bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES));
356 	if (!bio) {
357 		DMERR("Couldn't alloc log bio");
358 		goto error;
359 	}
360 	bio->bi_iter.bi_size = 0;
361 	bio->bi_iter.bi_sector = sector;
362 	bio_set_dev(bio, lc->logdev->bdev);
363 	bio->bi_end_io = log_end_io;
364 	bio->bi_private = lc;
365 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
366 
367 	for (i = 0; i < block->vec_cnt; i++) {
368 		/*
369 		 * The page offset is always 0 because we allocate a new page
370 		 * for every bvec in the original bio for simplicity sake.
371 		 */
372 		ret = bio_add_page(bio, block->vecs[i].bv_page,
373 				   block->vecs[i].bv_len, 0);
374 		if (ret != block->vecs[i].bv_len) {
375 			atomic_inc(&lc->io_blocks);
376 			submit_bio(bio);
377 			bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES));
378 			if (!bio) {
379 				DMERR("Couldn't alloc log bio");
380 				goto error;
381 			}
382 			bio->bi_iter.bi_size = 0;
383 			bio->bi_iter.bi_sector = sector;
384 			bio_set_dev(bio, lc->logdev->bdev);
385 			bio->bi_end_io = log_end_io;
386 			bio->bi_private = lc;
387 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
388 
389 			ret = bio_add_page(bio, block->vecs[i].bv_page,
390 					   block->vecs[i].bv_len, 0);
391 			if (ret != block->vecs[i].bv_len) {
392 				DMERR("Couldn't add page on new bio?");
393 				bio_put(bio);
394 				goto error;
395 			}
396 		}
397 		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
398 	}
399 	submit_bio(bio);
400 out:
401 	kfree(block->data);
402 	kfree(block);
403 	put_pending_block(lc);
404 	return 0;
405 error:
406 	free_pending_block(lc, block);
407 	put_io_block(lc);
408 	return -1;
409 }
410 
411 static int log_super(struct log_writes_c *lc)
412 {
413 	struct log_write_super super;
414 
415 	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
416 	super.version = cpu_to_le64(WRITE_LOG_VERSION);
417 	super.nr_entries = cpu_to_le64(lc->logged_entries);
418 	super.sectorsize = cpu_to_le32(lc->sectorsize);
419 
420 	if (write_metadata(lc, &super, sizeof(super), NULL, 0, 0)) {
421 		DMERR("Couldn't write super");
422 		return -1;
423 	}
424 
425 	return 0;
426 }
427 
428 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
429 {
430 	return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
431 }
432 
433 static int log_writes_kthread(void *arg)
434 {
435 	struct log_writes_c *lc = (struct log_writes_c *)arg;
436 	sector_t sector = 0;
437 
438 	while (!kthread_should_stop()) {
439 		bool super = false;
440 		bool logging_enabled;
441 		struct pending_block *block = NULL;
442 		int ret;
443 
444 		spin_lock_irq(&lc->blocks_lock);
445 		if (!list_empty(&lc->logging_blocks)) {
446 			block = list_first_entry(&lc->logging_blocks,
447 						 struct pending_block, list);
448 			list_del_init(&block->list);
449 			if (!lc->logging_enabled)
450 				goto next;
451 
452 			sector = lc->next_sector;
453 			if (!(block->flags & LOG_DISCARD_FLAG))
454 				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
455 			lc->next_sector += dev_to_bio_sectors(lc, 1);
456 
457 			/*
458 			 * Apparently the size of the device may not be known
459 			 * right away, so handle this properly.
