xref: /openbmc/linux/drivers/md/dm-integrity.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #define DM_MSG_PREFIX "integrity"
27 
28 #define DEFAULT_INTERLEAVE_SECTORS	32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
31 #define DEFAULT_BUFFER_SECTORS		128
32 #define DEFAULT_JOURNAL_WATERMARK	50
33 #define DEFAULT_SYNC_MSEC		10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS	3
36 #define MAX_LOG2_INTERLEAVE_SECTORS	31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
38 #define RECALC_SECTORS			8192
39 #define RECALC_WRITE_SUPER		16
40 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
41 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
42 #define DISCARD_FILLER			0xf6
43 
44 /*
45  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46  * so it should not be enabled in the official kernel
47  */
48 //#define DEBUG_PRINT
49 //#define INTERNAL_VERIFY
50 
51 /*
52  * On disk structures
53  */
54 
55 #define SB_MAGIC			"integrt"
56 #define SB_VERSION_1			1
57 #define SB_VERSION_2			2
58 #define SB_VERSION_3			3
59 #define SB_VERSION_4			4
60 #define SB_SECTORS			8
61 #define MAX_SECTORS_PER_BLOCK		8
62 
63 struct superblock {
64 	__u8 magic[8];
65 	__u8 version;
66 	__u8 log2_interleave_sectors;
67 	__u16 integrity_tag_size;
68 	__u32 journal_sections;
69 	__u64 provided_data_sectors;	/* userspace uses this value */
70 	__u32 flags;
71 	__u8 log2_sectors_per_block;
72 	__u8 log2_blocks_per_bitmap_bit;
73 	__u8 pad[2];
74 	__u64 recalc_sector;
75 };
76 
77 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
78 #define SB_FLAG_RECALCULATING		0x2
79 #define SB_FLAG_DIRTY_BITMAP		0x4
80 #define SB_FLAG_FIXED_PADDING		0x8
81 
82 #define	JOURNAL_ENTRY_ROUNDUP		8
83 
84 typedef __u64 commit_id_t;
85 #define JOURNAL_MAC_PER_SECTOR		8
86 
87 struct journal_entry {
88 	union {
89 		struct {
90 			__u32 sector_lo;
91 			__u32 sector_hi;
92 		} s;
93 		__u64 sector;
94 	} u;
95 	commit_id_t last_bytes[];
96 	/* __u8 tag[0]; */
97 };
98 
99 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
100 
101 #if BITS_PER_LONG == 64
102 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
103 #else
104 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
105 #endif
106 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
107 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
108 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
110 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
111 
112 #define JOURNAL_BLOCK_SECTORS		8
113 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
115 
116 struct journal_sector {
117 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
118 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
119 	commit_id_t commit_id;
120 };
121 
122 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
123 
124 #define METADATA_PADDING_SECTORS	8
125 
126 #define N_COMMIT_IDS			4
127 
128 static unsigned char prev_commit_seq(unsigned char seq)
129 {
130 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
131 }
132 
133 static unsigned char next_commit_seq(unsigned char seq)
134 {
135 	return (seq + 1) % N_COMMIT_IDS;
136 }
137 
138 /*
139  * In-memory structures
140  */
141 
142 struct journal_node {
143 	struct rb_node node;
144 	sector_t sector;
145 };
146 
147 struct alg_spec {
148 	char *alg_string;
149 	char *key_string;
150 	__u8 *key;
151 	unsigned key_size;
152 };
153 
154 struct dm_integrity_c {
155 	struct dm_dev *dev;
156 	struct dm_dev *meta_dev;
157 	unsigned tag_size;
158 	__s8 log2_tag_size;
159 	sector_t start;
160 	mempool_t journal_io_mempool;
161 	struct dm_io_client *io;
162 	struct dm_bufio_client *bufio;
163 	struct workqueue_struct *metadata_wq;
164 	struct superblock *sb;
165 	unsigned journal_pages;
166 	unsigned n_bitmap_blocks;
167 
168 	struct page_list *journal;
169 	struct page_list *journal_io;
170 	struct page_list *journal_xor;
171 	struct page_list *recalc_bitmap;
172 	struct page_list *may_write_bitmap;
173 	struct bitmap_block_status *bbs;
174 	unsigned bitmap_flush_interval;
175 	int synchronous_mode;
176 	struct bio_list synchronous_bios;
177 	struct delayed_work bitmap_flush_work;
178 
179 	struct crypto_skcipher *journal_crypt;
180 	struct scatterlist **journal_scatterlist;
181 	struct scatterlist **journal_io_scatterlist;
182 	struct skcipher_request **sk_requests;
183 
184 	struct crypto_shash *journal_mac;
185 
186 	struct journal_node *journal_tree;
187 	struct rb_root journal_tree_root;
188 
189 	sector_t provided_data_sectors;
190 
191 	unsigned short journal_entry_size;
192 	unsigned char journal_entries_per_sector;
193 	unsigned char journal_section_entries;
194 	unsigned short journal_section_sectors;
