1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <linux/reboot.h> 19 #include <crypto/hash.h> 20 #include <crypto/skcipher.h> 21 #include <linux/async_tx.h> 22 #include <linux/dm-bufio.h> 23 24 #define DM_MSG_PREFIX "integrity" 25 26 #define DEFAULT_INTERLEAVE_SECTORS 32768 27 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 28 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 29 #define DEFAULT_BUFFER_SECTORS 128 30 #define DEFAULT_JOURNAL_WATERMARK 50 31 #define DEFAULT_SYNC_MSEC 10000 32 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 33 #define MIN_LOG2_INTERLEAVE_SECTORS 3 34 #define MAX_LOG2_INTERLEAVE_SECTORS 31 35 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 36 #define RECALC_SECTORS 8192 37 #define RECALC_WRITE_SUPER 16 38 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 39 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 40 41 /* 42 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 43 * so it should not be enabled in the official kernel 44 */ 45 //#define DEBUG_PRINT 46 //#define INTERNAL_VERIFY 47 48 /* 49 * On disk structures 50 */ 51 52 #define SB_MAGIC "integrt" 53 #define SB_VERSION_1 1 54 #define SB_VERSION_2 2 55 #define SB_VERSION_3 3 56 #define SB_SECTORS 8 57 #define MAX_SECTORS_PER_BLOCK 8 58 59 struct superblock { 60 __u8 magic[8]; 61 __u8 version; 62 __u8 log2_interleave_sectors; 63 __u16 integrity_tag_size; 64 __u32 journal_sections; 65 __u64 provided_data_sectors; /* userspace uses this value */ 66 __u32 flags; 67 __u8 log2_sectors_per_block; 68 __u8 log2_blocks_per_bitmap_bit; 69 __u8 pad[2]; 70 __u64 recalc_sector; 71 }; 72 73 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 74 #define SB_FLAG_RECALCULATING 0x2 75 #define SB_FLAG_DIRTY_BITMAP 0x4 76 77 #define JOURNAL_ENTRY_ROUNDUP 8 78 79 typedef __u64 commit_id_t; 80 #define JOURNAL_MAC_PER_SECTOR 8 81 82 struct journal_entry { 83 union { 84 struct { 85 __u32 sector_lo; 86 __u32 sector_hi; 87 } s; 88 __u64 sector; 89 } u; 90 commit_id_t last_bytes[0]; 91 /* __u8 tag[0]; */ 92 }; 93 94 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 95 96 #if BITS_PER_LONG == 64 97 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 98 #else 99 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 100 #endif 101 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 102 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 103 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 104 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 105 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 106 107 #define JOURNAL_BLOCK_SECTORS 8 108 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 109 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 110 111 struct journal_sector { 112 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 113 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 114 commit_id_t commit_id; 115 }; 116 117 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 118 119 #define METADATA_PADDING_SECTORS 8 120 121 #define N_COMMIT_IDS 4 122 123 static unsigned char prev_commit_seq(unsigned char seq) 124 { 125 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 126 } 127 128 static unsigned char next_commit_seq(unsigned char seq) 129 { 130 return (seq + 1) % N_COMMIT_IDS; 131 } 132 133 /* 134 * In-memory structures 135 */ 136 137 struct journal_node { 138 struct rb_node node; 139 sector_t sector; 140 }; 141 142 struct alg_spec { 143 char *alg_string; 144 char *key_string; 145 __u8 *key; 146 unsigned key_size; 147 }; 148 149 struct dm_integrity_c { 150 struct dm_dev *dev; 151 struct dm_dev *meta_dev; 152 unsigned tag_size; 153 __s8 log2_tag_size; 154 sector_t start; 155 mempool_t journal_io_mempool; 156 struct dm_io_client *io; 157 struct dm_bufio_client *bufio; 158 struct workqueue_struct *metadata_wq; 159 struct superblock *sb; 160 unsigned journal_pages; 161 unsigned n_bitmap_blocks; 162 163 struct page_list *journal; 164 struct page_list *journal_io; 165 struct page_list *journal_xor; 166 struct page_list *recalc_bitmap; 167 struct page_list *may_write_bitmap; 168 struct bitmap_block_status *bbs; 169 unsigned bitmap_flush_interval; 170 int synchronous_mode; 171 struct bio_list synchronous_bios; 172 struct delayed_work bitmap_flush_work; 173 174 struct crypto_skcipher *journal_crypt; 175 struct scatterlist **journal_scatterlist; 176 struct scatterlist **journal_io_scatterlist; 177 struct skcipher_request **sk_requests; 178 179 struct crypto_shash *journal_mac; 180 181 struct journal_node *journal_tree; 182 struct rb_root journal_tree_root; 183 184 sector_t provided_data_sectors; 185 186 unsigned short journal_entry_size; 187 unsigned char journal_entries_per_sector; 188 unsigned char journal_section_entries; 189 unsigned short journal_section_sectors; 190 unsigned journal_sections; 191 unsigned journal_entries; 192 sector_t data_device_sectors; 193 sector_t meta_device_sectors; 194 unsigned initial_sectors; 195 unsigned metadata_run; 196 __s8 log2_metadata_run; 197 __u8 log2_buffer_sectors; 198 __u8 sectors_per_block; 199 __u8 log2_blocks_per_bitmap_bit; 200 201 unsigned char mode; 202 int suspending; 203 204 int failed; 205 206 struct crypto_shash *internal_hash; 207 208 /* these variables are locked with endio_wait.lock */ 209 struct rb_root in_progress; 210 struct list_head wait_list; 211 wait_queue_head_t endio_wait; 212 struct workqueue_struct *wait_wq; 213 214 unsigned char commit_seq; 215 commit_id_t commit_ids[N_COMMIT_IDS]; 216 217 unsigned committed_section; 218 unsigned n_committed_sections; 219 220 unsigned uncommitted_section; 221 unsigned n_uncommitted_sections; 222 223 unsigned free_section; 224 unsigned char free_section_entry; 225 unsigned free_sectors; 226 227 unsigned free_sectors_threshold; 228 229 struct workqueue_struct *commit_wq; 230 struct work_struct commit_work; 231 232 struct workqueue_struct *writer_wq; 233 struct work_struct writer_work; 234 235 struct workqueue_struct *recalc_wq; 236 struct work_struct recalc_work; 237 u8 *recalc_buffer; 238 u8 *recalc_tags; 239 240 struct bio_list flush_bio_list; 241 242 unsigned long autocommit_jiffies; 243 struct timer_list autocommit_timer; 244 unsigned autocommit_msec; 245 246 wait_queue_head_t copy_to_journal_wait; 247 248 struct completion crypto_backoff; 249 250 bool journal_uptodate; 251 bool just_formatted; 252 bool recalculate_flag; 253 254 struct alg_spec internal_hash_alg; 255 struct alg_spec journal_crypt_alg; 256 struct alg_spec journal_mac_alg; 257 258 atomic64_t number_of_mismatches; 259 260 struct notifier_block reboot_notifier; 261 }; 262 263 struct dm_integrity_range { 264 sector_t logical_sector; 265 sector_t n_sectors; 266 bool waiting; 267 union { 268 struct rb_node node; 269 struct { 270 struct task_struct *task; 271 struct list_head wait_entry; 272 }; 273 }; 274 }; 275 276 struct dm_integrity_io { 277 struct work_struct work; 278 279 struct dm_integrity_c *ic; 280 bool write; 281 bool fua; 282 283 struct dm_integrity_range range; 284 285 sector_t metadata_block; 286 unsigned metadata_offset; 287 288 atomic_t in_flight; 289 blk_status_t bi_status; 290 291 struct completion *completion; 292 293 struct gendisk *orig_bi_disk; 294 u8 orig_bi_partno; 295 bio_end_io_t *orig_bi_end_io; 296 struct bio_integrity_payload *orig_bi_integrity; 297 struct bvec_iter orig_bi_iter; 298 }; 299 300 struct journal_completion { 301 struct dm_integrity_c *ic; 302 atomic_t in_flight; 303 struct completion comp; 304 }; 305 306 struct journal_io { 307 struct dm_integrity_range range; 308 struct journal_completion *comp; 309 }; 310 311 struct bitmap_block_status { 312 struct work_struct work; 313 struct dm_integrity_c *ic; 314 unsigned idx; 315 unsigned long *bitmap; 316 struct bio_list bio_queue; 317 spinlock_t bio_queue_lock; 318 319 }; 320 321 static struct kmem_cache *journal_io_cache; 322 323 #define JOURNAL_IO_MEMPOOL 32 324 325 #ifdef DEBUG_PRINT 326 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 327 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 328 { 329 va_list args; 330 va_start(args, msg); 331 vprintk(msg, args); 332 va_end(args); 333 if (len) 334 pr_cont(":"); 335 while (len) { 336 pr_cont(" %02x", *bytes); 337 bytes++; 338 len--; 339 } 340 pr_cont("\n"); 341 } 342 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 343 #else 344 #define DEBUG_print(x, ...) do { } while (0) 345 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 346 #endif 347 348 static void dm_integrity_prepare(struct request *rq) 349 { 350 } 351 352 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 353 { 354 } 355 356 /* 357 * DM Integrity profile, protection is performed layer above (dm-crypt) 358 */ 359 static const struct blk_integrity_profile dm_integrity_profile = { 360 .name = "DM-DIF-EXT-TAG", 361 .generate_fn = NULL, 362 .verify_fn = NULL, 363 .prepare_fn = dm_integrity_prepare, 364 .complete_fn = dm_integrity_complete, 365 }; 366 367 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 368 static void integrity_bio_wait(struct work_struct *w); 369 static void dm_integrity_dtr(struct dm_target *ti); 370 371 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 372 { 373 if (err == -EILSEQ) 374 atomic64_inc(&ic->number_of_mismatches); 375 if (!cmpxchg(&ic->failed, 0, err)) 376 DMERR("Error on %s: %d", msg, err); 377 } 378 379 static int dm_integrity_failed(struct dm_integrity_c *ic) 380 { 381 return READ_ONCE(ic->failed); 382 } 383 384 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 385 unsigned j, unsigned char seq) 386 { 387 /* 388 * Xor the number with section and sector, so that if a piece of 389 * journal is written at wrong place, it is detected. 390 */ 391 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 392 } 393 394 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 395 sector_t *area, sector_t *offset) 396 { 397 if (!ic->meta_dev) { 398 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 399 *area = data_sector >> log2_interleave_sectors; 400 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 401 } else { 402 *area = 0; 403 *offset = data_sector; 404 } 405 } 406 407 #define sector_to_block(ic, n) \ 408 do { \ 409 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 410 (n) >>= (ic)->sb->log2_sectors_per_block; \ 411 } while (0) 412 413 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 414 sector_t offset, unsigned *metadata_offset) 415 { 416 __u64 ms; 417 unsigned mo; 418 419 ms = area << ic->sb->log2_interleave_sectors; 420 if (likely(ic->log2_metadata_run >= 0)) 421 ms += area << ic->log2_metadata_run; 422 else 423 ms += area * ic->metadata_run; 424 ms >>= ic->log2_buffer_sectors; 425 426 sector_to_block(ic, offset); 427 428 if (likely(ic->log2_tag_size >= 0)) { 429 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 430 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 431 } else { 432 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 433 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 434 } 435 *metadata_offset = mo; 436 return ms; 437 } 438 439 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 440 { 441 sector_t result; 442 443 if (ic->meta_dev) 444 return offset; 445 446 result = area << ic->sb->log2_interleave_sectors; 447 if (likely(ic->log2_metadata_run >= 0)) 448 result += (area + 1) << ic->log2_metadata_run; 449 else 450 result += (area + 1) * ic->metadata_run; 451 452 result += (sector_t)ic->initial_sectors + offset; 453 result += ic->start; 454 455 return result; 456 } 457 458 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 459 { 460 if (unlikely(*sec_ptr >= ic->journal_sections)) 461 *sec_ptr -= ic->journal_sections; 462 } 463 464 static void sb_set_version(struct dm_integrity_c *ic) 465 { 466 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 467 ic->sb->version = SB_VERSION_3; 468 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 469 ic->sb->version = SB_VERSION_2; 470 else 471 ic->sb->version = SB_VERSION_1; 472 } 473 474 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 475 { 476 struct dm_io_request io_req; 477 struct dm_io_region io_loc; 478 479 io_req.bi_op = op; 480 io_req.bi_op_flags = op_flags; 481 io_req.mem.type = DM_IO_KMEM; 482 io_req.mem.ptr.addr = ic->sb; 483 io_req.notify.fn = NULL; 484 io_req.client = ic->io; 485 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 486 io_loc.sector = ic->start; 487 io_loc.count = SB_SECTORS; 488 489 if (op == REQ_OP_WRITE) 490 sb_set_version(ic); 491 492 return dm_io(&io_req, 1, &io_loc, NULL); 493 } 494 495 #define BITMAP_OP_TEST_ALL_SET 0 496 #define BITMAP_OP_TEST_ALL_CLEAR 1 497 #define BITMAP_OP_SET 2 498 #define BITMAP_OP_CLEAR 3 499 500 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 501 sector_t sector, sector_t n_sectors, int mode) 502 { 503 unsigned long bit, end_bit, this_end_bit, page, end_page; 504 unsigned long *data; 505 506 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 507 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 508 (unsigned long long)sector, 509 (unsigned long long)n_sectors, 510 ic->sb->log2_sectors_per_block, 511 ic->log2_blocks_per_bitmap_bit, 512 mode); 513 BUG(); 514 } 515 516 if (unlikely(!n_sectors)) 517 return true; 518 519 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 520 end_bit = (sector + n_sectors - 1) >> 521 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 522 523 page = bit / (PAGE_SIZE * 8); 524 bit %= PAGE_SIZE * 8; 525 526 end_page = end_bit / (PAGE_SIZE * 8); 527 end_bit %= PAGE_SIZE * 8; 528 529 repeat: 530 if (page < end_page) { 531 this_end_bit = PAGE_SIZE * 8 - 1; 532 } else { 533 this_end_bit = end_bit; 534 } 535 536 data = lowmem_page_address(bitmap[page].page); 537 538 if (mode == BITMAP_OP_TEST_ALL_SET) { 539 while (bit <= this_end_bit) { 540 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 541 do { 542 if (data[bit / BITS_PER_LONG] != -1) 543 return false; 544 bit += BITS_PER_LONG; 545 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 546 continue; 547 } 548 if (!test_bit(bit, data)) 549 return false; 550 bit++; 551 } 552 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 553 while (bit <= this_end_bit) { 554 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 555 do { 556 if (data[bit / BITS_PER_LONG] != 0) 557 return false; 558 bit += BITS_PER_LONG; 559 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 560 continue; 561 } 562 if (test_bit(bit, data)) 563 return false; 564 bit++; 565 } 566 } else if (mode == BITMAP_OP_SET) { 567 while (bit <= this_end_bit) { 568 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 569 do { 570 data[bit / BITS_PER_LONG] = -1; 571 bit += BITS_PER_LONG; 572 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 573 continue; 574 } 575 __set_bit(bit, data); 576 bit++; 577 } 578 } else if (mode == BITMAP_OP_CLEAR) { 579 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 580 clear_page(data); 581 else while (bit <= this_end_bit) { 582 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 583 do { 584 data[bit / BITS_PER_LONG] = 0; 585 bit += BITS_PER_LONG; 586 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 587 continue; 588 } 589 __clear_bit(bit, data); 590 bit++; 591 } 592 } else { 593 BUG(); 594 } 595 596 if (unlikely(page < end_page)) { 597 bit = 0; 598 page++; 599 goto repeat; 600 } 601 602 return true; 603 } 604 605 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 606 { 607 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 608 unsigned i; 609 610 for (i = 0; i < n_bitmap_pages; i++) { 611 unsigned long *dst_data = lowmem_page_address(dst[i].page); 612 unsigned long *src_data = lowmem_page_address(src[i].page); 613 copy_page(dst_data, src_data); 614 } 615 } 616 617 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 618 { 619 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 620 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 621 622 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 623 return &ic->bbs[bitmap_block]; 624 } 625 626 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 627 bool e, const char *function) 628 { 629 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 630 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 631 632 if (unlikely(section >= ic->journal_sections) || 633 unlikely(offset >= limit)) { 634 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 635 function, section, offset, ic->journal_sections, limit); 636 BUG(); 637 } 638 #endif 639 } 640 641 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 642 unsigned *pl_index, unsigned *pl_offset) 643 { 644 unsigned sector; 645 646 access_journal_check(ic, section, offset, false, "page_list_location"); 647 648 sector = section * ic->journal_section_sectors + offset; 649 650 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 651 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 652 } 653 654 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 655 unsigned section, unsigned offset, unsigned *n_sectors) 656 { 657 unsigned pl_index, pl_offset; 658 char *va; 659 660 page_list_location(ic, section, offset, &pl_index, &pl_offset); 661 662 if (n_sectors) 663 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 664 665 va = lowmem_page_address(pl[pl_index].page); 666 667 return (struct journal_sector *)(va + pl_offset); 668 } 669 670 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 671 { 672 return access_page_list(ic, ic->journal, section, offset, NULL); 673 } 674 675 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 676 { 677 unsigned rel_sector, offset; 678 struct journal_sector *js; 679 680 access_journal_check(ic, section, n, true, "access_journal_entry"); 681 682 rel_sector = n % JOURNAL_BLOCK_SECTORS; 683 offset = n / JOURNAL_BLOCK_SECTORS; 684 685 js = access_journal(ic, section, rel_sector); 686 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 687 } 688 689 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 690 { 691 n <<= ic->sb->log2_sectors_per_block; 692 693 n += JOURNAL_BLOCK_SECTORS; 694 695 access_journal_check(ic, section, n, false, "access_journal_data"); 696 697 return access_journal(ic, section, n); 698 } 699 700 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 701 { 702 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 703 int r; 704 unsigned j, size; 705 706 desc->tfm = ic->journal_mac; 707 708 r = crypto_shash_init(desc); 709 if (unlikely(r)) { 710 dm_integrity_io_error(ic, "crypto_shash_init", r); 711 goto err; 712 } 713 714 for (j = 0; j < ic->journal_section_entries; j++) { 715 struct journal_entry *je = access_journal_entry(ic, section, j); 716 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 717 if (unlikely(r)) { 718 dm_integrity_io_error(ic, "crypto_shash_update", r); 719 goto err; 720 } 721 } 722 723 size = crypto_shash_digestsize(ic->journal_mac); 724 725 if (likely(size <= JOURNAL_MAC_SIZE)) { 726 r = crypto_shash_final(desc, result); 727 if (unlikely(r)) { 728 dm_integrity_io_error(ic, "crypto_shash_final", r); 729 goto err; 730 } 731 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 732 } else { 733 __u8 digest[HASH_MAX_DIGESTSIZE]; 734 735 if (WARN_ON(size > sizeof(digest))) { 736 dm_integrity_io_error(ic, "digest_size", -EINVAL); 737 goto err; 738 } 739 r = crypto_shash_final(desc, digest); 740 if (unlikely(r)) { 741 dm_integrity_io_error(ic, "crypto_shash_final", r); 742 goto err; 743 } 744 memcpy(result, digest, JOURNAL_MAC_SIZE); 745 } 746 747 return; 748 err: 749 memset(result, 0, JOURNAL_MAC_SIZE); 750 } 751 752 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 753 { 754 __u8 result[JOURNAL_MAC_SIZE]; 755 unsigned j; 756 757 if (!ic->journal_mac) 758 return; 759 760 section_mac(ic, section, result); 761 762 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 763 struct journal_sector *js = access_journal(ic, section, j); 764 765 if (likely(wr)) 766 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 767 else { 768 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 769 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 770 } 771 } 772 } 773 774 static void complete_journal_op(void *context) 775 { 776 struct journal_completion *comp = context; 777 BUG_ON(!atomic_read(&comp->in_flight)); 778 if (likely(atomic_dec_and_test(&comp->in_flight))) 779 complete(&comp->comp); 780 } 781 782 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 783 unsigned n_sections, struct journal_completion *comp) 784 { 785 struct async_submit_ctl submit; 786 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 787 unsigned pl_index, pl_offset, section_index; 788 struct page_list *source_pl, *target_pl; 789 790 if (likely(encrypt)) { 791 source_pl = ic->journal; 792 target_pl = ic->journal_io; 793 } else { 794 source_pl = ic->journal_io; 795 target_pl = ic->journal; 796 } 797 798 page_list_location(ic, section, 0, &pl_index, &pl_offset); 799 800 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 801 802 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 803 804 section_index = pl_index; 805 806 do { 807 size_t this_step; 808 struct page *src_pages[2]; 809 struct page *dst_page; 810 811 while (unlikely(pl_index == section_index)) { 812 unsigned dummy; 813 if (likely(encrypt)) 814 rw_section_mac(ic, section, true); 815 section++; 816 n_sections--; 817 if (!n_sections) 818 break; 819 page_list_location(ic, section, 0, §ion_index, &dummy); 820 } 821 822 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 823 dst_page = target_pl[pl_index].page; 824 src_pages[0] = source_pl[pl_index].page; 825 src_pages[1] = ic->journal_xor[pl_index].page; 826 827 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 828 829 pl_index++; 830 pl_offset = 0; 831 n_bytes -= this_step; 832 } while (n_bytes); 833 834 BUG_ON(n_sections); 835 836 async_tx_issue_pending_all(); 837 } 838 839 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 840 { 841 struct journal_completion *comp = req->data; 842 if (unlikely(err)) { 843 if (likely(err == -EINPROGRESS)) { 844 complete(&comp->ic->crypto_backoff); 845 return; 846 } 847 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 848 } 849 complete_journal_op(comp); 850 } 851 852 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 853 { 854 int r; 855 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 856 complete_journal_encrypt, comp); 857 if (likely(encrypt)) 858 r = crypto_skcipher_encrypt(req); 859 else 860 r = crypto_skcipher_decrypt(req); 861 if (likely(!r)) 862 return false; 863 if (likely(r == -EINPROGRESS)) 864 return true; 865 if (likely(r == -EBUSY)) { 866 wait_for_completion(&comp->ic->crypto_backoff); 867 reinit_completion(&comp->ic->crypto_backoff); 868 return true; 869 } 870 dm_integrity_io_error(comp->ic, "encrypt", r); 871 return false; 872 } 873 874 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 875 unsigned n_sections, struct journal_completion *comp) 876 { 877 struct scatterlist **source_sg; 878 struct scatterlist **target_sg; 879 880 atomic_add(2, &comp->in_flight); 881 882 if (likely(encrypt)) { 883 source_sg = ic->journal_scatterlist; 884 target_sg = ic->journal_io_scatterlist; 885 } else { 886 source_sg = ic->journal_io_scatterlist; 887 target_sg = ic->journal_scatterlist; 888 } 889 890 do { 891 struct skcipher_request *req; 892 unsigned ivsize; 893 char *iv; 894 895 if (likely(encrypt)) 896 rw_section_mac(ic, section, true); 897 898 req = ic->sk_requests[section]; 899 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 900 iv = req->iv; 901 902 memcpy(iv, iv + ivsize, ivsize); 903 904 req->src = source_sg[section]; 905 req->dst = target_sg[section]; 906 907 if (unlikely(do_crypt(encrypt, req, comp))) 908 atomic_inc(&comp->in_flight); 909 910 section++; 911 n_sections--; 912 } while (n_sections); 913 914 atomic_dec(&comp->in_flight); 915 complete_journal_op(comp); 916 } 917 918 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 919 unsigned n_sections, struct journal_completion *comp) 920 { 921 if (ic->journal_xor) 922 return xor_journal(ic, encrypt, section, n_sections, comp); 923 else 924 return crypt_journal(ic, encrypt, section, n_sections, comp); 925 } 926 927 static void complete_journal_io(unsigned long error, void *context) 928 { 929 struct journal_completion *comp = context; 930 if (unlikely(error != 0)) 931 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 932 complete_journal_op(comp); 933 } 934 935 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 936 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 937 { 938 struct dm_io_request io_req; 939 struct dm_io_region io_loc; 940 unsigned pl_index, pl_offset; 941 int r; 942 943 if (unlikely(dm_integrity_failed(ic))) { 944 if (comp) 945 complete_journal_io(-1UL, comp); 946 return; 947 } 948 949 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 950 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 951 952 io_req.bi_op = op; 953 io_req.bi_op_flags = op_flags; 954 io_req.mem.type = DM_IO_PAGE_LIST; 955 if (ic->journal_io) 956 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 957 else 958 io_req.mem.ptr.pl = &ic->journal[pl_index]; 959 io_req.mem.offset = pl_offset; 960 if (likely(comp != NULL)) { 961 io_req.notify.fn = complete_journal_io; 962 io_req.notify.context = comp; 963 } else { 964 io_req.notify.fn = NULL; 965 } 966 io_req.client = ic->io; 967 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 968 io_loc.sector = ic->start + SB_SECTORS + sector; 969 io_loc.count = n_sectors; 970 971 r = dm_io(&io_req, 1, &io_loc, NULL); 972 if (unlikely(r)) { 973 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 974 if (comp) { 975 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 976 complete_journal_io(-1UL, comp); 977 } 978 } 979 } 980 981 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 982 unsigned n_sections, struct journal_completion *comp) 983 { 984 unsigned sector, n_sectors; 985 986 sector = section * ic->journal_section_sectors; 987 n_sectors = n_sections * ic->journal_section_sectors; 988 989 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 990 } 991 992 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 993 { 994 struct journal_completion io_comp; 995 struct journal_completion crypt_comp_1; 996 struct journal_completion crypt_comp_2; 997 unsigned i; 998 999 io_comp.ic = ic; 1000 init_completion(&io_comp.comp); 1001 1002 if (commit_start + commit_sections <= ic->journal_sections) { 1003 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1004 if (ic->journal_io) { 1005 crypt_comp_1.ic = ic; 1006 init_completion(&crypt_comp_1.comp); 1007 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1008 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1009 wait_for_completion_io(&crypt_comp_1.comp); 1010 } else { 1011 for (i = 0; i < commit_sections; i++) 1012 rw_section_mac(ic, commit_start + i, true); 1013 } 1014 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1015 commit_sections, &io_comp); 1016 } else { 1017 unsigned to_end; 1018 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1019 to_end = ic->journal_sections - commit_start; 1020 if (ic->journal_io) { 1021 crypt_comp_1.ic = ic; 1022 init_completion(&crypt_comp_1.comp); 1023 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1024 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1025 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1026 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1027 reinit_completion(&crypt_comp_1.comp); 1028 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1029 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1030 wait_for_completion_io(&crypt_comp_1.comp); 1031 } else { 1032 crypt_comp_2.ic = ic; 1033 init_completion(&crypt_comp_2.comp); 1034 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1035 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1036 wait_for_completion_io(&crypt_comp_1.comp); 1037 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1038 wait_for_completion_io(&crypt_comp_2.comp); 1039 } 1040 } else { 1041 for (i = 0; i < to_end; i++) 1042 rw_section_mac(ic, commit_start + i, true); 1043 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1044 for (i = 0; i < commit_sections - to_end; i++) 1045 rw_section_mac(ic, i, true); 1046 } 1047 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1048 } 1049 1050 wait_for_completion_io(&io_comp.comp); 1051 } 1052 1053 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1054 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1055 { 1056 struct dm_io_request io_req; 1057 struct dm_io_region io_loc; 1058 int r; 1059 unsigned sector, pl_index, pl_offset; 1060 1061 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1062 1063 if (unlikely(dm_integrity_failed(ic))) { 1064 fn(-1UL, data); 1065 return; 1066 } 1067 1068 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1069 1070 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1071 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1072 1073 io_req.bi_op = REQ_OP_WRITE; 1074 io_req.bi_op_flags = 0; 1075 io_req.mem.type = DM_IO_PAGE_LIST; 1076 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1077 io_req.mem.offset = pl_offset; 1078 io_req.notify.fn = fn; 1079 io_req.notify.context = data; 1080 io_req.client = ic->io; 1081 io_loc.bdev = ic->dev->bdev; 1082 io_loc.sector = target; 1083 io_loc.count = n_sectors; 1084 1085 r = dm_io(&io_req, 1, &io_loc, NULL); 1086 if (unlikely(r)) { 1087 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1088 fn(-1UL, data); 1089 } 1090 } 1091 1092 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1093 { 1094 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1095 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1096 } 1097 1098 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1099 { 1100 struct rb_node **n = &ic->in_progress.rb_node; 1101 struct rb_node *parent; 1102 1103 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1104 1105 if (likely(check_waiting)) { 1106 struct dm_integrity_range *range; 1107 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1108 if (unlikely(ranges_overlap(range, new_range))) 1109 return false; 1110 } 1111 } 1112 1113 parent = NULL; 1114 1115 while (*n) { 1116 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1117 1118 parent = *n; 1119 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1120 n = &range->node.rb_left; 1121 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1122 n = &range->node.rb_right; 1123 } else { 1124 return false; 1125 } 1126 } 1127 1128 rb_link_node(&new_range->node, parent, n); 1129 rb_insert_color(&new_range->node, &ic->in_progress); 1130 1131 return true; 1132 } 1133 1134 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1135 { 1136 rb_erase(&range->node, &ic->in_progress); 1137 while (unlikely(!list_empty(&ic->wait_list))) { 1138 struct dm_integrity_range *last_range = 1139 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1140 struct task_struct *last_range_task; 1141 last_range_task = last_range->task; 1142 list_del(&last_range->wait_entry); 1143 if (!add_new_range(ic, last_range, false)) { 1144 last_range->task = last_range_task; 1145 