460 			 */
461 			if (!lc->end_sector)
462 				lc->end_sector = logdev_last_sector(lc);
463 			if (lc->end_sector &&
464 			    lc->next_sector >= lc->end_sector) {
465 				DMERR("Ran out of space on the logdev");
466 				lc->logging_enabled = false;
467 				goto next;
468 			}
469 			lc->logged_entries++;
470 			atomic_inc(&lc->io_blocks);
471 
472 			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
473 			if (super)
474 				atomic_inc(&lc->io_blocks);
475 		}
476 next:
477 		logging_enabled = lc->logging_enabled;
478 		spin_unlock_irq(&lc->blocks_lock);
479 		if (block) {
480 			if (logging_enabled) {
481 				ret = log_one_block(lc, block, sector);
482 				if (!ret && super)
483 					ret = log_super(lc);
484 				if (ret) {
485 					spin_lock_irq(&lc->blocks_lock);
486 					lc->logging_enabled = false;
487 					spin_unlock_irq(&lc->blocks_lock);
488 				}
489 			} else
490 				free_pending_block(lc, block);
491 			continue;
492 		}
493 
494 		if (!try_to_freeze()) {
495 			set_current_state(TASK_INTERRUPTIBLE);
496 			if (!kthread_should_stop() &&
497 			    list_empty(&lc->logging_blocks))
498 				schedule();
499 			__set_current_state(TASK_RUNNING);
500 		}
501 	}
502 	return 0;
503 }
504 
505 /*
506  * Construct a log-writes mapping:
507  * log-writes <dev_path> <log_dev_path>
508  */
509 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
510 {
511 	struct log_writes_c *lc;
512 	struct dm_arg_set as;
513 	const char *devname, *logdevname;
514 	int ret;
515 
516 	as.argc = argc;
517 	as.argv = argv;
518 
519 	if (argc < 2) {
520 		ti->error = "Invalid argument count";
521 		return -EINVAL;
522 	}
523 
524 	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
525 	if (!lc) {
526 		ti->error = "Cannot allocate context";
527 		return -ENOMEM;
528 	}
529 	spin_lock_init(&lc->blocks_lock);
530 	INIT_LIST_HEAD(&lc->unflushed_blocks);
531 	INIT_LIST_HEAD(&lc->logging_blocks);
532 	init_waitqueue_head(&lc->wait);
533 	atomic_set(&lc->io_blocks, 0);
534 	atomic_set(&lc->pending_blocks, 0);
535 
536 	devname = dm_shift_arg(&as);
537 	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
538 	if (ret) {
539 		ti->error = "Device lookup failed";
540 		goto bad;
541 	}
542 
543 	logdevname = dm_shift_arg(&as);
544 	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
545 			    &lc->logdev);
546 	if (ret) {
547 		ti->error = "Log device lookup failed";
548 		dm_put_device(ti, lc->dev);
549 		goto bad;
550 	}
551 
552 	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
553 	lc->sectorshift = ilog2(lc->sectorsize);
554 	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
555 	if (IS_ERR(lc->log_kthread)) {
556 		ret = PTR_ERR(lc->log_kthread);
557 		ti->error = "Couldn't alloc kthread";
558 		dm_put_device(ti, lc->dev);
559 		dm_put_device(ti, lc->logdev);
560 		goto bad;
561 	}
562 
563 	/*
564 	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
565 	 * The super starts at sector 0, and the next_sector is the next logical
566 	 * one based on the sectorsize of the device.
567 	 */
568 	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
569 	lc->logging_enabled = true;
570 	lc->end_sector = logdev_last_sector(lc);
571 	lc->device_supports_discard = true;
572 
573 	ti->num_flush_bios = 1;
574 	ti->flush_supported = true;
575 	ti->num_discard_bios = 1;
576 	ti->discards_supported = true;
577 	ti->per_io_data_size = sizeof(struct per_bio_data);
578 	ti->private = lc;
579 	return 0;
580 
581 bad:
582 	kfree(lc);
583 	return ret;
584 }
585 
586 static int log_mark(struct log_writes_c *lc, char *data)
587 {
588 	struct pending_block *block;
589 	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
590 
591 	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
592 	if (!block) {
