xref: /openbmc/linux/drivers/md/dm-integrity.c (revision fb8d6c8d)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <linux/reboot.h>
19 #include <crypto/hash.h>
20 #include <crypto/skcipher.h>
21 #include <linux/async_tx.h>
22 #include <linux/dm-bufio.h>
23 
24 #define DM_MSG_PREFIX "integrity"
25 
26 #define DEFAULT_INTERLEAVE_SECTORS	32768
27 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
28 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
29 #define DEFAULT_BUFFER_SECTORS		128
30 #define DEFAULT_JOURNAL_WATERMARK	50
31 #define DEFAULT_SYNC_MSEC		10000
32 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
33 #define MIN_LOG2_INTERLEAVE_SECTORS	3
34 #define MAX_LOG2_INTERLEAVE_SECTORS	31
35 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
36 #define RECALC_SECTORS			8192
37 #define RECALC_WRITE_SUPER		16
38 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
39 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
40 
41 /*
42  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
43  * so it should not be enabled in the official kernel
44  */
45 //#define DEBUG_PRINT
46 //#define INTERNAL_VERIFY
47 
48 /*
49  * On disk structures
50  */
51 
52 #define SB_MAGIC			"integrt"
53 #define SB_VERSION_1			1
54 #define SB_VERSION_2			2
55 #define SB_VERSION_3			3
56 #define SB_SECTORS			8
57 #define MAX_SECTORS_PER_BLOCK		8
58 
59 struct superblock {
60 	__u8 magic[8];
61 	__u8 version;
62 	__u8 log2_interleave_sectors;
63 	__u16 integrity_tag_size;
64 	__u32 journal_sections;
65 	__u64 provided_data_sectors;	/* userspace uses this value */
66 	__u32 flags;
67 	__u8 log2_sectors_per_block;
68 	__u8 log2_blocks_per_bitmap_bit;
69 	__u8 pad[2];
70 	__u64 recalc_sector;
71 };
72 
73 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
74 #define SB_FLAG_RECALCULATING		0x2
75 #define SB_FLAG_DIRTY_BITMAP		0x4
76 
77 #define	JOURNAL_ENTRY_ROUNDUP		8
78 
79 typedef __u64 commit_id_t;
80 #define JOURNAL_MAC_PER_SECTOR		8
81 
82 struct journal_entry {
83 	union {
84 		struct {
85 			__u32 sector_lo;
86 			__u32 sector_hi;
87 		} s;
88 		__u64 sector;
89 	} u;
90 	commit_id_t last_bytes[0];
91 	/* __u8 tag[0]; */
92 };
93 
94 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
95 
96 #if BITS_PER_LONG == 64
97 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
98 #else
99 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
100 #endif
101 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
102 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
103 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
104 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
105 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
106 
107 #define JOURNAL_BLOCK_SECTORS		8
108 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
109 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
110 
111 struct journal_sector {
112 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
113 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
114 	commit_id_t commit_id;
115 };
116 
117 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
118 
119 #define METADATA_PADDING_SECTORS	8
120 
121 #define N_COMMIT_IDS			4
122 
123 static unsigned char prev_commit_seq(unsigned char seq)
124 {
125 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
126 }
127 
128 static unsigned char next_commit_seq(unsigned char seq)
129 {
130 	return (seq + 1) % N_COMMIT_IDS;
131 }
132 
133 /*
134  * In-memory structures
135  */
136 
137 struct journal_node {
138 	struct rb_node node;
139 	sector_t sector;
140 };
141 
142 struct alg_spec {
143 	char *alg_string;
144 	char *key_string;
145 	__u8 *key;
146 	unsigned key_size;
147 };
148 
149 struct dm_integrity_c {
150 	struct dm_dev *dev;
151 	struct dm_dev *meta_dev;
152 	unsigned tag_size;
153 	__s8 log2_tag_size;
154 	sector_t start;
155 	mempool_t journal_io_mempool;
156 	struct dm_io_client *io;
157 	struct dm_bufio_client *bufio;
158 	struct workqueue_struct *metadata_wq;
159 	struct superblock *sb;
160 	unsigned journal_pages;
161 	unsigned n_bitmap_blocks;
162 
163 	struct page_list *journal;
164 	struct page_list *journal_io;
165 	struct page_list *journal_xor;
166 	struct page_list *recalc_bitmap;
167 	struct page_list *may_write_bitmap;
168 	struct bitmap_block_status *bbs;
169 	unsigned bitmap_flush_interval;
170 	int synchronous_mode;
171 	struct bio_list synchronous_bios;
172 	struct delayed_work bitmap_flush_work;
173 
174 	struct crypto_skcipher *journal_crypt;
175 	struct scatterlist **journal_scatterlist;
176 	struct scatterlist **journal_io_scatterlist;
177 	struct skcipher_request **sk_requests;
178 
179 	struct crypto_shash *journal_mac;
180 
181 	struct journal_node *journal_tree;
182 	struct rb_root journal_tree_root;
183 
184 	sector_t provided_data_sectors;
185 
186 	unsigned short journal_entry_size;
187 	unsigned char journal_entries_per_sector;
188 	unsigned char journal_section_entries;
189 	unsigned short journal_section_sectors;
190 	unsigned journal_sections;
191 	unsigned journal_entries;
192 	sector_t data_device_sectors;
193 	sector_t meta_device_sectors;
194 	unsigned initial_sectors;
195 	unsigned metadata_run;
196 	__s8 log2_metadata_run;
197 	__u8 log2_buffer_sectors;
198 	__u8 sectors_per_block;
199 	__u8 log2_blocks_per_bitmap_bit;
200 
201 	unsigned char mode;
202 	int suspending;
203 
204 	int failed;
205 
206 	struct crypto_shash *internal_hash;
207 
208 	/* these variables are locked with endio_wait.lock */
209 	struct rb_root in_progress;
210 	struct list_head wait_list;
211 	wait_queue_head_t endio_wait;
212 	struct workqueue_struct *wait_wq;
213 
214 	unsigned char commit_seq;
215 	commit_id_t commit_ids[N_COMMIT_IDS];
216 
217 	unsigned committed_section;
218 	unsigned n_committed_sections;
219 
220 	unsigned uncommitted_section;
221 	unsigned n_uncommitted_sections;
222 
223 	unsigned free_section;
224 	unsigned char free_section_entry;
225 	unsigned free_sectors;
226 
227 	unsigned free_sectors_threshold;
228 
229 	struct workqueue_struct *commit_wq;
230 	struct work_struct commit_work;
231 
232 	struct workqueue_struct *writer_wq;
233 	struct work_struct writer_work;
234 
235 	struct workqueue_struct *recalc_wq;
236 	struct work_struct recalc_work;
237 	u8 *recalc_buffer;
238 	u8 *recalc_tags;
239 
240 	struct bio_list flush_bio_list;
241 
242 	unsigned long autocommit_jiffies;
243 	struct timer_list autocommit_timer;
244 	unsigned autocommit_msec;
245 
246 	wait_queue_head_t copy_to_journal_wait;
247 
248 	struct completion crypto_backoff;
249 
250 	bool journal_uptodate;
251 	bool just_formatted;
252 	bool recalculate_flag;
253 
254 	struct alg_spec internal_hash_alg;
255 	struct alg_spec journal_crypt_alg;
256 	struct alg_spec journal_mac_alg;
257 
258 	atomic64_t number_of_mismatches;
259 
260 	struct notifier_block reboot_notifier;
261 };
262 
263 struct dm_integrity_range {
264 	sector_t logical_sector;
265 	sector_t n_sectors;
266 	bool waiting;
267 	union {
268 		struct rb_node node;
269 		struct {
270 			struct task_struct *task;
271 			struct list_head wait_entry;
272 		};
273 	};
274 };
275 
276 struct dm_integrity_io {
277 	struct work_struct work;
278 
279 	struct dm_integrity_c *ic;
280 	bool write;
281 	bool fua;
282 
283 	struct dm_integrity_range range;
284 
285 	sector_t metadata_block;
286 	unsigned metadata_offset;
287 
288 	atomic_t in_flight;
289 	blk_status_t bi_status;
290 
291 	struct completion *completion;
292 
293 	struct gendisk *orig_bi_disk;
294 	u8 orig_bi_partno;
295 	bio_end_io_t *orig_bi_end_io;
296 	struct bio_integrity_payload *orig_bi_integrity;
297 	struct bvec_iter orig_bi_iter;
298 };
299 
300 struct journal_completion {
301 	struct dm_integrity_c *ic;
302 	atomic_t in_flight;
303 	struct completion comp;
304 };
305 
306 struct journal_io {
307 	struct dm_integrity_range range;
308 	struct journal_completion *comp;
309 };
310 
311 struct bitmap_block_status {
312 	struct work_struct work;
313 	struct dm_integrity_c *ic;
314 	unsigned idx;
315 	unsigned long *bitmap;
316 	struct bio_list bio_queue;
317 	spinlock_t bio_queue_lock;
318 
319 };
320 
321 static struct kmem_cache *journal_io_cache;
322 
323 #define JOURNAL_IO_MEMPOOL	32
324 
325 #ifdef DEBUG_PRINT
326 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
327 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
328 {
329 	va_list args;
330 	va_start(args, msg);
331 	vprintk(msg, args);
332 	va_end(args);
333 	if (len)
334 		pr_cont(":");
335 	while (len) {
336 		pr_cont(" %02x", *bytes);
337 		bytes++;
338 		len--;
339 	}
340 	pr_cont("\n");
341 }
342 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
343 #else
344 #define DEBUG_print(x, ...)			do { } while (0)
345 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
346 #endif
347 
348 static void dm_integrity_prepare(struct request *rq)
349 {
350 }
351 
352 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
353 {
354 }
355 
356 /*
357  * DM Integrity profile, protection is performed layer above (dm-crypt)
358  */
359 static const struct blk_integrity_profile dm_integrity_profile = {
360 	.name			= "DM-DIF-EXT-TAG",
361 	.generate_fn		= NULL,
362 	.verify_fn		= NULL,
363 	.prepare_fn		= dm_integrity_prepare,
364 	.complete_fn		= dm_integrity_complete,
365 };
366 
367 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
368 static void integrity_bio_wait(struct work_struct *w);
369 static void dm_integrity_dtr(struct dm_target *ti);
370 
371 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
372 {
373 	if (err == -EILSEQ)
374 		atomic64_inc(&ic->number_of_mismatches);
375 	if (!cmpxchg(&ic->failed, 0, err))
376 		DMERR("Error on %s: %d", msg, err);
377 }
378 
379 static int dm_integrity_failed(struct dm_integrity_c *ic)
380 {
381 	return READ_ONCE(ic->failed);
382 }
383 
384 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
385 					  unsigned j, unsigned char seq)
386 {
387 	/*
388 	 * Xor the number with section and sector, so that if a piece of
389 	 * journal is written at wrong place, it is detected.
