1 /* 2 * Copyright (C) 2014 Facebook. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include <linux/device-mapper.h> 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/blkdev.h> 12 #include <linux/bio.h> 13 #include <linux/dax.h> 14 #include <linux/slab.h> 15 #include <linux/kthread.h> 16 #include <linux/freezer.h> 17 #include <linux/uio.h> 18 19 #define DM_MSG_PREFIX "log-writes" 20 21 /* 22 * This target will sequentially log all writes to the target device onto the 23 * log device. This is helpful for replaying writes to check for fs consistency 24 * at all times. This target provides a mechanism to mark specific events to 25 * check data at a later time. So for example you would: 26 * 27 * write data 28 * fsync 29 * dmsetup message /dev/whatever mark mymark 30 * unmount /mnt/test 31 * 32 * Then replay the log up to mymark and check the contents of the replay to 33 * verify it matches what was written. 34 * 35 * We log writes only after they have been flushed, this makes the log describe 36 * close to the order in which the data hits the actual disk, not its cache. So 37 * for example the following sequence (W means write, C means complete) 38 * 39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd 40 * 41 * Would result in the log looking like this: 42 * 43 * c,a,b,flush,fuad,<other writes>,<next flush> 44 * 45 * This is meant to help expose problems where file systems do not properly wait 46 * on data being written before invoking a FLUSH. FUA bypasses cache so once it 47 * completes it is added to the log as it should be on disk. 48 * 49 * We treat DISCARDs as if they don't bypass cache so that they are logged in 50 * order of completion along with the normal writes. If we didn't do it this 51 * way we would process all the discards first and then write all the data, when 52 * in fact we want to do the data and the discard in the order that they 53 * completed. 54 */ 55 #define LOG_FLUSH_FLAG (1 << 0) 56 #define LOG_FUA_FLAG (1 << 1) 57 #define LOG_DISCARD_FLAG (1 << 2) 58 #define LOG_MARK_FLAG (1 << 3) 59 #define LOG_METADATA_FLAG (1 << 4) 60 61 #define WRITE_LOG_VERSION 1ULL 62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL 63 #define WRITE_LOG_SUPER_SECTOR 0 64 65 /* 66 * The disk format for this is braindead simple. 67 * 68 * At byte 0 we have our super, followed by the following sequence for 69 * nr_entries: 70 * 71 * [ 1 sector ][ entry->nr_sectors ] 72 * [log_write_entry][ data written ] 73 * 74 * The log_write_entry takes up a full sector so we can have arbitrary length 75 * marks and it leaves us room for extra content in the future. 76 */ 77 78 /* 79 * Basic info about the log for userspace. 80 */ 81 struct log_write_super { 82 __le64 magic; 83 __le64 version; 84 __le64 nr_entries; 85 __le32 sectorsize; 86 }; 87 88 /* 89 * sector - the sector we wrote. 90 * nr_sectors - the number of sectors we wrote. 91 * flags - flags for this log entry. 92 * data_len - the size of the data in this log entry, this is for private log 93 * entry stuff, the MARK data provided by userspace for example. 94 */ 95 struct log_write_entry { 96 __le64 sector; 97 __le64 nr_sectors; 98 __le64 flags; 99 __le64 data_len; 100 }; 101 102 struct log_writes_c { 103 struct dm_dev *dev; 104 struct dm_dev *logdev; 105 u64 logged_entries; 106 u32 sectorsize; 107 u32 sectorshift; 108 atomic_t io_blocks; 109 atomic_t pending_blocks; 110 sector_t next_sector; 111 sector_t end_sector; 112 bool logging_enabled; 113 bool device_supports_discard; 114 spinlock_t blocks_lock; 115 struct list_head unflushed_blocks; 116 struct list_head logging_blocks; 117 wait_queue_head_t wait; 118 struct task_struct *log_kthread; 119 struct