1 /* 2 * Copyright (C) 2014 Facebook. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include <linux/device-mapper.h> 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/blkdev.h> 12 #include <linux/bio.h> 13 #include <linux/dax.h> 14 #include <linux/slab.h> 15 #include <linux/kthread.h> 16 #include <linux/freezer.h> 17 #include <linux/uio.h> 18 19 #define DM_MSG_PREFIX "log-writes" 20 21 /* 22 * This target will sequentially log all writes to the target device onto the 23 * log device. This is helpful for replaying writes to check for fs consistency 24 * at all times. This target provides a mechanism to mark specific events to 25 * check data at a later time. So for example you would: 26 * 27 * write data 28 * fsync 29 * dmsetup message /dev/whatever mark mymark 30 * unmount /mnt/test 31 * 32 * Then replay the log up to mymark and check the contents of the replay to 33 * verify it matches what was written. 34 * 35 * We log writes only after they have been flushed, this makes the log describe 36 * close to the order in which the data hits the actual disk, not its cache. So 37 * for example the following sequence (W means write, C means complete) 38 * 39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd 40 * 41 * Would result in the log looking like this: 42 * 43 * c,a,flush,fuad,b,<other writes>,<next flush> 44 * 45 * This is meant to help expose problems where file systems do not properly wait 46 * on data being written before invoking a FLUSH. FUA bypasses cache so once it 47 * completes it is added to the log as it should be on disk. 48 * 49 * We treat DISCARDs as if they don't bypass cache so that they are logged in 50 * order of completion along with the normal writes. If we didn't do it this 51 * way we would process all the discards first and then write all the data, when 52 * in fact we want to do the data and the discard in the order that they 53 * completed. 54 */ 55 #define LOG_FLUSH_FLAG (1 << 0) 56 #define LOG_FUA_FLAG (1 << 1) 57 #define LOG_DISCARD_FLAG (1 << 2) 58 #define LOG_MARK_FLAG (1 << 3) 59 #define LOG_METADATA_FLAG (1 << 4) 60 61 #define WRITE_LOG_VERSION 1ULL 62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL 63 64 /* 65 * The disk format for this is braindead simple. 66 * 67 * At byte 0 we have our super, followed by the following sequence for 68 * nr_entries: 69 * 70 * [ 1 sector ][ entry->nr_sectors ] 71 * [log_write_entry][ data written ] 72 * 73 * The log_write_entry takes up a full sector so we can have arbitrary length 74 * marks and it leaves us room for extra content in the future. 75 */ 76 77 /* 78 * Basic info about the log for userspace. 79 */ 80 struct log_write_super { 81 __le64 magic; 82 __le64 version; 83 __le64 nr_entries; 84 __le32 sectorsize; 85 }; 86 87 /* 88 * sector - the sector we wrote. 89 * nr_sectors - the number of sectors we wrote. 90 * flags - flags for this log entry. 91 * data_len - the size of the data in this log entry, this is for private log 92 * entry stuff, the MARK data provided by userspace for example. 