list_add(&last_range->wait_entry, &ic->wait_list); 1146 break; 1147 } 1148 last_range->waiting = false; 1149 wake_up_process(last_range_task); 1150 } 1151 } 1152 1153 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1154 { 1155 unsigned long flags; 1156 1157 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1158 remove_range_unlocked(ic, range); 1159 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1160 } 1161 1162 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1163 { 1164 new_range->waiting = true; 1165 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1166 new_range->task = current; 1167 do { 1168 __set_current_state(TASK_UNINTERRUPTIBLE); 1169 spin_unlock_irq(&ic->endio_wait.lock); 1170 io_schedule(); 1171 spin_lock_irq(&ic->endio_wait.lock); 1172 } while (unlikely(new_range->waiting)); 1173 } 1174 1175 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1176 { 1177 if (unlikely(!add_new_range(ic, new_range, true))) 1178 wait_and_add_new_range(ic, new_range); 1179 } 1180 1181 static void init_journal_node(struct journal_node *node) 1182 { 1183 RB_CLEAR_NODE(&node->node); 1184 node->sector = (sector_t)-1; 1185 } 1186 1187 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1188 { 1189 struct rb_node **link; 1190 struct rb_node *parent; 1191 1192 node->sector = sector; 1193 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1194 1195 link = &ic->journal_tree_root.rb_node; 1196 parent = NULL; 1197 1198 while (*link) { 1199 struct journal_node *j; 1200 parent = *link; 1201 j = container_of(parent, struct journal_node, node); 1202 if (sector < j->sector) 1203 link = &j->node.rb_left; 1204 else 1205 link = &j->node.rb_right; 1206 } 1207 1208 rb_link_node(&node->node, parent, link); 1209 rb_insert_color(&node->node, &ic->journal_tree_root); 1210 } 1211 1212 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1213 { 1214 BUG_ON(RB_EMPTY_NODE(&node->node)); 1215 rb_erase(&node->node, &ic->journal_tree_root); 1216 init_journal_node(node); 1217 } 1218 1219 #define NOT_FOUND (-1U) 1220 1221 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1222 { 1223 struct rb_node *n = ic->journal_tree_root.rb_node; 1224 unsigned found = NOT_FOUND; 1225 *next_sector = (sector_t)-1; 1226 while (n) { 1227 struct journal_node *j = container_of(n, struct journal_node, node); 1228 if (sector == j->sector) { 1229 found = j - ic->journal_tree; 1230 } 1231 if (sector < j->sector) { 1232 *next_sector = j->sector; 1233 n = j->node.rb_left; 1234 } else { 1235 n = j->node.rb_right; 1236 } 1237 } 1238 1239 return found; 1240 } 1241 1242 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1243 { 1244 struct journal_node *node, *next_node; 1245 struct rb_node *next; 1246 1247 if (unlikely(pos >= ic->journal_entries)) 1248 return false; 1249 node = &ic->journal_tree[pos]; 1250 if (unlikely(RB_EMPTY_NODE(&node->node))) 1251 return false; 1252 if (unlikely(node->sector != sector)) 1253 return false; 1254 1255 next = rb_next(&node->node); 1256 if (unlikely(!next)) 1257 return true; 1258 1259 next_node = container_of(next, struct journal_node, node); 1260 return next_node->sector != sector; 1261 } 1262 1263 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1264 { 1265 struct rb_node *next; 1266 struct journal_node *next_node; 1267 unsigned next_section; 1268 1269 BUG_ON(RB_EMPTY_NODE(&node->node)); 1270 1271 next = rb_next(&node->node); 1272 if (unlikely(!next)) 1273 return false; 1274 1275 next_node = container_of(next, struct journal_node, node); 1276 1277 if (next_node->sector != node->sector) 1278 return false; 1279 1280 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1281 if (next_section >= ic->committed_section && 1282 next_section < ic->committed_section + ic->n_committed_sections) 1283 return true; 1284 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1285 return true; 1286 1287 return false; 1288 } 1289 1290 #define TAG_READ 0 1291 #define TAG_WRITE 1 1292 #define TAG_CMP 2 1293 1294 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1295 unsigned *metadata_offset, unsigned total_size, int op) 1296 { 1297 do { 1298 unsigned char *data, *dp; 1299 struct dm_buffer *b; 1300 unsigned to_copy; 1301 int r; 1302 1303 r = dm_integrity_failed(ic); 1304 if (unlikely(r)) 1305 return r; 1306 1307 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1308 if (IS_ERR(data)) 1309 return PTR_ERR(data); 1310 1311 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1312 dp = data + *metadata_offset; 1313 if (op == TAG_READ) { 1314 memcpy(tag, dp, to_copy); 1315 } else if (op == TAG_WRITE) { 1316 memcpy(dp, tag, to_copy); 1317 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1318 } else { 1319 /* e.g.: op == TAG_CMP */ 1320 if (unlikely(memcmp(dp, tag, to_copy))) { 1321 unsigned i; 1322 1323 for (i = 0; i < to_copy; i++) { 1324 if (dp[i] != tag[i]) 1325 break; 1326 total_size--; 1327 } 1328 dm_bufio_release(b); 1329 return total_size; 1330 } 1331 } 1332 dm_bufio_release(b); 1333 1334 tag += to_copy; 1335 *metadata_offset += to_copy; 1336 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1337 (*metadata_block)++; 1338 *metadata_offset = 0; 1339 } 1340 total_size -= to_copy; 1341 } while (unlikely(total_size)); 1342 1343 return 0; 1344 } 1345 1346 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1347 { 1348 int r; 1349 r = dm_bufio_write_dirty_buffers(ic->bufio); 1350 if (unlikely(r)) 1351 dm_integrity_io_error(ic, "writing tags", r); 1352 } 1353 1354 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1355 { 1356 DECLARE_WAITQUEUE(wait, current); 1357 __add_wait_queue(&ic->endio_wait, &wait); 1358 __set_current_state(TASK_UNINTERRUPTIBLE); 1359 spin_unlock_irq(&ic->endio_wait.lock); 1360 io_schedule(); 1361 spin_lock_irq(&ic->endio_wait.lock); 1362 __remove_wait_queue(&ic->endio_wait, &wait); 1363 } 1364 1365 static void autocommit_fn(struct timer_list *t) 1366 { 1367 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1368 1369 if (likely(!dm_integrity_failed(ic))) 1370 queue_work(ic->commit_wq, &ic->commit_work); 1371 } 1372 1373 static void schedule_autocommit(struct dm_integrity_c *ic) 1374 { 1375 if (!timer_pending(&ic->autocommit_timer)) 1376 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1377 } 1378 1379 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1380 { 1381 struct bio *bio; 1382 unsigned long flags; 1383 1384 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1385 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1386 bio_list_add(&ic->flush_bio_list, bio); 1387 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1388 1389 queue_work(ic->commit_wq, &ic->commit_work); 1390 } 1391 1392 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1393 { 1394 int r = dm_integrity_failed(ic); 1395 if (unlikely(r) && !bio->bi_status) 1396 bio->bi_status = errno_to_blk_status(r); 1397 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1398 unsigned long flags; 1399 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1400 bio_list_add(&ic->synchronous_bios, bio); 1401 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1402 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1403 return; 1404 } 1405 bio_endio(bio); 1406 } 1407 1408 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1409 { 1410 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1411 1412 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1413 submit_flush_bio(ic, dio); 1414 else 1415 do_endio(ic, bio); 1416 } 1417 1418 static void dec_in_flight(struct dm_integrity_io *dio) 1419 { 1420 if (atomic_dec_and_test(&dio->in_flight)) { 1421 struct dm_integrity_c *ic = dio->ic; 1422 struct bio *bio; 1423 1424 remove_range(ic, &dio->range); 1425 1426 if (unlikely(dio->write)) 1427 schedule_autocommit(ic); 1428 1429 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1430 1431 if (unlikely(dio->bi_status) && !bio->bi_status) 1432 bio->bi_status = dio->bi_status; 1433 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1434 dio->range.logical_sector += dio->range.n_sectors; 1435 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1436 INIT_WORK(&dio->work, integrity_bio_wait); 1437 queue_work(ic->wait_wq, &dio->work); 1438 return; 1439 } 1440 do_endio_flush(ic, dio); 1441 } 1442 } 1443 1444 static void integrity_end_io(struct bio *bio) 1445 { 1446 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1447 1448 bio->bi_iter = dio->orig_bi_iter; 1449 bio->bi_disk = dio->orig_bi_disk; 1450 bio->bi_partno = dio->orig_bi_partno; 1451 if (dio->orig_bi_integrity) { 1452 bio->bi_integrity = dio->orig_bi_integrity; 1453 bio->bi_opf |= REQ_INTEGRITY; 1454 } 1455 bio->bi_end_io = dio->orig_bi_end_io; 1456 1457 if (dio->completion) 1458 complete(dio->completion); 1459 1460 dec_in_flight(dio); 1461 } 1462 1463 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1464 const char *data, char *result) 1465 { 1466 __u64 sector_le = cpu_to_le64(sector); 1467 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1468 int r; 1469 unsigned digest_size; 1470 1471 req->tfm = ic->internal_hash; 1472 1473 r = crypto_shash_init(req); 1474 if (unlikely(r < 0)) { 1475 dm_integrity_io_error(ic, "crypto_shash_init", r); 1476 goto failed; 1477 } 1478 1479 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1480 if (unlikely(r < 0)) { 1481 dm_integrity_io_error(ic, "crypto_shash_update", r); 1482 goto failed; 1483 } 1484 1485 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1486 if (unlikely(r < 0)) { 1487 dm_integrity_io_error(ic, "crypto_shash_update", r); 1488 goto failed; 1489 } 1490 1491 r = crypto_shash_final(req, result); 1492 if (unlikely(r < 0)) { 1493 dm_integrity_io_error(ic, "crypto_shash_final", r); 1494 goto failed; 1495 } 1496 1497 digest_size = crypto_shash_digestsize(ic->internal_hash); 1498 if (unlikely(digest_size < ic->tag_size)) 1499 memset(result + digest_size, 0, ic->tag_size - digest_size); 1500 1501 return; 1502 1503 failed: 1504 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1505 get_random_bytes(result, ic->tag_size); 1506 } 1507 1508 static void integrity_metadata(struct work_struct *w) 1509 { 1510 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1511 struct dm_integrity_c *ic = dio->ic; 1512 1513 int r; 1514 1515 if (ic->internal_hash) { 1516 struct bvec_iter iter; 1517 struct bio_vec bv; 1518 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1519 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1520 char *checksums; 1521 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1522 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1523 unsigned sectors_to_process = dio->range.n_sectors; 1524 sector_t sector = dio->range.logical_sector; 1525 1526 if (unlikely(ic->mode == 'R')) 1527 goto skip_io; 1528 1529 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1530 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1531 if (!checksums) { 1532 checksums = checksums_onstack; 1533 if (WARN_ON(extra_space && 1534 digest_size > sizeof(checksums_onstack))) { 1535 r = -EINVAL; 1536 goto error; 1537 } 1538 } 1539 1540 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1541 unsigned pos; 1542 char *mem, *checksums_ptr; 1543 1544 again: 1545 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1546 pos = 0; 1547 checksums_ptr = checksums; 1548 do { 1549 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1550 checksums_ptr += ic->tag_size; 1551 sectors_to_process -= ic->sectors_per_block; 1552 pos += ic->sectors_per_block << SECTOR_SHIFT; 1553 sector += ic->sectors_per_block; 1554 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1555 kunmap_atomic(mem); 1556 1557 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1558 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1559 if (unlikely(r)) { 1560 if (r > 0) { 1561 DMERR_LIMIT("Checksum failed at sector 0x%llx", 1562 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1563 r = -EILSEQ; 1564 atomic64_inc(&ic->number_of_mismatches); 1565 } 1566 if (likely(checksums != checksums_onstack)) 1567 kfree(checksums); 1568 goto error; 1569 } 1570 1571 if (!sectors_to_process) 1572 break; 1573 1574 if (unlikely(pos < bv.bv_len)) { 1575 bv.bv_offset += pos; 1576 bv.bv_len -= pos; 1577 goto again; 1578 } 1579 } 1580 1581 if (likely(checksums != checksums_onstack)) 1582 kfree(checksums); 1583 } else { 1584 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1585 1586 if (bip) { 1587 struct bio_vec biv; 1588 struct bvec_iter iter; 1589 unsigned data_to_process = dio->range.n_sectors; 1590 sector_to_block(ic, data_to_process); 1591 data_to_process *= ic->tag_size; 1592 1593 bip_for_each_vec(biv, bip, iter) { 1594 unsigned char *tag; 1595 unsigned this_len; 1596 1597 BUG_ON(PageHighMem(biv.bv_page)); 1598 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1599 this_len = min(biv.bv_len, data_to_process); 1600 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1601 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1602 if (unlikely(r)) 1603 goto error; 1604 data_to_process -= this_len; 1605 if (!data_to_process) 1606 break; 1607 } 1608 } 1609 } 1610 skip_io: 1611 dec_in_flight(dio); 1612 return; 1613 error: 1614 dio->bi_status = errno_to_blk_status(r); 1615 dec_in_flight(dio); 1616 } 1617 1618 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1619 { 1620 struct dm_integrity_c *ic = ti->private; 1621 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1622 struct bio_integrity_payload *bip; 1623 1624 sector_t area, offset; 1625 1626 dio->ic = ic; 1627 dio->bi_status = 0; 1628 1629 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1630 submit_flush_bio(ic, dio); 1631 return DM_MAPIO_SUBMITTED; 1632 } 1633 1634 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1635 dio->write = bio_op(bio) == REQ_OP_WRITE; 1636 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1637 if (unlikely(dio->fua)) { 1638 /* 1639 * Don't pass down the FUA flag because we have to flush 1640 * disk cache anyway. 