completion super_done; 120 }; 121 122 struct pending_block { 123 int vec_cnt; 124 u64 flags; 125 sector_t sector; 126 sector_t nr_sectors; 127 char *data; 128 u32 datalen; 129 struct list_head list; 130 struct bio_vec vecs[]; 131 }; 132 133 struct per_bio_data { 134 struct pending_block *block; 135 }; 136 137 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc, 138 sector_t sectors) 139 { 140 return sectors >> (lc->sectorshift - SECTOR_SHIFT); 141 } 142 143 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc, 144 sector_t sectors) 145 { 146 return sectors << (lc->sectorshift - SECTOR_SHIFT); 147 } 148 149 static void put_pending_block(struct log_writes_c *lc) 150 { 151 if (atomic_dec_and_test(&lc->pending_blocks)) { 152 smp_mb__after_atomic(); 153 if (waitqueue_active(&lc->wait)) 154 wake_up(&lc->wait); 155 } 156 } 157 158 static void put_io_block(struct log_writes_c *lc) 159 { 160 if (atomic_dec_and_test(&lc->io_blocks)) { 161 smp_mb__after_atomic(); 162 if (waitqueue_active(&lc->wait)) 163 wake_up(&lc->wait); 164 } 165 } 166 167 static void log_end_io(struct bio *bio) 168 { 169 struct log_writes_c *lc = bio->bi_private; 170 171 if (bio->bi_status) { 172 unsigned long flags; 173 174 DMERR("Error writing log block, error=%d", bio->bi_status); 175 spin_lock_irqsave(&lc->blocks_lock, flags); 176 lc->logging_enabled = false; 177 spin_unlock_irqrestore(&lc->blocks_lock, flags); 178 } 179 180 bio_free_pages(bio); 181 put_io_block(lc); 182 bio_put(bio); 183 } 184 185 static void log_end_super(struct bio *bio) 186 { 187 struct log_writes_c *lc = bio->bi_private; 188 189 complete(&lc->super_done); 190 log_end_io(bio); 191 } 192 193 /* 194 * Meant to be called if there is an error, it will free all the pages 195 * associated with the block. 196 */ 197 static void free_pending_block(struct log_writes_c *lc, 198 struct pending_block *block) 199 { 200 int i; 201 202 for (i = 0; i < block->vec_cnt; i++) { 203 if (block->vecs[i].bv_page) 204 __free_page(block->vecs[i].bv_page); 205 } 206 kfree(block->data); 207 kfree(block); 208 put_pending_block(lc); 209 } 210 211 static int write_metadata(struct log_writes_c *lc, void *entry, 212 size_t entrylen, void *data, size_t datalen, 213 sector_t sector) 214 { 215 struct bio *bio; 216 struct page *page; 217 void *ptr; 218 size_t ret; 219 220 bio = bio_alloc(GFP_KERNEL, 1); 221 if (!bio) { 222 DMERR("Couldn't alloc log bio"); 223 goto error; 224 } 225 bio->bi_iter.bi_size = 0; 226 bio->bi_iter.bi_sector = sector; 227 bio_set_dev(bio, lc->logdev->bdev); 228 bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ? 229 log_end_super : log_end_io; 230 bio->bi_private = lc; 231 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 232 233 page = alloc_page(GFP_KERNEL); 234 if (!page) { 235 DMERR("Couldn't alloc log page"); 236 bio_put(bio); 237 goto error; 238 } 239 240 ptr = kmap_atomic(page); 241 memcpy(ptr, entry, entrylen); 242 if (datalen) 243 memcpy(ptr + entrylen, data, datalen); 244 memset(ptr + entrylen + datalen, 0, 245 lc->sectorsize - entrylen - datalen); 246 kunmap_atomic(ptr); 247 248 ret = bio_add_page(bio, page, lc->sectorsize, 0); 249 if (ret != lc->sectorsize) { 250 DMERR("Couldn't add page to the log block"); 251 goto error_bio; 252 } 253 submit_bio(bio); 254 return 0; 255 error_bio: 256 bio_put(bio); 257 __free_page(page); 258 error: 259 put_io_block(lc); 260 return -1; 261 } 262 263 static int write_inline_data(struct log_writes_c *lc, void *entry, 264 size_t entrylen, void *data, size_t datalen, 265 sector_t sector) 266 { 267 int bio_pages, pg_datalen, pg_sectorlen, i; 268 struct page *page; 269 struct bio *bio; 270 size_t ret; 271 void *ptr; 272 273 while (datalen) { 274 bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE)); 275 276 atomic_inc(&lc->io_blocks); 277 278 bio = bio_alloc(GFP_KERNEL, bio_pages); 279 if (!bio) { 280 DMERR("Couldn't alloc inline data bio"); 281 goto error; 282 } 283 284 bio->bi_iter.bi_size = 0; 285 bio->bi_iter.bi_sector = sector; 286 bio_set_dev(bio, lc->logdev->bdev); 287 bio->bi_end_io = log_end_io; 288 bio->bi_private = lc; 289 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 290 291 for (i = 0; i < bio_pages; i++) { 292 pg_datalen = min_t(int, datalen, PAGE_SIZE); 293 pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize); 294 295 page = alloc_page(GFP_KERNEL); 296 if (!page) { 297 DMERR("Couldn't alloc inline data page"); 298 goto error_bio; 299 } 300 301 ptr = kmap_atomic(page); 302 memcpy(ptr, data, pg_datalen); 303 if (pg_sectorlen > pg_datalen) 304 memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen); 305 kunmap_atomic(ptr); 306 307 ret = bio_add_page(bio, page, pg_sectorlen, 0); 308 if (ret != pg_sectorlen) { 309 DMERR("Couldn't add page of inline data"); 310 __free_page(page); 311 goto error_bio; 312 } 313 314 datalen -= pg_datalen; 315 data += pg_datalen; 316 } 317 submit_bio(bio); 318 319 sector += bio_pages * PAGE_SECTORS; 320 } 321 return 0; 322 error_bio: 323 bio_free_pages(bio); 324 bio_put(bio); 325 error: 326 put_io_block(lc); 327 return -1; 328 } 329 330 static int log_one_block(struct log_writes_c *lc, 331 struct pending_block *block, sector_t sector) 332 { 333 struct bio *bio; 334 struct log_write_entry entry; 335 size_t metadatalen, ret; 336 int i; 337 338 entry.sector = cpu_to_le64(block->sector); 339 entry.nr_sectors = cpu_to_le64(block->nr_sectors); 340 entry.flags = cpu_to_le64(block->flags); 341 entry.data_len = cpu_to_le64(block->datalen); 342 343 metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0; 344 if (write_metadata(lc, &entry, sizeof(entry), block->data, 345 metadatalen, sector)) { 346 free_pending_block(lc, block); 347 return -1; 348 } 349 350 sector += dev_to_bio_sectors(lc, 1); 351 352 if (block->datalen && metadatalen == 0) { 353 if (write_inline_data(lc, &entry, sizeof(entry), block->data, 354 block->datalen, sector)) { 355 free_pending_block(lc, block); 356 return -1; 357 } 358 /* we don't support both inline data & bio data */ 359 goto out; 360 } 361 362 if (!block->vec_cnt) 363 goto out; 364 365 atomic_inc(&lc->io_blocks); 366 bio = bio_alloc(GFP_KERNEL, bio_max_segs(block->vec_cnt)); 367 if (!bio) { 368 DMERR("Couldn't alloc log bio"); 369 goto error; 370 } 371 bio->bi_iter.bi_size = 0; 372 bio->bi_iter.bi_sector = sector; 373 bio_set_dev(bio, lc->logdev->bdev); 374 bio->bi_end_io = log_end_io; 375 bio->bi_private = lc; 376 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 377 378 for (i = 0; i < block->vec_cnt; i++) { 379 /* 380 * The page offset is always 0 because we allocate a new page 381 * for every bvec in the original bio for simplicity sake. 382 */ 383 ret = bio_add_page(bio, block->vecs[i].bv_page, 384 block->vecs[i].bv_len, 0); 385 if (ret != block->vecs[i].bv_len) { 386 atomic_inc(&lc->io_blocks); 387 submit_bio(bio); 388 bio = bio_alloc(GFP_KERNEL, 389 bio_max_segs(block->vec_cnt - i)); 390 if (!bio) { 391 DMERR("Couldn't alloc log bio"); 392 goto error; 393 } 394 bio->bi_iter.bi_size = 0; 395 bio->bi_iter.bi_sector = sector; 396 bio_set_dev(bio, lc->logdev->bdev); 397 bio->bi_end_io = log_end_io; 398 bio->bi_private = lc; 399 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 400 401 ret = bio_add_page(bio, block->vecs[i].bv_page, 402 block->vecs[i].bv_len, 0); 403 if (ret != block->vecs[i].bv_len) { 404 DMERR("Couldn't add page on new bio?"); 405 bio_put(bio); 406 