93 */ 94 struct log_write_entry { 95 __le64 sector; 96 __le64 nr_sectors; 97 __le64 flags; 98 __le64 data_len; 99 }; 100 101 struct log_writes_c { 102 struct dm_dev *dev; 103 struct dm_dev *logdev; 104 u64 logged_entries; 105 u32 sectorsize; 106 u32 sectorshift; 107 atomic_t io_blocks; 108 atomic_t pending_blocks; 109 sector_t next_sector; 110 sector_t end_sector; 111 bool logging_enabled; 112 bool device_supports_discard; 113 spinlock_t blocks_lock; 114 struct list_head unflushed_blocks; 115 struct list_head logging_blocks; 116 wait_queue_head_t wait; 117 struct task_struct *log_kthread; 118 }; 119 120 struct pending_block { 121 int vec_cnt; 122 u64 flags; 123 sector_t sector; 124 sector_t nr_sectors; 125 char *data; 126 u32 datalen; 127 struct list_head list; 128 struct bio_vec vecs[0]; 129 }; 130 131 struct per_bio_data { 132 struct pending_block *block; 133 }; 134 135 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc, 136 sector_t sectors) 137 { 138 return sectors >> (lc->sectorshift - SECTOR_SHIFT); 139 } 140 141 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc, 142 sector_t sectors) 143 { 144 return sectors << (lc->sectorshift - SECTOR_SHIFT); 145 } 146 147 static void put_pending_block(struct log_writes_c *lc) 148 { 149 if (atomic_dec_and_test(&lc->pending_blocks)) { 150 smp_mb__after_atomic(); 151 if (waitqueue_active(&lc->wait)) 152 wake_up(&lc->wait); 153 } 154 } 155 156 static void put_io_block(struct log_writes_c *lc) 157 { 158 if (atomic_dec_and_test(&lc->io_blocks)) { 159 smp_mb__after_atomic(); 160 if (waitqueue_active(&lc->wait)) 161 wake_up(&lc->wait); 162 } 163 } 164 165 static void log_end_io(struct bio *bio) 166 { 167 struct log_writes_c *lc = bio->bi_private; 168 169 if (bio->bi_status) { 170 unsigned long flags; 171 172 DMERR("Error writing log block, error=%d", bio->bi_status); 173 spin_lock_irqsave(&lc->blocks_lock, flags); 174 lc->logging_enabled = false; 175 spin_unlock_irqrestore(&lc->blocks_lock, flags); 176 } 177 178 bio_free_pages(bio); 179 put_io_block(lc); 180 bio_put(bio); 181 } 182 183 /* 184 * Meant to be called if there is an error, it will free all the pages 185 * associated with the block. 186 */ 187 static void free_pending_block(struct log_writes_c *lc, 188 struct pending_block *block) 189 { 190 int i; 191 192 for (i = 0; i < block->vec_cnt; i++) { 193 if (block->vecs[i].bv_page) 194 __free_page(block->vecs[i].bv_page); 195 } 196 kfree(block->data); 197 kfree(block); 198 put_pending_block(lc); 199 } 200 201 static int write_metadata(struct log_writes_c *lc, void *entry, 202 size_t entrylen, void *data, size_t datalen, 203 sector_t sector) 204 { 205 struct bio *bio; 206 struct page *page; 207 void *ptr; 208 size_t ret; 209 210 bio = bio_alloc(GFP_KERNEL, 1); 211 if (!bio) { 212 DMERR("Couldn't alloc log bio"); 213 goto error; 214 } 215 bio->bi_iter.bi_size = 0; 216 bio->bi_iter.bi_sector = sector; 217 bio_set_dev(bio, lc->logdev->bdev); 218 bio->bi_end_io = log_end_io; 219 bio->bi_private = lc; 220 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 221 222 page = alloc_page(GFP_KERNEL); 223 if (!page) { 224 DMERR("Couldn't alloc log page"); 225 bio_put(bio); 226 goto error; 227 } 228 229 ptr = kmap_atomic(page); 230 memcpy(ptr, entry, entrylen); 231 if (datalen) 232 memcpy(ptr + entrylen, data, datalen); 233 memset(ptr + entrylen + datalen, 0, 234 lc->sectorsize - entrylen - datalen); 235 kunmap_atomic(ptr); 236 237 ret = bio_add_page(bio, page, lc->sectorsize, 0); 238 if (ret != lc->sectorsize) { 239 DMERR("Couldn't add page to the log block"); 240 goto error_bio; 241 } 242 submit_bio(bio); 243 return 0; 244 error_bio: 245 bio_put(bio); 246 __free_page(page); 247 error: 248 put_io_block(lc); 249 return -1; 250 } 251 252 static int write_inline_data(struct log_writes_c *lc, void *entry, 253 size_t entrylen, void *data, size_t datalen, 254 sector_t sector) 255 { 256 int num_pages, bio_pages, pg_datalen, pg_sectorlen, i; 257 struct