390 	 */
391 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
392 }
393 
394 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
395 				sector_t *area, sector_t *offset)
396 {
397 	if (!ic->meta_dev) {
398 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
399 		*area = data_sector >> log2_interleave_sectors;
400 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
401 	} else {
402 		*area = 0;
403 		*offset = data_sector;
404 	}
405 }
406 
407 #define sector_to_block(ic, n)						\
408 do {									\
409 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
410 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
411 } while (0)
412 
413 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
414 					    sector_t offset, unsigned *metadata_offset)
415 {
416 	__u64 ms;
417 	unsigned mo;
418 
419 	ms = area << ic->sb->log2_interleave_sectors;
420 	if (likely(ic->log2_metadata_run >= 0))
421 		ms += area << ic->log2_metadata_run;
422 	else
423 		ms += area * ic->metadata_run;
424 	ms >>= ic->log2_buffer_sectors;
425 
426 	sector_to_block(ic, offset);
427 
428 	if (likely(ic->log2_tag_size >= 0)) {
429 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
430 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
431 	} else {
432 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
433 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
434 	}
435 	*metadata_offset = mo;
436 	return ms;
437 }
438 
439 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
440 {
441 	sector_t result;
442 
443 	if (ic->meta_dev)
444 		return offset;
445 
446 	result = area << ic->sb->log2_interleave_sectors;
447 	if (likely(ic->log2_metadata_run >= 0))
448 		result += (area + 1) << ic->log2_metadata_run;
449 	else
450 		result += (area + 1) * ic->metadata_run;
451 
452 	result += (sector_t)ic->initial_sectors + offset;
453 	result += ic->start;
454 
455 	return result;
456 }
457 
458 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
459 {
460 	if (unlikely(*sec_ptr >= ic->journal_sections))
461 		*sec_ptr -= ic->journal_sections;
462 }
463 
464 static void sb_set_version(struct dm_integrity_c *ic)
465 {
466 	if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
467 		ic->sb->version = SB_VERSION_3;
468 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
469 		ic->sb->version = SB_VERSION_2;
470 	else
471 		ic->sb->version = SB_VERSION_1;
472 }
473 
474 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
475 {
476 	struct dm_io_request io_req;
477 	struct dm_io_region io_loc;
478 
479 	io_req.bi_op = op;
480 	io_req.bi_op_flags = op_flags;
481 	io_req.mem.type = DM_IO_KMEM;
482 	io_req.mem.ptr.addr = ic->sb;
483 	io_req.notify.fn = NULL;
484 	io_req.client = ic->io;
485 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
486 	io_loc.sector = ic->start;
487 	io_loc.count = SB_SECTORS;
488 
489 	if (op == REQ_OP_WRITE)
490 		sb_set_version(ic);
491 
492 	return dm_io(&io_req, 1, &io_loc, NULL);
493 }
494 
495 #define BITMAP_OP_TEST_ALL_SET		0
496 #define BITMAP_OP_TEST_ALL_CLEAR	1
497 #define BITMAP_OP_SET			2
498 #define BITMAP_OP_CLEAR			3
499 
500 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
501 			    sector_t sector, sector_t n_sectors, int mode)
502 {
503 	unsigned long bit, end_bit, this_end_bit, page, end_page;
504 	unsigned long *data;
505 
506 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
507 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
508 			(unsigned long long)sector,
509 			(unsigned long long)n_sectors,
510 			ic->sb->log2_sectors_per_block,
511 			ic->log2_blocks_per_bitmap_bit,
512 			mode);
513 		BUG();
514 	}
515 
516 	if (unlikely(!n_sectors))
517 		return true;
518 
519 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
520 	end_bit = (sector + n_sectors - 1) >>
521 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
522 
523 	page = bit / (PAGE_SIZE * 8);
524 	bit %= PAGE_SIZE * 8;
525 
526 	end_page = end_bit / (PAGE_SIZE * 8);
527 	end_bit %= PAGE_SIZE * 8;
528 
529 repeat:
530 	if (page < end_page) {
531 		this_end_bit = PAGE_SIZE * 8 - 1;
532 	} else {
533 		this_end_bit = end_bit;
534 	}
535 
536 	data = lowmem_page_address(bitmap[page].page);
537 
538 	if (mode == BITMAP_OP_TEST_ALL_SET) {
539 		while (bit <= this_end_bit) {
540 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
541 				do {
542 					if (data[bit / BITS_PER_LONG] != -1)
543 						return false;
544 					bit += BITS_PER_LONG;
545 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
546 				continue;
547 			}
548 			if (!test_bit(bit, data))
549 				return false;
550 			bit++;
551 		}
552 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
553 		while (bit <= this_end_bit) {
554 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
555 				do {
556 					if (data[bit / BITS_PER_LONG] != 0)
557 						return false;
558 					bit += BITS_PER_LONG;
559 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
560 				continue;
561 			}
562 			if (test_bit(bit, data))
563 				return false;
564 			bit++;
565 		}
566 	} else if (mode == BITMAP_OP_SET) {
567 		while (bit <= this_end_bit) {
568 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
569 				do {
570 					data[bit / BITS_PER_LONG] = -1;
571 					bit += BITS_PER_LONG;
572 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
573 				continue;
574 			}
575 			__set_bit(bit, data);
576 			bit++;
577 		}
578 	} else if (mode == BITMAP_OP_CLEAR) {
579 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
580 			clear_page(data);
581 		else while (bit <= this_end_bit) {
582 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
583 				do {
584 					data[bit / BITS_PER_LONG] = 0;
585 					bit += BITS_PER_LONG;
586 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
587 				continue;
588 			}
589 			__clear_bit(bit, data);
590 			bit++;
591 		}
592 	} else {
593 		BUG();
594 	}
595 
596 	if (unlikely(page < end_page)) {
597 		bit = 0;
598 		page++;
599 		goto repeat;
600 	}
601 
602 	return true;
603 }
604 
605 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
606 {
607 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
608 	unsigned i;
609 
610 	for (i = 0; i < n_bitmap_pages; i++) {
611 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
612 		unsigned long *src_data = lowmem_page_address(src[i].page);
613 		copy_page(dst_data, src_data);
614 	}
615 }
616 
617 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
618 {
619 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
620 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
621 
622 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
623 	return &ic->bbs[bitmap_block];
624 }
625 
626 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
627 				 bool e, const char *function)
628 {
629 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
630 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
631 
632 	if (unlikely(section >= ic->journal_sections) ||
633 	    unlikely(offset >= limit)) {
634 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
635 		       function, section, offset, ic->journal_sections, limit);
636 		BUG();
637 	}
638 #endif
639 }
640 
641 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
642 			       unsigned *pl_index, unsigned *pl_offset)
643 {
644 	unsigned sector;
645 
646 	access_journal_check(ic, section, offset, false, "page_list_location");
647 
648 	sector = section * ic->journal_section_sectors + offset;
649 
650 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
651 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
652 }
653 
654 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
655 					       unsigned section, unsigned offset, unsigned *n_sectors)
656 {
657 	unsigned pl_index, pl_offset;
658 	char *va;
659 
660 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
661 
662 	if (n_sectors)
663 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
664 
665 	va = lowmem_page_address(pl[pl_index].page);
666 
667 	return (struct journal_sector *)(va + pl_offset);
668 }
669 
670 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
671 {
672 	return access_page_list(ic, ic->journal, section, offset, NULL);
673 }
674 
675 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
676 {
677 	unsigned rel_sector, offset;
678 	struct journal_sector *js;
679 
680 	access_journal_check(ic, section, n, true, "access_journal_entry");
681 
682 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
683 	offset = n / JOURNAL_BLOCK_SECTORS;
684 
685 	js = access_journal(ic, section, rel_sector);
686 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
687 }
688 
689 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
690 {
691 	n <<= ic->sb->log2_sectors_per_block;
692 
693 	n += JOURNAL_BLOCK_SECTORS;
694 
695 	access_journal_check(ic, section, n, false, "access_journal_data");
696 
697 	return access_journal(ic, section, n);
698 }
699 
700 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
701 {
702 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
703 	int r;
704 	unsigned j, size;
705 
706 	desc->tfm = ic->journal_mac;
707 
708 	r = crypto_shash_init(desc);
709 	if (unlikely(r)) {
710 		dm_integrity_io_error(ic, "crypto_shash_init", r);
711 		goto err;
712 	}
713 
714 	for (j = 0; j < ic->journal_section_entries; j++) {
715 		struct journal_entry *je = access_journal_entry(ic, section, j);
716 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
717 		if (unlikely(r)) {
718 			dm_integrity_io_error(ic, "crypto_shash_update", r);
719 			goto err;
720 		}
721 	}
722 
723 	size = crypto_shash_digestsize(ic->journal_mac);
724 
725 	if (likely(size <= JOURNAL_MAC_SIZE)) {
726 		r = crypto_shash_final(desc, result);
727 		if (unlikely(r)) {
728 			dm_integrity_io_error(ic, "crypto_shash_final", r);
729 			goto err;
730 		}
731 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
732 	} else {
733 		__u8 digest[HASH_MAX_DIGESTSIZE];
734 
735 		if (WARN_ON(size > sizeof(digest))) {
736 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
737 			goto err;
738 		}
739 		r = crypto_shash_final(desc, digest);
740 		if (unlikely(r)) {
741 			dm_integrity_io_error(ic, "crypto_shash_final", r);
742 			goto err;
743 		}
744 		memcpy(result, digest, JOURNAL_MAC_SIZE);
745 	}
746 
747 	return;
748 err:
749 	memset(result, 0, JOURNAL_MAC_SIZE);
750 }
751 
752 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
753 {
754 	__u8 result[JOURNAL_MAC_SIZE];
755 	unsigned j;
756 
757 	if (!ic->journal_mac)
758 		return;
759 
760 	section_mac(ic, section, result);
761 
762 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
763 		struct journal_sector *js = access_journal(ic, section, j);
764 
765 		if (likely(wr))
766 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
767 		else {
768 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
769 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
770 		}
771 	}
772 }
773 
774 static void complete_journal_op(void *context)
775 {
776 	struct journal_completion *comp = context;
777 	BUG_ON(!atomic_read(&comp->in_flight));
778 	if (likely(atomic_dec_and_test(&comp->in_flight)))
779 		complete(&comp->comp);
780 }
781 
782 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
783 			unsigned n_sections, struct journal_completion *comp)
784 {
785 	struct async_submit_ctl submit;
786 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
787 	unsigned pl_index, pl_offset, section_index;
788 	struct page_list *source_pl, *target_pl;
789 
790 	if (likely(encrypt)) {
791 		source_pl = ic->journal;
792 		target_pl = ic->journal_io;
793 	} else {
794 		source_pl = ic->journal_io;
795 		target_pl = ic->journal;
796 	}
797 
798 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
799 
800 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
801 
802 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
803 
804 	section_index = pl_index;
805 
806 	do {
807 		size_t this_step;
808 		struct page *src_pages[2];
809 		struct page *dst_page;
810 
811 		while (unlikely(pl_index == section_index)) {
812 			unsigned dummy;
813 			if (likely(encrypt))
814 				rw_section_mac(ic, section, true);
815 			section++;
816 			n_sections--;
817 			if (!n_sections)
818 				break;
819 			page_list_location(ic, section, 0, &section_index, &dummy);
820 		}
821 
822 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
823 		dst_page = target_pl[pl_index].page;
824 		src_pages[0] = source_pl[pl_index].page;
825 		src_pages[1] = ic->journal_xor[pl_index].page;
826 
827 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
828 
829 		pl_index++;
830 		pl_offset = 0;
831 		n_bytes -= this_step;
832 	} while (n_bytes);
833 
834 	BUG_ON(n_sections);
835 
836 	async_tx_issue_pending_all();
837 }
838 
839 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
840 {
841 	struct journal_completion *comp = req->data;
842 	if (unlikely(err)) {
843 		if (likely(err == -EINPROGRESS)) {
844 			complete(&comp->ic->crypto_backoff);
845 			return;
846 		}
847 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
848 	}
849 	complete_journal_op(comp);
850 }
851 
852 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
853 {
854 	int r;
855 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
856 				      complete_journal_encrypt, comp);
857 	if (likely(encrypt))
858 		r = crypto_skcipher_encrypt(req);
859 	else
860 		r = crypto_skcipher_decrypt(req);
861 	if (likely(!r))
862 		return false;
863 	if (likely(r == -EINPROGRESS))
864 		return true;
865 	if (likely(r == -EBUSY)) {
866 		wait_for_completion(&comp->ic->crypto_backoff);
867 		reinit_completion(&comp->ic->crypto_backoff);
868 		return true;
869 	}
870 	dm_integrity_io_error(comp->ic, "encrypt", r);
871 	return false;
872 }
873 
874 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
875 			  unsigned n_sections, struct journal_completion *comp)
876 {
877 	struct scatterlist **source_sg;
878 	struct scatterlist **target_sg;
879 
880 	atomic_add(2, &comp->in_flight);
881 
882 	if (likely(encrypt)) {
883 		source_sg = ic->journal_scatterlist;
884 		target_sg = ic->journal_io_scatterlist;
885 	} else {
886 		source_sg = ic->journal_io_scatterlist;
887 		target_sg = ic->journal_scatterlist;
888 	}
889 
890 	do {
891 		struct skcipher_request *req;
892 		unsigned ivsize;
893 		char *iv;
894 
895 		if (likely(encrypt))
896 			rw_section_mac(ic, section, true);
897 
898 		req = ic->sk_requests[section];
899 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
900 		iv = req->iv;
901 
902 		memcpy(iv, iv + ivsize, ivsize);
903 
904 		req->src = source_sg[section];
905 		req->dst = target_sg[section];
906 
907 		if (unlikely(do_crypt(encrypt, req, comp)))
908 			atomic_inc(&comp->in_flight);
909 
910 		section++;
911 		n_sections--;
912 	} while (n_sections);
913 
914 	atomic_dec(&comp->in_flight);
915 	complete_journal_op(comp);
916 }
917 
918 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
919 			    unsigned n_sections, struct journal_completion *comp)
920 {
921 	if (ic->journal_xor)
922 		return xor_journal(ic, encrypt, section, n_sections, comp);
923 	else
924 		return crypt_journal(ic, encrypt, section, n_sections, comp);
925 }
926 
927 static void complete_journal_io(unsigned long error, void *context)
928 {
929 	struct journal_completion *comp = context;
930 	if (unlikely(error != 0))
931 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
932 	complete_journal_op(comp);
933 }
934 
935 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
936 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
937 {
938 	struct dm_io_request io_req;
939 	struct dm_io_region io_loc;
940 	unsigned pl_index, pl_offset;
941 	int r;
942 
943 	if (unlikely(dm_integrity_failed(ic))) {
944 		if (comp)
945 			complete_journal_io(-1UL, comp);
946 		return;
947 	}
948 
949 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
950 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
951 
952 	io_req.bi_op = op;
953 	io_req.bi_op_flags = op_flags;
954 	io_req.mem.type = DM_IO_PAGE_LIST;
955 	if (ic->journal_io)
956 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
957 	else
958 		io_req.mem.ptr.pl = &ic->journal[pl_index];
959 	io_req.mem.offset = pl_offset;
960 	if (likely(comp != NULL)) {
961 		io_req.notify.fn = complete_journal_io;
962 		io_req.notify.context = comp;
963 	} else {
964 		io_req.notify.fn = NULL;
965 	}
966 	io_req.client = ic->io;
967 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
968 	io_loc.sector = ic->start + SB_SECTORS + sector;
969 	io_loc.count = n_sectors;
970 
971 	r = dm_io(&io_req, 1, &io_loc, NULL);
972 	if (unlikely(r)) {
973 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
974 		if (comp) {
975 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
976 			complete_journal_io(-1UL, comp);
977 		}
978 	}
979 }
980 
981 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
982 		       unsigned n_sections, struct journal_completion *comp)
983 {
984 	unsigned sector, n_sectors;
985 
986 	sector = section * ic->journal_section_sectors;
987 	n_sectors = n_sections * ic->journal_section_sectors;
988 
989 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
990 }
991 
992 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
993 {
994 	struct journal_completion io_comp;
995 	struct journal_completion crypt_comp_1;
996 	struct journal_completion crypt_comp_2;
997 	unsigned i;
998 
999 	io_comp.ic = ic;
1000 	init_completion(&io_comp.comp);
1001 
1002 	if (commit_start + commit_sections <= ic->journal_sections) {
1003 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1004 		if (ic->journal_io) {
1005 			crypt_comp_1.ic = ic;
1006 			init_completion(&crypt_comp_1.comp);
1007 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1008 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1009 			wait_for_completion_io(&crypt_comp_1.comp);
1010 		} else {
1011 			for (i = 0; i < commit_sections; i++)
1012 				rw_section_mac(ic, commit_start + i, true);
1013 		}
1014 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1015 			   commit_sections, &io_comp);
1016 	} else {
1017 		unsigned to_end;
1018 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1019 		to_end = ic->journal_sections - commit_start;
1020 		if (ic->journal_io) {
1021 			crypt_comp_1.ic = ic;
1022 			init_completion(&crypt_comp_1.comp);
1023 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1024 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1025 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1026 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1027 				reinit_completion(&crypt_comp_1.comp);