goto error; 407 } 408 } 409 sector += block->vecs[i].bv_len >> SECTOR_SHIFT; 410 } 411 submit_bio(bio); 412 out: 413 kfree(block->data); 414 kfree(block); 415 put_pending_block(lc); 416 return 0; 417 error: 418 free_pending_block(lc, block); 419 put_io_block(lc); 420 return -1; 421 } 422 423 static int log_super(struct log_writes_c *lc) 424 { 425 struct log_write_super super; 426 427 super.magic = cpu_to_le64(WRITE_LOG_MAGIC); 428 super.version = cpu_to_le64(WRITE_LOG_VERSION); 429 super.nr_entries = cpu_to_le64(lc->logged_entries); 430 super.sectorsize = cpu_to_le32(lc->sectorsize); 431 432 if (write_metadata(lc, &super, sizeof(super), NULL, 0, 433 WRITE_LOG_SUPER_SECTOR)) { 434 DMERR("Couldn't write super"); 435 return -1; 436 } 437 438 /* 439 * Super sector should be writen in-order, otherwise the 440 * nr_entries could be rewritten incorrectly by an old bio. 441 */ 442 wait_for_completion_io(&lc->super_done); 443 444 return 0; 445 } 446 447 static inline sector_t logdev_last_sector(struct log_writes_c *lc) 448 { 449 return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT; 450 } 451 452 static int log_writes_kthread(void *arg) 453 { 454 struct log_writes_c *lc = (struct log_writes_c *)arg; 455 sector_t sector = 0; 456 457 while (!kthread_should_stop()) { 458 bool super = false; 459 bool logging_enabled; 460 struct pending_block *block = NULL; 461 int ret; 462 463 spin_lock_irq(&lc->blocks_lock); 464 if (!list_empty(&lc->logging_blocks)) { 465 block = list_first_entry(&lc->logging_blocks, 466 struct pending_block, list); 467 list_del_init(&block->list); 468 if (!lc->logging_enabled) 469 goto next; 470 471 sector = lc->next_sector; 472 if (!(block->flags & LOG_DISCARD_FLAG)) 473 lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors); 474 lc->next_sector += dev_to_bio_sectors(lc, 1); 475 476 /* 477 * Apparently the size of the device may not be known 478 * right away, so handle this properly. 479 */ 480 if (!lc->end_sector) 481 lc->end_sector = logdev_last_sector(lc); 482 if (lc->end_sector && 483 lc->next_sector >= lc->end_sector) { 484 DMERR("Ran out of space on the logdev"); 485 lc->logging_enabled = false; 486 goto next; 487 } 488 lc->logged_entries++; 489 atomic_inc(&lc->io_blocks); 490 491 super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG)); 492 if (super) 493 atomic_inc(&lc->io_blocks); 494 } 495 next: 496 logging_enabled = lc->logging_enabled; 497 spin_unlock_irq(&lc->blocks_lock); 498 if (block) { 499 if (logging_enabled) { 500 ret = log_one_block(lc, block, sector); 501 if (!ret && super) 502 ret = log_super(lc); 503 if (ret) { 504 spin_lock_irq(&lc->blocks_lock); 505 lc->logging_enabled = false; 506 spin_unlock_irq(&lc->blocks_lock); 507 } 508 } else 509 free_pending_block(lc, block); 510 continue; 511 } 512 513 if (!try_to_freeze()) { 514 set_current_state(TASK_INTERRUPTIBLE); 515 if (!kthread_should_stop() && 516 list_empty(&lc->logging_blocks)) 517 schedule(); 518 __set_current_state(TASK_RUNNING); 519 } 520 } 521 return 0; 522 } 523 524 /* 525 * Construct a log-writes mapping: 526 * log-writes <dev_path> <log_dev_path> 527 */ 528 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv) 529 { 530 struct log_writes_c *lc; 531 struct dm_arg_set as; 532 const char *devname, *logdevname; 533 int ret; 534 535 as.argc = argc; 536 as.argv = argv; 537 538 if (argc < 2) { 539 ti->error = "Invalid argument count"; 540 return -EINVAL; 541 } 542 543 lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL); 544 if (!lc) { 545 ti->error = "Cannot allocate context"; 546 return -ENOMEM; 547 } 548 spin_lock_init(&lc->blocks_lock); 549 INIT_LIST_HEAD(&lc->unflushed_blocks); 550 INIT_LIST_HEAD(&lc->logging_blocks); 