page *page; 258 struct bio *bio; 259 size_t ret; 260 void *ptr; 261 262 while (datalen) { 263 num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT; 264 bio_pages = min(num_pages, BIO_MAX_PAGES); 265 266 atomic_inc(&lc->io_blocks); 267 268 bio = bio_alloc(GFP_KERNEL, bio_pages); 269 if (!bio) { 270 DMERR("Couldn't alloc inline data bio"); 271 goto error; 272 } 273 274 bio->bi_iter.bi_size = 0; 275 bio->bi_iter.bi_sector = sector; 276 bio_set_dev(bio, lc->logdev->bdev); 277 bio->bi_end_io = log_end_io; 278 bio->bi_private = lc; 279 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 280 281 for (i = 0; i < bio_pages; i++) { 282 pg_datalen = min_t(int, datalen, PAGE_SIZE); 283 pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize); 284 285 page = alloc_page(GFP_KERNEL); 286 if (!page) { 287 DMERR("Couldn't alloc inline data page"); 288 goto error_bio; 289 } 290 291 ptr = kmap_atomic(page); 292 memcpy(ptr, data, pg_datalen); 293 if (pg_sectorlen > pg_datalen) 294 memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen); 295 kunmap_atomic(ptr); 296 297 ret = bio_add_page(bio, page, pg_sectorlen, 0); 298 if (ret != pg_sectorlen) { 299 DMERR("Couldn't add page of inline data"); 300 __free_page(page); 301 goto error_bio; 302 } 303 304 datalen -= pg_datalen; 305 data += pg_datalen; 306 } 307 submit_bio(bio); 308 309 sector += bio_pages * PAGE_SECTORS; 310 } 311 return 0; 312 error_bio: 313 bio_free_pages(bio); 314 bio_put(bio); 315 error: 316 put_io_block(lc); 317 return -1; 318 } 319 320 static int log_one_block(struct log_writes_c *lc, 321 struct pending_block *block, sector_t sector) 322 { 323 struct bio *bio; 324 struct log_write_entry entry; 325 size_t metadatalen, ret; 326 int i; 327 328 entry.sector = cpu_to_le64(block->sector); 329 entry.nr_sectors = cpu_to_le64(block->nr_sectors); 330 entry.flags = cpu_to_le64(block->flags); 331 entry.data_len = cpu_to_le64(block->datalen); 332 333 metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0; 334 if (write_metadata(lc, &entry, sizeof(entry), block->data, 335 metadatalen, sector)) { 336 free_pending_block(lc, block); 337 return -1; 338 } 339 340 sector += dev_to_bio_sectors(lc, 1); 341 342 if (block->datalen && metadatalen == 0) { 343 if (write_inline_data(lc, &entry, sizeof(entry), block->data, 344 block->datalen, sector)) { 345 free_pending_block(lc, block); 346 return -1; 347 } 348 /* we don't support both inline data & bio data */ 349 goto out; 350 } 351 352 if (!block->vec_cnt) 353 goto out; 354 355 atomic_inc(&lc->io_blocks); 356 bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES)); 357 if (!bio) { 358 DMERR("Couldn't alloc log bio"); 359 goto error; 360 } 361 bio->bi_iter.bi_size = 0; 362 bio->bi_iter.bi_sector = sector; 363 bio_set_dev(bio, lc->logdev->bdev); 364 bio->bi_end_io = log_end_io; 365 bio->bi_private = lc; 366 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 367 368 for (i = 0; i < block->vec_cnt; i++) { 369 /* 370 * The page offset is always 0 because we allocate a new page 371 * for every bvec in the original bio for simplicity sake. 372 */ 373 ret = bio_add_page(bio, block->vecs[i].bv_page, 374 block->vecs[i].bv_len, 0); 375 if (ret != block->vecs[i].bv_len) { 376 atomic_inc(&lc->io_blocks); 377 submit_bio(bio); 378 bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES)); 379 if (!bio) { 380 DMERR("Couldn't alloc log bio"); 381 goto error; 382 } 383 bio->bi_iter.bi_size = 0; 384 bio->bi_iter.bi_sector = sector; 385 bio_set_dev(bio, lc->logdev->bdev); 