593 		DMERR("Error allocating pending block");
594 		return -ENOMEM;
595 	}
596 
597 	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
598 	if (!block->data) {
599 		DMERR("Error copying mark data");
600 		kfree(block);
601 		return -ENOMEM;
602 	}
603 	atomic_inc(&lc->pending_blocks);
604 	block->datalen = strlen(block->data);
605 	block->flags |= LOG_MARK_FLAG;
606 	spin_lock_irq(&lc->blocks_lock);
607 	list_add_tail(&block->list, &lc->logging_blocks);
608 	spin_unlock_irq(&lc->blocks_lock);
609 	wake_up_process(lc->log_kthread);
610 	return 0;
611 }
612 
613 static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
614 		   struct iov_iter *i)
615 {
616 	struct pending_block *block;
617 
618 	if (!bytes)
619 		return 0;
620 
621 	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
622 	if (!block) {
623 		DMERR("Error allocating dax pending block");
624 		return -ENOMEM;
625 	}
626 
627 	block->data = kzalloc(bytes, GFP_KERNEL);
628 	if (!block->data) {
629 		DMERR("Error allocating dax data space");
630 		kfree(block);
631 		return -ENOMEM;
632 	}
633 
634 	/* write data provided via the iterator */
635 	if (!copy_from_iter(block->data, bytes, i)) {
636 		DMERR("Error copying dax data");
637 		kfree(block->data);
638 		kfree(block);
639 		return -EIO;
640 	}
641 
642 	/* rewind the iterator so that the block driver can use it */
643 	iov_iter_revert(i, bytes);
644 
645 	block->datalen = bytes;
646 	block->sector = bio_to_dev_sectors(lc, sector);
647 	block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
648 
649 	atomic_inc(&lc->pending_blocks);
650 	spin_lock_irq(&lc->blocks_lock);
651 	list_add_tail(&block->list, &lc->unflushed_blocks);
652 	spin_unlock_irq(&lc->blocks_lock);
653 	wake_up_process(lc->log_kthread);
654 
655 	return 0;
656 }
657 
658 static void log_writes_dtr(struct dm_target *ti)
659 {
660 	struct log_writes_c *lc = ti->private;
661 
662 	spin_lock_irq(&lc->blocks_lock);
663 	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
664 	spin_unlock_irq(&lc->blocks_lock);
665 
666 	/*
667 	 * This is just nice to have since it'll update the super to include the
668 	 * unflushed blocks, if it fails we don't really care.
669 	 */
670 	log_mark(lc, "dm-log-writes-end");
671 	wake_up_process(lc->log_kthread);
672 	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
673 		   !atomic_read(&lc->pending_blocks));
674 	kthread_stop(lc->log_kthread);
675 
676 	WARN_ON(!list_empty(&lc->logging_blocks));
677 	WARN_ON(!list_empty(&lc->unflushed_blocks));
678 	dm_put_device(ti, lc->dev);
679 	dm_put_device(ti, lc->logdev);
680 	kfree(lc);
681 }
682 
683 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
684 {
685 	struct log_writes_c *lc = ti->private;
686 
687 	bio_set_dev(bio, lc->dev->bdev);
688 }
689 
690 static int log_writes_map(struct dm_target *ti, struct bio *bio)
691 {
692 	struct log_writes_c *lc = ti->private;
693 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
694 	struct pending_block *block;
695 	struct bvec_iter iter;
696 	struct bio_vec bv;
697 	size_t alloc_size;
698 	int i = 0;
699 	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
700 	bool fua_bio = (bio->bi_opf & REQ_FUA);
701 	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
702 
703 	pb->block = NULL;
704 
705 	/* Don't bother doing anything if logging has been disabled */
706 	if (!lc->logging_enabled)
707 		goto map_bio;
708 
709 	/*
710 	 * Map reads as normal.
711 	 */
712 	if (bio_data_dir(bio) == READ)
713 		goto map_bio;
714 
715 	/* No sectors and not a flush?  Don't care */
716 	if (!bio_sectors(bio) && !flush_bio)
717 		goto map_bio;
718 
719 	/*
720 	 * Discards will have bi_size set but there's no actual data, so just
721 	 * allocate the size of the pending block.