551 init_waitqueue_head(&lc->wait); 552 init_completion(&lc->super_done); 553 atomic_set(&lc->io_blocks, 0); 554 atomic_set(&lc->pending_blocks, 0); 555 556 devname = dm_shift_arg(&as); 557 ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev); 558 if (ret) { 559 ti->error = "Device lookup failed"; 560 goto bad; 561 } 562 563 logdevname = dm_shift_arg(&as); 564 ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table), 565 &lc->logdev); 566 if (ret) { 567 ti->error = "Log device lookup failed"; 568 dm_put_device(ti, lc->dev); 569 goto bad; 570 } 571 572 lc->sectorsize = bdev_logical_block_size(lc->dev->bdev); 573 lc->sectorshift = ilog2(lc->sectorsize); 574 lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write"); 575 if (IS_ERR(lc->log_kthread)) { 576 ret = PTR_ERR(lc->log_kthread); 577 ti->error = "Couldn't alloc kthread"; 578 dm_put_device(ti, lc->dev); 579 dm_put_device(ti, lc->logdev); 580 goto bad; 581 } 582 583 /* 584 * next_sector is in 512b sectors to correspond to what bi_sector expects. 585 * The super starts at sector 0, and the next_sector is the next logical 586 * one based on the sectorsize of the device. 587 */ 588 lc->next_sector = lc->sectorsize >> SECTOR_SHIFT; 589 lc->logging_enabled = true; 590 lc->end_sector = logdev_last_sector(lc); 591 lc->device_supports_discard = true; 592 593 ti->num_flush_bios = 1; 594 ti->flush_supported = true; 595 ti->num_discard_bios = 1; 596 ti->discards_supported = true; 597 ti->per_io_data_size = sizeof(struct per_bio_data); 598 ti->private = lc; 599 return 0; 600 601 bad: 602 kfree(lc); 603 return ret; 604 } 605 606 static int log_mark(struct log_writes_c *lc, char *data) 607 { 608 struct pending_block *block; 609 size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry); 610 611 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL); 612 if (!block) { 613 DMERR("Error allocating pending block"); 614 return -ENOMEM; 615 } 616 617 block->data = kstrndup(data, maxsize - 1, GFP_KERNEL); 618 if (!block->data) { 619 DMERR("Error copying mark data"); 620 kfree(block); 621 return -ENOMEM; 622 } 623 atomic_inc(&lc->pending_blocks); 624 block->datalen = strlen(block->data); 625 block->flags |= LOG_MARK_FLAG; 626 spin_lock_irq(&lc->blocks_lock); 627 list_add_tail(&block->list, &lc->logging_blocks); 628 spin_unlock_irq(&lc->blocks_lock); 629 wake_up_process(lc->log_kthread); 630 return 0; 631 } 632 633 static void log_writes_dtr(struct dm_target *ti) 634 { 635 struct log_writes_c *lc = ti->private; 636 637 spin_lock_irq(&lc->blocks_lock); 638 list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks); 639 spin_unlock_irq(&lc->blocks_lock); 640 641 /* 642 * This is just nice to have since it'll update the super to include the 643 * unflushed blocks, if it fails we don't really care. 644 */ 645 log_mark(lc, "dm-log-writes-end"); 646 wake_up_process(lc->log_kthread); 647 wait_event(lc->wait, !atomic_read(&lc->io_blocks) && 648 !atomic_read(&lc->pending_blocks)); 649 kthread_stop(lc->log_kthread); 650 651 WARN_ON(!list_empty(&lc->logging_blocks)); 652 WARN_ON(!list_empty(&lc->unflushed_blocks)); 653 dm_put_device(ti, lc->dev); 654 dm_put_device(ti, lc->logdev); 655 kfree(lc); 656 } 657 658 static void normal_map_bio(struct dm_target *ti, struct bio *bio) 659 { 660 struct log_writes_c *lc = ti->private; 661 662 bio_set_dev(bio, lc->dev->bdev); 663 } 664 665 static int log_writes_map(struct dm_target *ti, struct bio *bio) 666 { 667 struct log_writes_c *lc = ti->private; 668 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 669 struct pending_block *block; 670 struct bvec_iter iter; 671 struct bio_vec bv; 672 size_t alloc_size; 673 int i = 0; 674 bool flush_bio = (bio->bi_opf & REQ_PREFLUSH); 675 bool fua_bio = (bio->bi_opf & REQ_FUA); 676 bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD); 677 bool meta_bio = (bio->bi_opf & REQ_META); 678 679 pb->block = NULL; 680 681 /* Don't bother doing anything if logging has been disabled */ 682 if (!lc->logging_enabled) 683 goto map_bio; 684 685 /* 686 * Map reads as normal. 