386 bio->bi_end_io = log_end_io; 387 bio->bi_private = lc; 388 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 389 390 ret = bio_add_page(bio, block->vecs[i].bv_page, 391 block->vecs[i].bv_len, 0); 392 if (ret != block->vecs[i].bv_len) { 393 DMERR("Couldn't add page on new bio?"); 394 bio_put(bio); 395 goto error; 396 } 397 } 398 sector += block->vecs[i].bv_len >> SECTOR_SHIFT; 399 } 400 submit_bio(bio); 401 out: 402 kfree(block->data); 403 kfree(block); 404 put_pending_block(lc); 405 return 0; 406 error: 407 free_pending_block(lc, block); 408 put_io_block(lc); 409 return -1; 410 } 411 412 static int log_super(struct log_writes_c *lc) 413 { 414 struct log_write_super super; 415 416 super.magic = cpu_to_le64(WRITE_LOG_MAGIC); 417 super.version = cpu_to_le64(WRITE_LOG_VERSION); 418 super.nr_entries = cpu_to_le64(lc->logged_entries); 419 super.sectorsize = cpu_to_le32(lc->sectorsize); 420 421 if (write_metadata(lc, &super, sizeof(super), NULL, 0, 0)) { 422 DMERR("Couldn't write super"); 423 return -1; 424 } 425 426 return 0; 427 } 428 429 static inline sector_t logdev_last_sector(struct log_writes_c *lc) 430 { 431 return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT; 432 } 433 434 static int log_writes_kthread(void *arg) 435 { 436 struct log_writes_c *lc = (struct log_writes_c *)arg; 437 sector_t sector = 0; 438 439 while (!kthread_should_stop()) { 440 bool super = false; 441 bool logging_enabled; 442 struct pending_block *block = NULL; 443 int ret; 444 445 spin_lock_irq(&lc->blocks_lock); 446 if (!list_empty(&lc->logging_blocks)) { 447 block = list_first_entry(&lc->logging_blocks, 448 struct pending_block, list); 449 list_del_init(&block->list); 450 if (!lc->logging_enabled) 451 goto next; 452 453 sector = lc->next_sector; 454 if (!(block->flags & LOG_DISCARD_FLAG)) 455 lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors); 456 lc->next_sector += dev_to_bio_sectors(lc, 1); 457 458 /* 459 * Apparently the size of the device may not be known 460 * right away, so handle this properly. 461 */ 462 if (!lc->end_sector) 463 lc->end_sector = logdev_last_sector(lc); 464 if (lc->end_sector && 465 lc->next_sector >= lc->end_sector) { 466 DMERR("Ran out of space on the logdev"); 467 lc->logging_enabled = false; 468 goto next; 469 } 470 lc->logged_entries++; 471 atomic_inc(&lc->io_blocks); 472 473 super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG)); 474 if (super) 475 atomic_inc(&lc->io_blocks); 476 } 477 next: 478 logging_enabled = lc->logging_enabled; 479 spin_unlock_irq(&lc->blocks_lock); 480 if (block) { 481 if (logging_enabled) { 482 ret = log_one_block(lc, block, sector); 483 if (!ret && super) 484 ret = log_super(lc); 485 if (ret) { 486 spin_lock_irq(&lc->blocks_lock); 487 lc->logging_enabled = false; 488 spin_unlock_irq(&lc->blocks_lock); 489 } 490 } else 491 free_pending_block(lc, block); 492 continue; 493 } 494 495 if (!try_to_freeze()) { 496 set_current_state(TASK_INTERRUPTIBLE); 497 if (!kthread_should_stop() && 498 list_empty(&lc->logging_blocks)) 499 schedule(); 500 __set_current_state(TASK_RUNNING); 501 } 502 } 503 return 0; 504 } 505 506 /* 507 * Construct a log-writes mapping: 508 * log-writes <dev_path> <log_dev_path> 509 */ 510 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv) 511 { 512 struct log_writes_c *lc; 513 struct dm_arg_set as; 514 const char *devname, *logdevname; 515 int ret; 516 517 as.argc = argc; 518 as.argv = argv; 519 520 if (argc < 2) { 521 ti->error = "Invalid