1641 */ 1642 bio->bi_opf &= ~REQ_FUA; 1643 } 1644 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1645 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1646 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1647 (unsigned long long)ic->provided_data_sectors); 1648 return DM_MAPIO_KILL; 1649 } 1650 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1651 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1652 ic->sectors_per_block, 1653 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1654 return DM_MAPIO_KILL; 1655 } 1656 1657 if (ic->sectors_per_block > 1) { 1658 struct bvec_iter iter; 1659 struct bio_vec bv; 1660 bio_for_each_segment(bv, bio, iter) { 1661 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1662 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1663 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1664 return DM_MAPIO_KILL; 1665 } 1666 } 1667 } 1668 1669 bip = bio_integrity(bio); 1670 if (!ic->internal_hash) { 1671 if (bip) { 1672 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1673 if (ic->log2_tag_size >= 0) 1674 wanted_tag_size <<= ic->log2_tag_size; 1675 else 1676 wanted_tag_size *= ic->tag_size; 1677 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1678 DMERR("Invalid integrity data size %u, expected %u", 1679 bip->bip_iter.bi_size, wanted_tag_size); 1680 return DM_MAPIO_KILL; 1681 } 1682 } 1683 } else { 1684 if (unlikely(bip != NULL)) { 1685 DMERR("Unexpected integrity data when using internal hash"); 1686 return DM_MAPIO_KILL; 1687 } 1688 } 1689 1690 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1691 return DM_MAPIO_KILL; 1692 1693 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1694 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1695 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1696 1697 dm_integrity_map_continue(dio, true); 1698 return DM_MAPIO_SUBMITTED; 1699 } 1700 1701 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1702 unsigned journal_section, unsigned journal_entry) 1703 { 1704 struct dm_integrity_c *ic = dio->ic; 1705 sector_t logical_sector; 1706 unsigned n_sectors; 1707 1708 logical_sector = dio->range.logical_sector; 1709 n_sectors = dio->range.n_sectors; 1710 do { 1711 struct bio_vec bv = bio_iovec(bio); 1712 char *mem; 1713 1714 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1715 bv.bv_len = n_sectors << SECTOR_SHIFT; 1716 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1717 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1718 retry_kmap: 1719 mem = kmap_atomic(bv.bv_page); 1720 if (likely(dio->write)) 1721 flush_dcache_page(bv.bv_page); 1722 1723 do { 1724 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1725 1726 if (unlikely(!dio->write)) { 1727 struct journal_sector *js; 1728 char *mem_ptr; 1729 unsigned s; 1730 1731 if (unlikely(journal_entry_is_inprogress(je))) { 1732 flush_dcache_page(bv.bv_page); 1733 kunmap_atomic(mem); 1734 1735 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1736 goto retry_kmap; 1737 } 1738 smp_rmb(); 1739 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1740 js = access_journal_data(ic, journal_section, journal_entry); 1741 mem_ptr = mem + bv.bv_offset; 1742 s = 0; 1743 do { 1744 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1745 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1746 js++; 1747 mem_ptr += 1 << SECTOR_SHIFT; 1748 } while (++s < ic->sectors_per_block); 1749 #ifdef INTERNAL_VERIFY 1750 if (ic->internal_hash) { 1751 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1752 1753 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1754 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1755 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1756 (unsigned long long)logical_sector); 1757 } 1758 } 1759 #endif 1760 } 1761 1762 if (!ic->internal_hash) { 1763 struct bio_integrity_payload *bip = bio_integrity(bio); 1764 unsigned tag_todo = ic->tag_size; 1765 char *tag_ptr = journal_entry_tag(ic, je); 1766 1767 if (bip) do { 1768 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1769 unsigned tag_now = min(biv.bv_len, tag_todo); 1770 char *tag_addr; 1771 BUG_ON(PageHighMem(biv.bv_page)); 1772 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1773 if (likely(dio->write)) 1774 memcpy(tag_ptr, tag_addr, tag_now); 1775 else 1776 memcpy(tag_addr, tag_ptr, tag_now); 1777 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1778 tag_ptr += tag_now; 1779 tag_todo -= tag_now; 1780 } while (unlikely(tag_todo)); else { 1781 if (likely(dio->write)) 1782 memset(tag_ptr, 0, tag_todo); 1783 } 1784 } 1785 1786 if (likely(dio->write)) { 1787 struct journal_sector *js; 1788 unsigned s; 1789 1790 js = access_journal_data(ic, journal_section, journal_entry); 1791 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1792 1793 s = 0; 1794 do { 1795 je->last_bytes[s] = js[s].commit_id; 1796 } while (++s < ic->sectors_per_block); 1797 1798 if (ic->internal_hash) { 1799 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1800 if (unlikely(digest_size > ic->tag_size)) { 1801 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1802 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1803 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1804 } else 1805 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1806 } 1807 1808 journal_entry_set_sector(je, logical_sector); 1809 } 1810 logical_sector += ic->sectors_per_block; 1811 1812 journal_entry++; 1813 if (unlikely(journal_entry == ic->journal_section_entries)) { 1814 journal_entry = 0; 1815 journal_section++; 1816 wraparound_section(ic, &journal_section); 1817 } 1818 1819 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1820 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1821 1822 if (unlikely(!dio->write)) 1823 flush_dcache_page(bv.bv_page); 1824 kunmap_atomic(mem); 1825 } while (n_sectors); 1826 1827 if (likely(dio->write)) { 1828 smp_mb(); 1829 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1830 wake_up(&ic->copy_to_journal_wait); 1831 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1832 queue_work(ic->commit_wq, &ic->commit_work); 1833 } else { 1834 schedule_autocommit(ic); 1835 } 1836 } else { 1837 remove_range(ic, &dio->range); 1838 } 1839 1840 if (unlikely(bio->bi_iter.bi_size)) { 1841 sector_t area, offset; 1842 1843 dio->range.logical_sector = logical_sector; 1844 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1845 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1846 return true; 1847 } 1848 1849 return false; 1850 } 1851 1852 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1853 { 1854 struct dm_integrity_c *ic = dio->ic; 1855 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1856 unsigned journal_section, journal_entry; 1857 unsigned journal_read_pos; 1858 struct completion read_comp; 1859 bool need_sync_io = ic->internal_hash && !dio->write; 1860 1861 if (need_sync_io && from_map) { 1862 INIT_WORK(&dio->work, integrity_bio_wait); 1863 queue_work(ic->metadata_wq, &dio->work); 1864 return; 1865 } 1866 1867 lock_retry: 1868 spin_lock_irq(&ic->endio_wait.lock); 1869 retry: 1870 if (unlikely(dm_integrity_failed(ic))) { 1871 spin_unlock_irq(&ic->endio_wait.lock); 1872 do_endio(ic, bio); 1873 return; 1874 } 1875 dio->range.n_sectors = bio_sectors(bio); 1876 journal_read_pos = NOT_FOUND; 1877 if (likely(ic->mode == 'J')) { 1878 if (dio->write) { 1879 unsigned next_entry, i, pos; 1880 unsigned ws, we, range_sectors; 1881 1882 dio->range.n_sectors = min(dio->range.n_sectors, 1883 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 1884 if (unlikely(!dio->range.n_sectors)) { 1885 if (from_map) 1886 goto offload_to_thread; 1887 sleep_on_endio_wait(ic); 1888 goto retry; 1889 } 1890 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1891 ic->free_sectors -= range_sectors; 1892 journal_section = ic->free_section; 1893 journal_entry = ic->free_section_entry; 1894 1895 next_entry = ic->free_section_entry + range_sectors; 1896 ic->free_section_entry = next_entry % ic->journal_section_entries; 1897 ic->free_section += next_entry / ic->journal_section_entries; 1898 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1899 wraparound_section(ic, &ic->free_section); 1900 1901 pos = journal_section * ic->journal_section_entries + journal_entry; 1902 ws = journal_section; 1903 we = journal_entry; 1904 i = 0; 1905 do { 1906 struct journal_entry *je; 1907 1908 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1909 pos++; 1910 if (unlikely(pos >= ic->journal_entries)) 1911 pos = 0; 1912 1913 je = access_journal_entry(ic, ws, we); 1914 BUG_ON(!journal_entry_is_unused(je)); 1915 journal_entry_set_inprogress(je); 1916 we++; 1917 if (unlikely(we == ic->journal_section_entries)) { 1918 we = 0; 1919 ws++; 1920 wraparound_section(ic, &ws); 1921 } 1922 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1923 1924 spin_unlock_irq(&ic->endio_wait.lock); 1925 goto journal_read_write; 1926 } else { 1927 sector_t next_sector; 1928 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1929 if (likely(journal_read_pos == NOT_FOUND)) { 1930 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1931 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1932 } else { 1933 unsigned i; 1934 unsigned jp = journal_read_pos + 1; 1935 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1936 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1937 break; 1938 } 1939 dio->range.n_sectors = i; 1940 } 1941 } 1942 } 1943 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1944 /* 1945 * We must not sleep in the request routine because it could 1946 * stall bios on current->bio_list. 1947 * So, we offload the bio to a workqueue if we have to sleep. 1948 */ 1949 if (from_map) { 1950 offload_to_thread: 1951 spin_unlock_irq(&ic->endio_wait.lock); 1952 INIT_WORK(&dio->work, integrity_bio_wait); 1953 queue_work(ic->wait_wq, &dio->work); 1954 return; 1955 } 1956 if (journal_read_pos != NOT_FOUND) 1957 dio->range.n_sectors = ic->sectors_per_block; 1958 wait_and_add_new_range(ic, &dio->range); 1959 /* 1960 * wait_and_add_new_range drops the spinlock, so the journal 1961 * may have been changed arbitrarily. We need to recheck. 1962 * To simplify the code, we restrict I/O size to just one block. 1963 */ 1964 if (journal_read_pos != NOT_FOUND) { 1965 sector_t next_sector; 1966 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1967 if (unlikely(new_pos != journal_read_pos)) { 1968 remove_range_unlocked(ic, &dio->range); 1969 goto retry; 1970 } 1971 } 1972 } 1973 spin_unlock_irq(&ic->endio_wait.lock); 1974 1975 if (unlikely(journal_read_pos != NOT_FOUND)) { 1976 journal_section = journal_read_pos / ic->journal_section_entries; 1977 journal_entry = journal_read_pos % ic->journal_section_entries; 1978 goto journal_read_write; 1979 } 1980 1981 if (ic->mode == 'B' && dio->write) { 1982 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 1983 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 1984 struct bitmap_block_status *bbs; 1985 1986 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 1987 spin_lock(&bbs->bio_queue_lock); 1988 bio_list_add(&bbs->bio_queue, bio); 1989 spin_unlock(&bbs->bio_queue_lock); 1990 queue_work(ic->writer_wq, &bbs->work); 1991 return; 1992 } 1993 } 1994 1995 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1996 1997 if (need_sync_io) { 1998 init_completion(&read_comp); 1999 dio->completion = &read_comp; 2000 } else 2001 dio->completion = NULL; 2002 2003 dio->orig_bi_iter = bio->bi_iter; 2004 2005 dio->orig_bi_disk = bio->bi_disk; 2006 dio->orig_bi_partno = bio->bi_partno; 2007 bio_set_dev(bio, ic->dev->bdev); 2008 2009 dio->orig_bi_integrity = bio_integrity(bio); 2010 bio->bi_integrity = NULL; 2011 bio->bi_opf &= ~REQ_INTEGRITY; 2012 2013 dio->orig_bi_end_io = bio->bi_end_io; 2014 bio->bi_end_io = integrity_end_io; 2015 2016 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2017 generic_make_request(bio); 2018 2019 if (need_sync_io) { 2020 wait_for_completion_io(&read_comp); 2021 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2022 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2023 goto skip_check; 2024 if (ic->mode == 'B') { 2025 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2026 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2027 goto skip_check; 2028 } 2029 2030 if (likely(!bio->bi_status)) 2031 integrity_metadata(&dio->work); 2032 else 2033 skip_check: 2034 dec_in_flight(dio); 2035 2036 } else { 2037 INIT_WORK(&dio->work, integrity_metadata); 2038 queue_work(ic->metadata_wq, &dio->work); 2039 } 2040 2041 return; 2042 2043 journal_read_write: 2044 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2045 goto lock_retry; 2046 2047 do_endio_flush(ic, dio); 2048 } 2049 2050 2051 static void integrity_bio_wait(struct work_struct *w) 2052 { 2053 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2054 2055 dm_integrity_map_continue(dio, false); 2056 } 2057 2058 static void pad_uncommitted(struct dm_integrity_c *ic) 2059 { 2060 if (ic->free_section_entry) { 2061 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2062 ic->free_section_entry = 0; 2063 ic->free_section++; 2064 wraparound_section(ic, &ic->free_section); 2065 ic->n_uncommitted_sections++; 2066 } 2067 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2068 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2069 ic->journal_section_entries + ic->free_sectors)) { 2070 DMCRIT("journal_sections %u, journal_section_entries %u, " 2071 "n_uncommitted_sections %u, n_committed_sections %u, " 2072 "journal_section_entries %u, free_sectors %u", 2073 ic->journal_sections, ic->journal_section_entries, 2074 ic->n_uncommitted_sections, ic->n_committed_sections, 2075 ic->journal_section_entries, ic->free_sectors); 2076 } 2077 } 2078 2079 static void integrity_commit(struct work_struct *w) 2080 { 2081 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2082 unsigned commit_start, commit_sections; 2083 unsigned i, j, n; 2084 struct bio *flushes; 2085 2086 del_timer(&ic->autocommit_timer); 2087 2088 spin_lock_irq(&ic->endio_wait.lock); 2089 flushes = bio_list_get(&ic->flush_bio_list); 2090 if (unlikely(ic->mode != 'J')) { 2091 spin_unlock_irq(&ic->endio_wait.lock); 2092 dm_integrity_flush_buffers(ic); 2093 goto release_flush_bios; 2094 } 2095 2096 pad_uncommitted(ic); 2097 commit_start = ic->uncommitted_section; 2098 commit_sections = ic->n_uncommitted_sections; 2099 spin_unlock_irq(&ic->endio_wait.lock); 2100 2101 if (!commit_sections) 2102 goto release_flush_bios; 2103 2104 i = commit_start; 2105 for (n = 0; n < commit_sections; n++) { 2106 for (j = 0; j < ic->journal_section_entries; j++) { 2107 struct journal_entry *je; 2108 je = access_journal_entry(ic, i, j); 2109 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2110 } 2111 for (j = 0; j < ic->journal_section_sectors; j++) { 2112 struct journal_sector *js; 2113 js = access_journal(ic, i, j); 2114 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2115 } 2116 i++; 2117 if (unlikely(i >= ic->journal_sections)) 2118 ic->commit_seq = next_commit_seq(ic->commit_seq); 2119 wraparound_section(ic, &i); 2120 } 2121 smp_rmb(); 2122 2123 write_journal(ic, commit_start, commit_sections); 2124 2125 spin_lock_irq(&ic->endio_wait.lock); 2126 ic->uncommitted_section += commit_sections; 2127 wraparound_section(ic, &ic->uncommitted_section); 2128 ic->n_uncommitted_sections -= commit_sections; 2129 ic->n_committed_sections += commit_sections; 2130 spin_unlock_irq(&ic->endio_wait.lock); 2131 2132 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2133 queue_work(ic->writer_wq, &ic->writer_work); 2134 2135 release_flush_bios: 2136 while (flushes) { 2137 struct bio *next = flushes->bi_next; 2138 flushes->bi_next = NULL; 2139 do_endio(ic, flushes); 2140 flushes = next; 2141 } 2142 } 2143 2144 static void complete_copy_from_journal(unsigned long error, void *context) 2145 { 2146 struct journal_io *io = context; 2147 struct journal_completion *comp = io->comp; 2148 struct dm_integrity_c *ic = comp->ic; 2149 remove_range(ic, &io->range); 2150 mempool_free(io, &ic->journal_io_mempool); 2151 if (unlikely(error != 0)) 2152 dm_integrity_io_error(ic, "copying from journal", -EIO); 2153 complete_journal_op(comp); 2154 } 2155 2156 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2157 struct journal_entry *je) 2158 { 2159 unsigned s = 0; 2160 do { 2161 js->commit_id = je->last_bytes[s]; 2162 js++; 2163 } while (++s < ic->sectors_per_block); 2164 } 2165 2166 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2167 unsigned write_sections, bool from_replay) 2168 { 2169 unsigned i, j, n; 2170 struct journal_completion comp; 2171 struct blk_plug plug; 2172 2173 blk_start_plug(&plug); 2174 2175 comp.ic = ic; 2176 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2177 init_completion(&comp.comp); 2178 2179 i = write_start; 2180 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2181 #ifndef INTERNAL_VERIFY 2182 if (unlikely(from_replay)) 2183 #endif 2184 rw_section_mac(ic, i, false); 2185 for (j = 0; j < ic->journal_section_entries; j++) { 2186 struct journal_entry *je = access_journal_entry(ic, i, j); 2187 sector_t sec, area, offset; 2188 unsigned k, l, next_loop; 2189 