687 */ 688 if (bio_data_dir(bio) == READ) 689 goto map_bio; 690 691 /* No sectors and not a flush? Don't care */ 692 if (!bio_sectors(bio) && !flush_bio) 693 goto map_bio; 694 695 /* 696 * Discards will have bi_size set but there's no actual data, so just 697 * allocate the size of the pending block. 698 */ 699 if (discard_bio) 700 alloc_size = sizeof(struct pending_block); 701 else 702 alloc_size = struct_size(block, vecs, bio_segments(bio)); 703 704 block = kzalloc(alloc_size, GFP_NOIO); 705 if (!block) { 706 DMERR("Error allocating pending block"); 707 spin_lock_irq(&lc->blocks_lock); 708 lc->logging_enabled = false; 709 spin_unlock_irq(&lc->blocks_lock); 710 return DM_MAPIO_KILL; 711 } 712 INIT_LIST_HEAD(&block->list); 713 pb->block = block; 714 atomic_inc(&lc->pending_blocks); 715 716 if (flush_bio) 717 block->flags |= LOG_FLUSH_FLAG; 718 if (fua_bio) 719 block->flags |= LOG_FUA_FLAG; 720 if (discard_bio) 721 block->flags |= LOG_DISCARD_FLAG; 722 if (meta_bio) 723 block->flags |= LOG_METADATA_FLAG; 724 725 block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector); 726 block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio)); 727 728 /* We don't need the data, just submit */ 729 if (discard_bio) { 730 WARN_ON(flush_bio || fua_bio); 731 if (lc->device_supports_discard) 732 goto map_bio; 733 bio_endio(bio); 734 return DM_MAPIO_SUBMITTED; 735 } 736 737 /* Flush bio, splice the unflushed blocks onto this list and submit */ 738 if (flush_bio && !bio_sectors(bio)) { 739 spin_lock_irq(&lc->blocks_lock); 740 list_splice_init(&lc->unflushed_blocks, &block->list); 741 spin_unlock_irq(&lc->blocks_lock); 742 goto map_bio; 743 } 744 745 /* 746 * We will write this bio somewhere else way later so we need to copy 747 * the actual contents into new pages so we know the data will always be 748 * there. 749 * 750 * We do this because this could be a bio from O_DIRECT in which case we 751 * can't just hold onto the page until some later point, we have to 752 * manually copy the contents. 753 */ 754 bio_for_each_segment(bv, bio, iter) { 755 struct page *page; 756 void *src, *dst; 757 758 page = alloc_page(GFP_NOIO); 759 if (!page) { 760 DMERR("Error allocing page"); 761 free_pending_block(lc, block); 762 spin_lock_irq(&lc->blocks_lock); 763 lc->logging_enabled = false; 764 spin_unlock_irq(&lc->blocks_lock); 765 return DM_MAPIO_KILL; 766 } 767 768 src = kmap_atomic(bv.bv_page); 769 dst = kmap_atomic(page); 770 memcpy(dst, src + bv.bv_offset, bv.bv_len); 771 kunmap_atomic(dst); 772 kunmap_atomic(src); 773 block->vecs[i].bv_page = page; 774 block->vecs[i].bv_len = bv.bv_len; 775 block->vec_cnt++; 776 i++; 777 } 778 779 /* Had a flush with data in it, weird */ 780 if (flush_bio) { 781 spin_lock_irq(&lc->blocks_lock); 782 list_splice_init(&lc->unflushed_blocks, &block->list); 783 spin_unlock_irq(&lc->blocks_lock); 784 } 785 map_bio: 786 normal_map_bio(ti, bio); 787 return DM_MAPIO_REMAPPED; 788 } 789 790 static int normal_end_io(struct dm_target *ti, struct bio *bio, 791 blk_status_t *error) 792 { 793 struct log_writes_c *lc = ti->private; 794 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 795 796 if (bio_data_dir(bio) == WRITE && pb->block) { 797 struct pending_block *block = pb->block; 798 unsigned long flags; 799 800 spin_lock_irqsave(&lc->blocks_lock, flags); 