argument count"; 522 return -EINVAL; 523 } 524 525 lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL); 526 if (!lc) { 527 ti->error = "Cannot allocate context"; 528 return -ENOMEM; 529 } 530 spin_lock_init(&lc->blocks_lock); 531 INIT_LIST_HEAD(&lc->unflushed_blocks); 532 INIT_LIST_HEAD(&lc->logging_blocks); 533 init_waitqueue_head(&lc->wait); 534 atomic_set(&lc->io_blocks, 0); 535 atomic_set(&lc->pending_blocks, 0); 536 537 devname = dm_shift_arg(&as); 538 ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev); 539 if (ret) { 540 ti->error = "Device lookup failed"; 541 goto bad; 542 } 543 544 logdevname = dm_shift_arg(&as); 545 ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table), 546 &lc->logdev); 547 if (ret) { 548 ti->error = "Log device lookup failed"; 549 dm_put_device(ti, lc->dev); 550 goto bad; 551 } 552 553 lc->sectorsize = bdev_logical_block_size(lc->dev->bdev); 554 lc->sectorshift = ilog2(lc->sectorsize); 555 lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write"); 556 if (IS_ERR(lc->log_kthread)) { 557 ret = PTR_ERR(lc->log_kthread); 558 ti->error = "Couldn't alloc kthread"; 559 dm_put_device(ti, lc->dev); 560 dm_put_device(ti, lc->logdev); 561 goto bad; 562 } 563 564 /* 565 * next_sector is in 512b sectors to correspond to what bi_sector expects. 566 * The super starts at sector 0, and the next_sector is the next logical 567 * one based on the sectorsize of the device. 568 */ 569 lc->next_sector = lc->sectorsize >> SECTOR_SHIFT; 570 lc->logging_enabled = true; 571 lc->end_sector = logdev_last_sector(lc); 572 lc->device_supports_discard = true; 573 574 ti->num_flush_bios = 1; 575 ti->flush_supported = true; 576 ti->num_discard_bios = 1; 577 ti->discards_supported = true; 578 ti->per_io_data_size = sizeof(struct per_bio_data); 579 ti->private = lc; 580 return 0; 581 582 bad: 583 kfree(lc); 584 return ret; 585 } 586 587 static int log_mark(struct log_writes_c *lc, char *data) 588 { 589 struct pending_block *block; 590 size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry); 591 592 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL); 593 if (!block) { 594 DMERR("Error allocating pending block"); 595 return -ENOMEM; 596 } 597 598 block->data = kstrndup(data, maxsize - 1, GFP_KERNEL); 599 if (!block->data) { 600 DMERR("Error copying mark data"); 601 kfree(block); 602 return -ENOMEM; 603 } 604 atomic_inc(&lc->pending_blocks); 605 block->datalen = strlen(block->data); 606 block->flags |= LOG_MARK_FLAG; 607 spin_lock_irq(&lc->blocks_lock); 608 list_add_tail(&block->list, &lc->logging_blocks); 609 spin_unlock_irq(&lc->blocks_lock); 610 wake_up_process(lc->log_kthread); 611 return 0; 612 } 613 614 static void log_writes_dtr(struct dm_target *ti) 615 { 616 struct log_writes_c *lc = ti->private; 617 618 spin_lock_irq(&lc->blocks_lock); 619 list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks); 620 spin_unlock_irq(&lc->blocks_lock); 621 622 /* 623 * This is just nice to have since it'll update the super to include the 624 * unflushed blocks, if it fails we don't really care. 625 */ 626 log_mark(lc, "dm-log-writes-end"); 627 wake_up_process(lc->log_kthread); 628 wait_event(lc->wait, !atomic_read(&lc->io_blocks) && 629 !atomic_read(&lc->pending_blocks)); 630 kthread_stop(lc->log_kthread); 631 632 WARN_ON(!list_empty(&lc->logging_blocks)); 633 WARN_ON(!list_empty(&lc->unflushed_blocks)); 634 dm_put_device(ti, lc->dev); 635 dm_put_device(ti, lc->logdev); 636 kfree(lc); 637 } 638 639 static void