sector_t metadata_block; 2190 unsigned metadata_offset; 2191 struct journal_io *io; 2192 2193 if (journal_entry_is_unused(je)) 2194 continue; 2195 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2196 sec = journal_entry_get_sector(je); 2197 if (unlikely(from_replay)) { 2198 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2199 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2200 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2201 } 2202 } 2203 get_area_and_offset(ic, sec, &area, &offset); 2204 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2205 for (k = j + 1; k < ic->journal_section_entries; k++) { 2206 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2207 sector_t sec2, area2, offset2; 2208 if (journal_entry_is_unused(je2)) 2209 break; 2210 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2211 sec2 = journal_entry_get_sector(je2); 2212 get_area_and_offset(ic, sec2, &area2, &offset2); 2213 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2214 break; 2215 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2216 } 2217 next_loop = k - 1; 2218 2219 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2220 io->comp = ∁ 2221 io->range.logical_sector = sec; 2222 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2223 2224 spin_lock_irq(&ic->endio_wait.lock); 2225 add_new_range_and_wait(ic, &io->range); 2226 2227 if (likely(!from_replay)) { 2228 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2229 2230 /* don't write if there is newer committed sector */ 2231 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2232 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2233 2234 journal_entry_set_unused(je2); 2235 remove_journal_node(ic, §ion_node[j]); 2236 j++; 2237 sec += ic->sectors_per_block; 2238 offset += ic->sectors_per_block; 2239 } 2240 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2241 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2242 2243 journal_entry_set_unused(je2); 2244 remove_journal_node(ic, §ion_node[k - 1]); 2245 k--; 2246 } 2247 if (j == k) { 2248 remove_range_unlocked(ic, &io->range); 2249 spin_unlock_irq(&ic->endio_wait.lock); 2250 mempool_free(io, &ic->journal_io_mempool); 2251 goto skip_io; 2252 } 2253 for (l = j; l < k; l++) { 2254 remove_journal_node(ic, §ion_node[l]); 2255 } 2256 } 2257 spin_unlock_irq(&ic->endio_wait.lock); 2258 2259 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2260 for (l = j; l < k; l++) { 2261 int r; 2262 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2263 2264 if ( 2265 #ifndef INTERNAL_VERIFY 2266 unlikely(from_replay) && 2267 #endif 2268 ic->internal_hash) { 2269 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2270 2271 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2272 (char *)access_journal_data(ic, i, l), test_tag); 2273 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2274 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2275 } 2276 2277 journal_entry_set_unused(je2); 2278 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2279 ic->tag_size, TAG_WRITE); 2280 if (unlikely(r)) { 2281 dm_integrity_io_error(ic, "reading tags", r); 2282 } 2283 } 2284 2285 atomic_inc(&comp.in_flight); 2286 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2287 (k - j) << ic->sb->log2_sectors_per_block, 2288 get_data_sector(ic, area, offset), 2289 complete_copy_from_journal, io); 2290 skip_io: 2291 j = next_loop; 2292 } 2293 } 2294 2295 dm_bufio_write_dirty_buffers_async(ic->bufio); 2296 2297 blk_finish_plug(&plug); 2298 2299 complete_journal_op(&comp); 2300 wait_for_completion_io(&comp.comp); 2301 2302 dm_integrity_flush_buffers(ic); 2303 } 2304 2305 static void integrity_writer(struct work_struct *w) 2306 { 2307 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2308 unsigned write_start, write_sections; 2309 2310 unsigned prev_free_sectors; 2311 2312 /* the following test is not needed, but it tests the replay code */ 2313 if (READ_ONCE(ic->suspending) && !ic->meta_dev) 2314 return; 2315 2316 spin_lock_irq(&ic->endio_wait.lock); 2317 write_start = ic->committed_section; 2318 write_sections = ic->n_committed_sections; 2319 spin_unlock_irq(&ic->endio_wait.lock); 2320 2321 if (!write_sections) 2322 return; 2323 2324 do_journal_write(ic, write_start, write_sections, false); 2325 2326 spin_lock_irq(&ic->endio_wait.lock); 2327 2328 ic->committed_section += write_sections; 2329 wraparound_section(ic, &ic->committed_section); 2330 ic->n_committed_sections -= write_sections; 2331 2332 prev_free_sectors = ic->free_sectors; 2333 ic->free_sectors += write_sections * ic->journal_section_entries; 2334 if (unlikely(!prev_free_sectors)) 2335 wake_up_locked(&ic->endio_wait); 2336 2337 spin_unlock_irq(&ic->endio_wait.lock); 2338 } 2339 2340 static void recalc_write_super(struct dm_integrity_c *ic) 2341 { 2342 int r; 2343 2344 dm_integrity_flush_buffers(ic); 2345 if (dm_integrity_failed(ic)) 2346 return; 2347 2348 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2349 if (unlikely(r)) 2350 dm_integrity_io_error(ic, "writing superblock", r); 2351 } 2352 2353 static void integrity_recalc(struct work_struct *w) 2354 { 2355 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2356 struct dm_integrity_range range; 2357 struct dm_io_request io_req; 2358 struct dm_io_region io_loc; 2359 sector_t area, offset; 2360 sector_t metadata_block; 2361 unsigned metadata_offset; 2362 sector_t logical_sector, n_sectors; 2363 __u8 *t; 2364 unsigned i; 2365 int r; 2366 unsigned super_counter = 0; 2367 2368 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2369 2370 spin_lock_irq(&ic->endio_wait.lock); 2371 2372 next_chunk: 2373 2374 if (unlikely(READ_ONCE(ic->suspending))) 2375 goto unlock_ret; 2376 2377 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2378 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2379 if (ic->mode == 'B') { 2380 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2381 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2382 } 2383 goto unlock_ret; 2384 } 2385 2386 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2387 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2388 if (!ic->meta_dev) 2389 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2390 2391 add_new_range_and_wait(ic, &range); 2392 spin_unlock_irq(&ic->endio_wait.lock); 2393 logical_sector = range.logical_sector; 2394 n_sectors = range.n_sectors; 2395 2396 if (ic->mode == 'B') { 2397 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2398 goto advance_and_next; 2399 } 2400 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2401 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2402 logical_sector += ic->sectors_per_block; 2403 n_sectors -= ic->sectors_per_block; 2404 cond_resched(); 2405 } 2406 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2407 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2408 n_sectors -= ic->sectors_per_block; 2409 cond_resched(); 2410 } 2411 get_area_and_offset(ic, logical_sector, &area, &offset); 2412 } 2413 2414 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors); 2415 2416 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2417 recalc_write_super(ic); 2418 if (ic->mode == 'B') { 2419 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2420 } 2421 super_counter = 0; 2422 } 2423 2424 if (unlikely(dm_integrity_failed(ic))) 2425 goto err; 2426 2427 io_req.bi_op = REQ_OP_READ; 2428 io_req.bi_op_flags = 0; 2429 io_req.mem.type = DM_IO_VMA; 2430 io_req.mem.ptr.addr = ic->recalc_buffer; 2431 io_req.notify.fn = NULL; 2432 io_req.client = ic->io; 2433 io_loc.bdev = ic->dev->bdev; 2434 io_loc.sector = get_data_sector(ic, area, offset); 2435 io_loc.count = n_sectors; 2436 2437 r = dm_io(&io_req, 1, &io_loc, NULL); 2438 if (unlikely(r)) { 2439 dm_integrity_io_error(ic, "reading data", r); 2440 goto err; 2441 } 2442 2443 t = ic->recalc_tags; 2444 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2445 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2446 t += ic->tag_size; 2447 } 2448 2449 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2450 2451 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2452 if (unlikely(r)) { 2453 dm_integrity_io_error(ic, "writing tags", r); 2454 goto err; 2455 } 2456 2457 advance_and_next: 2458 cond_resched(); 2459 2460 spin_lock_irq(&ic->endio_wait.lock); 2461 remove_range_unlocked(ic, &range); 2462 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2463 goto next_chunk; 2464 2465 err: 2466 remove_range(ic, &range); 2467 return; 2468 2469 unlock_ret: 2470 spin_unlock_irq(&ic->endio_wait.lock); 2471 2472 recalc_write_super(ic); 2473 } 2474 2475 static void bitmap_block_work(struct work_struct *w) 2476 { 2477 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2478 struct dm_integrity_c *ic = bbs->ic; 2479 struct bio *bio; 2480 struct bio_list bio_queue; 2481 struct bio_list waiting; 2482 2483 bio_list_init(&waiting); 2484 2485 spin_lock(&bbs->bio_queue_lock); 2486 bio_queue = bbs->bio_queue; 2487 bio_list_init(&bbs->bio_queue); 2488 spin_unlock(&bbs->bio_queue_lock); 2489 2490 while ((bio = bio_list_pop(&bio_queue))) { 2491 struct dm_integrity_io *dio; 2492 2493 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2494 2495 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2496 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2497 remove_range(ic, &dio->range); 2498 INIT_WORK(&dio->work, integrity_bio_wait); 2499 queue_work(ic->wait_wq, &dio->work); 2500 } else { 2501 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2502 dio->range.n_sectors, BITMAP_OP_SET); 2503 bio_list_add(&waiting, bio); 2504 } 2505 } 2506 2507 if (bio_list_empty(&waiting)) 2508 return; 2509 2510 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2511 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2512 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2513 2514 while ((bio = bio_list_pop(&waiting))) { 2515 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2516 2517 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2518 dio->range.n_sectors, BITMAP_OP_SET); 2519 2520 remove_range(ic, &dio->range); 2521 INIT_WORK(&dio->work, integrity_bio_wait); 2522 queue_work(ic->wait_wq, &dio->work); 2523 } 2524 2525 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2526 } 2527 2528 static void bitmap_flush_work(struct work_struct *work) 2529 { 2530 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2531 struct dm_integrity_range range; 2532 unsigned long limit; 2533 struct bio *bio; 2534 2535 dm_integrity_flush_buffers(ic); 2536 2537 range.logical_sector = 0; 2538 range.n_sectors = ic->provided_data_sectors; 2539 2540 spin_lock_irq(&ic->endio_wait.lock); 2541 add_new_range_and_wait(ic, &range); 2542 spin_unlock_irq(&ic->endio_wait.lock); 2543 2544 dm_integrity_flush_buffers(ic); 2545 if (ic->meta_dev) 2546 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL); 2547 2548 limit = ic->provided_data_sectors; 2549 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2550 limit = le64_to_cpu(ic->sb->recalc_sector) 2551 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2552 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2553 } 2554 /*DEBUG_print("zeroing journal\n");*/ 2555 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2556 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2557 2558 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2559 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2560 2561 spin_lock_irq(&ic->endio_wait.lock); 2562 remove_range_unlocked(ic, &range); 2563 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2564 bio_endio(bio); 2565 spin_unlock_irq(&ic->endio_wait.lock); 2566 spin_lock_irq(&ic->endio_wait.lock); 2567 } 2568 spin_unlock_irq(&ic->endio_wait.lock); 2569 } 2570 2571 2572 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2573 unsigned n_sections, unsigned char commit_seq) 2574 { 2575 unsigned i, j, n; 2576 2577 if (!n_sections) 2578 return; 2579 2580 for (n = 0; n < n_sections; n++) { 2581 i = start_section + n; 2582 wraparound_section(ic, &i); 2583 for (j = 0; j < ic->journal_section_sectors; j++) { 2584 struct journal_sector *js = access_journal(ic, i, j); 2585 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2586 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2587 } 2588 for (j = 0; j < ic->journal_section_entries; j++) { 2589 struct journal_entry *je = access_journal_entry(ic, i, j); 2590 journal_entry_set_unused(je); 2591 } 2592 } 2593 2594 write_journal(ic, start_section, n_sections); 2595 } 2596 2597 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2598 { 2599 unsigned char k; 2600 for (k = 0; k < N_COMMIT_IDS; k++) { 2601 if (dm_integrity_commit_id(ic, i, j, k) == id) 2602 return k; 2603 } 2604 dm_integrity_io_error(ic, "journal commit id", -EIO); 2605 return -EIO; 2606 } 2607 2608 static void replay_journal(struct dm_integrity_c *ic) 2609 { 2610 unsigned i, j; 2611 bool used_commit_ids[N_COMMIT_IDS]; 2612 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2613 unsigned write_start, write_sections; 2614 unsigned continue_section; 2615 bool journal_empty; 2616 unsigned char unused, last_used, want_commit_seq; 2617 2618 if (ic->mode == 'R') 2619 return; 2620 2621 if (ic->journal_uptodate) 2622 return; 2623 2624 last_used = 0; 2625 write_start = 0; 2626 2627 if (!ic->just_formatted) { 2628 DEBUG_print("reading journal\n"); 2629 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2630 if (ic->journal_io) 2631 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2632 if (ic->journal_io) { 2633 struct journal_completion crypt_comp; 2634 crypt_comp.ic = ic; 2635 init_completion(&crypt_comp.comp); 2636 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2637 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2638 wait_for_completion(&crypt_comp.comp); 2639 } 2640 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2641 } 2642 2643 if (dm_integrity_failed(ic)) 2644 goto clear_journal; 2645 2646 journal_empty = true; 2647 memset(used_commit_ids, 0, sizeof used_commit_ids); 2648 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2649 for (i = 0; i < ic->journal_sections; i++) { 2650 for (j = 0; j < ic->journal_section_sectors; j++) { 2651 int k; 2652 struct journal_sector *js = access_journal(ic, i, j); 2653 k = find_commit_seq(ic, i, j, js->commit_id); 2654 if (k < 0) 2655 goto clear_journal; 2656 used_commit_ids[k] = true; 2657 max_commit_id_sections[k] = i; 2658 } 2659 if (journal_empty) { 2660 for (j = 0; j < ic->journal_section_entries; j++) { 2661 struct journal_entry *je = access_journal_entry(ic, i, j); 2662 if (!journal_entry_is_unused(je)) { 2663 journal_empty = false; 2664 break; 2665 } 2666 } 2667 } 2668 } 2669 2670 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2671 unused = N_COMMIT_IDS - 1; 2672 while (unused && !used_commit_ids[unused - 1]) 2673 unused--; 2674 } else { 2675 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2676 if (!used_commit_ids[unused]) 2677 break; 2678 if (unused == N_COMMIT_IDS) { 2679 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2680 goto clear_journal; 2681 } 2682 } 2683 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2684 unused, used_commit_ids[0], used_commit_ids[1], 2685 used_commit_ids[2], used_commit_ids[3]); 2686 2687 last_used = prev_commit_seq(unused); 2688 want_commit_seq = prev_commit_seq(last_used); 2689 2690 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2691 journal_empty = true; 2692 2693 write_start = max_commit_id_sections[last_used] + 1; 2694 if (unlikely(write_start >= ic->journal_sections)) 2695 want_commit_seq = next_commit_seq(want_commit_seq); 2696 wraparound_section(ic, &write_start); 2697 2698 i = write_start; 2699 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2700 for (j = 0; j < ic->journal_section_sectors; j++) { 2701 struct journal_sector *js = access_journal(ic, i, j); 2702 2703 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2704 /* 2705 * This could be caused by crash during writing. 