1 /* 2 * Copyright (C) 2003 Sistina Software 3 * Copyright (C) 2006 Red Hat GmbH 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/device-mapper.h> 11 12 #include <linux/bio.h> 13 #include <linux/completion.h> 14 #include <linux/mempool.h> 15 #include <linux/module.h> 16 #include <linux/sched.h> 17 #include <linux/slab.h> 18 #include <linux/dm-io.h> 19 20 #define DM_MSG_PREFIX "io" 21 22 #define DM_IO_MAX_REGIONS BITS_PER_LONG 23 24 struct dm_io_client { 25 mempool_t *pool; 26 struct bio_set *bios; 27 }; 28 29 /* 30 * Aligning 'struct io' reduces the number of bits required to store 31 * its address. Refer to store_io_and_region_in_bio() below. 32 */ 33 struct io { 34 unsigned long error_bits; 35 atomic_t count; 36 struct dm_io_client *client; 37 io_notify_fn callback; 38 void *context; 39 void *vma_invalidate_address; 40 unsigned long vma_invalidate_size; 41 } __attribute__((aligned(DM_IO_MAX_REGIONS))); 42 43 static struct kmem_cache *_dm_io_cache; 44 45 /* 46 * Create a client with mempool and bioset. 47 */ 48 struct dm_io_client *dm_io_client_create(void) 49 { 50 struct dm_io_client *client; 51 unsigned min_ios = dm_get_reserved_bio_based_ios(); 52 53 client = kmalloc(sizeof(*client), GFP_KERNEL); 54 if (!client) 55 return ERR_PTR(-ENOMEM); 56 57 client->pool = mempool_create_slab_pool(min_ios, _dm_io_cache); 58 if (!client->pool) 59 goto bad; 60 61 client->bios = bioset_create(min_ios, 0); 62 if (!client->bios) 63 goto bad; 64 65 return client; 66 67 bad: 68 mempool_destroy(client->pool); 69 kfree(client); 70 return ERR_PTR(-ENOMEM); 71 } 72 EXPORT_SYMBOL(dm_io_client_create); 73 74 void dm_io_client_destroy(struct dm_io_client *client) 75 { 76 mempool_destroy(client->pool); 77 bioset_free(client->bios); 78 kfree(client); 79 } 80 EXPORT_SYMBOL(dm_io_client_destroy); 81 82 /*----------------------------------------------------------------- 83 * We need to keep track of which region a bio is doing io for. 84 * To avoid a memory allocation to store just 5 or 6 bits, we 85 * ensure the 'struct io' pointer is aligned so enough low bits are 86 * always zero and then combine it with the region number directly in 87 * bi_private. 88 *---------------------------------------------------------------*/ 89 static void store_io_and_region_in_bio(struct bio *bio, struct io *io, 90 unsigned region) 91 { 92 if (unlikely(!IS_ALIGNED((unsigned long)io, DM_IO_MAX_REGIONS))) { 93 DMCRIT("Unaligned struct io pointer %p", io); 94 BUG(); 95 } 96 97 bio->bi_private = (void *)((unsigned long)io | region); 98 } 99 100 static void retrieve_io_and_region_from_bio(struct bio *bio, struct io **io, 101 unsigned *region) 102 { 103 unsigned long val = (unsigned long)bio->bi_private; 104 105 *io = (void *)(val & -(unsigned long)DM_IO_MAX_REGIONS); 106 *region = val & (DM_IO_MAX_REGIONS - 1); 107 } 108 109 /*----------------------------------------------------------------- 110 * We need an io object to keep track of the number of bios that 111 * have been dispatched for a particular io. 112 *---------------------------------------------------------------*/ 113 static void complete_io(struct io *io) 114 { 115 unsigned long error_bits = io->error_bits; 116 io_notify_fn fn = io->callback; 117 void *context = io->context; 118 119 if (io->vma_invalidate_size) 120 invalidate_kernel_vmap_range(io->vma_invalidate_address, 121 io->vma_invalidate_size); 122 123 mempool_free(io, io->client->pool); 124 fn(error_bits, context); 125 } 126 127 static void dec_count(struct io *io, unsigned int region, int error) 128 { 129 if (error) 130 set_bit(region, &io->error_bits); 131 132 if (atomic_dec_and_test(&io->count)) 133 complete_io(io); 134 } 135 136 static void endio(struct bio *bio) 137 { 138 struct io *io; 139 unsigned region; 140 int error; 141 142 if (bio->bi_error && bio_data_dir(bio) == READ) 143 zero_fill_bio(bio); 144 145 /* 146 * The bio destructor in bio_put() may use the io object. 