normal_map_bio(struct dm_target *ti, struct bio *bio) 640 { 641 struct log_writes_c *lc = ti->private; 642 643 bio_set_dev(bio, lc->dev->bdev); 644 } 645 646 static int log_writes_map(struct dm_target *ti, struct bio *bio) 647 { 648 struct log_writes_c *lc = ti->private; 649 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 650 struct pending_block *block; 651 struct bvec_iter iter; 652 struct bio_vec bv; 653 size_t alloc_size; 654 int i = 0; 655 bool flush_bio = (bio->bi_opf & REQ_PREFLUSH); 656 bool fua_bio = (bio->bi_opf & REQ_FUA); 657 bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD); 658 bool meta_bio = (bio->bi_opf & REQ_META); 659 660 pb->block = NULL; 661 662 /* Don't bother doing anything if logging has been disabled */ 663 if (!lc->logging_enabled) 664 goto map_bio; 665 666 /* 667 * Map reads as normal. 668 */ 669 if (bio_data_dir(bio) == READ) 670 goto map_bio; 671 672 /* No sectors and not a flush? Don't care */ 673 if (!bio_sectors(bio) && !flush_bio) 674 goto map_bio; 675 676 /* 677 * Discards will have bi_size set but there's no actual data, so just 678 * allocate the size of the pending block. 679 */ 680 if (discard_bio) 681 alloc_size = sizeof(struct pending_block); 682 else 683 alloc_size = sizeof(struct pending_block) + sizeof(struct bio_vec) * bio_segments(bio); 684 685 block = kzalloc(alloc_size, GFP_NOIO); 686 if (!block) { 687 DMERR("Error allocating pending block"); 688 spin_lock_irq(&lc->blocks_lock); 689 lc->logging_enabled = false; 690 spin_unlock_irq(&lc->blocks_lock); 691 return DM_MAPIO_KILL; 692 } 693 INIT_LIST_HEAD(&block->list); 694 pb->block = block; 695 atomic_inc(&lc->pending_blocks); 696 697 if (flush_bio) 698 block->flags |= LOG_FLUSH_FLAG; 699 if (fua_bio) 700 block->flags |= LOG_FUA_FLAG; 701 if (discard_bio) 702 block->flags |= LOG_DISCARD_FLAG; 703 if (meta_bio) 704 block->flags |= LOG_METADATA_FLAG; 705 706 block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector); 707 block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio)); 708 709 /* We don't need the data, just submit */ 710 if (discard_bio) { 711 WARN_ON(flush_bio || fua_bio); 712 if (lc->device_supports_discard) 713 goto map_bio; 714 bio_endio(bio); 715 return DM_MAPIO_SUBMITTED; 716 } 717 718 /* Flush bio, splice the unflushed blocks onto this list and submit */ 719 if (flush_bio && !bio_sectors(bio)) { 720 spin_lock_irq(&lc->blocks_lock); 721 list_splice_init(&lc->unflushed_blocks, &block->list); 722 spin_unlock_irq(&lc->blocks_lock); 723 goto map_bio; 724 } 725 726 /* 727 * We will write this bio somewhere else way later so we need to copy 728 * the actual contents into new pages so we know the data will always be 729 * there. 730 * 731 * We do this because this could be a bio from O_DIRECT in which case we 732 * can't just hold onto the page until some later point, we have to 733 * manually copy the contents. 734 */ 735 bio_for_each_segment(bv, bio, iter) { 736 struct page *page; 737 void *src, *dst; 738 739 page = alloc_page(GFP_NOIO); 740 if (!page) { 741 DMERR("Error allocing page"); 742 free_pending_block(lc, block); 743 spin_lock_irq(&lc->blocks_lock); 744 lc->logging_enabled = false; 745 spin_unlock_irq(&lc->blocks_lock); 746 return DM_MAPIO_KILL; 747 } 748 749 src = kmap_atomic(bv.bv_page); 750 dst = kmap_atomic(page); 751 memcpy(dst, src + bv.bv_offset, bv.bv_len); 752 kunmap_atomic(dst); 753 kunmap_atomic(src); 754 block->vecs[i].bv_page = page; 755 block->vecs[i].bv_len = bv.bv_len; 756 block->vec_cnt++; 