801 if (block->flags & LOG_FLUSH_FLAG) { 802 list_splice_tail_init(&block->list, &lc->logging_blocks); 803 list_add_tail(&block->list, &lc->logging_blocks); 804 wake_up_process(lc->log_kthread); 805 } else if (block->flags & LOG_FUA_FLAG) { 806 list_add_tail(&block->list, &lc->logging_blocks); 807 wake_up_process(lc->log_kthread); 808 } else 809 list_add_tail(&block->list, &lc->unflushed_blocks); 810 spin_unlock_irqrestore(&lc->blocks_lock, flags); 811 } 812 813 return DM_ENDIO_DONE; 814 } 815 816 /* 817 * INFO format: <logged entries> <highest allocated sector> 818 */ 819 static void log_writes_status(struct dm_target *ti, status_type_t type, 820 unsigned status_flags, char *result, 821 unsigned maxlen) 822 { 823 unsigned sz = 0; 824 struct log_writes_c *lc = ti->private; 825 826 switch (type) { 827 case STATUSTYPE_INFO: 828 DMEMIT("%llu %llu", lc->logged_entries, 829 (unsigned long long)lc->next_sector - 1); 830 if (!lc->logging_enabled) 831 DMEMIT(" logging_disabled"); 832 break; 833 834 case STATUSTYPE_TABLE: 835 DMEMIT("%s %s", lc->dev->name, lc->logdev->name); 836 break; 837 } 838 } 839 840 static int log_writes_prepare_ioctl(struct dm_target *ti, 841 struct block_device **bdev) 842 { 843 struct log_writes_c *lc = ti->private; 844 struct dm_dev *dev = lc->dev; 845 846 *bdev = dev->bdev; 847 /* 848 * Only pass ioctls through if the device sizes match exactly. 849 */ 850 if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT) 851 return 1; 852 return 0; 853 } 854 855 static int log_writes_iterate_devices(struct dm_target *ti, 856 iterate_devices_callout_fn fn, 857 void *data) 858 { 859 struct log_writes_c *lc = ti->private; 860 861 return fn(ti, lc->dev, 0, ti->len, data); 862 } 863 864 /* 865 * Messages supported: 866 * mark <mark data> - specify the marked data. 867 */ 868 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv, 869 char *result, unsigned maxlen) 870 { 871 int r = -EINVAL; 872 struct log_writes_c *lc = ti->private; 873 874 if (argc != 2) { 875 DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc); 876 return r; 877 } 878 879 if (!strcasecmp(argv[0], "mark")) 880 r = log_mark(lc, argv[1]); 881 else 882 DMWARN("Unrecognised log writes target message received: %s", argv[0]); 883 884 return r; 885 } 886 887 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits) 888 { 889 struct log_writes_c *lc = ti->private; 890 struct request_queue *q = bdev_get_queue(lc->dev->bdev); 891 892 if (!q || !blk_queue_discard(q)) { 893 lc->device_supports_discard = false; 894 limits->discard_granularity = lc->sectorsize; 895 limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT); 896 } 897 limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev); 898 limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev); 899 limits->io_min = limits->physical_block_size; 900 } 901 902 #if IS_ENABLED(CONFIG_DAX_DRIVER) 903 static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes, 904 struct iov_iter *i) 905 { 906 struct pending_block *block; 907 908 if (!bytes) 909 return 0; 910 911 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL); 912 if (!block) { 913 DMERR("Error allocating dax pending block"); 914 return -ENOMEM; 915 } 916 917 block->data = kzalloc(bytes, GFP_KERNEL); 918 if (!block->data) { 919 DMERR("Error allocating dax data space"); 920 kfree(block); 921 return -ENOMEM; 922 } 923 924 /* write data provided via the iterator */ 925 if (!copy_from_iter(block->data, bytes, i)) { 926 DMERR("Error copying dax data"); 927 kfree(block->data); 928 kfree(block); 929 return -EIO; 930 } 931 932 /* rewind the iterator so that the block driver can use it */ 933 iov_iter_revert(i, bytes); 934 935 block->datalen = bytes; 936 block->sector = bio_to_dev_sectors(lc, sector); 937 block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift; 938 939 atomic_inc(&lc->pending_blocks); 940 spin_lock_irq(&lc->blocks_lock); 941 list_add_tail(&block->list, &lc->unflushed_blocks); 942 spin_unlock_irq(&lc->blocks_lock); 943 wake_up_process(lc->log_kthread); 944 945 return 0; 946 } 947 948 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff, 949 long nr_pages, void **kaddr, pfn_t *pfn) 950 { 951 struct log_writes_c *lc = ti->private; 952 sector_t sector = pgoff * PAGE_SECTORS; 953 int ret; 954 955 ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff); 956 if (ret) 957 return ret; 958 return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn); 959 } 960 961 static size_t log_writes_dax_copy_from_iter(struct dm_target *ti, 962 pgoff_t pgoff, void *addr, size_t bytes, 963 struct iov_iter *i) 964 { 965 struct log_writes_c *lc = ti->private; 966 sector_t sector = pgoff * PAGE_SECTORS; 967 int err; 968 969 if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff)) 970 return 0; 971 972 /* Don't bother doing anything if logging has been disabled */ 973 if (!lc->logging_enabled) 974 goto dax_copy; 975 976 err = log_dax(lc, sector, bytes, i); 977 if (err) { 978 DMWARN("Error %d logging DAX write", err); 979 return 0; 980 } 981 dax_copy: 982 return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i); 983 } 984 985 static size_t log_writes_dax_copy_to_iter(struct dm_target *ti, 986 pgoff_t pgoff, void *addr, size_t bytes, 987 struct iov_iter *i) 988 { 989 struct log_writes_c *lc = ti->private; 990 sector_t sector = pgoff * PAGE_SECTORS; 991 992 if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff)) 993 return 0; 994 return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i); 995 } 996 997 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff, 998 size_t nr_pages) 999 { 1000 int ret; 1001 struct log_writes_c *lc = ti->private; 1002 sector_t sector = pgoff * PAGE_SECTORS; 1003 1004 ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages << PAGE_SHIFT, 1005 &pgoff); 1006 if (ret) 1007 return ret; 1008 return dax_zero_page_range(lc->dev->dax_dev, pgoff, 1009 nr_pages << PAGE_SHIFT); 1010 } 1011 1012 #else 1013 #define log_writes_dax_direct_access NULL 1014 #define log_writes_dax_copy_from_iter NULL 1015 #define log_writes_dax_copy_to_iter NULL 1016 #define log_writes_dax_zero_page_range NULL 1017 #endif 1018 1019 static struct target_type log_writes_target = { 1020 .name = "log-writes", 1021 .version = {1, 1, 0}, 1022 .module = THIS_MODULE, 1023 .ctr = log_writes_ctr, 1024 .dtr = log_writes_dtr, 1025 .map = log_writes_map, 1026 .end_io = normal_end_io, 1027 .status = log_writes_status, 1028 .prepare_ioctl = log_writes_prepare_ioctl, 1029 .message = log_writes_message, 1030 .iterate_devices = log_writes_iterate_devices, 1031 .io_hints = log_writes_io_hints, 1032 .direct_access = log_writes_dax_direct_access, 1033 .dax_copy_from_iter = log_writes_dax_copy_from_iter, 1034 .dax_copy_to_iter = log_writes_dax_copy_to_iter, 1035 .dax_zero_page_range = log_writes_dax_zero_page_range, 1036 }; 1037 1038 static int __init dm_log_writes_init(void) 1039 { 1040 int r = dm_register_target(&log_writes_target); 1041 1042 if (r < 0) 1043 DMERR("register failed %d", r); 1044 1045 return r; 1046 } 1047 1048 static void __exit dm_log_writes_exit(void) 1049 { 1050 dm_unregister_target(&log_writes_target); 1051 } 1052 1053 module_init(dm_log_writes_init); 1054 module_exit(dm_log_writes_exit); 1055 1056 MODULE_DESCRIPTION(DM_NAME " log writes target"); 1057 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>"); 1058 MODULE_LICENSE("GPL"); 1059