1028 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1029 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1030 				wait_for_completion_io(&crypt_comp_1.comp);
1031 			} else {
1032 				crypt_comp_2.ic = ic;
1033 				init_completion(&crypt_comp_2.comp);
1034 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1035 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1036 				wait_for_completion_io(&crypt_comp_1.comp);
1037 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1038 				wait_for_completion_io(&crypt_comp_2.comp);
1039 			}
1040 		} else {
1041 			for (i = 0; i < to_end; i++)
1042 				rw_section_mac(ic, commit_start + i, true);
1043 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1044 			for (i = 0; i < commit_sections - to_end; i++)
1045 				rw_section_mac(ic, i, true);
1046 		}
1047 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1048 	}
1049 
1050 	wait_for_completion_io(&io_comp.comp);
1051 }
1052 
1053 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1054 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1055 {
1056 	struct dm_io_request io_req;
1057 	struct dm_io_region io_loc;
1058 	int r;
1059 	unsigned sector, pl_index, pl_offset;
1060 
1061 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1062 
1063 	if (unlikely(dm_integrity_failed(ic))) {
1064 		fn(-1UL, data);
1065 		return;
1066 	}
1067 
1068 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1069 
1070 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1071 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1072 
1073 	io_req.bi_op = REQ_OP_WRITE;
1074 	io_req.bi_op_flags = 0;
1075 	io_req.mem.type = DM_IO_PAGE_LIST;
1076 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1077 	io_req.mem.offset = pl_offset;
1078 	io_req.notify.fn = fn;
1079 	io_req.notify.context = data;
1080 	io_req.client = ic->io;
1081 	io_loc.bdev = ic->dev->bdev;
1082 	io_loc.sector = target;
1083 	io_loc.count = n_sectors;
1084 
1085 	r = dm_io(&io_req, 1, &io_loc, NULL);
1086 	if (unlikely(r)) {
1087 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1088 		fn(-1UL, data);
1089 	}
1090 }
1091 
1092 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1093 {
1094 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1095 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1096 }
1097 
1098 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1099 {
1100 	struct rb_node **n = &ic->in_progress.rb_node;
1101 	struct rb_node *parent;
1102 
1103 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1104 
1105 	if (likely(check_waiting)) {
1106 		struct dm_integrity_range *range;
1107 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1108 			if (unlikely(ranges_overlap(range, new_range)))
1109 				return false;
1110 		}
1111 	}
1112 
1113 	parent = NULL;
1114 
1115 	while (*n) {
1116 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1117 
1118 		parent = *n;
1119 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1120 			n = &range->node.rb_left;
1121 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1122 			n = &range->node.rb_right;
1123 		} else {
1124 			return false;
1125 		}
1126 	}
1127 
1128 	rb_link_node(&new_range->node, parent, n);
1129 	rb_insert_color(&new_range->node, &ic->in_progress);
1130 
1131 	return true;
1132 }
1133 
1134 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1135 {
1136 	rb_erase(&range->node, &ic->in_progress);
1137 	while (unlikely(!list_empty(&ic->wait_list))) {
1138 		struct dm_integrity_range *last_range =
1139 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1140 		struct task_struct *last_range_task;
1141 		last_range_task = last_range->task;
1142 		list_del(&last_range->wait_entry);
1143 		if (!add_new_range(ic, last_range, false)) {
1144 			last_range->task = last_range_task;
1145 			list_add(&last_range->wait_entry, &ic->wait_list);
1146 			break;
1147 		}
1148 		last_range->waiting = false;
1149 		wake_up_process(last_range_task);
1150 	}
1151 }
1152 
1153 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1154 {
1155 	unsigned long flags;
1156 
1157 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1158 	remove_range_unlocked(ic, range);
1159 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1160 }
1161 
1162 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1163 {
1164 	new_range->waiting = true;
1165 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1166 	new_range->task = current;
1167 	do {
1168 		__set_current_state(TASK_UNINTERRUPTIBLE);
1169 		spin_unlock_irq(&ic->endio_wait.lock);
1170 		io_schedule();
1171 		spin_lock_irq(&ic->endio_wait.lock);
1172 	} while (unlikely(new_range->waiting));
1173 }
1174 
1175 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1176 {
1177 	if (unlikely(!add_new_range(ic, new_range, true)))
1178 		wait_and_add_new_range(ic, new_range);
1179 }
1180 
1181 static void init_journal_node(struct journal_node *node)
1182 {
1183 	RB_CLEAR_NODE(&node->node);
1184 	node->sector = (sector_t)-1;
1185 }
1186 
1187 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1188 {
1189 	struct rb_node **link;
1190 	struct rb_node *parent;
1191 
1192 	node->sector = sector;
1193 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1194 
1195 	link = &ic->journal_tree_root.rb_node;
1196 	parent = NULL;
1197 
1198 	while (*link) {
1199 		struct journal_node *j;
1200 		parent = *link;
1201 		j = container_of(parent, struct journal_node, node);
1202 		if (sector < j->sector)
1203 			link = &j->node.rb_left;
1204 		else
1205 			link = &j->node.rb_right;
1206 	}
1207 
1208 	rb_link_node(&node->node, parent, link);
1209 	rb_insert_color(&node->node, &ic->journal_tree_root);
1210 }
1211 
1212 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1213 {
1214 	BUG_ON(RB_EMPTY_NODE(&node->node));
1215 	rb_erase(&node->node, &ic->journal_tree_root);
1216 	init_journal_node(node);
1217 }
1218 
1219 #define NOT_FOUND	(-1U)
1220 
1221 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1222 {
1223 	struct rb_node *n = ic->journal_tree_root.rb_node;
1224 	unsigned found = NOT_FOUND;
1225 	*next_sector = (sector_t)-1;
1226 	while (n) {
1227 		struct journal_node *j = container_of(n, struct journal_node, node);
1228 		if (sector == j->sector) {
1229 			found = j - ic->journal_tree;
1230 		}
1231 		if (sector < j->sector) {
1232 			*next_sector = j->sector;
1233 			n = j->node.rb_left;
1234 		} else {
1235 			n = j->node.rb_right;
1236 		}
1237 	}
1238 
1239 	return found;
1240 }
1241 
1242 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1243 {
1244 	struct journal_node *node, *next_node;
1245 	struct rb_node *next;
1246 
1247 	if (unlikely(pos >= ic->journal_entries))
1248 		return false;
1249 	node = &ic->journal_tree[pos];
1250 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1251 		return false;
1252 	if (unlikely(node->sector != sector))
1253 		return false;
1254 
1255 	next = rb_next(&node->node);
1256 	if (unlikely(!next))
1257 		return true;
1258 
1259 	next_node = container_of(next, struct journal_node, node);
1260 	return next_node->sector != sector;
1261 }
1262 
1263 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1264 {
1265 	struct rb_node *next;
1266 	struct journal_node *next_node;
1267 	unsigned next_section;
1268 
1269 	BUG_ON(RB_EMPTY_NODE(&node->node));
1270 
1271 	next = rb_next(&node->node);
1272 	if (unlikely(!next))
1273 		return false;
1274 
1275 	next_node = container_of(next, struct journal_node, node);
1276 
1277 	if (next_node->sector != node->sector)
1278 		return false;
1279 
1280 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1281 	if (next_section >= ic->committed_section &&
1282 	    next_section < ic->committed_section + ic->n_committed_sections)
1283 		return true;
1284 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1285 		return true;
1286 
1287 	return false;
1288 }
1289 
1290 #define TAG_READ	0
1291 #define TAG_WRITE	1
1292 #define TAG_CMP		2
1293 
1294 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1295 			       unsigned *metadata_offset, unsigned total_size, int op)
1296 {
1297 	do {
1298 		unsigned char *data, *dp;
1299 		struct dm_buffer *b;
1300 		unsigned to_copy;
1301 		int r;
1302 
1303 		r = dm_integrity_failed(ic);
1304 		if (unlikely(r))
1305 			return r;
1306 
1307 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1308 		if (IS_ERR(data))
1309 			return PTR_ERR(data);
1310 
1311 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1312 		dp = data + *metadata_offset;
1313 		if (op == TAG_READ) {
1314 			memcpy(tag, dp, to_copy);
1315 		} else if (op == TAG_WRITE) {
1316 			memcpy(dp, tag, to_copy);
1317 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1318 		} else  {
1319 			/* e.g.: op == TAG_CMP */
1320 			if (unlikely(memcmp(dp, tag, to_copy))) {
1321 				unsigned i;
1322 
1323 				for (i = 0; i < to_copy; i++) {
1324 					if (dp[i] != tag[i])
1325 						break;
1326 					total_size--;
1327 				}
1328 				dm_bufio_release(b);
1329 				return total_size;
1330 			}
1331 		}
1332 		dm_bufio_release(b);
1333 
1334 		tag += to_copy;
1335 		*metadata_offset += to_copy;
1336 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1337 			(*metadata_block)++;
1338 			*metadata_offset = 0;
1339 		}
1340 		total_size -= to_copy;
1341 	} while (unlikely(total_size));
1342 
1343 	return 0;
1344 }
1345 
1346 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1347 {
1348 	int r;
1349 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1350 	if (unlikely(r))
1351 		dm_integrity_io_error(ic, "writing tags", r);
1352 }
1353 
1354 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1355 {
1356 	DECLARE_WAITQUEUE(wait, current);
1357 	__add_wait_queue(&ic->endio_wait, &wait);
1358 	__set_current_state(TASK_UNINTERRUPTIBLE);
1359 	spin_unlock_irq(&ic->endio_wait.lock);
1360 	io_schedule();
1361 	spin_lock_irq(&ic->endio_wait.lock);
1362 	__remove_wait_queue(&ic->endio_wait, &wait);
1363 }
1364 
1365 static void autocommit_fn(struct timer_list *t)
1366 {
1367 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1368 
1369 	if (likely(!dm_integrity_failed(ic)))
1370 		queue_work(ic->commit_wq, &ic->commit_work);
1371 }
1372 
1373 static void schedule_autocommit(struct dm_integrity_c *ic)
1374 {
1375 	if (!timer_pending(&ic->autocommit_timer))
1376 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1377 }
1378 
1379 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1380 {
1381 	struct bio *bio;
1382 	unsigned long flags;
1383 
1384 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1385 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1386 	bio_list_add(&ic->flush_bio_list, bio);
1387 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1388 
1389 	queue_work(ic->commit_wq, &ic->commit_work);
1390 }
1391 
1392 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1393 {
1394 	int r = dm_integrity_failed(ic);
1395 	if (unlikely(r) && !bio->bi_status)
1396 		bio->bi_status = errno_to_blk_status(r);
1397 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1398 		unsigned long flags;
1399 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1400 		bio_list_add(&ic->synchronous_bios, bio);
1401 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1402 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1403 		return;
1404 	}
1405 	bio_endio(bio);
1406 }
1407 
1408 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1409 {
1410 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1411 
1412 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1413 		submit_flush_bio(ic, dio);
1414 	else
1415 		do_endio(ic, bio);
1416 }
1417 
1418 static void dec_in_flight(struct dm_integrity_io *dio)
1419 {
1420 	if (atomic_dec_and_test(&dio->in_flight)) {
1421 		struct dm_integrity_c *ic = dio->ic;
1422 		struct bio *bio;
1423 
1424 		remove_range(ic, &dio->range);
1425 
1426 		if (unlikely(dio->write))
1427 			schedule_autocommit(ic);
1428 
1429 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1430 
1431 		if (unlikely(dio->bi_status) && !bio->bi_status)
1432 			bio->bi_status = dio->bi_status;
1433 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1434 			dio->range.logical_sector += dio->range.n_sectors;
1435 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1436 			INIT_WORK(&dio->work, integrity_bio_wait);
1437 			queue_work(ic->wait_wq, &dio->work);
1438 			return;
1439 		}
1440 		do_endio_flush(ic, dio);
1441 	}
1442 }
1443 
1444 static void integrity_end_io(struct bio *bio)
1445 {
1446 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1447 
1448 	bio->bi_iter = dio->orig_bi_iter;
1449 	bio->bi_disk = dio->orig_bi_disk;
1450 	bio->bi_partno = dio->orig_bi_partno;
1451 	if (dio->orig_bi_integrity) {
1452 		bio->bi_integrity = dio->orig_bi_integrity;
1453 		bio->bi_opf |= REQ_INTEGRITY;
1454 	}
1455 	bio->bi_end_io = dio->orig_bi_end_io;
1456 
1457 	if (dio->completion)
1458 		complete(dio->completion);
1459 
1460 	dec_in_flight(dio);
1461 }
1462 
1463 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1464 				      const char *data, char *result)
1465 {
1466 	__u64 sector_le = cpu_to_le64(sector);
1467 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1468 	int r;
1469 	unsigned digest_size;
1470 
1471 	req->tfm = ic->internal_hash;
1472 
1473 	r = crypto_shash_init(req);
1474 	if (unlikely(r < 0)) {
1475 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1476 		goto failed;
1477 	}
1478 
1479 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1480 	if (unlikely(r < 0)) {
1481 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1482 		goto failed;
1483 	}
1484 
1485 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1486 	if (unlikely(r < 0)) {
1487 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1488 		goto failed;
1489 	}
1490 
1491 	r = crypto_shash_final(req, result);
1492 	if (unlikely(r < 0)) {
1493 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1494 		goto failed;
1495 	}
1496 
1497 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1498 	if (unlikely(digest_size < ic->tag_size))
1499 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1500 
1501 	return;
1502 
1503 failed:
1504 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1505 	get_random_bytes(result, ic->tag_size);
1506 }
1507 
1508 static void integrity_metadata(struct work_struct *w)
1509 {
1510 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1511 	struct dm_integrity_c *ic = dio->ic;
1512 
1513 	int r;
1514 
1515 	if (ic->internal_hash) {
1516 		struct bvec_iter iter;
1517 		struct bio_vec bv;
1518 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1519 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1520 		char *checksums;
1521 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1522 		char checksums_onstack[HASH_MAX_DIGESTSIZE];
1523 		unsigned sectors_to_process = dio->range.n_sectors;
1524 		sector_t sector = dio->range.logical_sector;
1525 
1526 		if (unlikely(ic->mode == 'R'))
1527 			goto skip_io;
1528 
1529 		checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1530 				    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1531 		if (!checksums) {
1532 			checksums = checksums_onstack;
1533 			if (WARN_ON(extra_space &&
1534 				    digest_size > sizeof(checksums_onstack))) {
1535 				r = -EINVAL;
1536 				goto error;
1537 			}
1538 		}
1539 
1540 		__bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1541 			unsigned pos;
1542 			char *mem, *checksums_ptr;
1543 
1544 again:
1545 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1546 			pos = 0;
1547 			checksums_ptr = checksums;
1548 			do {
1549 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1550 				checksums_ptr += ic->tag_size;
1551 				sectors_to_process -= ic->sectors_per_block;
1552 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1553 				sector += ic->sectors_per_block;
1554 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1555 			kunmap_atomic(mem);
1556 
1557 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1558 						checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1559 			if (unlikely(r)) {
1560 				if (r > 0) {
1561 					DMERR_LIMIT("Checksum failed at sector 0x%llx",
1562 						    (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1563 					r = -EILSEQ;
1564 					atomic64_inc(&ic->number_of_mismatches);
1565 				}
1566 				if (likely(checksums != checksums_onstack))
1567 					kfree(checksums);
1568 				goto error;
1569 			}
1570 
1571 			if (!sectors_to_process)
1572 				break;
1573 
1574 			if (unlikely(pos < bv.bv_len)) {
1575 				bv.bv_offset += pos;
1576 				bv.bv_len -= pos;
1577 				goto again;
1578 			}
1579 		}
1580 
1581 		if (likely(checksums != checksums_onstack))
1582 			kfree(checksums);
1583 	} else {
1584 		struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1585 
1586 		if (bip) {
1587 			struct bio_vec biv;
1588 			struct bvec_iter iter;
1589 			unsigned data_to_process = dio->range.n_sectors;
1590 			sector_to_block(ic, data_to_process);
1591 			data_to_process *= ic->tag_size;
1592 
1593 			bip_for_each_vec(biv, bip, iter) {
1594 				unsigned char *tag;
1595 				unsigned this_len;
1596 
1597 				BUG_ON(PageHighMem(biv.bv_page));
1598 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1599 				this_len = min(biv.bv_len, data_to_process);
1600 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1601 							this_len, !dio->write ? TAG_READ : TAG_WRITE);
1602 				if (unlikely(r))
1603 					goto error;
1604 				data_to_process -= this_len;
1605 				if (!data_to_process)
1606 					break;
1607 			}
1608 		}
1609 	}
1610 skip_io:
1611 	dec_in_flight(dio);
1612 	return;
1613 error:
1614 	dio->bi_status = errno_to_blk_status(r);
1615 	dec_in_flight(dio);
1616 }
1617 
1618 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1619 {
1620 	struct dm_integrity_c *ic = ti->private;
1621 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1622 	struct bio_integrity_payload *bip;
1623 
1624 	sector_t area, offset;
1625 
1626 	dio->ic = ic;
1627 	dio->bi_status = 0;
1628 
1629 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1630 		submit_flush_bio(ic, dio);
1631 		return DM_MAPIO_SUBMITTED;
1632 	}
1633 
1634 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1635 	dio->write = bio_op(bio) == REQ_OP_WRITE;
1636 	dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1637 	if (unlikely(dio->fua)) {
1638 		/*
1639 		 * Don't pass down the FUA flag because we have to flush
1640 		 * disk cache anyway.