195 	unsigned journal_sections;
196 	unsigned journal_entries;
197 	sector_t data_device_sectors;
198 	sector_t meta_device_sectors;
199 	unsigned initial_sectors;
200 	unsigned metadata_run;
201 	__s8 log2_metadata_run;
202 	__u8 log2_buffer_sectors;
203 	__u8 sectors_per_block;
204 	__u8 log2_blocks_per_bitmap_bit;
205 
206 	unsigned char mode;
207 
208 	int failed;
209 
210 	struct crypto_shash *internal_hash;
211 
212 	struct dm_target *ti;
213 
214 	/* these variables are locked with endio_wait.lock */
215 	struct rb_root in_progress;
216 	struct list_head wait_list;
217 	wait_queue_head_t endio_wait;
218 	struct workqueue_struct *wait_wq;
219 	struct workqueue_struct *offload_wq;
220 
221 	unsigned char commit_seq;
222 	commit_id_t commit_ids[N_COMMIT_IDS];
223 
224 	unsigned committed_section;
225 	unsigned n_committed_sections;
226 
227 	unsigned uncommitted_section;
228 	unsigned n_uncommitted_sections;
229 
230 	unsigned free_section;
231 	unsigned char free_section_entry;
232 	unsigned free_sectors;
233 
234 	unsigned free_sectors_threshold;
235 
236 	struct workqueue_struct *commit_wq;
237 	struct work_struct commit_work;
238 
239 	struct workqueue_struct *writer_wq;
240 	struct work_struct writer_work;
241 
242 	struct workqueue_struct *recalc_wq;
243 	struct work_struct recalc_work;
244 	u8 *recalc_buffer;
245 	u8 *recalc_tags;
246 
247 	struct bio_list flush_bio_list;
248 
249 	unsigned long autocommit_jiffies;
250 	struct timer_list autocommit_timer;
251 	unsigned autocommit_msec;
252 
253 	wait_queue_head_t copy_to_journal_wait;
254 
255 	struct completion crypto_backoff;
256 
257 	bool journal_uptodate;
258 	bool just_formatted;
259 	bool recalculate_flag;
260 	bool fix_padding;
261 	bool discard;
262 
263 	struct alg_spec internal_hash_alg;
264 	struct alg_spec journal_crypt_alg;
265 	struct alg_spec journal_mac_alg;
266 
267 	atomic64_t number_of_mismatches;
268 
269 	struct notifier_block reboot_notifier;
270 };
271 
272 struct dm_integrity_range {
273 	sector_t logical_sector;
274 	sector_t n_sectors;
275 	bool waiting;
276 	union {
277 		struct rb_node node;
278 		struct {
279 			struct task_struct *task;
280 			struct list_head wait_entry;
281 		};
282 	};
283 };
284 
285 struct dm_integrity_io {
286 	struct work_struct work;
287 
288 	struct dm_integrity_c *ic;
289 	enum req_opf op;
290 	bool fua;
291 
292 	struct dm_integrity_range range;
293 
294 	sector_t metadata_block;
295 	unsigned metadata_offset;
296 
297 	atomic_t in_flight;
298 	blk_status_t bi_status;
299 
300 	struct completion *completion;
301 
302 	struct dm_bio_details bio_details;
303 };
304 
305 struct journal_completion {
306 	struct dm_integrity_c *ic;
307 	atomic_t in_flight;
308 	struct completion comp;
309 };
310 
311 struct journal_io {
312 	struct dm_integrity_range range;
313 	struct journal_completion *comp;
314 };
315 
316 struct bitmap_block_status {
317 	struct work_struct work;
318 	struct dm_integrity_c *ic;
319 	unsigned idx;
320 	unsigned long *bitmap;
321 	struct bio_list bio_queue;
322 	spinlock_t bio_queue_lock;
323 
324 };
325 
326 static struct kmem_cache *journal_io_cache;
327 
328 #define JOURNAL_IO_MEMPOOL	32
329 
330 #ifdef DEBUG_PRINT
331 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
332 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
333 {
334 	va_list args;
335 	va_start(args, msg);
336 	vprintk(msg, args);
337 	va_end(args);
338 	if (len)
339 		pr_cont(":");
340 	while (len) {
341 		pr_cont(" %02x", *bytes);
342 		bytes++;
343 		len--;
344 	}
345 	pr_cont("\n");
346 }
347 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
348 #else
349 #define DEBUG_print(x, ...)			do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351 #endif
352 
353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356 
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360 
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 	.name			= "DM-DIF-EXT-TAG",
366 	.generate_fn		= NULL,
367 	.verify_fn		= NULL,
368 	.prepare_fn		= dm_integrity_prepare,
369 	.complete_fn		= dm_integrity_complete,
370 };
371 
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375 
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378 	if (err == -EILSEQ)
379 		atomic64_inc(&ic->number_of_mismatches);
380 	if (!cmpxchg(&ic->failed, 0, err))
381 		DMERR("Error on %s: %d", msg, err);
382 }
383 
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386 	return READ_ONCE(ic->failed);
387 }
388 
389 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
390 					  unsigned j, unsigned char seq)
391 {
392 	/*
393 	 * Xor the number with section and sector, so that if a piece of
394 	 * journal is written at wrong place, it is detected.