722 	 */
723 	if (discard_bio)
724 		alloc_size = sizeof(struct pending_block);
725 	else
726 		alloc_size = sizeof(struct pending_block) + sizeof(struct bio_vec) * bio_segments(bio);
727 
728 	block = kzalloc(alloc_size, GFP_NOIO);
729 	if (!block) {
730 		DMERR("Error allocating pending block");
731 		spin_lock_irq(&lc->blocks_lock);
732 		lc->logging_enabled = false;
733 		spin_unlock_irq(&lc->blocks_lock);
734 		return DM_MAPIO_KILL;
735 	}
736 	INIT_LIST_HEAD(&block->list);
737 	pb->block = block;
738 	atomic_inc(&lc->pending_blocks);
739 
740 	if (flush_bio)
741 		block->flags |= LOG_FLUSH_FLAG;
742 	if (fua_bio)
743 		block->flags |= LOG_FUA_FLAG;
744 	if (discard_bio)
745 		block->flags |= LOG_DISCARD_FLAG;
746 
747 	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
748 	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
749 
750 	/* We don't need the data, just submit */
751 	if (discard_bio) {
752 		WARN_ON(flush_bio || fua_bio);
753 		if (lc->device_supports_discard)
754 			goto map_bio;
755 		bio_endio(bio);
756 		return DM_MAPIO_SUBMITTED;
757 	}
758 
759 	/* Flush bio, splice the unflushed blocks onto this list and submit */
760 	if (flush_bio && !bio_sectors(bio)) {
761 		spin_lock_irq(&lc->blocks_lock);
762 		list_splice_init(&lc->unflushed_blocks, &block->list);
763 		spin_unlock_irq(&lc->blocks_lock);
764 		goto map_bio;
765 	}
766 
767 	/*
768 	 * We will write this bio somewhere else way later so we need to copy
769 	 * the actual contents into new pages so we know the data will always be
770 	 * there.
771 	 *
772 	 * We do this because this could be a bio from O_DIRECT in which case we
773 	 * can't just hold onto the page until some later point, we have to
774 	 * manually copy the contents.
775 	 */
776 	bio_for_each_segment(bv, bio, iter) {
777 		struct page *page;
778 		void *src, *dst;
779 
780 		page = alloc_page(GFP_NOIO);
781 		if (!page) {
782 			DMERR("Error allocing page");
783 			free_pending_block(lc, block);
784 			spin_lock_irq(&lc->blocks_lock);
785 			lc->logging_enabled = false;
786 			spin_unlock_irq(&lc->blocks_lock);
787 			return DM_MAPIO_KILL;
788 		}
789 
790 		src = kmap_atomic(bv.bv_page);
791 		dst = kmap_atomic(page);
792 		memcpy(dst, src + bv.bv_offset, bv.bv_len);
793 		kunmap_atomic(dst);
794 		kunmap_atomic(src);
795 		block->vecs[i].bv_page = page;
796 		block->vecs[i].bv_len = bv.bv_len;
797 		block->vec_cnt++;
798 		i++;
799 	}
800 
801 	/* Had a flush with data in it, weird */
802 	if (flush_bio) {
803 		spin_lock_irq(&lc->blocks_lock);
804 		list_splice_init(&lc->unflushed_blocks, &block->list);
805 		spin_unlock_irq(&lc->blocks_lock);
806 	}
807 map_bio:
808 	normal_map_bio(ti, bio);
809 	return DM_MAPIO_REMAPPED;
810 }
811 
812 static int normal_end_io(struct dm_target *ti, struct bio *bio,
813 		blk_status_t *error)
814 {
815 	struct log_writes_c *lc = ti->private;
816 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
817 
818 	if (bio_data_dir(bio) == WRITE && pb->block) {
819 		struct pending_block *block = pb->block;
820 		unsigned long flags;
821 
822 		spin_lock_irqsave(&lc->blocks_lock, flags);
823 		if (block->flags & LOG_FLUSH_FLAG) {
824 			list_splice_tail_init(&block->list, &lc->logging_blocks);
825 			list_add_tail(&block->list, &lc->logging_blocks);
826 			wake_up_process(lc->log_kthread);
827 		} else if (block->flags & LOG_FUA_FLAG) {
828 			list_add_tail(&block->list, &lc->logging_blocks);
829 			wake_up_process(lc->log_kthread);
830 		} else
831 			list_add_tail(&block->list, &lc->unflushed_blocks);
832 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
833 	}
834 
835 	return DM_ENDIO_DONE;
836 }
837 
838 /*
839  * INFO format: <logged entries> <highest allocated sector>
840  */
841 static void log_writes_status(struct dm_target *ti, status_type_t type,
842 			      unsigned status_flags, char *result,
843 			      unsigned maxlen)
844 {
845 	unsigned sz = 0;
846 	struct log_writes_c *lc = ti->private;
847 
848 	switch (type) {
849 	case STATUSTYPE_INFO:
850 		DMEMIT("%llu %llu", lc->logged_entries,
851 		       (unsigned long long)lc->next_sector - 1);
852 		if (!lc->logging_enabled)
853 			DMEMIT(" logging_disabled");
854 		break;
855 
856 	case STATUSTYPE_TABLE:
857 		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
858 		break;
859 	}
860 }
861 
862 static int log_writes_prepare_ioctl(struct dm_target *ti,
863 		struct block_device **bdev, fmode_t *mode)
864 {
865 	struct log_writes_c *lc = ti->private;
866 	struct dm_dev *dev = lc->dev;
867 
868 	*bdev = dev->bdev;
869 	/*
870 	 * Only pass ioctls through if the device sizes match exactly.