1641 		 */
1642 		bio->bi_opf &= ~REQ_FUA;
1643 	}
1644 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1645 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1646 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1647 		      (unsigned long long)ic->provided_data_sectors);
1648 		return DM_MAPIO_KILL;
1649 	}
1650 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1651 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1652 		      ic->sectors_per_block,
1653 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1654 		return DM_MAPIO_KILL;
1655 	}
1656 
1657 	if (ic->sectors_per_block > 1) {
1658 		struct bvec_iter iter;
1659 		struct bio_vec bv;
1660 		bio_for_each_segment(bv, bio, iter) {
1661 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1662 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1663 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1664 				return DM_MAPIO_KILL;
1665 			}
1666 		}
1667 	}
1668 
1669 	bip = bio_integrity(bio);
1670 	if (!ic->internal_hash) {
1671 		if (bip) {
1672 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1673 			if (ic->log2_tag_size >= 0)
1674 				wanted_tag_size <<= ic->log2_tag_size;
1675 			else
1676 				wanted_tag_size *= ic->tag_size;
1677 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1678 				DMERR("Invalid integrity data size %u, expected %u",
1679 				      bip->bip_iter.bi_size, wanted_tag_size);
1680 				return DM_MAPIO_KILL;
1681 			}
1682 		}
1683 	} else {
1684 		if (unlikely(bip != NULL)) {
1685 			DMERR("Unexpected integrity data when using internal hash");
1686 			return DM_MAPIO_KILL;
1687 		}
1688 	}
1689 
1690 	if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1691 		return DM_MAPIO_KILL;
1692 
1693 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1694 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1695 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1696 
1697 	dm_integrity_map_continue(dio, true);
1698 	return DM_MAPIO_SUBMITTED;
1699 }
1700 
1701 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1702 				 unsigned journal_section, unsigned journal_entry)
1703 {
1704 	struct dm_integrity_c *ic = dio->ic;
1705 	sector_t logical_sector;
1706 	unsigned n_sectors;
1707 
1708 	logical_sector = dio->range.logical_sector;
1709 	n_sectors = dio->range.n_sectors;
1710 	do {
1711 		struct bio_vec bv = bio_iovec(bio);
1712 		char *mem;
1713 
1714 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1715 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1716 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1717 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1718 retry_kmap:
1719 		mem = kmap_atomic(bv.bv_page);
1720 		if (likely(dio->write))
1721 			flush_dcache_page(bv.bv_page);
1722 
1723 		do {
1724 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1725 
1726 			if (unlikely(!dio->write)) {
1727 				struct journal_sector *js;
1728 				char *mem_ptr;
1729 				unsigned s;
1730 
1731 				if (unlikely(journal_entry_is_inprogress(je))) {
1732 					flush_dcache_page(bv.bv_page);
1733 					kunmap_atomic(mem);
1734 
1735 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1736 					goto retry_kmap;
1737 				}
1738 				smp_rmb();
1739 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1740 				js = access_journal_data(ic, journal_section, journal_entry);
1741 				mem_ptr = mem + bv.bv_offset;
1742 				s = 0;
1743 				do {
1744 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1745 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1746 					js++;
1747 					mem_ptr += 1 << SECTOR_SHIFT;
1748 				} while (++s < ic->sectors_per_block);
1749 #ifdef INTERNAL_VERIFY
1750 				if (ic->internal_hash) {
1751 					char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1752 
1753 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1754 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1755 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1756 							    (unsigned long long)logical_sector);
1757 					}
1758 				}
1759 #endif
1760 			}
1761 
1762 			if (!ic->internal_hash) {
1763 				struct bio_integrity_payload *bip = bio_integrity(bio);
1764 				unsigned tag_todo = ic->tag_size;
1765 				char *tag_ptr = journal_entry_tag(ic, je);
1766 
1767 				if (bip) do {
1768 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1769 					unsigned tag_now = min(biv.bv_len, tag_todo);
1770 					char *tag_addr;
1771 					BUG_ON(PageHighMem(biv.bv_page));
1772 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1773 					if (likely(dio->write))
1774 						memcpy(tag_ptr, tag_addr, tag_now);
1775 					else
1776 						memcpy(tag_addr, tag_ptr, tag_now);
1777 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1778 					tag_ptr += tag_now;
1779 					tag_todo -= tag_now;
1780 				} while (unlikely(tag_todo)); else {
1781 					if (likely(dio->write))
1782 						memset(tag_ptr, 0, tag_todo);
1783 				}
1784 			}
1785 
1786 			if (likely(dio->write)) {
1787 				struct journal_sector *js;
1788 				unsigned s;
1789 
1790 				js = access_journal_data(ic, journal_section, journal_entry);
1791 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1792 
1793 				s = 0;
1794 				do {
1795 					je->last_bytes[s] = js[s].commit_id;
1796 				} while (++s < ic->sectors_per_block);
1797 
1798 				if (ic->internal_hash) {
1799 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1800 					if (unlikely(digest_size > ic->tag_size)) {
1801 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1802 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1803 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1804 					} else
1805 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1806 				}
1807 
1808 				journal_entry_set_sector(je, logical_sector);
1809 			}
1810 			logical_sector += ic->sectors_per_block;
1811 
1812 			journal_entry++;
1813 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1814 				journal_entry = 0;
1815 				journal_section++;
1816 				wraparound_section(ic, &journal_section);
1817 			}
1818 
1819 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1820 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1821 
1822 		if (unlikely(!dio->write))
1823 			flush_dcache_page(bv.bv_page);
1824 		kunmap_atomic(mem);
1825 	} while (n_sectors);
1826 
1827 	if (likely(dio->write)) {
1828 		smp_mb();
1829 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1830 			wake_up(&ic->copy_to_journal_wait);
1831 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1832 			queue_work(ic->commit_wq, &ic->commit_work);
1833 		} else {
1834 			schedule_autocommit(ic);
1835 		}
1836 	} else {
1837 		remove_range(ic, &dio->range);
1838 	}
1839 
1840 	if (unlikely(bio->bi_iter.bi_size)) {
1841 		sector_t area, offset;
1842 
1843 		dio->range.logical_sector = logical_sector;
1844 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1845 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1846 		return true;
1847 	}
1848 
1849 	return false;
1850 }
1851 
1852 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1853 {
1854 	struct dm_integrity_c *ic = dio->ic;
1855 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1856 	unsigned journal_section, journal_entry;
1857 	unsigned journal_read_pos;
1858 	struct completion read_comp;
1859 	bool need_sync_io = ic->internal_hash && !dio->write;
1860 
1861 	if (need_sync_io && from_map) {
1862 		INIT_WORK(&dio->work, integrity_bio_wait);
1863 		queue_work(ic->metadata_wq, &dio->work);
1864 		return;
1865 	}
1866 
1867 lock_retry:
1868 	spin_lock_irq(&ic->endio_wait.lock);
1869 retry:
1870 	if (unlikely(dm_integrity_failed(ic))) {
1871 		spin_unlock_irq(&ic->endio_wait.lock);
1872 		do_endio(ic, bio);
1873 		return;
1874 	}
1875 	dio->range.n_sectors = bio_sectors(bio);
1876 	journal_read_pos = NOT_FOUND;
1877 	if (likely(ic->mode == 'J')) {
1878 		if (dio->write) {
1879 			unsigned next_entry, i, pos;
1880 			unsigned ws, we, range_sectors;
1881 
1882 			dio->range.n_sectors = min(dio->range.n_sectors,
1883 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1884 			if (unlikely(!dio->range.n_sectors)) {
1885 				if (from_map)
1886 					goto offload_to_thread;
1887 				sleep_on_endio_wait(ic);
1888 				goto retry;
1889 			}
1890 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1891 			ic->free_sectors -= range_sectors;
1892 			journal_section = ic->free_section;
1893 			journal_entry = ic->free_section_entry;
1894 
1895 			next_entry = ic->free_section_entry + range_sectors;
1896 			ic->free_section_entry = next_entry % ic->journal_section_entries;
1897 			ic->free_section += next_entry / ic->journal_section_entries;
1898 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1899 			wraparound_section(ic, &ic->free_section);
1900 
1901 			pos = journal_section * ic->journal_section_entries + journal_entry;
1902 			ws = journal_section;
1903 			we = journal_entry;
1904 			i = 0;
1905 			do {
1906 				struct journal_entry *je;
1907 
1908 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1909 				pos++;
1910 				if (unlikely(pos >= ic->journal_entries))
1911 					pos = 0;
1912 
1913 				je = access_journal_entry(ic, ws, we);
1914 				BUG_ON(!journal_entry_is_unused(je));
1915 				journal_entry_set_inprogress(je);
1916 				we++;
1917 				if (unlikely(we == ic->journal_section_entries)) {
1918 					we = 0;
1919 					ws++;
1920 					wraparound_section(ic, &ws);
1921 				}
1922 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1923 
1924 			spin_unlock_irq(&ic->endio_wait.lock);
1925 			goto journal_read_write;
1926 		} else {
1927 			sector_t next_sector;
1928 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1929 			if (likely(journal_read_pos == NOT_FOUND)) {
1930 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1931 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
1932 			} else {
1933 				unsigned i;
1934 				unsigned jp = journal_read_pos + 1;
1935 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1936 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1937 						break;
1938 				}
1939 				dio->range.n_sectors = i;
1940 			}
1941 		}
1942 	}
1943 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
1944 		/*
1945 		 * We must not sleep in the request routine because it could
1946 		 * stall bios on current->bio_list.
1947 		 * So, we offload the bio to a workqueue if we have to sleep.
1948 		 */
1949 		if (from_map) {
1950 offload_to_thread:
1951 			spin_unlock_irq(&ic->endio_wait.lock);
1952 			INIT_WORK(&dio->work, integrity_bio_wait);
1953 			queue_work(ic->wait_wq, &dio->work);
1954 			return;
1955 		}
1956 		if (journal_read_pos != NOT_FOUND)
1957 			dio->range.n_sectors = ic->sectors_per_block;
1958 		wait_and_add_new_range(ic, &dio->range);
1959 		/*
1960 		 * wait_and_add_new_range drops the spinlock, so the journal
1961 		 * may have been changed arbitrarily. We need to recheck.
1962 		 * To simplify the code, we restrict I/O size to just one block.
1963 		 */
1964 		if (journal_read_pos != NOT_FOUND) {
1965 			sector_t next_sector;
1966 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1967 			if (unlikely(new_pos != journal_read_pos)) {
1968 				remove_range_unlocked(ic, &dio->range);
1969 				goto retry;
1970 			}
1971 		}
1972 	}
1973 	spin_unlock_irq(&ic->endio_wait.lock);
1974 
1975 	if (unlikely(journal_read_pos != NOT_FOUND)) {
1976 		journal_section = journal_read_pos / ic->journal_section_entries;
1977 		journal_entry = journal_read_pos % ic->journal_section_entries;
1978 		goto journal_read_write;
1979 	}
1980 
1981 	if (ic->mode == 'B' && dio->write) {
1982 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1983 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1984 			struct bitmap_block_status *bbs;
1985 
1986 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1987 			spin_lock(&bbs->bio_queue_lock);
1988 			bio_list_add(&bbs->bio_queue, bio);
1989 			spin_unlock(&bbs->bio_queue_lock);
1990 			queue_work(ic->writer_wq, &bbs->work);
1991 			return;
1992 		}
1993 	}
1994 
1995 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1996 
1997 	if (need_sync_io) {
1998 		init_completion(&read_comp);
1999 		dio->completion = &read_comp;
2000 	} else
2001 		dio->completion = NULL;
2002 
2003 	dio->orig_bi_iter = bio->bi_iter;
2004 
2005 	dio->orig_bi_disk = bio->bi_disk;
2006 	dio->orig_bi_partno = bio->bi_partno;
2007 	bio_set_dev(bio, ic->dev->bdev);
2008 
2009 	dio->orig_bi_integrity = bio_integrity(bio);
2010 	bio->bi_integrity = NULL;
2011 	bio->bi_opf &= ~REQ_INTEGRITY;
2012 
2013 	dio->orig_bi_end_io = bio->bi_end_io;
2014 	bio->bi_end_io = integrity_end_io;
2015 
2016 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2017 	generic_make_request(bio);
2018 
2019 	if (need_sync_io) {
2020 		wait_for_completion_io(&read_comp);
2021 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2022 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2023 			goto skip_check;
2024 		if (ic->mode == 'B') {
2025 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2026 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2027 				goto skip_check;
2028 		}
2029 
2030 		if (likely(!bio->bi_status))
2031 			integrity_metadata(&dio->work);
2032 		else
2033 skip_check:
2034 			dec_in_flight(dio);
2035 
2036 	} else {
2037 		INIT_WORK(&dio->work, integrity_metadata);
2038 		queue_work(ic->metadata_wq, &dio->work);
2039 	}
2040 
2041 	return;
2042 
2043 journal_read_write:
2044 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2045 		goto lock_retry;
2046 
2047 	do_endio_flush(ic, dio);
2048 }
2049 
2050 
2051 static void integrity_bio_wait(struct work_struct *w)
2052 {
2053 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2054 
2055 	dm_integrity_map_continue(dio, false);
2056 }
2057 
2058 static void pad_uncommitted(struct dm_integrity_c *ic)
2059 {
2060 	if (ic->free_section_entry) {
2061 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2062 		ic->free_section_entry = 0;
2063 		ic->free_section++;
2064 		wraparound_section(ic, &ic->free_section);
2065 		ic->n_uncommitted_sections++;
2066 	}
2067 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2068 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2069 		    ic->journal_section_entries + ic->free_sectors)) {
2070 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2071 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2072 		       "journal_section_entries %u, free_sectors %u",
2073 		       ic->journal_sections, ic->journal_section_entries,
2074 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2075 		       ic->journal_section_entries, ic->free_sectors);
2076 	}
2077 }
2078 
2079 static void integrity_commit(struct work_struct *w)
2080 {
2081 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2082 	unsigned commit_start, commit_sections;
2083 	unsigned i, j, n;
2084 	struct bio *flushes;
2085 
2086 	del_timer(&ic->autocommit_timer);
2087 
2088 	spin_lock_irq(&ic->endio_wait.lock);
2089 	flushes = bio_list_get(&ic->flush_bio_list);
2090 	if (unlikely(ic->mode != 'J')) {
2091 		spin_unlock_irq(&ic->endio_wait.lock);
2092 		dm_integrity_flush_buffers(ic);
2093 		goto release_flush_bios;
2094 	}
2095 
2096 	pad_uncommitted(ic);
2097 	commit_start = ic->uncommitted_section;
2098 	commit_sections = ic->n_uncommitted_sections;
2099 	spin_unlock_irq(&ic->endio_wait.lock);
2100 
2101 	if (!commit_sections)
2102 		goto release_flush_bios;
2103 
2104 	i = commit_start;
2105 	for (n = 0; n < commit_sections; n++) {
2106 		for (j = 0; j < ic->journal_section_entries; j++) {
2107 			struct journal_entry *je;
2108 			je = access_journal_entry(ic, i, j);
2109 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2110 		}
2111 		for (j = 0; j < ic->journal_section_sectors; j++) {
2112 			struct journal_sector *js;
2113 			js = access_journal(ic, i, j);
2114 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2115 		}
2116 		i++;
2117 		if (unlikely(i >= ic->journal_sections))
2118 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2119 		wraparound_section(ic, &i);
2120 	}
2121 	smp_rmb();
2122 
2123 	write_journal(ic, commit_start, commit_sections);
2124 
2125 	spin_lock_irq(&ic->endio_wait.lock);
2126 	ic->uncommitted_section += commit_sections;
2127 	wraparound_section(ic, &ic->uncommitted_section);
2128 	ic->n_uncommitted_sections -= commit_sections;
2129 	ic->n_committed_sections += commit_sections;
2130 	spin_unlock_irq(&ic->endio_wait.lock);
2131 
2132 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2133 		queue_work(ic->writer_wq, &ic->writer_work);
2134 
2135 release_flush_bios:
2136 	while (flushes) {
2137 		struct bio *next = flushes->bi_next;
2138 		flushes->bi_next = NULL;
2139 		do_endio(ic, flushes);
2140 		flushes = next;
2141 	}
2142 }
2143 
2144 static void complete_copy_from_journal(unsigned long error, void *context)
2145 {
2146 	struct journal_io *io = context;
2147 	struct journal_completion *comp = io->comp;
2148 	struct dm_integrity_c *ic = comp->ic;
2149 	remove_range(ic, &io->range);
2150 	mempool_free(io, &ic->journal_io_mempool);
2151 	if (unlikely(error != 0))
2152 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2153 	complete_journal_op(comp);
2154 }
2155 
2156 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2157 			       struct journal_entry *je)
2158 {
2159 	unsigned s = 0;
2160 	do {
2161 		js->commit_id = je->last_bytes[s];
2162 		js++;
2163 	} while (++s < ic->sectors_per_block);
2164 }
2165 