2706 * We won't replay the inconsistent part of the 2707 * journal. 2708 */ 2709 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2710 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2711 goto brk; 2712 } 2713 } 2714 i++; 2715 if (unlikely(i >= ic->journal_sections)) 2716 want_commit_seq = next_commit_seq(want_commit_seq); 2717 wraparound_section(ic, &i); 2718 } 2719 brk: 2720 2721 if (!journal_empty) { 2722 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2723 write_sections, write_start, want_commit_seq); 2724 do_journal_write(ic, write_start, write_sections, true); 2725 } 2726 2727 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2728 continue_section = write_start; 2729 ic->commit_seq = want_commit_seq; 2730 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2731 } else { 2732 unsigned s; 2733 unsigned char erase_seq; 2734 clear_journal: 2735 DEBUG_print("clearing journal\n"); 2736 2737 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2738 s = write_start; 2739 init_journal(ic, s, 1, erase_seq); 2740 s++; 2741 wraparound_section(ic, &s); 2742 if (ic->journal_sections >= 2) { 2743 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2744 s += ic->journal_sections - 2; 2745 wraparound_section(ic, &s); 2746 init_journal(ic, s, 1, erase_seq); 2747 } 2748 2749 continue_section = 0; 2750 ic->commit_seq = next_commit_seq(erase_seq); 2751 } 2752 2753 ic->committed_section = continue_section; 2754 ic->n_committed_sections = 0; 2755 2756 ic->uncommitted_section = continue_section; 2757 ic->n_uncommitted_sections = 0; 2758 2759 ic->free_section = continue_section; 2760 ic->free_section_entry = 0; 2761 ic->free_sectors = ic->journal_entries; 2762 2763 ic->journal_tree_root = RB_ROOT; 2764 for (i = 0; i < ic->journal_entries; i++) 2765 init_journal_node(&ic->journal_tree[i]); 2766 } 2767 2768 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2769 { 2770 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2771 2772 if (ic->mode == 'B') { 2773 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2774 ic->synchronous_mode = 1; 2775 2776 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2777 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2778 flush_workqueue(ic->commit_wq); 2779 } 2780 } 2781 2782 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2783 { 2784 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2785 2786 DEBUG_print("dm_integrity_reboot\n"); 2787 2788 dm_integrity_enter_synchronous_mode(ic); 2789 2790 return NOTIFY_DONE; 2791 } 2792 2793 static void dm_integrity_postsuspend(struct dm_target *ti) 2794 { 2795 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2796 int r; 2797 2798 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2799 2800 del_timer_sync(&ic->autocommit_timer); 2801 2802 WRITE_ONCE(ic->suspending, 1); 2803 2804 if (ic->recalc_wq) 2805 drain_workqueue(ic->recalc_wq); 2806 2807 if (ic->mode == 'B') 2808 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2809 2810 queue_work(ic->commit_wq, &ic->commit_work); 2811 drain_workqueue(ic->commit_wq); 2812 2813 if (ic->mode == 'J') { 2814 if (ic->meta_dev) 2815 queue_work(ic->writer_wq, &ic->writer_work); 2816 drain_workqueue(ic->writer_wq); 2817 dm_integrity_flush_buffers(ic); 2818 } 2819 2820 if (ic->mode == 'B') { 2821 dm_integrity_flush_buffers(ic); 2822 #if 1 2823 /* set to 0 to test bitmap replay code */ 2824 init_journal(ic, 0, ic->journal_sections, 0); 2825 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2826 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2827 if (unlikely(r)) 2828 dm_integrity_io_error(ic, "writing superblock", r); 2829 #endif 2830 } 2831 2832 WRITE_ONCE(ic->suspending, 0); 2833 2834 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2835 2836 ic->journal_uptodate = true; 2837 } 2838 2839 static void dm_integrity_resume(struct dm_target *ti) 2840 { 2841 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2842 int r; 2843 DEBUG_print("resume\n"); 2844 2845 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 2846 DEBUG_print("resume dirty_bitmap\n"); 2847 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2848 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2849 if (ic->mode == 'B') { 2850 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2851 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 2852 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 2853 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 2854 BITMAP_OP_TEST_ALL_CLEAR)) { 2855 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2856 ic->sb->recalc_sector = cpu_to_le64(0); 2857 } 2858 } else { 2859 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 2860 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 2861 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2862 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2863 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2864 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2865 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2866 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2867 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2868 ic->sb->recalc_sector = cpu_to_le64(0); 2869 } 2870 } else { 2871 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 2872 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 2873 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2874 ic->sb->recalc_sector = cpu_to_le64(0); 2875 } 2876 init_journal(ic, 0, ic->journal_sections, 0); 2877 replay_journal(ic); 2878 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2879 } 2880 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2881 if (unlikely(r)) 2882 dm_integrity_io_error(ic, "writing superblock", r); 2883 } else { 2884 replay_journal(ic); 2885 if (ic->mode == 'B') { 2886 int mode; 2887 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2888 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2889 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2890 if (unlikely(r)) 2891 dm_integrity_io_error(ic, "writing superblock", r); 2892 2893 mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR; 2894 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode); 2895 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode); 2896 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode); 2897 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2898 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2899 } 2900 } 2901 2902 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 2903 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2904 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2905 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors); 2906 if (recalc_pos < ic->provided_data_sectors) { 2907 queue_work(ic->recalc_wq, &ic->recalc_work); 2908 } else if (recalc_pos > ic->provided_data_sectors) { 2909 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2910 recalc_write_super(ic); 2911 } 2912 } 2913 2914 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 2915 ic->reboot_notifier.next = NULL; 2916 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 2917 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 2918 2919 #if 0 2920 /* set to 1 to stress test synchronous mode */ 2921 dm_integrity_enter_synchronous_mode(ic); 2922 #endif 2923 } 2924 2925 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2926 unsigned status_flags, char *result, unsigned maxlen) 2927 { 2928 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2929 unsigned arg_count; 2930 size_t sz = 0; 2931 2932 switch (type) { 2933 case STATUSTYPE_INFO: 2934 DMEMIT("%llu %llu", 2935 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2936 (unsigned long long)ic->provided_data_sectors); 2937 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2938 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2939 else 2940 DMEMIT(" -"); 2941 break; 2942 2943 case STATUSTYPE_TABLE: { 2944 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2945 watermark_percentage += ic->journal_entries / 2; 2946 do_div(watermark_percentage, ic->journal_entries); 2947 arg_count = 3; 2948 arg_count += !!ic->meta_dev; 2949 arg_count += ic->sectors_per_block != 1; 2950 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2951 arg_count += ic->mode == 'J'; 2952 arg_count += ic->mode == 'J'; 2953 arg_count += ic->mode == 'B'; 2954 arg_count += ic->mode == 'B'; 2955 arg_count += !!ic->internal_hash_alg.alg_string; 2956 arg_count += !!ic->journal_crypt_alg.alg_string; 2957 arg_count += !!ic->journal_mac_alg.alg_string; 2958 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2959 ic->tag_size, ic->mode, arg_count); 2960 if (ic->meta_dev) 2961 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2962 if (ic->sectors_per_block != 1) 2963 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2964 if (ic->recalculate_flag) 2965 DMEMIT(" recalculate"); 2966 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2967 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2968 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2969 if (ic->mode == 'J') { 2970 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2971 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2972 } 2973 if (ic->mode == 'B') { 2974 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 2975 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 2976 } 2977 2978 #define EMIT_ALG(a, n) \ 2979 do { \ 2980 if (ic->a.alg_string) { \ 2981 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2982 if (ic->a.key_string) \ 2983 DMEMIT(":%s", ic->a.key_string);\ 2984 } \ 2985 } while (0) 2986 EMIT_ALG(internal_hash_alg, "internal_hash"); 2987 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2988 EMIT_ALG(journal_mac_alg, "journal_mac"); 2989 break; 2990 } 2991 } 2992 } 2993 2994 static int dm_integrity_iterate_devices(struct dm_target *ti, 2995 iterate_devices_callout_fn fn, void *data) 2996 { 2997 struct dm_integrity_c *ic = ti->private; 2998 2999 if (!ic->meta_dev) 3000 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3001 else 3002 return fn(ti, ic->dev, 0, ti->len, data); 3003 } 3004 3005 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3006 { 3007 struct dm_integrity_c *ic = ti->private; 3008 3009 if (ic->sectors_per_block > 1) { 3010 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3011 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3012 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3013 } 3014 } 3015 3016 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3017 { 3018 unsigned sector_space = JOURNAL_SECTOR_DATA; 3019 3020 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3021 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3022 JOURNAL_ENTRY_ROUNDUP); 3023 3024 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3025 sector_space -= JOURNAL_MAC_PER_SECTOR; 3026 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3027 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3028 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3029 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3030 } 3031 3032 static int calculate_device_limits(struct dm_integrity_c *ic) 3033 { 3034 __u64 initial_sectors; 3035 3036 calculate_journal_section_size(ic); 3037 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3038 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3039 return -EINVAL; 3040 ic->initial_sectors = initial_sectors; 3041 3042 if (!ic->meta_dev) { 3043 sector_t last_sector, last_area, last_offset; 3044 3045 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3046 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 3047 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3048 ic->log2_metadata_run = __ffs(ic->metadata_run); 3049 else 3050 ic->log2_metadata_run = -1; 3051 3052 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3053 last_sector = get_data_sector(ic, last_area, last_offset); 3054 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3055 return -EINVAL; 3056 } else { 3057 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3058 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3059 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3060 meta_size <<= ic->log2_buffer_sectors; 3061 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3062 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3063 return -EINVAL; 3064 ic->metadata_run = 1; 3065 ic->log2_metadata_run = 0; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3072 { 3073 unsigned journal_sections; 3074 int test_bit; 3075 3076 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3077 memcpy(ic->sb->magic, SB_MAGIC, 8); 3078 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3079 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3080 if (ic->journal_mac_alg.alg_string) 3081 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3082 3083 calculate_journal_section_size(ic); 3084 journal_sections = journal_sectors / ic->journal_section_sectors; 3085 if (!journal_sections) 3086 journal_sections = 1; 3087 3088 if (!ic->meta_dev) { 3089 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3090 if (!interleave_sectors) 3091 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3092 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3093 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3094 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3095 3096 ic->provided_data_sectors = 0; 3097 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3098 __u64 prev_data_sectors = ic->provided_data_sectors; 3099 3100 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3101 if (calculate_device_limits(ic)) 3102 ic->provided_data_sectors = prev_data_sectors; 3103 } 3104 if (!ic->provided_data_sectors) 3105 return -EINVAL; 3106 } else { 3107 ic->sb->log2_interleave_sectors = 0; 3108 ic->provided_data_sectors = ic->data_device_sectors; 3109 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3110 3111 try_smaller_buffer: 3112 ic->sb->journal_sections = cpu_to_le32(0); 3113 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3114 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3115 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3116 if (test_journal_sections > journal_sections) 3117 continue; 3118 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3119 if (calculate_device_limits(ic)) 3120 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3121 3122 } 3123 if (!le32_to_cpu(ic->sb->journal_sections)) { 3124 if (ic->log2_buffer_sectors > 3) { 3125 ic->log2_buffer_sectors--; 3126 goto try_smaller_buffer; 3127 } 3128 return -EINVAL; 3129 } 3130 } 3131 3132 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3133 3134 sb_set_version(ic); 3135 3136 return 0; 3137 } 3138 3139 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3140 { 3141 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3142 struct blk_integrity bi; 3143 3144 memset(&bi, 0, sizeof(bi)); 3145 bi.profile = &dm_integrity_profile; 3146 bi.tuple_size = ic->tag_size; 3147 bi.tag_size = bi.tuple_size; 3148 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3149 3150 blk_integrity_register(disk, &bi); 3151 