757 i++; 758 } 759 760 /* Had a flush with data in it, weird */ 761 if (flush_bio) { 762 spin_lock_irq(&lc->blocks_lock); 763 list_splice_init(&lc->unflushed_blocks, &block->list); 764 spin_unlock_irq(&lc->blocks_lock); 765 } 766 map_bio: 767 normal_map_bio(ti, bio); 768 return DM_MAPIO_REMAPPED; 769 } 770 771 static int normal_end_io(struct dm_target *ti, struct bio *bio, 772 blk_status_t *error) 773 { 774 struct log_writes_c *lc = ti->private; 775 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 776 777 if (bio_data_dir(bio) == WRITE && pb->block) { 778 struct pending_block *block = pb->block; 779 unsigned long flags; 780 781 spin_lock_irqsave(&lc->blocks_lock, flags); 782 if (block->flags & LOG_FLUSH_FLAG) { 783 list_splice_tail_init(&block->list, &lc->logging_blocks); 784 list_add_tail(&block->list, &lc->logging_blocks); 785 wake_up_process(lc->log_kthread); 786 } else if (block->flags & LOG_FUA_FLAG) { 787 list_add_tail(&block->list, &lc->logging_blocks); 788 wake_up_process(lc->log_kthread); 789 } else 790 list_add_tail(&block->list, &lc->unflushed_blocks); 791 spin_unlock_irqrestore(&lc->blocks_lock, flags); 792 } 793 794 return DM_ENDIO_DONE; 795 } 796 797 /* 798 * INFO format: <logged entries> <highest allocated sector> 799 */ 800 static void log_writes_status(struct dm_target *ti, status_type_t type, 801 unsigned status_flags, char *result, 802 unsigned maxlen) 803 { 804 unsigned sz = 0; 805 struct log_writes_c *lc = ti->private; 806 807 switch (type) { 808 case STATUSTYPE_INFO: 809 DMEMIT("%llu %llu", lc->logged_entries, 810 (unsigned long long)lc->next_sector - 1); 811 if (!lc->logging_enabled) 812 DMEMIT(" logging_disabled"); 813 break; 814 815 case STATUSTYPE_TABLE: 816 DMEMIT("%s %s", lc->dev->name, lc->logdev->name); 817 break; 818 } 819 } 820 821 static int log_writes_prepare_ioctl(struct dm_target *ti, 822 struct block_device **bdev) 823 { 824 struct log_writes_c *lc = ti->private; 825 struct dm_dev *dev = lc->dev; 826 827 *bdev = dev->bdev; 828 /* 829 * Only pass ioctls through if the device sizes match exactly. 830 */ 831 if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT) 832 return 1; 833 return 0; 834 } 835 836 static int log_writes_iterate_devices(struct dm_target *ti, 837 iterate_devices_callout_fn fn, 838 void *data) 839 { 840 struct log_writes_c *lc = ti->private; 841 842 return fn(ti, lc->dev, 0, ti->len, data); 843 } 844 845 /* 846 * Messages supported: 847 * mark <mark data> - specify the marked data. 848 */ 849 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv, 850 char *result, unsigned maxlen) 851 { 852 int r = -EINVAL; 853 struct log_writes_c *lc = ti->private; 854 855 if (argc != 2) { 856 DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc); 857 return r; 858 } 859 860 if (!strcasecmp(argv[0], "mark")) 861 r = log_mark(lc, argv[1]); 862 else 863 DMWARN("Unrecognised log writes target message received: %s", argv[0]); 864 865 return r; 866 } 867 868 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits) 869 { 870 struct log_writes_c *lc = ti->private; 871 struct request_queue *q = bdev_get_queue(lc->dev->bdev); 872 873 if (!q || !blk_queue_discard(q)) { 874 lc->device_supports_discard = false; 875 limits->discard_granularity = lc->sectorsize; 876 limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT); 877 } 878 limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev); 879 limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev); 880 limits->io_min = limits->physical_block_size; 