147 */ 148 retrieve_io_and_region_from_bio(bio, &io, ®ion); 149 150 error = bio->bi_error; 151 bio_put(bio); 152 153 dec_count(io, region, error); 154 } 155 156 /*----------------------------------------------------------------- 157 * These little objects provide an abstraction for getting a new 158 * destination page for io. 159 *---------------------------------------------------------------*/ 160 struct dpages { 161 void (*get_page)(struct dpages *dp, 162 struct page **p, unsigned long *len, unsigned *offset); 163 void (*next_page)(struct dpages *dp); 164 165 union { 166 unsigned context_u; 167 struct bvec_iter context_bi; 168 }; 169 void *context_ptr; 170 171 void *vma_invalidate_address; 172 unsigned long vma_invalidate_size; 173 }; 174 175 /* 176 * Functions for getting the pages from a list. 177 */ 178 static void list_get_page(struct dpages *dp, 179 struct page **p, unsigned long *len, unsigned *offset) 180 { 181 unsigned o = dp->context_u; 182 struct page_list *pl = (struct page_list *) dp->context_ptr; 183 184 *p = pl->page; 185 *len = PAGE_SIZE - o; 186 *offset = o; 187 } 188 189 static void list_next_page(struct dpages *dp) 190 { 191 struct page_list *pl = (struct page_list *) dp->context_ptr; 192 dp->context_ptr = pl->next; 193 dp->context_u = 0; 194 } 195 196 static void list_dp_init(struct dpages *dp, struct page_list *pl, unsigned offset) 197 { 198 dp->get_page = list_get_page; 199 dp->next_page = list_next_page; 200 dp->context_u = offset; 201 dp->context_ptr = pl; 202 } 203 204 /* 205 * Functions for getting the pages from a bvec. 206 */ 207 static void bio_get_page(struct dpages *dp, struct page **p, 208 unsigned long *len, unsigned *offset) 209 { 210 struct bio_vec bvec = bvec_iter_bvec((struct bio_vec *)dp->context_ptr, 211 dp->context_bi); 212 213 *p = bvec.bv_page; 214 *len = bvec.bv_len; 215 *offset = bvec.bv_offset; 216 217 /* avoid figuring it out again in bio_next_page() */ 218 dp->context_bi.bi_sector = (sector_t)bvec.bv_len; 219 } 220 221 static void bio_next_page(struct dpages *dp) 222 { 223 unsigned int len = (unsigned int)dp->context_bi.bi_sector; 224 225 bvec_iter_advance((struct bio_vec *)dp->context_ptr, 226 &dp->context_bi, len); 227 } 228 229 static void bio_dp_init(struct dpages *dp, struct bio *bio) 230 { 231 dp->get_page = bio_get_page; 232 dp->next_page = bio_next_page; 233 234 /* 235 * We just use bvec iterator to retrieve pages, so it is ok to 236 * access the bvec table directly here 237 */ 238 dp->context_ptr = bio->bi_io_vec; 239 dp->context_bi = bio->bi_iter; 240 } 241 242 /* 243 * Functions for getting the pages from a VMA. 244 */ 245 static void vm_get_page(struct dpages *dp, 246 struct page **p, unsigned long *len, unsigned *offset) 247 { 248 *p = vmalloc_to_page(dp->context_ptr); 249 *offset = dp->context_u; 250 *len = PAGE_SIZE - dp->context_u; 251 } 252 253 static void vm_next_page(struct dpages *dp) 254 { 255 dp->context_ptr += PAGE_SIZE - dp->context_u; 256 dp->context_u = 0; 257 } 258 259 static void vm_dp_init(struct dpages *dp, void *data) 260 { 261 dp->get_page = vm_get_page; 262 dp->next_page = vm_next_page; 263 dp->context_u = offset_in_page(data); 264 dp->context_ptr = data; 265 } 266 267 /* 268 * Functions for getting the pages from kernel memory. 269 */ 270 static void km_get_page(struct dpages *dp, struct page **p, unsigned long *len, 271 unsigned *offset) 272 { 273 *p = virt_to_page(dp->context_ptr); 274 *offset = dp->context_u; 275 *len = PAGE_SIZE - dp->context_u; 276 } 277 278 static void km_next_page(struct dpages *dp) 279 { 280 dp->context_ptr += PAGE_SIZE - dp->context_u; 281 dp->context_u = 0; 282 } 283 284 static void km_dp_init(struct dpages *dp, void *data) 285 { 286 dp->get_page = km_get_page; 287 dp->next_page = km_next_page; 288 dp->context_u = offset_in_page(data); 289 dp->context_ptr = data; 290 } 291 292 /*----------------------------------------------------------------- 293 * IO routines that accept a list of pages. 