871 	 */
872 	if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
873 		return 1;
874 	return 0;
875 }
876 
877 static int log_writes_iterate_devices(struct dm_target *ti,
878 				      iterate_devices_callout_fn fn,
879 				      void *data)
880 {
881 	struct log_writes_c *lc = ti->private;
882 
883 	return fn(ti, lc->dev, 0, ti->len, data);
884 }
885 
886 /*
887  * Messages supported:
888  *   mark <mark data> - specify the marked data.
889  */
890 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv)
891 {
892 	int r = -EINVAL;
893 	struct log_writes_c *lc = ti->private;
894 
895 	if (argc != 2) {
896 		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
897 		return r;
898 	}
899 
900 	if (!strcasecmp(argv[0], "mark"))
901 		r = log_mark(lc, argv[1]);
902 	else
903 		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
904 
905 	return r;
906 }
907 
908 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
909 {
910 	struct log_writes_c *lc = ti->private;
911 	struct request_queue *q = bdev_get_queue(lc->dev->bdev);
912 
913 	if (!q || !blk_queue_discard(q)) {
914 		lc->device_supports_discard = false;
915 		limits->discard_granularity = lc->sectorsize;
916 		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
917 	}
918 	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
919 	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
920 	limits->io_min = limits->physical_block_size;
921 }
922 
923 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
924 					 long nr_pages, void **kaddr, pfn_t *pfn)
925 {
926 	struct log_writes_c *lc = ti->private;
927 	sector_t sector = pgoff * PAGE_SECTORS;
928 	int ret;
929 
930 	ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
931 	if (ret)
932 		return ret;
933 	return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
934 }
935 
936 static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
937 					    pgoff_t pgoff, void *addr, size_t bytes,
938 					    struct iov_iter *i)
939 {
940 	struct log_writes_c *lc = ti->private;
941 	sector_t sector = pgoff * PAGE_SECTORS;
942 	int err;
943 
944 	if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
945 		return 0;
946 
947 	/* Don't bother doing anything if logging has been disabled */
948 	if (!lc->logging_enabled)
949 		goto dax_copy;
950 
951 	err = log_dax(lc, sector, bytes, i);
952 	if (err) {
953 		DMWARN("Error %d logging DAX write", err);
954 		return 0;
955 	}
956 dax_copy:
957 	return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
958 }
959 
960 static struct target_type log_writes_target = {
961 	.name   = "log-writes",
962 	.version = {1, 1, 0},
963 	.module = THIS_MODULE,
964 	.ctr    = log_writes_ctr,
965 	.dtr    = log_writes_dtr,
966 	.map    = log_writes_map,
967 	.end_io = normal_end_io,
968 	.status = log_writes_status,
969 	.prepare_ioctl = log_writes_prepare_ioctl,
970 	.message = log_writes_message,
971 	.iterate_devices = log_writes_iterate_devices,
972 	.io_hints = log_writes_io_hints,
973 	.direct_access = log_writes_dax_direct_access,
974 	.dax_copy_from_iter = log_writes_dax_copy_from_iter,
975 };
976 
977 static int __init dm_log_writes_init(void)
978 {
979 	int r = dm_register_target(&log_writes_target);
980 
981 	if (r < 0)
982 		DMERR("register failed %d", r);
983 
984 	return r;
985 }
986 
987 static void __exit dm_log_writes_exit(void)
988 {
989 	dm_unregister_target(&log_writes_target);
990 }
991 
992 module_init(dm_log_writes_init);
993 module_exit(dm_log_writes_exit);
994 
995 MODULE_DESCRIPTION(DM_NAME " log writes target");
996 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
997 MODULE_LICENSE("GPL");
998