2166 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2167 			     unsigned write_sections, bool from_replay)
2168 {
2169 	unsigned i, j, n;
2170 	struct journal_completion comp;
2171 	struct blk_plug plug;
2172 
2173 	blk_start_plug(&plug);
2174 
2175 	comp.ic = ic;
2176 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2177 	init_completion(&comp.comp);
2178 
2179 	i = write_start;
2180 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2181 #ifndef INTERNAL_VERIFY
2182 		if (unlikely(from_replay))
2183 #endif
2184 			rw_section_mac(ic, i, false);
2185 		for (j = 0; j < ic->journal_section_entries; j++) {
2186 			struct journal_entry *je = access_journal_entry(ic, i, j);
2187 			sector_t sec, area, offset;
2188 			unsigned k, l, next_loop;
2189 			sector_t metadata_block;
2190 			unsigned metadata_offset;
2191 			struct journal_io *io;
2192 
2193 			if (journal_entry_is_unused(je))
2194 				continue;
2195 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2196 			sec = journal_entry_get_sector(je);
2197 			if (unlikely(from_replay)) {
2198 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2199 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2200 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2201 				}
2202 			}
2203 			get_area_and_offset(ic, sec, &area, &offset);
2204 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2205 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2206 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2207 				sector_t sec2, area2, offset2;
2208 				if (journal_entry_is_unused(je2))
2209 					break;
2210 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2211 				sec2 = journal_entry_get_sector(je2);
2212 				get_area_and_offset(ic, sec2, &area2, &offset2);
2213 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2214 					break;
2215 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2216 			}
2217 			next_loop = k - 1;
2218 
2219 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2220 			io->comp = &comp;
2221 			io->range.logical_sector = sec;
2222 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2223 
2224 			spin_lock_irq(&ic->endio_wait.lock);
2225 			add_new_range_and_wait(ic, &io->range);
2226 
2227 			if (likely(!from_replay)) {
2228 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2229 
2230 				/* don't write if there is newer committed sector */
2231 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2232 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2233 
2234 					journal_entry_set_unused(je2);
2235 					remove_journal_node(ic, &section_node[j]);
2236 					j++;
2237 					sec += ic->sectors_per_block;
2238 					offset += ic->sectors_per_block;
2239 				}
2240 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2241 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2242 
2243 					journal_entry_set_unused(je2);
2244 					remove_journal_node(ic, &section_node[k - 1]);
2245 					k--;
2246 				}
2247 				if (j == k) {
2248 					remove_range_unlocked(ic, &io->range);
2249 					spin_unlock_irq(&ic->endio_wait.lock);
2250 					mempool_free(io, &ic->journal_io_mempool);
2251 					goto skip_io;
2252 				}
2253 				for (l = j; l < k; l++) {
2254 					remove_journal_node(ic, &section_node[l]);
2255 				}
2256 			}
2257 			spin_unlock_irq(&ic->endio_wait.lock);
2258 
2259 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2260 			for (l = j; l < k; l++) {
2261 				int r;
2262 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2263 
2264 				if (
2265 #ifndef INTERNAL_VERIFY
2266 				    unlikely(from_replay) &&
2267 #endif
2268 				    ic->internal_hash) {
2269 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2270 
2271 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2272 								  (char *)access_journal_data(ic, i, l), test_tag);
2273 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2274 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2275 				}
2276 
2277 				journal_entry_set_unused(je2);
2278 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2279 							ic->tag_size, TAG_WRITE);
2280 				if (unlikely(r)) {
2281 					dm_integrity_io_error(ic, "reading tags", r);
2282 				}
2283 			}
2284 
2285 			atomic_inc(&comp.in_flight);
2286 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2287 					  (k - j) << ic->sb->log2_sectors_per_block,
2288 					  get_data_sector(ic, area, offset),
2289 					  complete_copy_from_journal, io);
2290 skip_io:
2291 			j = next_loop;
2292 		}
2293 	}
2294 
2295 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2296 
2297 	blk_finish_plug(&plug);
2298 
2299 	complete_journal_op(&comp);
2300 	wait_for_completion_io(&comp.comp);
2301 
2302 	dm_integrity_flush_buffers(ic);
2303 }
2304 
2305 static void integrity_writer(struct work_struct *w)
2306 {
2307 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2308 	unsigned write_start, write_sections;
2309 
2310 	unsigned prev_free_sectors;
2311 
2312 	/* the following test is not needed, but it tests the replay code */
2313 	if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2314 		return;
2315 
2316 	spin_lock_irq(&ic->endio_wait.lock);
2317 	write_start = ic->committed_section;
2318 	write_sections = ic->n_committed_sections;
2319 	spin_unlock_irq(&ic->endio_wait.lock);
2320 
2321 	if (!write_sections)
2322 		return;
2323 
2324 	do_journal_write(ic, write_start, write_sections, false);
2325 
2326 	spin_lock_irq(&ic->endio_wait.lock);
2327 
2328 	ic->committed_section += write_sections;
2329 	wraparound_section(ic, &ic->committed_section);
2330 	ic->n_committed_sections -= write_sections;
2331 
2332 	prev_free_sectors = ic->free_sectors;
2333 	ic->free_sectors += write_sections * ic->journal_section_entries;
2334 	if (unlikely(!prev_free_sectors))
2335 		wake_up_locked(&ic->endio_wait);
2336 
2337 	spin_unlock_irq(&ic->endio_wait.lock);
2338 }
2339 
2340 static void recalc_write_super(struct dm_integrity_c *ic)
2341 {
2342 	int r;
2343 
2344 	dm_integrity_flush_buffers(ic);
2345 	if (dm_integrity_failed(ic))
2346 		return;
2347 
2348 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2349 	if (unlikely(r))
2350 		dm_integrity_io_error(ic, "writing superblock", r);
2351 }
2352 
2353 static void integrity_recalc(struct work_struct *w)
2354 {
2355 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2356 	struct dm_integrity_range range;
2357 	struct dm_io_request io_req;
2358 	struct dm_io_region io_loc;
2359 	sector_t area, offset;
2360 	sector_t metadata_block;
2361 	unsigned metadata_offset;
2362 	sector_t logical_sector, n_sectors;
2363 	__u8 *t;
2364 	unsigned i;
2365 	int r;
2366 	unsigned super_counter = 0;
2367 
2368 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2369 
2370 	spin_lock_irq(&ic->endio_wait.lock);
2371 
2372 next_chunk:
2373 
2374 	if (unlikely(READ_ONCE(ic->suspending)))
2375 		goto unlock_ret;
2376 
2377 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2378 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2379 		if (ic->mode == 'B') {
2380 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2381 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2382 		}
2383 		goto unlock_ret;
2384 	}
2385 
2386 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2387 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2388 	if (!ic->meta_dev)
2389 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2390 
2391 	add_new_range_and_wait(ic, &range);
2392 	spin_unlock_irq(&ic->endio_wait.lock);
2393 	logical_sector = range.logical_sector;
2394 	n_sectors = range.n_sectors;
2395 
2396 	if (ic->mode == 'B') {
2397 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2398 			goto advance_and_next;
2399 		}
2400 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2401 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2402 			logical_sector += ic->sectors_per_block;
2403 			n_sectors -= ic->sectors_per_block;
2404 			cond_resched();
2405 		}
2406 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2407 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2408 			n_sectors -= ic->sectors_per_block;
2409 			cond_resched();
2410 		}
2411 		get_area_and_offset(ic, logical_sector, &area, &offset);
2412 	}
2413 
2414 	DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2415 
2416 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2417 		recalc_write_super(ic);
2418 		if (ic->mode == 'B') {
2419 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2420 		}
2421 		super_counter = 0;
2422 	}
2423 
2424 	if (unlikely(dm_integrity_failed(ic)))
2425 		goto err;
2426 
2427 	io_req.bi_op = REQ_OP_READ;
2428 	io_req.bi_op_flags = 0;
2429 	io_req.mem.type = DM_IO_VMA;
2430 	io_req.mem.ptr.addr = ic->recalc_buffer;
2431 	io_req.notify.fn = NULL;
2432 	io_req.client = ic->io;
2433 	io_loc.bdev = ic->dev->bdev;
2434 	io_loc.sector = get_data_sector(ic, area, offset);
2435 	io_loc.count = n_sectors;
2436 
2437 	r = dm_io(&io_req, 1, &io_loc, NULL);
2438 	if (unlikely(r)) {
2439 		dm_integrity_io_error(ic, "reading data", r);
2440 		goto err;
2441 	}
2442 
2443 	t = ic->recalc_tags;
2444 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2445 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2446 		t += ic->tag_size;
2447 	}
2448 
2449 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2450 
2451 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2452 	if (unlikely(r)) {
2453 		dm_integrity_io_error(ic, "writing tags", r);
2454 		goto err;
2455 	}
2456 
2457 advance_and_next:
2458 	cond_resched();
2459 
2460 	spin_lock_irq(&ic->endio_wait.lock);
2461 	remove_range_unlocked(ic, &range);
2462 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2463 	goto next_chunk;
2464 
2465 err:
2466 	remove_range(ic, &range);
2467 	return;
2468 
2469 unlock_ret:
2470 	spin_unlock_irq(&ic->endio_wait.lock);
2471 
2472 	recalc_write_super(ic);
2473 }
2474 
2475 static void bitmap_block_work(struct work_struct *w)
2476 {
2477 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2478 	struct dm_integrity_c *ic = bbs->ic;
2479 	struct bio *bio;
2480 	struct bio_list bio_queue;
2481 	struct bio_list waiting;
2482 
2483 	bio_list_init(&waiting);
2484 
2485 	spin_lock(&bbs->bio_queue_lock);
2486 	bio_queue = bbs->bio_queue;
2487 	bio_list_init(&bbs->bio_queue);
2488 	spin_unlock(&bbs->bio_queue_lock);
2489 
2490 	while ((bio = bio_list_pop(&bio_queue))) {
2491 		struct dm_integrity_io *dio;
2492 
2493 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2494 
2495 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2496 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2497 			remove_range(ic, &dio->range);
2498 			INIT_WORK(&dio->work, integrity_bio_wait);
2499 			queue_work(ic->wait_wq, &dio->work);
2500 		} else {
2501 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2502 					dio->range.n_sectors, BITMAP_OP_SET);
2503 			bio_list_add(&waiting, bio);
2504 		}
2505 	}
2506 
2507 	if (bio_list_empty(&waiting))
2508 		return;
2509 
2510 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2511 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2512 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2513 
2514 	while ((bio = bio_list_pop(&waiting))) {
2515 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2516 
2517 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2518 				dio->range.n_sectors, BITMAP_OP_SET);
2519 
2520 		remove_range(ic, &dio->range);
2521 		INIT_WORK(&dio->work, integrity_bio_wait);
2522 		queue_work(ic->wait_wq, &dio->work);
2523 	}
2524 
2525 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2526 }
2527 
2528 static void bitmap_flush_work(struct work_struct *work)
2529 {
2530 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2531 	struct dm_integrity_range range;
2532 	unsigned long limit;
2533 	struct bio *bio;
2534 
2535 	dm_integrity_flush_buffers(ic);
2536 
2537 	range.logical_sector = 0;
2538 	range.n_sectors = ic->provided_data_sectors;
2539 
2540 	spin_lock_irq(&ic->endio_wait.lock);
2541 	add_new_range_and_wait(ic, &range);
2542 	spin_unlock_irq(&ic->endio_wait.lock);
2543 
2544 	dm_integrity_flush_buffers(ic);
2545 	if (ic->meta_dev)
2546 		blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2547 
2548 	limit = ic->provided_data_sectors;
2549 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2550 		limit = le64_to_cpu(ic->sb->recalc_sector)
2551 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2552 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2553 	}
2554 	/*DEBUG_print("zeroing journal\n");*/
2555 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2556 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2557 
2558 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2559 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2560 
2561 	spin_lock_irq(&ic->endio_wait.lock);
2562 	remove_range_unlocked(ic, &range);
2563 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2564 		bio_endio(bio);
2565 		spin_unlock_irq(&ic->endio_wait.lock);
2566 		spin_lock_irq(&ic->endio_wait.lock);
2567 	}
2568 	spin_unlock_irq(&ic->endio_wait.lock);
2569 }
2570 
2571 
2572 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2573 			 unsigned n_sections, unsigned char commit_seq)
2574 {
2575 	unsigned i, j, n;
2576 
2577 	if (!n_sections)
2578 		return;
2579 
2580 	for (n = 0; n < n_sections; n++) {
2581 		i = start_section + n;
2582 		wraparound_section(ic, &i);
2583 		for (j = 0; j < ic->journal_section_sectors; j++) {
2584 			struct journal_sector *js = access_journal(ic, i, j);
2585 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2586 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2587 		}
2588 		for (j = 0; j < ic->journal_section_entries; j++) {
2589 			struct journal_entry *je = access_journal_entry(ic, i, j);
2590 			journal_entry_set_unused(je);
2591 		}
2592 	}
2593 
2594 	write_journal(ic, start_section, n_sections);
2595 }
2596 
2597 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2598 {
2599 	unsigned char k;
2600 	for (k = 0; k < N_COMMIT_IDS; k++) {
2601 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2602 			return k;
2603 	}
2604 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2605 	return -EIO;
2606 }
2607 
2608 static void replay_journal(struct dm_integrity_c *ic)
2609 {
2610 	unsigned i, j;
2611 	bool used_commit_ids[N_COMMIT_IDS];
2612 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2613 	unsigned write_start, write_sections;
2614 	unsigned continue_section;
2615 	bool journal_empty;
2616 	unsigned char unused, last_used, want_commit_seq;
2617 
2618 	if (ic->mode == 'R')
2619 		return;
2620 
2621 	if (ic->journal_uptodate)
2622 		return;
2623 
2624 	last_used = 0;
2625 	write_start = 0;
2626 
2627 	if (!ic->just_formatted) {
2628 		DEBUG_print("reading journal\n");
2629 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2630 		if (ic->journal_io)
2631 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2632 		if (ic->journal_io) {
2633 			struct journal_completion crypt_comp;
2634 			crypt_comp.ic = ic;
2635 			init_completion(&crypt_comp.comp);
2636 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2637 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2638 			wait_for_completion(&crypt_comp.comp);
2639 		}
2640 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2641 	}
2642 
2643 	if (dm_integrity_failed(ic))
2644 		goto clear_journal;
2645 
2646 	journal_empty = true;
2647 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2648 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2649 	for (i = 0; i < ic->journal_sections; i++) {
2650 		for (j = 0; j < ic->journal_section_sectors; j++) {
2651 			int k;
2652 			struct journal_sector *js = access_journal(ic, i, j);
2653 			k = find_commit_seq(ic, i, j, js->commit_id);
2654 			if (k < 0)
2655 				goto clear_journal;
2656 			used_commit_ids[k] = true;
2657 			max_commit_id_sections[k] = i;
2658 		}
2659 		if (journal_empty) {
2660 			for (j = 0; j < ic->journal_section_entries; j++) {
2661 				struct journal_entry *je = access_journal_entry(ic, i, j);
2662 				if (!journal_entry_is_unused(je)) {
2663 					journal_empty = false;
2664 					break;
2665 				}
2666 			}
2667 		}
2668 	}
2669 
2670 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2671 		unused = N_COMMIT_IDS - 1;
2672 		while (unused && !used_commit_ids[unused - 1])
2673 			unused--;
2674 	} else {
2675 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2676 			if (!used_commit_ids[unused])
2677 				break;
2678 		if (unused == N_COMMIT_IDS) {
2679 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2680 			goto clear_journal;
2681 		}
2682 	}
2683 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2684 		    unused, used_commit_ids[0], used_commit_ids[1],
2685 		    used_commit_ids[2], used_commit_ids[3]);
2686 
2687 	last_used = prev_commit_seq(unused);
2688 	want_commit_seq = prev_commit_seq(last_used);
2689 
2690 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2691 		journal_empty = true;
2692 
2693 	write_start = max_commit_id_sections[last_used] + 1;
2694 	if (unlikely(write_start >= ic->journal_sections))
2695 		want_commit_seq = next_commit_seq(want_commit_seq);
2696 	wraparound_section(ic, &write_start);
2697 
2698 	i = write_start;
2699 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2700 		for (j = 0; j < ic->journal_section_sectors; j++) {
2701 			struct journal_sector *js = access_journal(ic, i, j);
2702 
2703 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2704 				/*
2705 				 * This could be caused by crash during writing.