294 *---------------------------------------------------------------*/ 295 static void do_region(int op, int op_flags, unsigned region, 296 struct dm_io_region *where, struct dpages *dp, 297 struct io *io) 298 { 299 struct bio *bio; 300 struct page *page; 301 unsigned long len; 302 unsigned offset; 303 unsigned num_bvecs; 304 sector_t remaining = where->count; 305 struct request_queue *q = bdev_get_queue(where->bdev); 306 unsigned short logical_block_size = queue_logical_block_size(q); 307 sector_t num_sectors; 308 unsigned int uninitialized_var(special_cmd_max_sectors); 309 310 /* 311 * Reject unsupported discard and write same requests. 312 */ 313 if (op == REQ_OP_DISCARD) 314 special_cmd_max_sectors = q->limits.max_discard_sectors; 315 else if (op == REQ_OP_WRITE_ZEROES) 316 special_cmd_max_sectors = q->limits.max_write_zeroes_sectors; 317 else if (op == REQ_OP_WRITE_SAME) 318 special_cmd_max_sectors = q->limits.max_write_same_sectors; 319 if ((op == REQ_OP_DISCARD || op == REQ_OP_WRITE_ZEROES || 320 op == REQ_OP_WRITE_SAME) && 321 special_cmd_max_sectors == 0) { 322 dec_count(io, region, -EOPNOTSUPP); 323 return; 324 } 325 326 /* 327 * where->count may be zero if op holds a flush and we need to 328 * send a zero-sized flush. 329 */ 330 do { 331 /* 332 * Allocate a suitably sized-bio. 333 */ 334 switch (op) { 335 case REQ_OP_DISCARD: 336 case REQ_OP_WRITE_ZEROES: 337 num_bvecs = 0; 338 break; 339 case REQ_OP_WRITE_SAME: 340 num_bvecs = 1; 341 break; 342 default: 343 num_bvecs = min_t(int, BIO_MAX_PAGES, 344 dm_sector_div_up(remaining, (PAGE_SIZE >> SECTOR_SHIFT))); 345 } 346 347 bio = bio_alloc_bioset(GFP_NOIO, num_bvecs, io->client->bios); 348 bio->bi_iter.bi_sector = where->sector + (where->count - remaining); 349 bio->bi_bdev = where->bdev; 350 bio->bi_end_io = endio; 351 bio_set_op_attrs(bio, op, op_flags); 352 store_io_and_region_in_bio(bio, io, region); 353 354 if (op == REQ_OP_DISCARD || op == REQ_OP_WRITE_ZEROES) { 355 num_sectors = min_t(sector_t, special_cmd_max_sectors, remaining); 356 bio->bi_iter.bi_size = num_sectors << SECTOR_SHIFT; 357 remaining -= num_sectors; 358 } else if (op == REQ_OP_WRITE_SAME) { 359 /* 360 * WRITE SAME only uses a single page. 361 */ 362 dp->get_page(dp, &page, &len, &offset); 363 bio_add_page(bio, page, logical_block_size, offset); 364 num_sectors = min_t(sector_t, special_cmd_max_sectors, remaining); 365 bio->bi_iter.bi_size = num_sectors << SECTOR_SHIFT; 366 367 offset = 0; 368 remaining -= num_sectors; 369 dp->next_page(dp); 370 } else while (remaining) { 371 /* 372 * Try and add as many pages as possible. 373 */ 374 dp->get_page(dp, &page, &len, &offset); 375 len = min(len, to_bytes(remaining)); 376 if (!bio_add_page(bio, page, len, offset)) 377 break; 378 379 offset = 0; 380 remaining -= to_sector(len); 381 dp->next_page(dp); 382 } 383 384 atomic_inc(&io->count); 385 submit_bio(bio); 386 } while (remaining); 387 } 388 389 static void dispatch_io(int op, int op_flags, unsigned int num_regions, 390 struct dm_io_region *where, struct dpages *dp, 391 struct io *io, int sync) 392 { 393 int i; 394 struct dpages old_pages = *dp; 395 396 BUG_ON(num_regions > DM_IO_MAX_REGIONS); 397 398 if (sync) 399 op_flags |= REQ_SYNC; 400 401 /* 402 * For multiple regions we need to be careful to rewind 403 * the dp object for each call to do_region. 404 */ 405 for (i = 0; i < num_regions; i++) { 406 *dp = old_pages; 407 if (where[i].count || (op_flags & REQ_PREFLUSH)) 408 do_region(op, op_flags, i, where + i, dp, io); 409 } 410 411 /* 412 * Drop the extra reference that we were holding to avoid 413 * the io being completed too early. 