395 	 */
396 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
397 }
398 
399 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
400 				sector_t *area, sector_t *offset)
401 {
402 	if (!ic->meta_dev) {
403 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
404 		*area = data_sector >> log2_interleave_sectors;
405 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
406 	} else {
407 		*area = 0;
408 		*offset = data_sector;
409 	}
410 }
411 
412 #define sector_to_block(ic, n)						\
413 do {									\
414 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
415 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
416 } while (0)
417 
418 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
419 					    sector_t offset, unsigned *metadata_offset)
420 {
421 	__u64 ms;
422 	unsigned mo;
423 
424 	ms = area << ic->sb->log2_interleave_sectors;
425 	if (likely(ic->log2_metadata_run >= 0))
426 		ms += area << ic->log2_metadata_run;
427 	else
428 		ms += area * ic->metadata_run;
429 	ms >>= ic->log2_buffer_sectors;
430 
431 	sector_to_block(ic, offset);
432 
433 	if (likely(ic->log2_tag_size >= 0)) {
434 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
435 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
436 	} else {
437 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
438 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
439 	}
440 	*metadata_offset = mo;
441 	return ms;
442 }
443 
444 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
445 {
446 	sector_t result;
447 
448 	if (ic->meta_dev)
449 		return offset;
450 
451 	result = area << ic->sb->log2_interleave_sectors;
452 	if (likely(ic->log2_metadata_run >= 0))
453 		result += (area + 1) << ic->log2_metadata_run;
454 	else
455 		result += (area + 1) * ic->metadata_run;
456 
457 	result += (sector_t)ic->initial_sectors + offset;
458 	result += ic->start;
459 
460 	return result;
461 }
462 
463 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
464 {
465 	if (unlikely(*sec_ptr >= ic->journal_sections))
466 		*sec_ptr -= ic->journal_sections;
467 }
468 
469 static void sb_set_version(struct dm_integrity_c *ic)
470 {
471 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
472 		ic->sb->version = SB_VERSION_4;
473 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
474 		ic->sb->version = SB_VERSION_3;
475 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
476 		ic->sb->version = SB_VERSION_2;
477 	else
478 		ic->sb->version = SB_VERSION_1;
479 }
480 
481 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
482 {
483 	struct dm_io_request io_req;
484 	struct dm_io_region io_loc;
485 
486 	io_req.bi_op = op;
487 	io_req.bi_op_flags = op_flags;
488 	io_req.mem.type = DM_IO_KMEM;
489 	io_req.mem.ptr.addr = ic->sb;
490 	io_req.notify.fn = NULL;
491 	io_req.client = ic->io;
492 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
493 	io_loc.sector = ic->start;
494 	io_loc.count = SB_SECTORS;
495 
496 	if (op == REQ_OP_WRITE)
497 		sb_set_version(ic);
498 
499 	return dm_io(&io_req, 1, &io_loc, NULL);
500 }
501 
502 #define BITMAP_OP_TEST_ALL_SET		0
503 #define BITMAP_OP_TEST_ALL_CLEAR	1
504 #define BITMAP_OP_SET			2
505 #define BITMAP_OP_CLEAR			3
506 
507 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
508 			    sector_t sector, sector_t n_sectors, int mode)
509 {
510 	unsigned long bit, end_bit, this_end_bit, page, end_page;
511 	unsigned long *data;
512 
513 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
514 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
515 			sector,
516 			n_sectors,
517 			ic->sb->log2_sectors_per_block,
518 			ic->log2_blocks_per_bitmap_bit,
519 			mode);
520 		BUG();
521 	}
522 
523 	if (unlikely(!n_sectors))
524 		return true;
525 
526 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
527 	end_bit = (sector + n_sectors - 1) >>
528 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
529 
530 	page = bit / (PAGE_SIZE * 8);
531 	bit %= PAGE_SIZE * 8;
532 
533 	end_page = end_bit / (PAGE_SIZE * 8);
534 	end_bit %= PAGE_SIZE * 8;
535 
536 repeat:
537 	if (page < end_page) {
538 		this_end_bit = PAGE_SIZE * 8 - 1;
539 	} else {
540 		this_end_bit = end_bit;
541 	}
542 
543 	data = lowmem_page_address(bitmap[page].page);
544 
545 	if (mode == BITMAP_OP_TEST_ALL_SET) {
546 		while (bit <= this_end_bit) {
547 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
548 				do {
549 					if (data[bit / BITS_PER_LONG] != -1)
550 						return false;
551 					bit += BITS_PER_LONG;
552 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
553 				continue;
554 			}
555 			if (!test_bit(bit, data))
556 				return false;
557 			bit++;
558 		}
559 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