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3152 } 3153 3154 static void dm_integrity_free_page_list(struct page_list *pl) 3155 { 3156 unsigned i; 3157 3158 if (!pl) 3159 return; 3160 for (i = 0; pl[i].page; i++) 3161 __free_page(pl[i].page); 3162 kvfree(pl); 3163 } 3164 3165 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3166 { 3167 struct page_list *pl; 3168 unsigned i; 3169 3170 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3171 if (!pl) 3172 return NULL; 3173 3174 for (i = 0; i < n_pages; i++) { 3175 pl[i].page = alloc_page(GFP_KERNEL); 3176 if (!pl[i].page) { 3177 dm_integrity_free_page_list(pl); 3178 return NULL; 3179 } 3180 if (i) 3181 pl[i - 1].next = &pl[i]; 3182 } 3183 pl[i].page = NULL; 3184 pl[i].next = NULL; 3185 3186 return pl; 3187 } 3188 3189 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3190 { 3191 unsigned i; 3192 for (i = 0; i < ic->journal_sections; i++) 3193 kvfree(sl[i]); 3194 kvfree(sl); 3195 } 3196 3197 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3198 struct page_list *pl) 3199 { 3200 struct scatterlist **sl; 3201 unsigned i; 3202 3203 sl = kvmalloc_array(ic->journal_sections, 3204 sizeof(struct scatterlist *), 3205 GFP_KERNEL | __GFP_ZERO); 3206 if (!sl) 3207 return NULL; 3208 3209 for (i = 0; i < ic->journal_sections; i++) { 3210 struct scatterlist *s; 3211 unsigned start_index, start_offset; 3212 unsigned end_index, end_offset; 3213 unsigned n_pages; 3214 unsigned idx; 3215 3216 page_list_location(ic, i, 0, &start_index, &start_offset); 3217 page_list_location(ic, i, ic->journal_section_sectors - 1, 3218 &end_index, &end_offset); 3219 3220 n_pages = (end_index - start_index + 1); 3221 3222 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3223 GFP_KERNEL); 3224 if (!s) { 3225 dm_integrity_free_journal_scatterlist(ic, sl); 3226 return NULL; 3227 } 3228 3229 sg_init_table(s, n_pages); 3230 for (idx = start_index; idx <= end_index; idx++) { 3231 char *va = lowmem_page_address(pl[idx].page); 3232 unsigned start = 0, end = PAGE_SIZE; 3233 if (idx == start_index) 3234 start = start_offset; 3235 if (idx == end_index) 3236 end = end_offset + (1 << SECTOR_SHIFT); 3237 sg_set_buf(&s[idx - start_index], va + start, end - start); 3238 } 3239 3240 sl[i] = s; 3241 } 3242 3243 return sl; 3244 } 3245 3246 static void free_alg(struct alg_spec *a) 3247 { 3248 kzfree(a->alg_string); 3249 kzfree(a->key); 3250 memset(a, 0, sizeof *a); 3251 } 3252 3253 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3254 { 3255 char *k; 3256 3257 free_alg(a); 3258 3259 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3260 if (!a->alg_string) 3261 goto nomem; 3262 3263 k = strchr(a->alg_string, ':'); 3264 if (k) { 3265 *k = 0; 3266 a->key_string = k + 1; 3267 if (strlen(a->key_string) & 1) 3268 goto inval; 3269 3270 a->key_size = strlen(a->key_string) / 2; 3271 a->key = kmalloc(a->key_size, GFP_KERNEL); 3272 if (!a->key) 3273 goto nomem; 3274 if (hex2bin(a->key, a->key_string, a->key_size)) 3275 goto inval; 3276 } 3277 3278 return 0; 3279 inval: 3280 *error = error_inval; 3281 return -EINVAL; 3282 nomem: 3283 *error = "Out of memory for an argument"; 3284 return -ENOMEM; 3285 } 3286 3287 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3288 char *error_alg, char *error_key) 3289 { 3290 int r; 3291 3292 if (a->alg_string) { 3293 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 3294 if (IS_ERR(*hash)) { 3295 *error = error_alg; 3296 r = PTR_ERR(*hash); 3297 *hash = NULL; 3298 return r; 3299 } 3300 3301 if (a->key) { 3302 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3303 if (r) { 3304 *error = error_key; 3305 return r; 3306 } 3307 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3308 *error = error_key; 3309 return -ENOKEY; 3310 } 3311 } 3312 3313 return 0; 3314 } 3315 3316 static int create_journal(struct dm_integrity_c *ic, char **error) 3317 { 3318 int r = 0; 3319 unsigned i; 3320 __u64 journal_pages, journal_desc_size, journal_tree_size; 3321 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3322 struct skcipher_request *req = NULL; 3323 3324 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3325 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3326 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3327 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3328 3329 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3330 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3331 journal_desc_size = journal_pages * sizeof(struct page_list); 3332 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3333 *error = "Journal doesn't fit into memory"; 3334 r = -ENOMEM; 3335 goto bad; 3336 } 3337 ic->journal_pages = journal_pages; 3338 3339 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3340 if (!ic->journal) { 3341 *error = "Could not allocate memory for journal"; 3342 r = -ENOMEM; 3343 goto bad; 3344 } 3345 if (ic->journal_crypt_alg.alg_string) { 3346 unsigned ivsize, blocksize; 3347 struct journal_completion comp; 3348 3349 comp.ic = ic; 3350 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 3351 if (IS_ERR(ic->journal_crypt)) { 3352 *error = "Invalid journal cipher"; 3353 r = PTR_ERR(ic->journal_crypt); 3354 ic->journal_crypt = NULL; 3355 goto bad; 3356 } 3357 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3358 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3359 3360 if (ic->journal_crypt_alg.key) { 3361 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3362 ic->journal_crypt_alg.key_size); 3363 if (r) { 3364 *error = "Error setting encryption key"; 3365 goto bad; 3366 } 3367 } 3368 DEBUG_print("cipher %s, block size %u iv size %u\n", 3369 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3370 3371 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3372 if (!ic->journal_io) { 3373 *error = "Could not allocate memory for journal io"; 3374 r = -ENOMEM; 3375 goto bad; 3376 } 3377 3378 if (blocksize == 1) { 3379 struct scatterlist *sg; 3380 3381 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3382 if (!req) { 3383 *error = "Could not allocate crypt request"; 3384 r = -ENOMEM; 3385 goto bad; 3386 } 3387 3388 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3389 if (!crypt_iv) { 3390 *error = "Could not allocate iv"; 3391 r = -ENOMEM; 3392 goto bad; 3393 } 3394 3395 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3396 if (!ic->journal_xor) { 3397 *error = "Could not allocate memory for journal xor"; 3398 r = -ENOMEM; 3399 goto bad; 3400 } 3401 3402 sg = kvmalloc_array(ic->journal_pages + 1, 3403 sizeof(struct scatterlist), 3404 GFP_KERNEL); 3405 if (!sg) { 3406 *error = "Unable to allocate sg list"; 3407 r = -ENOMEM; 3408 goto bad; 3409 } 3410 sg_init_table(sg, ic->journal_pages + 1); 3411 for (i = 0; i < ic->journal_pages; i++) { 3412 char *va = lowmem_page_address(ic->journal_xor[i].page); 3413 clear_page(va); 3414 sg_set_buf(&sg[i], va, PAGE_SIZE); 3415 } 3416 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3417 3418 skcipher_request_set_crypt(req, sg, sg, 3419 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3420 init_completion(&comp.comp); 3421 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3422 if (do_crypt(true, req, &comp)) 3423 wait_for_completion(&comp.comp); 3424 kvfree(sg); 3425 r = dm_integrity_failed(ic); 3426 if (r) { 3427 *error = "Unable to encrypt journal"; 3428 goto bad; 3429 } 3430 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3431 3432 crypto_free_skcipher(ic->journal_crypt); 3433 ic->journal_crypt = NULL; 3434 } else { 3435 unsigned crypt_len = roundup(ivsize, blocksize); 3436 3437 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3438 if (!req) { 3439 *error = "Could not allocate crypt request"; 3440 r = -ENOMEM; 3441 goto bad; 3442 } 3443 3444 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3445 if (!crypt_iv) { 3446 *error = "Could not allocate iv"; 3447 r = -ENOMEM; 3448 goto bad; 3449 } 3450 3451 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3452 if (!crypt_data) { 3453 *error = "Unable to allocate crypt data"; 3454 r = -ENOMEM; 3455 goto bad; 3456 } 3457 3458 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3459 if (!ic->journal_scatterlist) { 3460 *error = "Unable to allocate sg list"; 3461 r = -ENOMEM; 3462 goto bad; 3463 } 3464 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3465 if (!ic->journal_io_scatterlist) { 3466 *error = "Unable to allocate sg list"; 3467 r = -ENOMEM; 3468 goto bad; 3469 } 3470 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3471 sizeof(struct skcipher_request *), 3472 GFP_KERNEL | __GFP_ZERO); 3473 if (!ic->sk_requests) { 3474 *error = "Unable to allocate sk requests"; 3475 r = -ENOMEM; 3476 goto bad; 3477 } 3478 for (i = 0; i < ic->journal_sections; i++) { 3479 struct scatterlist sg; 3480 struct skcipher_request *section_req; 3481 __u32 section_le = cpu_to_le32(i); 3482 3483 memset(crypt_iv, 0x00, ivsize); 3484 memset(crypt_data, 0x00, crypt_len); 3485 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3486 3487 sg_init_one(&sg, crypt_data, crypt_len); 3488 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3489 init_completion(&comp.comp); 3490 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3491 if (do_crypt(true, req, &comp)) 3492 wait_for_completion(&comp.comp); 3493 3494 r = dm_integrity_failed(ic); 3495 if (r) { 3496 *error = "Unable to generate iv"; 3497 goto bad; 3498 } 3499 3500 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3501 if (!section_req) { 3502 *error = "Unable to allocate crypt request"; 3503 r = -ENOMEM; 3504 goto bad; 3505 } 3506 section_req->iv = kmalloc_array(ivsize, 2, 3507 GFP_KERNEL); 3508 if (!section_req->iv) { 3509 skcipher_request_free(section_req); 3510 *error = "Unable to allocate iv"; 3511 r = -ENOMEM; 3512 goto bad; 3513 } 3514 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3515 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3516 ic->sk_requests[i] = section_req; 3517 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3518 } 3519 } 3520 } 3521 3522 for (i = 0; i < N_COMMIT_IDS; i++) { 3523 unsigned j; 3524 retest_commit_id: 3525 for (j = 0; j < i; j++) { 3526 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3527 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3528 goto retest_commit_id; 3529 } 3530 } 3531 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3532 } 3533 3534 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3535 if (journal_tree_size > ULONG_MAX) { 3536 *error = "Journal doesn't fit into memory"; 3537 r = -ENOMEM; 3538 goto bad; 3539 } 3540 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3541 if (!ic->journal_tree) { 3542 *error = "Could not allocate memory for journal tree"; 3543 r = -ENOMEM; 3544 } 3545 bad: 3546 kfree(crypt_data); 3547 kfree(crypt_iv); 3548 skcipher_request_free(req); 3549 3550 return r; 3551 } 3552 3553 /* 3554 * Construct a integrity mapping 3555 * 3556 * Arguments: 3557 * device 3558 * offset from the start of the device 3559 * tag size 3560 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3561 * number of optional arguments 3562 * optional arguments: 3563 * journal_sectors 3564 * interleave_sectors 3565 * buffer_sectors 3566 * journal_watermark 3567 * commit_time 3568 * meta_device 3569 * block_size 3570 * sectors_per_bit 3571 * bitmap_flush_interval 3572 * internal_hash 3573 * journal_crypt 3574 * journal_mac 3575 * recalculate 3576 */ 3577 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3578 { 3579 struct dm_integrity_c *ic; 3580 char dummy; 3581 int r; 3582 unsigned extra_args; 3583 struct dm_arg_set as; 3584 static const struct dm_arg _args[] = { 3585 {0, 9, "Invalid number of feature args"}, 3586 }; 3587 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3588 bool should_write_sb; 3589 __u64 threshold; 3590 unsigned long long start; 3591 __s8 log2_sectors_per_bitmap_bit = -1; 3592 __s8 log2_blocks_per_bitmap_bit; 3593 __u64 bits_in_journal; 3594 __u64 n_bitmap_bits; 3595 3596 #define DIRECT_ARGUMENTS 4 3597 3598 if (argc <= DIRECT_ARGUMENTS) { 3599 ti->error = "Invalid argument count"; 3600 return -EINVAL; 3601 } 3602 3603 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3604 if (!ic) { 3605 ti->error = "Cannot allocate integrity context"; 3606 return -ENOMEM; 3607 } 3608 ti->private = ic; 3609 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3610 3611 ic->in_progress = RB_ROOT; 3612 INIT_LIST_HEAD(&ic->wait_list); 3613 init_waitqueue_head(&ic->endio_wait); 3614 bio_list_init(&ic->flush_bio_list); 3615 init_waitqueue_head(&ic->copy_to_journal_wait); 3616 init_completion(&ic->crypto_backoff); 3617 atomic64_set(&ic->number_of_mismatches, 0); 3618 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3619 3620 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3621 if (r) { 3622 ti->error = "Device lookup failed"; 3623 goto bad; 3624 } 3625 3626 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3627 ti->error = "Invalid starting offset"; 3628 r = -EINVAL; 3629 goto bad; 3630 } 3631 ic->start = start; 3632 3633 if (strcmp(argv[2], "-")) { 3634 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3635 ti->error = "Invalid tag size"; 3636 r = -EINVAL; 3637 goto bad; 3638 } 3639 } 3640 3641 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3642 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3643 ic->mode = argv[3][0]; 3644 } else { 3645 ti->error = "Invalid mode (expecting J, B, D, R)"; 3646 r = -EINVAL; 3647 goto bad; 3648 } 3649 3650 journal_sectors = 0; 3651 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3652 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3653 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3654 sync_msec = DEFAULT_SYNC_MSEC; 3655 ic->sectors_per_block = 1; 3656 3657 as.argc = argc - DIRECT_ARGUMENTS; 3658 as.argv = argv + DIRECT_ARGUMENTS; 3659 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3660 if (r) 3661 goto bad; 3662 3663 while (extra_args--) { 3664 const char *opt_string; 3665 unsigned val; 3666 unsigned long long llval; 3667 opt_string = dm_shift_arg(&as); 3668 if (!opt_string) { 3669 r = -EINVAL; 3670 ti->error = "Not enough feature arguments"; 3671 goto bad; 3672 } 3673 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3674 journal_sectors = val ? val : 1; 3675 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3676 interleave_sectors = val; 3677 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3678 buffer_sectors = val; 3679 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3680 journal_watermark = val; 3681 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3682 sync_msec = val; 3683 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3684 if (ic->meta_dev) { 3685 dm_put_device(ti, ic->meta_dev); 3686 ic->meta_dev = NULL; 3687 } 3688 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3689 dm_table_get_mode(ti->table), &ic->meta_dev); 3690 if (r) { 3691 ti->error = "Device lookup failed"; 3692 goto bad; 3693 } 3694 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3695 if (val < 1 << SECTOR_SHIFT || 3696 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3697 (val & (val -1))) { 3698 r = -EINVAL; 3699 ti->error = "Invalid block_size argument"; 3700 goto bad; 3701 } 3702 ic->sectors_per_block = val >> SECTOR_SHIFT; 3703 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3704 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3705 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3706 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3707 r = -EINVAL; 3708 ti->error = "Invalid bitmap_flush_interval argument"; 3709 } 3710 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3711 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3712 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3713 "Invalid internal_hash argument"); 3714 if (r) 3715 goto bad; 3716 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3717 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3718 "Invalid journal_crypt argument"); 3719 if (r) 3720 goto bad; 3721 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3722 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3723 "Invalid journal_mac argument"); 3724 if (r) 3725 goto bad; 3726 } else if (!strcmp(opt_string, "recalculate")) { 3727 ic->recalculate_flag = true; 3728 } else { 3729 r = -EINVAL; 3730 ti->error = "Invalid argument"; 3731 goto bad; 3732 } 3733 } 3734 3735 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3736 if (!ic->meta_dev) 3737 ic->meta_device_sectors = ic->data_device_sectors; 3738 else 3739 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3740 3741 if (!journal_sectors) { 3742 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3743 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3744 } 3745 3746 if (!buffer_sectors) 3747 buffer_sectors = 1; 3748 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3749 3750 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3751 "Invalid internal hash", "Error setting internal hash key"); 3752 if (r) 3753 goto bad; 3754 3755 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3756 "Invalid journal mac", "Error setting journal mac key"); 3757 if (r) 3758 goto bad; 3759 3760 if (!ic->tag_size) { 3761 if (!ic->internal_hash) { 3762 ti->error = "Unknown tag size"; 3763 r = -EINVAL; 3764 goto bad; 3765 } 3766 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3767 } 3768 if (ic->tag_size > MAX_TAG_SIZE) { 3769 ti->error = "Too big tag size"; 3770 r = -EINVAL; 3771 goto bad; 3772 } 3773 if (!