2706 				 * We won't replay the inconsistent part of the
2707 				 * journal.
2708 				 */
2709 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2710 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2711 				goto brk;
2712 			}
2713 		}
2714 		i++;
2715 		if (unlikely(i >= ic->journal_sections))
2716 			want_commit_seq = next_commit_seq(want_commit_seq);
2717 		wraparound_section(ic, &i);
2718 	}
2719 brk:
2720 
2721 	if (!journal_empty) {
2722 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2723 			    write_sections, write_start, want_commit_seq);
2724 		do_journal_write(ic, write_start, write_sections, true);
2725 	}
2726 
2727 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2728 		continue_section = write_start;
2729 		ic->commit_seq = want_commit_seq;
2730 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2731 	} else {
2732 		unsigned s;
2733 		unsigned char erase_seq;
2734 clear_journal:
2735 		DEBUG_print("clearing journal\n");
2736 
2737 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2738 		s = write_start;
2739 		init_journal(ic, s, 1, erase_seq);
2740 		s++;
2741 		wraparound_section(ic, &s);
2742 		if (ic->journal_sections >= 2) {
2743 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2744 			s += ic->journal_sections - 2;
2745 			wraparound_section(ic, &s);
2746 			init_journal(ic, s, 1, erase_seq);
2747 		}
2748 
2749 		continue_section = 0;
2750 		ic->commit_seq = next_commit_seq(erase_seq);
2751 	}
2752 
2753 	ic->committed_section = continue_section;
2754 	ic->n_committed_sections = 0;
2755 
2756 	ic->uncommitted_section = continue_section;
2757 	ic->n_uncommitted_sections = 0;
2758 
2759 	ic->free_section = continue_section;
2760 	ic->free_section_entry = 0;
2761 	ic->free_sectors = ic->journal_entries;
2762 
2763 	ic->journal_tree_root = RB_ROOT;
2764 	for (i = 0; i < ic->journal_entries; i++)
2765 		init_journal_node(&ic->journal_tree[i]);
2766 }
2767 
2768 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2769 {
2770 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2771 
2772 	if (ic->mode == 'B') {
2773 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2774 		ic->synchronous_mode = 1;
2775 
2776 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2777 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2778 		flush_workqueue(ic->commit_wq);
2779 	}
2780 }
2781 
2782 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2783 {
2784 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2785 
2786 	DEBUG_print("dm_integrity_reboot\n");
2787 
2788 	dm_integrity_enter_synchronous_mode(ic);
2789 
2790 	return NOTIFY_DONE;
2791 }
2792 
2793 static void dm_integrity_postsuspend(struct dm_target *ti)
2794 {
2795 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2796 	int r;
2797 
2798 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2799 
2800 	del_timer_sync(&ic->autocommit_timer);
2801 
2802 	WRITE_ONCE(ic->suspending, 1);
2803 
2804 	if (ic->recalc_wq)
2805 		drain_workqueue(ic->recalc_wq);
2806 
2807 	if (ic->mode == 'B')
2808 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2809 
2810 	queue_work(ic->commit_wq, &ic->commit_work);
2811 	drain_workqueue(ic->commit_wq);
2812 
2813 	if (ic->mode == 'J') {
2814 		if (ic->meta_dev)
2815 			queue_work(ic->writer_wq, &ic->writer_work);
2816 		drain_workqueue(ic->writer_wq);
2817 		dm_integrity_flush_buffers(ic);
2818 	}
2819 
2820 	if (ic->mode == 'B') {
2821 		dm_integrity_flush_buffers(ic);
2822 #if 1
2823 		/* set to 0 to test bitmap replay code */
2824 		init_journal(ic, 0, ic->journal_sections, 0);
2825 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2826 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2827 		if (unlikely(r))
2828 			dm_integrity_io_error(ic, "writing superblock", r);
2829 #endif
2830 	}
2831 
2832 	WRITE_ONCE(ic->suspending, 0);
2833 
2834 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2835 
2836 	ic->journal_uptodate = true;
2837 }
2838 
2839 static void dm_integrity_resume(struct dm_target *ti)
2840 {
2841 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2842 	int r;
2843 	DEBUG_print("resume\n");
2844 
2845 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2846 		DEBUG_print("resume dirty_bitmap\n");
2847 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2848 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2849 		if (ic->mode == 'B') {
2850 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2851 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2852 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2853 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2854 						     BITMAP_OP_TEST_ALL_CLEAR)) {
2855 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2856 					ic->sb->recalc_sector = cpu_to_le64(0);
2857 				}
2858 			} else {
2859 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2860 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2861 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2862 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2863 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2864 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2865 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2866 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2867 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2868 				ic->sb->recalc_sector = cpu_to_le64(0);
2869 			}
2870 		} else {
2871 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2872 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2873 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2874 				ic->sb->recalc_sector = cpu_to_le64(0);
2875 			}
2876 			init_journal(ic, 0, ic->journal_sections, 0);
2877 			replay_journal(ic);
2878 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2879 		}
2880 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2881 		if (unlikely(r))
2882 			dm_integrity_io_error(ic, "writing superblock", r);
2883 	} else {
2884 		replay_journal(ic);
2885 		if (ic->mode == 'B') {
2886 			int mode;
2887 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2888 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2889 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2890 			if (unlikely(r))
2891 				dm_integrity_io_error(ic, "writing superblock", r);
2892 
2893 			mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR;
2894 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode);
2895 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode);
2896 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode);
2897 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2898 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2899 		}
2900 	}
2901 
2902 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2903 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2904 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2905 		DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2906 		if (recalc_pos < ic->provided_data_sectors) {
2907 			queue_work(ic->recalc_wq, &ic->recalc_work);
2908 		} else if (recalc_pos > ic->provided_data_sectors) {
2909 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2910 			recalc_write_super(ic);
2911 		}
2912 	}
2913 
2914 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2915 	ic->reboot_notifier.next = NULL;
2916 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
2917 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2918 
2919 #if 0
2920 	/* set to 1 to stress test synchronous mode */
2921 	dm_integrity_enter_synchronous_mode(ic);
2922 #endif
2923 }
2924 
2925 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2926 				unsigned status_flags, char *result, unsigned maxlen)
2927 {
2928 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2929 	unsigned arg_count;
2930 	size_t sz = 0;
2931 
2932 	switch (type) {
2933 	case STATUSTYPE_INFO:
2934 		DMEMIT("%llu %llu",
2935 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
2936 			(unsigned long long)ic->provided_data_sectors);
2937 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2938 			DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2939 		else
2940 			DMEMIT(" -");
2941 		break;
2942 
2943 	case STATUSTYPE_TABLE: {
2944 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2945 		watermark_percentage += ic->journal_entries / 2;
2946 		do_div(watermark_percentage, ic->journal_entries);
2947 		arg_count = 3;
2948 		arg_count += !!ic->meta_dev;
2949 		arg_count += ic->sectors_per_block != 1;
2950 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2951 		arg_count += ic->mode == 'J';
2952 		arg_count += ic->mode == 'J';
2953 		arg_count += ic->mode == 'B';
2954 		arg_count += ic->mode == 'B';
2955 		arg_count += !!ic->internal_hash_alg.alg_string;
2956 		arg_count += !!ic->journal_crypt_alg.alg_string;
2957 		arg_count += !!ic->journal_mac_alg.alg_string;
2958 		DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2959 		       ic->tag_size, ic->mode, arg_count);
2960 		if (ic->meta_dev)
2961 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
2962 		if (ic->sectors_per_block != 1)
2963 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2964 		if (ic->recalculate_flag)
2965 			DMEMIT(" recalculate");
2966 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2967 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2968 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2969 		if (ic->mode == 'J') {
2970 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2971 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
2972 		}
2973 		if (ic->mode == 'B') {
2974 			DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2975 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2976 		}
2977 
2978 #define EMIT_ALG(a, n)							\
2979 		do {							\
2980 			if (ic->a.alg_string) {				\
2981 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
2982 				if (ic->a.key_string)			\
2983 					DMEMIT(":%s", ic->a.key_string);\
2984 			}						\
2985 		} while (0)
2986 		EMIT_ALG(internal_hash_alg, "internal_hash");
2987 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
2988 		EMIT_ALG(journal_mac_alg, "journal_mac");
2989 		break;
2990 	}
2991 	}
2992 }
2993 
2994 static int dm_integrity_iterate_devices(struct dm_target *ti,
2995 					iterate_devices_callout_fn fn, void *data)
2996 {
2997 	struct dm_integrity_c *ic = ti->private;
2998 
2999 	if (!ic->meta_dev)
3000 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3001 	else
3002 		return fn(ti, ic->dev, 0, ti->len, data);
3003 }
3004 
3005 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3006 {
3007 	struct dm_integrity_c *ic = ti->private;
3008 
3009 	if (ic->sectors_per_block > 1) {
3010 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3011 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3012 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3013 	}
3014 }
3015 
3016 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3017 {
3018 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3019 
3020 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3021 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3022 					 JOURNAL_ENTRY_ROUNDUP);
3023 
3024 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3025 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3026 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3027 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3028 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3029 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3030 }
3031 
3032 static int calculate_device_limits(struct dm_integrity_c *ic)
3033 {
3034 	__u64 initial_sectors;
3035 
3036 	calculate_journal_section_size(ic);
3037 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3038 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3039 		return -EINVAL;
3040 	ic->initial_sectors = initial_sectors;
3041 
3042 	if (!ic->meta_dev) {
3043 		sector_t last_sector, last_area, last_offset;
3044 
3045 		ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3046 					   (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
3047 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3048 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3049 		else
3050 			ic->log2_metadata_run = -1;
3051 
3052 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3053 		last_sector = get_data_sector(ic, last_area, last_offset);
3054 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3055 			return -EINVAL;
3056 	} else {
3057 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3058 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3059 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3060 		meta_size <<= ic->log2_buffer_sectors;
3061 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3062 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3063 			return -EINVAL;
3064 		ic->metadata_run = 1;
3065 		ic->log2_metadata_run = 0;
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3072 {
3073 	unsigned journal_sections;
3074 	int test_bit;
3075 
3076 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3077 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3078 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3079 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3080 	if (ic->journal_mac_alg.alg_string)
3081 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3082 
3083 	calculate_journal_section_size(ic);
3084 	journal_sections = journal_sectors / ic->journal_section_sectors;
3085 	if (!journal_sections)
3086 		journal_sections = 1;
3087 
3088 	if (!ic->meta_dev) {
3089 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3090 		if (!interleave_sectors)
3091 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3092 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3093 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3094 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3095 
3096 		ic->provided_data_sectors = 0;
3097 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3098 			__u64 prev_data_sectors = ic->provided_data_sectors;
3099 
3100 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3101 			if (calculate_device_limits(ic))
3102 				ic->provided_data_sectors = prev_data_sectors;
3103 		}
3104 		if (!ic->provided_data_sectors)
3105 			return -EINVAL;
3106 	} else {
3107 		ic->sb->log2_interleave_sectors = 0;
3108 		ic->provided_data_sectors = ic->data_device_sectors;
3109 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3110 
3111 try_smaller_buffer:
3112 		ic->sb->journal_sections = cpu_to_le32(0);
3113 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3114 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3115 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3116 			if (test_journal_sections > journal_sections)
3117 				continue;
3118 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3119 			if (calculate_device_limits(ic))
3120 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3121 
3122 		}
3123 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3124 			if (ic->log2_buffer_sectors > 3) {
3125 				ic->log2_buffer_sectors--;
3126 				goto try_smaller_buffer;
3127 			}
3128 			return -EINVAL;
3129 		}
3130 	}
3131 
3132 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3133 
3134 	sb_set_version(ic);
3135 
3136 	return 0;
3137 }
3138 
3139 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3140 {
3141 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3142 	struct blk_integrity bi;
3143 
3144 	memset(&bi, 0, sizeof(bi));
3145 	bi.profile = &dm_integrity_profile;
3146 	bi.tuple_size = ic->tag_size;
3147 	bi.tag_size = bi.tuple_size;
3148 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3149 
3150 	blk_integrity_register(disk, &bi);
3151 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3152 }
3153 
3154 static void dm_integrity_free_page_list(struct page_list *pl)
3155 {
3156 	unsigned i;
3157 
3158 	if (!pl)
3159 		return;
3160 	for (i = 0; pl[i].page; i++)
3161 		__free_page(pl[i].page);
3162 	kvfree(pl);
3163 }
3164 
3165 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3166 {
3167 	struct page_list *pl;
3168 	unsigned i;
3169 
3170 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3171 	if (!pl)
3172 		return NULL;
3173 
3174 	for (i = 0; i < n_pages; i++) {
3175 		pl[i].page = alloc_page(GFP_KERNEL);
3176 		if (!pl[i].page) {
3177 			dm_integrity_free_page_list(pl);
3178 			return NULL;
3179 		}
3180 		if (i)
3181 			pl[i - 1].next = &pl[i];
3182 	}
3183 	pl[i].page = NULL;
3184 	pl[i].next = NULL;
3185 
3186 	return pl;
3187 }
3188 
3189 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3190 {
3191 	unsigned i;
3192 	for (i = 0; i < ic->journal_sections; i++)
3193 		kvfree(sl[i]);
3194 	kvfree(sl);
3195 }
3196 
3197 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3198 								   struct page_list *pl)
3199 {
3200 	struct scatterlist **sl;
3201 	unsigned i;
3202 
3203 	sl = kvmalloc_array(ic->journal_sections,
3204 			    sizeof(struct scatterlist *),
3205 			    GFP_KERNEL | __GFP_ZERO);
3206 	if (!sl)
3207 		return NULL;
3208 
3209 	for (i = 0; i < ic->journal_sections; i++) {
3210 		struct scatterlist *s;
3211 		unsigned start_index, start_offset;
3212 		unsigned end_index, end_offset;
3213 		unsigned n_pages;
3214 		unsigned idx;
3215 
3216 		page_list_location(ic, i, 0, &start_index, &start_offset);
3217 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3218 				   &end_index, &end_offset);
3219 
3220 		n_pages = (end_index - start_index + 1);
3221 
3222 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3223 				   GFP_KERNEL);
3224 		if (!s) {
3225 			dm_integrity_free_journal_scatterlist(ic, sl);
3226 			return NULL;
3227 		}
3228 
3229 		sg_init_table(s, n_pages);
3230 		for (idx = start_index; idx <= end_index; idx++) {