560 		while (bit <= this_end_bit) {
561 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
562 				do {
563 					if (data[bit / BITS_PER_LONG] != 0)
564 						return false;
565 					bit += BITS_PER_LONG;
566 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
567 				continue;
568 			}
569 			if (test_bit(bit, data))
570 				return false;
571 			bit++;
572 		}
573 	} else if (mode == BITMAP_OP_SET) {
574 		while (bit <= this_end_bit) {
575 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
576 				do {
577 					data[bit / BITS_PER_LONG] = -1;
578 					bit += BITS_PER_LONG;
579 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
580 				continue;
581 			}
582 			__set_bit(bit, data);
583 			bit++;
584 		}
585 	} else if (mode == BITMAP_OP_CLEAR) {
586 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
587 			clear_page(data);
588 		else while (bit <= this_end_bit) {
589 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
590 				do {
591 					data[bit / BITS_PER_LONG] = 0;
592 					bit += BITS_PER_LONG;
593 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
594 				continue;
595 			}
596 			__clear_bit(bit, data);
597 			bit++;
598 		}
599 	} else {
600 		BUG();
601 	}
602 
603 	if (unlikely(page < end_page)) {
604 		bit = 0;
605 		page++;
606 		goto repeat;
607 	}
608 
609 	return true;
610 }
611 
612 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
613 {
614 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
615 	unsigned i;
616 
617 	for (i = 0; i < n_bitmap_pages; i++) {
618 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
619 		unsigned long *src_data = lowmem_page_address(src[i].page);
620 		copy_page(dst_data, src_data);
621 	}
622 }
623 
624 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
625 {
626 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
627 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
628 
629 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
630 	return &ic->bbs[bitmap_block];
631 }
632 
633 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
634 				 bool e, const char *function)
635 {
636 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
637 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
638 
639 	if (unlikely(section >= ic->journal_sections) ||
640 	    unlikely(offset >= limit)) {
641 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
642 		       function, section, offset, ic->journal_sections, limit);
643 		BUG();
644 	}
645 #endif
646 }
647 
648 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
649 			       unsigned *pl_index, unsigned *pl_offset)
650 {
651 	unsigned sector;
652 
653 	access_journal_check(ic, section, offset, false, "page_list_location");
654 
655 	sector = section * ic->journal_section_sectors + offset;
656 
657 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
658 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
659 }
660 
661 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
662 					       unsigned section, unsigned offset, unsigned *n_sectors)
663 {
664 	unsigned pl_index, pl_offset;
665 	char *va;
666 
667 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
668 
669 	if (n_sectors)
670 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
671 
672 	va = lowmem_page_address(pl[pl_index].page);
673 
674 	return (struct journal_sector *)(va + pl_offset);
675 }
676 
677 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
678 {
679 	return access_page_list(ic, ic->journal, section, offset, NULL);
680 }
681 
682 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
683 {
684 	unsigned rel_sector, offset;
685 	struct journal_sector *js;
686 
687 	access_journal_check(ic, section, n, true, "access_journal_entry");
688 
689 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
690 	offset = n / JOURNAL_BLOCK_SECTORS;
691 
692 	js = access_journal(ic, section, rel_sector);
693 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
694 }
695 
696 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
697 {
698 	n <<= ic->sb->log2_sectors_per_block;
699 
700 	n += JOURNAL_BLOCK_SECTORS;
701 
702 	access_journal_check(ic, section, n, false, "access_journal_data");
703 
704 	return access_journal(ic, section, n);
705 }
706 
707 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
708 {
709 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
710 	int r;
711 	unsigned j, size;
712 
713 	desc->tfm = ic->journal_mac;
714 
715 	r = crypto_shash_init(desc);
716 	if (unlikely(r)) {
717 		dm_integrity_io_error(ic, "crypto_shash_init", r);
718 		goto err;
719 	}
720 
721 	for (j = 0; j < ic->journal_section_entries; j++) {
722 		struct journal_entry *je = access_journal_entry(ic, section, j);
723 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