881 } 882 883 #if IS_ENABLED(CONFIG_DAX_DRIVER) 884 static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes, 885 struct iov_iter *i) 886 { 887 struct pending_block *block; 888 889 if (!bytes) 890 return 0; 891 892 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL); 893 if (!block) { 894 DMERR("Error allocating dax pending block"); 895 return -ENOMEM; 896 } 897 898 block->data = kzalloc(bytes, GFP_KERNEL); 899 if (!block->data) { 900 DMERR("Error allocating dax data space"); 901 kfree(block); 902 return -ENOMEM; 903 } 904 905 /* write data provided via the iterator */ 906 if (!copy_from_iter(block->data, bytes, i)) { 907 DMERR("Error copying dax data"); 908 kfree(block->data); 909 kfree(block); 910 return -EIO; 911 } 912 913 /* rewind the iterator so that the block driver can use it */ 914 iov_iter_revert(i, bytes); 915 916 block->datalen = bytes; 917 block->sector = bio_to_dev_sectors(lc, sector); 918 block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift; 919 920 atomic_inc(&lc->pending_blocks); 921 spin_lock_irq(&lc->blocks_lock); 922 list_add_tail(&block->list, &lc->unflushed_blocks); 923 spin_unlock_irq(&lc->blocks_lock); 924 wake_up_process(lc->log_kthread); 925 926 return 0; 927 } 928 929 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff, 930 long nr_pages, void **kaddr, pfn_t *pfn) 931 { 932 struct log_writes_c *lc = ti->private; 933 sector_t sector = pgoff * PAGE_SECTORS; 934 int ret; 935 936 ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff); 937 if (ret) 938 return ret; 939 return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn); 940 } 941 942 static size_t log_writes_dax_copy_from_iter(struct dm_target *ti, 943 pgoff_t pgoff, void *addr, size_t bytes, 944 struct iov_iter *i) 945 { 946 struct log_writes_c *lc = ti->private; 947 sector_t sector = pgoff * PAGE_SECTORS; 948 int err; 949 950 if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff)) 951 return 0; 952 953 /* Don't bother doing anything if logging has been disabled */ 954 if (!lc->logging_enabled) 955 goto dax_copy; 956 957 err = log_dax(lc, sector, bytes, i); 958 if (err) { 959 DMWARN("Error %d logging DAX write", err); 960 return 0; 961 } 962 dax_copy: 963 return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i); 964 } 965 #else 966 #define log_writes_dax_direct_access NULL 967 #define log_writes_dax_copy_from_iter NULL 968 #endif 969 970 static struct target_type log_writes_target = { 971 .name = "log-writes", 972 .version = {1, 1, 0}, 973 .module = THIS_MODULE, 974 .ctr = log_writes_ctr, 975 .dtr = log_writes_dtr, 976 .map = log_writes_map, 977 .end_io = normal_end_io, 978 .status = log_writes_status, 979 .prepare_ioctl = log_writes_prepare_ioctl, 980 .message = log_writes_message, 981 .iterate_devices = log_writes_iterate_devices, 982 .io_hints = log_writes_io_hints, 983 .direct_access = log_writes_dax_direct_access, 984 .dax_copy_from_iter = log_writes_dax_copy_from_iter, 985 }; 986 987 static int __init dm_log_writes_init(void) 988 { 989 int r = dm_register_target(&log_writes_target); 990 991 if (r < 0) 992 DMERR("register failed %d", r); 993 994 return r; 995 } 996 997 static void __exit dm_log_writes_exit(void) 998 { 999 dm_unregister_target(&log_writes_target); 1000 } 1001 1002 module_init(dm_log_writes_init); 1003 module_exit(dm_log_writes_exit); 1004 1005 MODULE_DESCRIPTION(DM_NAME " log writes target"); 1006 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>"); 1007 MODULE_LICENSE("GPL"); 1008