3231 			char *va = lowmem_page_address(pl[idx].page);
3232 			unsigned start = 0, end = PAGE_SIZE;
3233 			if (idx == start_index)
3234 				start = start_offset;
3235 			if (idx == end_index)
3236 				end = end_offset + (1 << SECTOR_SHIFT);
3237 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3238 		}
3239 
3240 		sl[i] = s;
3241 	}
3242 
3243 	return sl;
3244 }
3245 
3246 static void free_alg(struct alg_spec *a)
3247 {
3248 	kzfree(a->alg_string);
3249 	kzfree(a->key);
3250 	memset(a, 0, sizeof *a);
3251 }
3252 
3253 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3254 {
3255 	char *k;
3256 
3257 	free_alg(a);
3258 
3259 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3260 	if (!a->alg_string)
3261 		goto nomem;
3262 
3263 	k = strchr(a->alg_string, ':');
3264 	if (k) {
3265 		*k = 0;
3266 		a->key_string = k + 1;
3267 		if (strlen(a->key_string) & 1)
3268 			goto inval;
3269 
3270 		a->key_size = strlen(a->key_string) / 2;
3271 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3272 		if (!a->key)
3273 			goto nomem;
3274 		if (hex2bin(a->key, a->key_string, a->key_size))
3275 			goto inval;
3276 	}
3277 
3278 	return 0;
3279 inval:
3280 	*error = error_inval;
3281 	return -EINVAL;
3282 nomem:
3283 	*error = "Out of memory for an argument";
3284 	return -ENOMEM;
3285 }
3286 
3287 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3288 		   char *error_alg, char *error_key)
3289 {
3290 	int r;
3291 
3292 	if (a->alg_string) {
3293 		*hash = crypto_alloc_shash(a->alg_string, 0, 0);
3294 		if (IS_ERR(*hash)) {
3295 			*error = error_alg;
3296 			r = PTR_ERR(*hash);
3297 			*hash = NULL;
3298 			return r;
3299 		}
3300 
3301 		if (a->key) {
3302 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3303 			if (r) {
3304 				*error = error_key;
3305 				return r;
3306 			}
3307 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3308 			*error = error_key;
3309 			return -ENOKEY;
3310 		}
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 static int create_journal(struct dm_integrity_c *ic, char **error)
3317 {
3318 	int r = 0;
3319 	unsigned i;
3320 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3321 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3322 	struct skcipher_request *req = NULL;
3323 
3324 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3325 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3326 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3327 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3328 
3329 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3330 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3331 	journal_desc_size = journal_pages * sizeof(struct page_list);
3332 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3333 		*error = "Journal doesn't fit into memory";
3334 		r = -ENOMEM;
3335 		goto bad;
3336 	}
3337 	ic->journal_pages = journal_pages;
3338 
3339 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3340 	if (!ic->journal) {
3341 		*error = "Could not allocate memory for journal";
3342 		r = -ENOMEM;
3343 		goto bad;
3344 	}
3345 	if (ic->journal_crypt_alg.alg_string) {
3346 		unsigned ivsize, blocksize;
3347 		struct journal_completion comp;
3348 
3349 		comp.ic = ic;
3350 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3351 		if (IS_ERR(ic->journal_crypt)) {
3352 			*error = "Invalid journal cipher";
3353 			r = PTR_ERR(ic->journal_crypt);
3354 			ic->journal_crypt = NULL;
3355 			goto bad;
3356 		}
3357 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3358 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3359 
3360 		if (ic->journal_crypt_alg.key) {
3361 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3362 						   ic->journal_crypt_alg.key_size);
3363 			if (r) {
3364 				*error = "Error setting encryption key";
3365 				goto bad;
3366 			}
3367 		}
3368 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3369 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3370 
3371 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3372 		if (!ic->journal_io) {
3373 			*error = "Could not allocate memory for journal io";
3374 			r = -ENOMEM;
3375 			goto bad;
3376 		}
3377 
3378 		if (blocksize == 1) {
3379 			struct scatterlist *sg;
3380 
3381 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3382 			if (!req) {
3383 				*error = "Could not allocate crypt request";
3384 				r = -ENOMEM;
3385 				goto bad;
3386 			}
3387 
3388 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3389 			if (!crypt_iv) {
3390 				*error = "Could not allocate iv";
3391 				r = -ENOMEM;
3392 				goto bad;
3393 			}
3394 
3395 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3396 			if (!ic->journal_xor) {
3397 				*error = "Could not allocate memory for journal xor";
3398 				r = -ENOMEM;
3399 				goto bad;
3400 			}
3401 
3402 			sg = kvmalloc_array(ic->journal_pages + 1,
3403 					    sizeof(struct scatterlist),
3404 					    GFP_KERNEL);
3405 			if (!sg) {
3406 				*error = "Unable to allocate sg list";
3407 				r = -ENOMEM;
3408 				goto bad;
3409 			}
3410 			sg_init_table(sg, ic->journal_pages + 1);
3411 			for (i = 0; i < ic->journal_pages; i++) {
3412 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3413 				clear_page(va);
3414 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3415 			}
3416 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3417 
3418 			skcipher_request_set_crypt(req, sg, sg,
3419 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3420 			init_completion(&comp.comp);
3421 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3422 			if (do_crypt(true, req, &comp))
3423 				wait_for_completion(&comp.comp);
3424 			kvfree(sg);
3425 			r = dm_integrity_failed(ic);
3426 			if (r) {
3427 				*error = "Unable to encrypt journal";
3428 				goto bad;
3429 			}
3430 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3431 
3432 			crypto_free_skcipher(ic->journal_crypt);
3433 			ic->journal_crypt = NULL;
3434 		} else {
3435 			unsigned crypt_len = roundup(ivsize, blocksize);
3436 
3437 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3438 			if (!req) {
3439 				*error = "Could not allocate crypt request";
3440 				r = -ENOMEM;
3441 				goto bad;
3442 			}
3443 
3444 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3445 			if (!crypt_iv) {
3446 				*error = "Could not allocate iv";
3447 				r = -ENOMEM;
3448 				goto bad;
3449 			}
3450 
3451 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3452 			if (!crypt_data) {
3453 				*error = "Unable to allocate crypt data";
3454 				r = -ENOMEM;
3455 				goto bad;
3456 			}
3457 
3458 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3459 			if (!ic->journal_scatterlist) {
3460 				*error = "Unable to allocate sg list";
3461 				r = -ENOMEM;
3462 				goto bad;
3463 			}
3464 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3465 			if (!ic->journal_io_scatterlist) {
3466 				*error = "Unable to allocate sg list";
3467 				r = -ENOMEM;
3468 				goto bad;
3469 			}
3470 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3471 							 sizeof(struct skcipher_request *),
3472 							 GFP_KERNEL | __GFP_ZERO);
3473 			if (!ic->sk_requests) {
3474 				*error = "Unable to allocate sk requests";
3475 				r = -ENOMEM;
3476 				goto bad;
3477 			}
3478 			for (i = 0; i < ic->journal_sections; i++) {
3479 				struct scatterlist sg;
3480 				struct skcipher_request *section_req;
3481 				__u32 section_le = cpu_to_le32(i);
3482 
3483 				memset(crypt_iv, 0x00, ivsize);
3484 				memset(crypt_data, 0x00, crypt_len);
3485 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3486 
3487 				sg_init_one(&sg, crypt_data, crypt_len);
3488 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3489 				init_completion(&comp.comp);
3490 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3491 				if (do_crypt(true, req, &comp))
3492 					wait_for_completion(&comp.comp);
3493 
3494 				r = dm_integrity_failed(ic);
3495 				if (r) {
3496 					*error = "Unable to generate iv";
3497 					goto bad;
3498 				}
3499 
3500 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3501 				if (!section_req) {
3502 					*error = "Unable to allocate crypt request";
3503 					r = -ENOMEM;
3504 					goto bad;
3505 				}
3506 				section_req->iv = kmalloc_array(ivsize, 2,
3507 								GFP_KERNEL);
3508 				if (!section_req->iv) {
3509 					skcipher_request_free(section_req);
3510 					*error = "Unable to allocate iv";
3511 					r = -ENOMEM;
3512 					goto bad;
3513 				}
3514 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3515 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3516 				ic->sk_requests[i] = section_req;
3517 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3518 			}
3519 		}
3520 	}
3521 
3522 	for (i = 0; i < N_COMMIT_IDS; i++) {
3523 		unsigned j;
3524 retest_commit_id:
3525 		for (j = 0; j < i; j++) {
3526 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3527 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3528 				goto retest_commit_id;
3529 			}
3530 		}
3531 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3532 	}
3533 
3534 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3535 	if (journal_tree_size > ULONG_MAX) {
3536 		*error = "Journal doesn't fit into memory";
3537 		r = -ENOMEM;
3538 		goto bad;
3539 	}
3540 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3541 	if (!ic->journal_tree) {
3542 		*error = "Could not allocate memory for journal tree";
3543 		r = -ENOMEM;
3544 	}
3545 bad:
3546 	kfree(crypt_data);
3547 	kfree(crypt_iv);
3548 	skcipher_request_free(req);
3549 
3550 	return r;
3551 }
3552 
3553 /*
3554  * Construct a integrity mapping
3555  *
3556  * Arguments:
3557  *	device
3558  *	offset from the start of the device
3559  *	tag size
3560  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3561  *	number of optional arguments
3562  *	optional arguments:
3563  *		journal_sectors
3564  *		interleave_sectors
3565  *		buffer_sectors
3566  *		journal_watermark
3567  *		commit_time
3568  *		meta_device
3569  *		block_size
3570  *		sectors_per_bit
3571  *		bitmap_flush_interval
3572  *		internal_hash
3573  *		journal_crypt
3574  *		journal_mac
3575  *		recalculate
3576  */
3577 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3578 {
3579 	struct dm_integrity_c *ic;
3580 	char dummy;
3581 	int r;
3582 	unsigned extra_args;
3583 	struct dm_arg_set as;
3584 	static const struct dm_arg _args[] = {
3585 		{0, 9, "Invalid number of feature args"},
3586 	};
3587 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3588 	bool should_write_sb;
3589 	__u64 threshold;
3590 	unsigned long long start;
3591 	__s8 log2_sectors_per_bitmap_bit = -1;
3592 	__s8 log2_blocks_per_bitmap_bit;
3593 	__u64 bits_in_journal;
3594 	__u64 n_bitmap_bits;
3595 
3596 #define DIRECT_ARGUMENTS	4
3597 
3598 	if (argc <= DIRECT_ARGUMENTS) {
3599 		ti->error = "Invalid argument count";
3600 		return -EINVAL;
3601 	}
3602 
3603 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3604 	if (!ic) {
3605 		ti->error = "Cannot allocate integrity context";
3606 		return -ENOMEM;
3607 	}
3608 	ti->private = ic;
3609 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3610 
3611 	ic->in_progress = RB_ROOT;
3612 	INIT_LIST_HEAD(&ic->wait_list);
3613 	init_waitqueue_head(&ic->endio_wait);
3614 	bio_list_init(&ic->flush_bio_list);
3615 	init_waitqueue_head(&ic->copy_to_journal_wait);
3616 	init_completion(&ic->crypto_backoff);
3617 	atomic64_set(&ic->number_of_mismatches, 0);
3618 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3619 
3620 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3621 	if (r) {
3622 		ti->error = "Device lookup failed";
3623 		goto bad;
3624 	}
3625 
3626 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3627 		ti->error = "Invalid starting offset";
3628 		r = -EINVAL;
3629 		goto bad;
3630 	}
3631 	ic->start = start;
3632 
3633 	if (strcmp(argv[2], "-")) {
3634 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3635 			ti->error = "Invalid tag size";
3636 			r = -EINVAL;
3637 			goto bad;
3638 		}
3639 	}
3640 
3641 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3642 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3643 		ic->mode = argv[3][0];
3644 	} else {
3645 		ti->error = "Invalid mode (expecting J, B, D, R)";
3646 		r = -EINVAL;
3647 		goto bad;
3648 	}
3649 
3650 	journal_sectors = 0;
3651 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3652 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3653 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3654 	sync_msec = DEFAULT_SYNC_MSEC;
3655 	ic->sectors_per_block = 1;
3656 
3657 	as.argc = argc - DIRECT_ARGUMENTS;
3658 	as.argv = argv + DIRECT_ARGUMENTS;
3659 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3660 	if (r)
3661 		goto bad;
3662 
3663 	while (extra_args--) {
3664 		const char *opt_string;
3665 		unsigned val;
3666 		unsigned long long llval;
3667 		opt_string = dm_shift_arg(&as);
3668 		if (!opt_string) {
3669 			r = -EINVAL;
3670 			ti->error = "Not enough feature arguments";
3671 			goto bad;
3672 		}
3673 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3674 			journal_sectors = val ? val : 1;
3675 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3676 			interleave_sectors = val;
3677 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3678 			buffer_sectors = val;
3679 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3680 			journal_watermark = val;
3681 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3682 			sync_msec = val;
3683 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3684 			if (ic->meta_dev) {
3685 				dm_put_device(ti, ic->meta_dev);
3686 				ic->meta_dev = NULL;
3687 			}
3688 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3689 					  dm_table_get_mode(ti->table), &ic->meta_dev);
3690 			if (r) {
3691 				ti->error = "Device lookup failed";
3692 				goto bad;
3693 			}
3694 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3695 			if (val < 1 << SECTOR_SHIFT ||
3696 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3697 			    (val & (val -1))) {
3698 				r = -EINVAL;
3699 				ti->error = "Invalid block_size argument";
3700 				goto bad;
3701 			}
3702 			ic->sectors_per_block = val >> SECTOR_SHIFT;
3703 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3704 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3705 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3706 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3707 				r = -EINVAL;
3708 				ti->error = "Invalid bitmap_flush_interval argument";
3709 			}
3710 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
3711 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3712 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3713 					    "Invalid internal_hash argument");
3714 			if (r)
3715 				goto bad;
3716 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3717 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3718 					    "Invalid journal_crypt argument");
3719 			if (r)
3720 				goto bad;
3721 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3722 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3723 					    "Invalid journal_mac argument");
3724 			if (r)
3725 				goto bad;
3726 		} else if (!strcmp(opt_string, "recalculate")) {
3727 			ic->recalculate_flag = true;
3728 		} else {
3729 			r = -EINVAL;
3730 			ti->error = "Invalid argument";
3731 			goto bad;
3732 		}
3733 	}
3734 
3735 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3736 	if (!ic->meta_dev)
3737 		ic->meta_device_sectors = ic->data_device_sectors;
3738 	else
3739 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3740 
3741 	if (!journal_sectors) {
3742 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3743 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3744 	}
3745 
3746 	if (!buffer_sectors)
3747 		buffer_sectors = 1;
3748 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3749 
3750 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3751 		    "Invalid internal hash", "Error setting internal hash key");
3752 	if (r)
3753 		goto bad;
3754 
3755 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3756 		    "Invalid journal mac", "Error setting journal mac key");
3757 	if (r)
3758 		goto bad;
3759 
3760 	if (!ic->tag_size) {
3761 		if (!ic->internal_hash) {
3762 			ti->error = "Unknown tag size";
3763 			r = -EINVAL;
3764 			goto bad;
3765 		}
3766 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3767 	}
3768 	if (ic->tag_size > MAX_TAG_SIZE) {
3769 		ti->error = "Too big tag size";
3770 		r = -EINVAL;
3771 		goto bad;
3772 	}
3773 	if (!(ic->tag_size & (ic->tag_size - 1)))
3774 		ic->log2_tag_size = __ffs(ic->tag_size);
3775 	else
3776 		ic->log2_tag_size = -1;
3777 
3778 	if (ic->mode == 'B' && !ic->internal_hash) {
3779 		r = -EINVAL;
3780 		ti->error = "Bitmap mode can be only used with internal hash";
3781 		goto bad;
3782 	}
3783 
3784 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3785 	ic->autocommit_msec = sync_msec;
3786 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3787 
3788 	ic->io = dm_io_client_create();
3789 	if (IS_ERR(ic->io)) {
3790 		r = PTR_ERR(ic->io);
3791 		ic->io = NULL;
3792 		ti->error = "Cannot allocate dm io";
3793 		goto bad;
3794 	}
3795 
3796 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3797 	if (r) {
3798 		ti->error = "Cannot allocate mempool";
3799 		goto bad;
3800 	}
3801 
3802 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3803 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3804 	if (!ic->metadata_wq) {
3805 		ti->error = "Cannot allocate workqueue";
3806 		r = -ENOMEM;
3807 		goto bad;
3808 	}
3809 
3810 	/*
3811 	 * If this workqueue were percpu, it would cause bio reordering
3812 	 * and reduced performance.