724 		if (unlikely(r)) {
725 			dm_integrity_io_error(ic, "crypto_shash_update", r);
726 			goto err;
727 		}
728 	}
729 
730 	size = crypto_shash_digestsize(ic->journal_mac);
731 
732 	if (likely(size <= JOURNAL_MAC_SIZE)) {
733 		r = crypto_shash_final(desc, result);
734 		if (unlikely(r)) {
735 			dm_integrity_io_error(ic, "crypto_shash_final", r);
736 			goto err;
737 		}
738 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
739 	} else {
740 		__u8 digest[HASH_MAX_DIGESTSIZE];
741 
742 		if (WARN_ON(size > sizeof(digest))) {
743 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
744 			goto err;
745 		}
746 		r = crypto_shash_final(desc, digest);
747 		if (unlikely(r)) {
748 			dm_integrity_io_error(ic, "crypto_shash_final", r);
749 			goto err;
750 		}
751 		memcpy(result, digest, JOURNAL_MAC_SIZE);
752 	}
753 
754 	return;
755 err:
756 	memset(result, 0, JOURNAL_MAC_SIZE);
757 }
758 
759 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
760 {
761 	__u8 result[JOURNAL_MAC_SIZE];
762 	unsigned j;
763 
764 	if (!ic->journal_mac)
765 		return;
766 
767 	section_mac(ic, section, result);
768 
769 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
770 		struct journal_sector *js = access_journal(ic, section, j);
771 
772 		if (likely(wr))
773 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
774 		else {
775 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
776 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
777 		}
778 	}
779 }
780 
781 static void complete_journal_op(void *context)
782 {
783 	struct journal_completion *comp = context;
784 	BUG_ON(!atomic_read(&comp->in_flight));
785 	if (likely(atomic_dec_and_test(&comp->in_flight)))
786 		complete(&comp->comp);
787 }
788 
789 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
790 			unsigned n_sections, struct journal_completion *comp)
791 {
792 	struct async_submit_ctl submit;
793 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
794 	unsigned pl_index, pl_offset, section_index;
795 	struct page_list *source_pl, *target_pl;
796 
797 	if (likely(encrypt)) {
798 		source_pl = ic->journal;
799 		target_pl = ic->journal_io;
800 	} else {
801 		source_pl = ic->journal_io;
802 		target_pl = ic->journal;
803 	}
804 
805 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
806 
807 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
808 
809 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
810 
811 	section_index = pl_index;
812 
813 	do {
814 		size_t this_step;
815 		struct page *src_pages[2];
816 		struct page *dst_page;
817 
818 		while (unlikely(pl_index == section_index)) {
819 			unsigned dummy;
820 			if (likely(encrypt))
821 				rw_section_mac(ic, section, true);
822 			section++;
823 			n_sections--;
824 			if (!n_sections)
825 				break;
826 			page_list_location(ic, section, 0, &section_index, &dummy);
827 		}
828 
829 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
830 		dst_page = target_pl[pl_index].page;
831 		src_pages[0] = source_pl[pl_index].page;
832 		src_pages[1] = ic->journal_xor[pl_index].page;
833 
834 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
835 
836 		pl_index++;
837 		pl_offset = 0;
838 		n_bytes -= this_step;
839 	} while (n_bytes);
840 
841 	BUG_ON(n_sections);
842 
843 	async_tx_issue_pending_all();
844 }
845 
846 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
847 {
848 	struct journal_completion *comp = req->data;
849 	if (unlikely(err)) {
850 		if (likely(err == -EINPROGRESS)) {
851 			complete(&comp->ic->crypto_backoff);
852 			return;
853 		}
854 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
855 	}
856 	complete_journal_op(comp);
857 }
858 
859 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
860 {
861 	int r;
862 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
863 				      complete_journal_encrypt, comp);
864 	if (likely(encrypt))
865 		r = crypto_skcipher_encrypt(req);
866 	else
867 		r = crypto_skcipher_decrypt(req);
868 	if (likely(!r))
869 		return false;
870 	if (likely(r == -EINPROGRESS))
871 		return true;
872 	if (likely(r == -EBUSY)) {
873 		wait_for_completion(&comp->ic->crypto_backoff);
874 		reinit_completion(&comp->ic->crypto_backoff);
875 		return true;
876 	}
877 	dm_integrity_io_error(comp->ic, "encrypt", r);
878 	return false;
879 }
880 
881 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
882 			  unsigned n_sections, struct journal_completion *comp)
883 {
884 	struct scatterlist **source_sg;
885 	struct scatterlist **target_sg;
886 
887 	atomic_add(2, &comp->in_flight);
888 
889 	if (likely(encrypt)) {
890 		source_sg = ic->journal_scatterlist;
891 		target_sg = ic->journal_io_scatterlist;
892 	} else {
893 		source_sg = ic->journal_io_scatterlist;