414 */ 415 dec_count(io, 0, 0); 416 } 417 418 struct sync_io { 419 unsigned long error_bits; 420 struct completion wait; 421 }; 422 423 static void sync_io_complete(unsigned long error, void *context) 424 { 425 struct sync_io *sio = context; 426 427 sio->error_bits = error; 428 complete(&sio->wait); 429 } 430 431 static int sync_io(struct dm_io_client *client, unsigned int num_regions, 432 struct dm_io_region *where, int op, int op_flags, 433 struct dpages *dp, unsigned long *error_bits) 434 { 435 struct io *io; 436 struct sync_io sio; 437 438 if (num_regions > 1 && !op_is_write(op)) { 439 WARN_ON(1); 440 return -EIO; 441 } 442 443 init_completion(&sio.wait); 444 445 io = mempool_alloc(client->pool, GFP_NOIO); 446 io->error_bits = 0; 447 atomic_set(&io->count, 1); /* see dispatch_io() */ 448 io->client = client; 449 io->callback = sync_io_complete; 450 io->context = &sio; 451 452 io->vma_invalidate_address = dp->vma_invalidate_address; 453 io->vma_invalidate_size = dp->vma_invalidate_size; 454 455 dispatch_io(op, op_flags, num_regions, where, dp, io, 1); 456 457 wait_for_completion_io(&sio.wait); 458 459 if (error_bits) 460 *error_bits = sio.error_bits; 461 462 return sio.error_bits ? -EIO : 0; 463 } 464 465 static int async_io(struct dm_io_client *client, unsigned int num_regions, 466 struct dm_io_region *where, int op, int op_flags, 467 struct dpages *dp, io_notify_fn fn, void *context) 468 { 469 struct io *io; 470 471 if (num_regions > 1 && !op_is_write(op)) { 472 WARN_ON(1); 473 fn(1, context); 474 return -EIO; 475 } 476 477 io = mempool_alloc(client->pool, GFP_NOIO); 478 io->error_bits = 0; 479 atomic_set(&io->count, 1); /* see dispatch_io() */ 480 io->client = client; 481 io->callback = fn; 482 io->context = context; 483 484 io->vma_invalidate_address = dp->vma_invalidate_address; 485 io->vma_invalidate_size = dp->vma_invalidate_size; 486 487 dispatch_io(op, op_flags, num_regions, where, dp, io, 0); 488 return 0; 489 } 490 491 static int dp_init(struct dm_io_request *io_req, struct dpages *dp, 492 unsigned long size) 493 { 494 /* Set up dpages based on memory type */ 495 496 dp->vma_invalidate_address = NULL; 497 dp->vma_invalidate_size = 0; 498 499 switch (io_req->mem.type) { 500 case DM_IO_PAGE_LIST: 501 list_dp_init(dp, io_req->mem.ptr.pl, io_req->mem.offset); 502 break; 503 504 case DM_IO_BIO: 505 bio_dp_init(dp, io_req->mem.ptr.bio); 506 break; 507 508 case DM_IO_VMA: 509 flush_kernel_vmap_range(io_req->mem.ptr.vma, size); 510 if (io_req->bi_op == REQ_OP_READ) { 511 dp->vma_invalidate_address = io_req->mem.ptr.vma; 512 dp->vma_invalidate_size = size; 513 } 514 vm_dp_init(dp, io_req->mem.ptr.vma); 515 break; 516 517 case DM_IO_KMEM: 518 km_dp_init(dp, io_req->mem.ptr.addr); 519 break; 520 521 default: 522 return -EINVAL; 523 } 524 525 return 0; 526 } 527 528 /* 529 * New collapsed (a)synchronous interface. 530 * 531 * If the IO is asynchronous (i.e. it has notify.fn), you must either unplug 532 * the queue with blk_unplug() some time later or set REQ_SYNC in 533 * io_req->bi_opf. If you fail to do one of these, the IO will be submitted to 534 * the disk after q->unplug_delay, which defaults to 3ms in blk-settings.c. 535 */ 536 int dm_io(struct dm_io_request *io_req, unsigned num_regions, 537 struct dm_io_region *where, unsigned long *sync_error_bits) 538 { 539 int r; 540 struct dpages dp; 541 542 r = dp_init(io_req, &dp, (unsigned long)where->count << SECTOR_SHIFT); 543 if (r) 544 return r; 545 546 if (!io_req->notify.fn) 547 return sync_io(io_req->client, num_regions, where, 548 io_req->bi_op, io_req->bi_op_flags, &dp, 549 sync_error_bits); 550 551 return async_io(io_req->client, num_regions, where, io_req->bi_op, 552 io_req->bi_op_flags, &dp, io_req->notify.fn, 553 io_req->notify.context); 554 } 555 EXPORT_SYMBOL(dm_io); 556 557 int __init dm_io_init(void) 558 { 559 _dm_io_cache = KMEM_CACHE(io, 0); 560 if (!_dm_io_cache) 561 return -ENOMEM; 562 563 return 0; 564 } 565 566 void dm_io_exit(void) 567 { 568 kmem_cache_destroy(_dm_io_cache); 569 _dm_io_cache = NULL; 570 } 571