3813 	 */
3814 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3815 	if (!ic->wait_wq) {
3816 		ti->error = "Cannot allocate workqueue";
3817 		r = -ENOMEM;
3818 		goto bad;
3819 	}
3820 
3821 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3822 	if (!ic->commit_wq) {
3823 		ti->error = "Cannot allocate workqueue";
3824 		r = -ENOMEM;
3825 		goto bad;
3826 	}
3827 	INIT_WORK(&ic->commit_work, integrity_commit);
3828 
3829 	if (ic->mode == 'J' || ic->mode == 'B') {
3830 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3831 		if (!ic->writer_wq) {
3832 			ti->error = "Cannot allocate workqueue";
3833 			r = -ENOMEM;
3834 			goto bad;
3835 		}
3836 		INIT_WORK(&ic->writer_work, integrity_writer);
3837 	}
3838 
3839 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3840 	if (!ic->sb) {
3841 		r = -ENOMEM;
3842 		ti->error = "Cannot allocate superblock area";
3843 		goto bad;
3844 	}
3845 
3846 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
3847 	if (r) {
3848 		ti->error = "Error reading superblock";
3849 		goto bad;
3850 	}
3851 	should_write_sb = false;
3852 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3853 		if (ic->mode != 'R') {
3854 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3855 				r = -EINVAL;
3856 				ti->error = "The device is not initialized";
3857 				goto bad;
3858 			}
3859 		}
3860 
3861 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3862 		if (r) {
3863 			ti->error = "Could not initialize superblock";
3864 			goto bad;
3865 		}
3866 		if (ic->mode != 'R')
3867 			should_write_sb = true;
3868 	}
3869 
3870 	if (!ic->sb->version || ic->sb->version > SB_VERSION_3) {
3871 		r = -EINVAL;
3872 		ti->error = "Unknown version";
3873 		goto bad;
3874 	}
3875 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3876 		r = -EINVAL;
3877 		ti->error = "Tag size doesn't match the information in superblock";
3878 		goto bad;
3879 	}
3880 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3881 		r = -EINVAL;
3882 		ti->error = "Block size doesn't match the information in superblock";
3883 		goto bad;
3884 	}
3885 	if (!le32_to_cpu(ic->sb->journal_sections)) {
3886 		r = -EINVAL;
3887 		ti->error = "Corrupted superblock, journal_sections is 0";
3888 		goto bad;
3889 	}
3890 	/* make sure that ti->max_io_len doesn't overflow */
3891 	if (!ic->meta_dev) {
3892 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3893 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3894 			r = -EINVAL;
3895 			ti->error = "Invalid interleave_sectors in the superblock";
3896 			goto bad;
3897 		}
3898 	} else {
3899 		if (ic->sb->log2_interleave_sectors) {
3900 			r = -EINVAL;
3901 			ti->error = "Invalid interleave_sectors in the superblock";
3902 			goto bad;
3903 		}
3904 	}
3905 	ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3906 	if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3907 		/* test for overflow */
3908 		r = -EINVAL;
3909 		ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3910 		goto bad;
3911 	}
3912 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3913 		r = -EINVAL;
3914 		ti->error = "Journal mac mismatch";
3915 		goto bad;
3916 	}
3917 
3918 try_smaller_buffer:
3919 	r = calculate_device_limits(ic);
3920 	if (r) {
3921 		if (ic->meta_dev) {
3922 			if (ic->log2_buffer_sectors > 3) {
3923 				ic->log2_buffer_sectors--;
3924 				goto try_smaller_buffer;
3925 			}
3926 		}
3927 		ti->error = "The device is too small";
3928 		goto bad;
3929 	}
3930 
3931 	if (log2_sectors_per_bitmap_bit < 0)
3932 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3933 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3934 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3935 
3936 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3937 	if (bits_in_journal > UINT_MAX)
3938 		bits_in_journal = UINT_MAX;
3939 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3940 		log2_sectors_per_bitmap_bit++;
3941 
3942 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3943 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3944 	if (should_write_sb) {
3945 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3946 	}
3947 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3948 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3949 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3950 
3951 	if (!ic->meta_dev)
3952 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3953 
3954 	if (ti->len > ic->provided_data_sectors) {
3955 		r = -EINVAL;
3956 		ti->error = "Not enough provided sectors for requested mapping size";
3957 		goto bad;
3958 	}
3959 
3960 
3961 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3962 	threshold += 50;
3963 	do_div(threshold, 100);
3964 	ic->free_sectors_threshold = threshold;
3965 
3966 	DEBUG_print("initialized:\n");
3967 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3968 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
3969 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3970 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
3971 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
3972 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3973 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
3974 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3975 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3976 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
3977 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
3978 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
3979 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3980 		    (unsigned long long)ic->provided_data_sectors);
3981 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3982 	DEBUG_print("	bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
3983 
3984 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3985 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3986 		ic->sb->recalc_sector = cpu_to_le64(0);
3987 	}
3988 
3989 	if (ic->internal_hash) {
3990 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
3991 		if (!ic->recalc_wq ) {
3992 			ti->error = "Cannot allocate workqueue";
3993 			r = -ENOMEM;
3994 			goto bad;
3995 		}
3996 		INIT_WORK(&ic->recalc_work, integrity_recalc);
3997 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3998 		if (!ic->recalc_buffer) {
3999 			ti->error = "Cannot allocate buffer for recalculating";
4000 			r = -ENOMEM;
4001 			goto bad;
4002 		}
4003 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4004 						 ic->tag_size, GFP_KERNEL);
4005 		if (!ic->recalc_tags) {
4006 			ti->error = "Cannot allocate tags for recalculating";
4007 			r = -ENOMEM;
4008 			goto bad;
4009 		}
4010 	}
4011 
4012 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4013 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4014 	if (IS_ERR(ic->bufio)) {
4015 		r = PTR_ERR(ic->bufio);
4016 		ti->error = "Cannot initialize dm-bufio";
4017 		ic->bufio = NULL;
4018 		goto bad;
4019 	}
4020 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4021 
4022 	if (ic->mode != 'R') {
4023 		r = create_journal(ic, &ti->error);
4024 		if (r)
4025 			goto bad;
4026 
4027 	}
4028 
4029 	if (ic->mode == 'B') {
4030 		unsigned i;
4031 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4032 
4033 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4034 		if (!ic->recalc_bitmap) {
4035 			r = -ENOMEM;
4036 			goto bad;
4037 		}
4038 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4039 		if (!ic->may_write_bitmap) {
4040 			r = -ENOMEM;
4041 			goto bad;
4042 		}
4043 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4044 		if (!ic->bbs) {
4045 			r = -ENOMEM;
4046 			goto bad;
4047 		}
4048 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4049 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4050 			struct bitmap_block_status *bbs = &ic->bbs[i];
4051 			unsigned sector, pl_index, pl_offset;
4052 
4053 			INIT_WORK(&bbs->work, bitmap_block_work);
4054 			bbs->ic = ic;
4055 			bbs->idx = i;
4056 			bio_list_init(&bbs->bio_queue);
4057 			spin_lock_init(&bbs->bio_queue_lock);
4058 
4059 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4060 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4061 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4062 
4063 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4064 		}
4065 	}
4066 
4067 	if (should_write_sb) {
4068 		int r;
4069 
4070 		init_journal(ic, 0, ic->journal_sections, 0);
4071 		r = dm_integrity_failed(ic);
4072 		if (unlikely(r)) {
4073 			ti->error = "Error initializing journal";
4074 			goto bad;
4075 		}
4076 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4077 		if (r) {
4078 			ti->error = "Error initializing superblock";
4079 			goto bad;
4080 		}
4081 		ic->just_formatted = true;
4082 	}
4083 
4084 	if (!ic->meta_dev) {
4085 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4086 		if (r)
4087 			goto bad;
4088 	}
4089 	if (ic->mode == 'B') {
4090 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4091 		if (!max_io_len)
4092 			max_io_len = 1U << 31;
4093 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4094 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4095 			r = dm_set_target_max_io_len(ti, max_io_len);
4096 			if (r)
4097 				goto bad;
4098 		}
4099 	}
4100 
4101 	if (!ic->internal_hash)
4102 		dm_integrity_set(ti, ic);
4103 
4104 	ti->num_flush_bios = 1;
4105 	ti->flush_supported = true;
4106 
4107 	return 0;
4108 
4109 bad:
4110 	dm_integrity_dtr(ti);
4111 	return r;
4112 }
4113 
4114 static void dm_integrity_dtr(struct dm_target *ti)
4115 {
4116 	struct dm_integrity_c *ic = ti->private;
4117 
4118 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4119 	BUG_ON(!list_empty(&ic->wait_list));
4120 
4121 	if (ic->metadata_wq)
4122 		destroy_workqueue(ic->metadata_wq);
4123 	if (ic->wait_wq)
4124 		destroy_workqueue(ic->wait_wq);
4125 	if (ic->commit_wq)
4126 		destroy_workqueue(ic->commit_wq);
4127 	if (ic->writer_wq)
4128 		destroy_workqueue(ic->writer_wq);
4129 	if (ic->recalc_wq)
4130 		destroy_workqueue(ic->recalc_wq);
4131 	vfree(ic->recalc_buffer);
4132 	kvfree(ic->recalc_tags);
4133 	kvfree(ic->bbs);
4134 	if (ic->bufio)
4135 		dm_bufio_client_destroy(ic->bufio);
4136 	mempool_exit(&ic->journal_io_mempool);
4137 	if (ic->io)
4138 		dm_io_client_destroy(ic->io);
4139 	if (ic->dev)
4140 		dm_put_device(ti, ic->dev);
4141 	if (ic->meta_dev)
4142 		dm_put_device(ti, ic->meta_dev);
4143 	dm_integrity_free_page_list(ic->journal);
4144 	dm_integrity_free_page_list(ic->journal_io);
4145 	dm_integrity_free_page_list(ic->journal_xor);
4146 	dm_integrity_free_page_list(ic->recalc_bitmap);
4147 	dm_integrity_free_page_list(ic->may_write_bitmap);
4148 	if (ic->journal_scatterlist)
4149 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4150 	if (ic->journal_io_scatterlist)
4151 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4152 	if (ic->sk_requests) {
4153 		unsigned i;
4154 
4155 		for (i = 0; i < ic->journal_sections; i++) {
4156 			struct skcipher_request *req = ic->sk_requests[i];
4157 			if (req) {
4158 				kzfree(req->iv);
4159 				skcipher_request_free(req);
4160 			}
4161 		}
4162 		kvfree(ic->sk_requests);
4163 	}
4164 	kvfree(ic->journal_tree);
4165 	if (ic->sb)
4166 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4167 
4168 	if (ic->internal_hash)
4169 		crypto_free_shash(ic->internal_hash);
4170 	free_alg(&ic->internal_hash_alg);
4171 
4172 	if (ic->journal_crypt)
4173 		crypto_free_skcipher(ic->journal_crypt);
4174 	free_alg(&ic->journal_crypt_alg);
4175 
4176 	if (ic->journal_mac)
4177 		crypto_free_shash(ic->journal_mac);
4178 	free_alg(&ic->journal_mac_alg);
4179 
4180 	kfree(ic);
4181 }
4182 
4183 static struct target_type integrity_target = {
4184 	.name			= "integrity",
4185 	.version		= {1, 3, 0},
4186 	.module			= THIS_MODULE,
4187 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4188 	.ctr			= dm_integrity_ctr,
4189 	.dtr			= dm_integrity_dtr,
4190 	.map			= dm_integrity_map,
4191 	.postsuspend		= dm_integrity_postsuspend,
4192 	.resume			= dm_integrity_resume,
4193 	.status			= dm_integrity_status,
4194 	.iterate_devices	= dm_integrity_iterate_devices,
4195 	.io_hints		= dm_integrity_io_hints,
4196 };
4197 
4198 static int __init dm_integrity_init(void)
4199 {
4200 	int r;
4201 
4202 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4203 					     sizeof(struct journal_io), 0, 0, NULL);
4204 	if (!journal_io_cache) {
4205 		DMERR("can't allocate journal io cache");
4206 		return -ENOMEM;
4207 	}
4208 
4209 	r = dm_register_target(&integrity_target);
4210 
4211 	if (r < 0)
4212 		DMERR("register failed %d", r);
4213 
4214 	return r;
4215 }
4216 
4217 static void __exit dm_integrity_exit(void)
4218 {
4219 	dm_unregister_target(&integrity_target);
4220 	kmem_cache_destroy(journal_io_cache);
4221 }
4222 
4223 module_init(dm_integrity_init);
4224 module_exit(dm_integrity_exit);
4225 
4226 MODULE_AUTHOR("Milan Broz");
4227 MODULE_AUTHOR("Mikulas Patocka");
4228 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4229 MODULE_LICENSE("GPL");
4230