894 		target_sg = ic->journal_scatterlist;
895 	}
896 
897 	do {
898 		struct skcipher_request *req;
899 		unsigned ivsize;
900 		char *iv;
901 
902 		if (likely(encrypt))
903 			rw_section_mac(ic, section, true);
904 
905 		req = ic->sk_requests[section];
906 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
907 		iv = req->iv;
908 
909 		memcpy(iv, iv + ivsize, ivsize);
910 
911 		req->src = source_sg[section];
912 		req->dst = target_sg[section];
913 
914 		if (unlikely(do_crypt(encrypt, req, comp)))
915 			atomic_inc(&comp->in_flight);
916 
917 		section++;
918 		n_sections--;
919 	} while (n_sections);
920 
921 	atomic_dec(&comp->in_flight);
922 	complete_journal_op(comp);
923 }
924 
925 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
926 			    unsigned n_sections, struct journal_completion *comp)
927 {
928 	if (ic->journal_xor)
929 		return xor_journal(ic, encrypt, section, n_sections, comp);
930 	else
931 		return crypt_journal(ic, encrypt, section, n_sections, comp);
932 }
933 
934 static void complete_journal_io(unsigned long error, void *context)
935 {
936 	struct journal_completion *comp = context;
937 	if (unlikely(error != 0))
938 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
939 	complete_journal_op(comp);
940 }
941 
942 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
943 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
944 {
945 	struct dm_io_request io_req;
946 	struct dm_io_region io_loc;
947 	unsigned pl_index, pl_offset;
948 	int r;
949 
950 	if (unlikely(dm_integrity_failed(ic))) {
951 		if (comp)
952 			complete_journal_io(-1UL, comp);
953 		return;
954 	}
955 
956 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
957 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
958 
959 	io_req.bi_op = op;
960 	io_req.bi_op_flags = op_flags;
961 	io_req.mem.type = DM_IO_PAGE_LIST;
962 	if (ic->journal_io)
963 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
964 	else
965 		io_req.mem.ptr.pl = &ic->journal[pl_index];
966 	io_req.mem.offset = pl_offset;
967 	if (likely(comp != NULL)) {
968 		io_req.notify.fn = complete_journal_io;
969 		io_req.notify.context = comp;
970 	} else {
971 		io_req.notify.fn = NULL;
972 	}
973 	io_req.client = ic->io;
974 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
975 	io_loc.sector = ic->start + SB_SECTORS + sector;
976 	io_loc.count = n_sectors;
977 
978 	r = dm_io(&io_req, 1, &io_loc, NULL);
979 	if (unlikely(r)) {
980 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
981 		if (comp) {
982 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
983 			complete_journal_io(-1UL, comp);
984 		}
985 	}
986 }
987 
988 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
989 		       unsigned n_sections, struct journal_completion *comp)
990 {
991 	unsigned sector, n_sectors;
992 
993 	sector = section * ic->journal_section_sectors;
994 	n_sectors = n_sections * ic->journal_section_sectors;
995 
996 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
997 }
998 
999 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1000 {
1001 	struct journal_completion io_comp;
1002 	struct journal_completion crypt_comp_1;
1003 	struct journal_completion crypt_comp_2;
1004 	unsigned i;
1005 
1006 	io_comp.ic = ic;
1007 	init_completion(&io_comp.comp);
1008 
1009 	if (commit_start + commit_sections <= ic->journal_sections) {
1010 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1011 		if (ic->journal_io) {
1012 			crypt_comp_1.ic = ic;
1013 			init_completion(&crypt_comp_1.comp);
1014 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1015 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1016 			wait_for_completion_io(&crypt_comp_1.comp);
1017 		} else {
1018 			for (i = 0; i < commit_sections; i++)
1019 				rw_section_mac(ic, commit_start + i, true);
1020 		}
1021 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1022 			   commit_sections, &io_comp);
1023 	} else {
1024 		unsigned to_end;
1025 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1026 		to_end = ic->journal_sections - commit_start;
1027 		if (ic->journal_io) {
1028 			crypt_comp_1.ic = ic;
1029 			init_completion(&crypt_comp_1.comp);
1030 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1031 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1032 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1033 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1034 				reinit_completion(&crypt_comp_1.comp);
1035 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1036 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1037 				wait_for_completion_io(&crypt_comp_1.comp);
1038 			} else {
1039 				crypt_comp_2.ic = ic;
1040 				init_completion(&crypt_comp_2.comp);