(ic->tag_size & (ic->tag_size - 1))) 3774 ic->log2_tag_size = __ffs(ic->tag_size); 3775 else 3776 ic->log2_tag_size = -1; 3777 3778 if (ic->mode == 'B' && !ic->internal_hash) { 3779 r = -EINVAL; 3780 ti->error = "Bitmap mode can be only used with internal hash"; 3781 goto bad; 3782 } 3783 3784 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3785 ic->autocommit_msec = sync_msec; 3786 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3787 3788 ic->io = dm_io_client_create(); 3789 if (IS_ERR(ic->io)) { 3790 r = PTR_ERR(ic->io); 3791 ic->io = NULL; 3792 ti->error = "Cannot allocate dm io"; 3793 goto bad; 3794 } 3795 3796 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3797 if (r) { 3798 ti->error = "Cannot allocate mempool"; 3799 goto bad; 3800 } 3801 3802 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3803 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3804 if (!ic->metadata_wq) { 3805 ti->error = "Cannot allocate workqueue"; 3806 r = -ENOMEM; 3807 goto bad; 3808 } 3809 3810 /* 3811 * If this workqueue were percpu, it would cause bio reordering 3812 * and reduced performance. 3813 */ 3814 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3815 if (!ic->wait_wq) { 3816 ti->error = "Cannot allocate workqueue"; 3817 r = -ENOMEM; 3818 goto bad; 3819 } 3820 3821 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3822 if (!ic->commit_wq) { 3823 ti->error = "Cannot allocate workqueue"; 3824 r = -ENOMEM; 3825 goto bad; 3826 } 3827 INIT_WORK(&ic->commit_work, integrity_commit); 3828 3829 if (ic->mode == 'J' || ic->mode == 'B') { 3830 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3831 if (!ic->writer_wq) { 3832 ti->error = "Cannot allocate workqueue"; 3833 r = -ENOMEM; 3834 goto bad; 3835 } 3836 INIT_WORK(&ic->writer_work, integrity_writer); 3837 } 3838 3839 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3840 if (!ic->sb) { 3841 r = -ENOMEM; 3842 ti->error = "Cannot allocate superblock area"; 3843 goto bad; 3844 } 3845 3846 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3847 if (r) { 3848 ti->error = "Error reading superblock"; 3849 goto bad; 3850 } 3851 should_write_sb = false; 3852 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3853 if (ic->mode != 'R') { 3854 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3855 r = -EINVAL; 3856 ti->error = "The device is not initialized"; 3857 goto bad; 3858 } 3859 } 3860 3861 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3862 if (r) { 3863 ti->error = "Could not initialize superblock"; 3864 goto bad; 3865 } 3866 if (ic->mode != 'R') 3867 should_write_sb = true; 3868 } 3869 3870 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) { 3871 r = -EINVAL; 3872 ti->error = "Unknown version"; 3873 goto bad; 3874 } 3875 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3876 r = -EINVAL; 3877 ti->error = "Tag size doesn't match the information in superblock"; 3878 goto bad; 3879 } 3880 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3881 r = -EINVAL; 3882 ti->error = "Block size doesn't match the information in superblock"; 3883 goto bad; 3884 } 3885 if (!le32_to_cpu(ic->sb->journal_sections)) { 3886 r = -EINVAL; 3887 ti->error = "Corrupted superblock, journal_sections is 0"; 3888 goto bad; 3889 } 3890 /* make sure that ti->max_io_len doesn't overflow */ 3891 if (!ic->meta_dev) { 3892 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3893 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3894 r = -EINVAL; 3895 ti->error = "Invalid interleave_sectors in the superblock"; 3896 goto bad; 3897 } 3898 } else { 3899 if (ic->sb->log2_interleave_sectors) { 3900 r = -EINVAL; 3901 ti->error = "Invalid interleave_sectors in the superblock"; 3902 goto bad; 3903 } 3904 } 3905 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3906 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3907 /* test for overflow */ 3908 r = -EINVAL; 3909 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3910 goto bad; 3911 } 3912 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3913 r = -EINVAL; 3914 ti->error = "Journal mac mismatch"; 3915 goto bad; 3916 } 3917 3918 try_smaller_buffer: 3919 r = calculate_device_limits(ic); 3920 if (r) { 3921 if (ic->meta_dev) { 3922 if (ic->log2_buffer_sectors > 3) { 3923 ic->log2_buffer_sectors--; 3924 goto try_smaller_buffer; 3925 } 3926 } 3927 ti->error = "The device is too small"; 3928 goto bad; 3929 } 3930 3931 if (log2_sectors_per_bitmap_bit < 0) 3932 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 3933 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 3934 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 3935 3936 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 3937 if (bits_in_journal > UINT_MAX) 3938 bits_in_journal = UINT_MAX; 3939 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 3940 log2_sectors_per_bitmap_bit++; 3941 3942 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 3943 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3944 if (should_write_sb) { 3945 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3946 } 3947 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 3948 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 3949 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 3950 3951 if (!ic->meta_dev) 3952 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3953 3954 if (ti->len > ic->provided_data_sectors) { 3955 r = -EINVAL; 3956 ti->error = "Not enough provided sectors for requested mapping size"; 3957 goto bad; 3958 } 3959 3960 3961 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3962 threshold += 50; 3963 do_div(threshold, 100); 3964 ic->free_sectors_threshold = threshold; 3965 3966 DEBUG_print("initialized:\n"); 3967 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3968 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3969 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3970 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3971 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3972 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3973 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3974 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3975 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 3976 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3977 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3978 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3979 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3980 (unsigned long long)ic->provided_data_sectors); 3981 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3982 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal); 3983 3984 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 3985 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3986 ic->sb->recalc_sector = cpu_to_le64(0); 3987 } 3988 3989 if (ic->internal_hash) { 3990 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 3991 if (!ic->recalc_wq ) { 3992 ti->error = "Cannot allocate workqueue"; 3993 r = -ENOMEM; 3994 goto bad; 3995 } 3996 INIT_WORK(&ic->recalc_work, integrity_recalc); 3997 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 3998 if (!ic->recalc_buffer) { 3999 ti->error = "Cannot allocate buffer for recalculating"; 4000 r = -ENOMEM; 4001 goto bad; 4002 } 4003 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4004 ic->tag_size, GFP_KERNEL); 4005 if (!ic->recalc_tags) { 4006 ti->error = "Cannot allocate tags for recalculating"; 4007 r = -ENOMEM; 4008 goto bad; 4009 } 4010 } 4011 4012 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4013 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4014 if (IS_ERR(ic->bufio)) { 4015 r = PTR_ERR(ic->bufio); 4016 ti->error = "Cannot initialize dm-bufio"; 4017 ic->bufio = NULL; 4018 goto bad; 4019 } 4020 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4021 4022 if (ic->mode != 'R') { 4023 r = create_journal(ic, &ti->error); 4024 if (r) 4025 goto bad; 4026 4027 } 4028 4029 if (ic->mode == 'B') { 4030 unsigned i; 4031 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4032 4033 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4034 if (!ic->recalc_bitmap) { 4035 r = -ENOMEM; 4036 goto bad; 4037 } 4038 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4039 if (!ic->may_write_bitmap) { 4040 r = -ENOMEM; 4041 goto bad; 4042 } 4043 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4044 if (!ic->bbs) { 4045 r = -ENOMEM; 4046 goto bad; 4047 } 4048 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4049 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4050 struct bitmap_block_status *bbs = &ic->bbs[i]; 4051 unsigned sector, pl_index, pl_offset; 4052 4053 INIT_WORK(&bbs->work, bitmap_block_work); 4054 bbs->ic = ic; 4055 bbs->idx = i; 4056 bio_list_init(&bbs->bio_queue); 4057 spin_lock_init(&bbs->bio_queue_lock); 4058 4059 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4060 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4061 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4062 4063 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4064 } 4065 } 4066 4067 if (should_write_sb) { 4068 int r; 4069 4070 init_journal(ic, 0, ic->journal_sections, 0); 4071 r = dm_integrity_failed(ic); 4072 if (unlikely(r)) { 4073 ti->error = "Error initializing journal"; 4074 goto bad; 4075 } 4076 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4077 if (r) { 4078 ti->error = "Error initializing superblock"; 4079 goto bad; 4080 } 4081 ic->just_formatted = true; 4082 } 4083 4084 if (!ic->meta_dev) { 4085 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4086 if (r) 4087 goto bad; 4088 } 4089 if (ic->mode == 'B') { 4090 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4091 if (!max_io_len) 4092 max_io_len = 1U << 31; 4093 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4094 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4095 r = dm_set_target_max_io_len(ti, max_io_len); 4096 if (r) 4097 goto bad; 4098 } 4099 } 4100 4101 if (!ic->internal_hash) 4102 dm_integrity_set(ti, ic); 4103 4104 ti->num_flush_bios = 1; 4105 ti->flush_supported = true; 4106 4107 return 0; 4108 4109 bad: 4110 dm_integrity_dtr(ti); 4111 return r; 4112 } 4113 4114 static void dm_integrity_dtr(struct dm_target *ti) 4115 { 4116 struct dm_integrity_c *ic = ti->private; 4117 4118 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4119 BUG_ON(!list_empty(&ic->wait_list)); 4120 4121 if (ic->metadata_wq) 4122 destroy_workqueue(ic->metadata_wq); 4123 if (ic->wait_wq) 4124 destroy_workqueue(ic->wait_wq); 4125 if (ic->commit_wq) 4126 destroy_workqueue(ic->commit_wq); 4127 if (ic->writer_wq) 4128 destroy_workqueue(ic->writer_wq); 4129 if (ic->recalc_wq) 4130 destroy_workqueue(ic->recalc_wq); 4131 vfree(ic->recalc_buffer); 4132 kvfree(ic->recalc_tags); 4133 kvfree(ic->bbs); 4134 if (ic->bufio) 4135 dm_bufio_client_destroy(ic->bufio); 4136 mempool_exit(&ic->journal_io_mempool); 4137 if (ic->io) 4138 dm_io_client_destroy(ic->io); 4139 if (ic->dev) 4140 dm_put_device(ti, ic->dev); 4141 if (ic->meta_dev) 4142 dm_put_device(ti, ic->meta_dev); 4143 dm_integrity_free_page_list(ic->journal); 4144 dm_integrity_free_page_list(ic->journal_io); 4145 dm_integrity_free_page_list(ic->journal_xor); 4146 dm_integrity_free_page_list(ic->recalc_bitmap); 4147 dm_integrity_free_page_list(ic->may_write_bitmap); 4148 if (ic->journal_scatterlist) 4149 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4150 if (ic->journal_io_scatterlist) 4151 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4152 if (ic->sk_requests) { 4153 unsigned i; 4154 4155 for (i = 0; i < ic->journal_sections; i++) { 4156 struct skcipher_request *req = ic->sk_requests[i]; 4157 if (req) { 4158 kzfree(req->iv); 4159 skcipher_request_free(req); 4160 } 4161 } 4162 kvfree(ic->sk_requests); 4163 } 4164 kvfree(ic->journal_tree); 4165 if (ic->sb) 4166 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4167 4168 if (ic->internal_hash) 4169 crypto_free_shash(ic->internal_hash); 4170 free_alg(&ic->internal_hash_alg); 4171 4172 if (ic->journal_crypt) 4173 crypto_free_skcipher(ic->journal_crypt); 4174 free_alg(&ic->journal_crypt_alg); 4175 4176 if (ic->journal_mac) 4177 crypto_free_shash(ic->journal_mac); 4178 free_alg(&ic->journal_mac_alg); 4179 4180 kfree(ic); 4181 } 4182 4183 static struct target_type integrity_target = { 4184 .name = "integrity", 4185 .version = {1, 3, 0}, 4186 .module = THIS_MODULE, 4187 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4188 .ctr = dm_integrity_ctr, 4189 .dtr = dm_integrity_dtr, 4190 .map = dm_integrity_map, 4191 .postsuspend = dm_integrity_postsuspend, 4192 .resume = dm_integrity_resume, 4193 .status = dm_integrity_status, 4194 .iterate_devices = dm_integrity_iterate_devices, 4195 .io_hints = dm_integrity_io_hints, 4196 }; 4197 4198 static int __init dm_integrity_init(void) 4199 { 4200 int r; 4201 4202 journal_io_cache = kmem_cache_create("integrity_journal_io", 4203 sizeof(struct journal_io), 0, 0, NULL); 4204 if (!journal_io_cache) { 4205 DMERR("can't allocate journal io cache"); 4206 return -ENOMEM; 4207 } 4208 4209 r = dm_register_target(&integrity_target); 4210 4211 if (r < 0) 4212 DMERR("register failed %d", r); 4213 4214 return r; 4215 } 4216 4217 static void __exit dm_integrity_exit(void) 4218 { 4219 dm_unregister_target(&integrity_target); 4220 kmem_cache_destroy(journal_io_cache); 4221 } 4222 4223 module_init(dm_integrity_init); 4224 module_exit(dm_integrity_exit); 4225 4226 MODULE_AUTHOR("Milan Broz"); 4227 MODULE_AUTHOR("Mikulas Patocka"); 4228 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4229 MODULE_LICENSE("GPL"); 4230