1041 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1042 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1043 				wait_for_completion_io(&crypt_comp_1.comp);
1044 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1045 				wait_for_completion_io(&crypt_comp_2.comp);
1046 			}
1047 		} else {
1048 			for (i = 0; i < to_end; i++)
1049 				rw_section_mac(ic, commit_start + i, true);
1050 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1051 			for (i = 0; i < commit_sections - to_end; i++)
1052 				rw_section_mac(ic, i, true);
1053 		}
1054 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1055 	}
1056 
1057 	wait_for_completion_io(&io_comp.comp);
1058 }
1059 
1060 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1061 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1062 {
1063 	struct dm_io_request io_req;
1064 	struct dm_io_region io_loc;
1065 	int r;
1066 	unsigned sector, pl_index, pl_offset;
1067 
1068 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1069 
1070 	if (unlikely(dm_integrity_failed(ic))) {
1071 		fn(-1UL, data);
1072 		return;
1073 	}
1074 
1075 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1076 
1077 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1078 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1079 
1080 	io_req.bi_op = REQ_OP_WRITE;
1081 	io_req.bi_op_flags = 0;
1082 	io_req.mem.type = DM_IO_PAGE_LIST;
1083 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1084 	io_req.mem.offset = pl_offset;
1085 	io_req.notify.fn = fn;
1086 	io_req.notify.context = data;
1087 	io_req.client = ic->io;
1088 	io_loc.bdev = ic->dev->bdev;
1089 	io_loc.sector = target;
1090 	io_loc.count = n_sectors;
1091 
1092 	r = dm_io(&io_req, 1, &io_loc, NULL);
1093 	if (unlikely(r)) {
1094 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1095 		fn(-1UL, data);
1096 	}
1097 }
1098 
1099 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1100 {
1101 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1102 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1103 }
1104 
1105 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1106 {
1107 	struct rb_node **n = &ic->in_progress.rb_node;
1108 	struct rb_node *parent;
1109 
1110 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1111 
1112 	if (likely(check_waiting)) {
1113 		struct dm_integrity_range *range;
1114 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1115 			if (unlikely(ranges_overlap(range, new_range)))
1116 				return false;
1117 		}
1118 	}
1119 
1120 	parent = NULL;
1121 
1122 	while (*n) {
1123 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1124 
1125 		parent = *n;
1126 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1127 			n = &range->node.rb_left;
1128 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1129 			n = &range->node.rb_right;
1130 		} else {
1131 			return false;
1132 		}
1133 	}
1134 
1135 	rb_link_node(&new_range->node, parent, n);
1136 	rb_insert_color(&new_range->node, &ic->in_progress);
1137 
1138 	return true;
1139 }
1140 
1141 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1142 {
1143 	rb_erase(&range->node, &ic->in_progress);
1144 	while (unlikely(!list_empty(&ic->wait_list))) {
1145 		struct dm_integrity_range *last_range =
1146 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1147 		struct task_struct *last_range_task;
1148 		last_range_task = last_range->task;
1149 		list_del(&last_range->wait_entry);
1150 		if (!add_new_range(ic, last_range, false)) {
1151 			last_range->task = last_range_task;
1152 			list_add(&last_range->wait_entry, &ic->wait_list);
1153 			break;
1154 		}
1155 		last_range->waiting = false;
1156 		wake_up_process(last_range_task);
1157 	}
1158 }
1159 
1160 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1161 {
1162 	unsigned long flags;
1163 
1164 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1165 	remove_range_unlocked(ic, range);
1166 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1167 }
1168 
1169 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1170 {
1171 	new_range->waiting = true;
1172 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1173 	new_range->task = current;
1174 	do {
1175 		__set_current_state(TASK_UNINTERRUPTIBLE);
1176 		spin_unlock_irq(&ic->endio_wait.lock);
1177 		io_schedule();
1178 		spin_lock_irq(&ic->endio_wait.lock);
1179 	} while (unlikely(new_range->waiting));
1180 }
1181 
1182 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1183 {
1184 	if (unlikely(!add_new_range(ic, new_range, true)))
1185 		wait_and_add_new_range(ic, new_range);
1186 }
1187 
1188 static void init_journal_node(struct journal_node *node)
1189 {
1190 	RB_CLEAR_NODE(&node->node);
1191 	node->sector = (sector_t)-1;
1192 }
1193 
1194 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1195 {
1196 	struct rb_node **link;
1197 	struct rb_node *parent;
1198 
1199 	node->sector = sector;
1200 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1201 
1202 	link = &ic->journal_tree_root.rb_node;
1203 	parent = NULL;
1204 
1205 	while (*link) {
1206 		struct journal_node *j;
1207 		parent = *link;
1208 		j = container_of(parent, struct journal_node, node);
1209 		if (sector < j->sector)
1210 			link = &j->node.rb_left;
1211 		else
1212 			link = &j->node.rb_right;
1213 	}
1214 
1215 	rb_link_node(&node->node, parent, link);
1216 	rb_insert_color(&node->node, &ic->journal_tree_root);
1217 }
1218 
1219 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1220 {
1221 	BUG_ON(RB_EMPTY_NODE(&node->node));
1222 	rb_erase(&node->node, &ic->journal_tree_root);
1223 	init_journal_node(node);
1224 }
1225 
1226 #define NOT_FOUND	(-1U)
1227 
1228 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1229 {
1230 	struct rb_node *n = ic->journal_tree_root.rb_node;
1231 	unsigned found = NOT_FOUND;
1232 	*next_sector = (sector_t)-1;
1233 	while (n) {
1234 		struct journal_node *j = container_of(n, struct journal_node, node);
1235 		if (sector == j->sector) {
1236 			found = j - ic->journal_tree;
1237 		}
1238 		if (sector < j->sector) {
1239 			*next_sector = j->sector;
1240 			n = j->node.rb_left;
1241 		} else {
1242 			n = j->node.rb_right;
1243 		}
1244 	}
1245 
1246 	return found;
1247 }
1248 
1249 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1250 {
1251 	struct journal_node *node, *next_node;
1252 	struct rb_node *next;
1253 
1254 	if (unlikely(pos >= ic->journal_entries))
1255 		return false;
1256 	node = &ic->journal_tree[pos];
1257 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1258 		return false;
1259 	if (unlikely(node->sector != sector))
1260 		return false;
1261 
1262 	next = rb_next(&node->node);
1263 	if (unlikely(!next))
1264 		return true;
1265 
1266 	next_node = container_of(next, struct journal_node, node);
1267 	return next_node->sector != sector;
1268 }
1269 
1270 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1271 {
1272 	struct rb_node *next;
1273 	struct journal_node *next_node;
1274 	unsigned next_section;
1275 
1276 	BUG_ON(RB_EMPTY_NODE(&node->node));
1277 
1278 	next = rb_next(&node->node);
1279 	if (unlikely(!next))
1280 		return false;
1281 
1282 	next_node = container_of(next, struct journal_node, node);
1283 
1284 	if (next_node->sector != node->sector)
1285 		return false;
1286 
1287 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1288 	if (next_section >= ic->committed_section &&
1289 	    next_section < ic->committed_section + ic->n_committed_sections)
1290 		return true;
1291 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1292 		return true;
1293 
1294 	return false;
1295 }
1296 
1297 #define TAG_READ	0
1298 #define TAG_WRITE	1
1299 #define TAG_CMP		2
1300 
1301 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1302 			       unsigned *metadata_offset, unsigned total_size, int op)
1303 {
1304 #define MAY_BE_FILLER		1
1305 #define MAY_BE_HASH		2
1306 	unsigned hash_offset = 0;
1307 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1308 
1309 	do {
1310 		unsigned char *data, *dp;
1311 		struct dm_buffer *b;
1312 		unsigned to_copy;
1313 		int r;
1314 
1315 		r = dm_integrity_failed(ic);
1316 		if (unlikely(r))
1317 			return r;
1318 
1319 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1320 		if (IS_ERR(data))
1321 			return PTR_ERR(data);
1322 
1323 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1324 		dp = data + *metadata_offset;
1325 		if (op == TAG_READ) {
1326 			memcpy(tag, dp, to_copy);
1327 		} else if (op == TAG_WRITE) {
1328 			memcpy(dp, tag, to_copy);
1329 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1330 		} else {
1331 			/* e.g.: op == TAG_CMP */
1332 
1333 			if (likely(is_power_of_2(ic->tag_size))) {
1334 				if (unlikely(memcmp(dp, tag, to_copy)))
1335 					if (unlikely(!ic->discard) ||
1336 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1337 						goto thorough_test;
1338 				}
1339 			} else {
1340 				unsigned i, ts;
1341 thorough_test:
1342 				ts = total_size;
1343 
1344 				for (i = 0; i < to_copy; i++, ts--) {
1345 					if (unlikely(dp[i] != tag[i]))
1346 						may_be &= ~MAY_BE_HASH;
1347 					if (likely(dp[i] != DISCARD_FILLER))
1348 						may_be &= ~MAY_BE_FILLER;
1349 					hash_offset++;
1350 					if (unlikely(hash_offset == ic->tag_size)) {
1351 						if (unlikely(!may_be)) {
1352 							dm_bufio_release(b);
1353 							return ts;
1354 						}
1355 						hash_offset = 0;
1356 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1357 					}
1358 				}
1359 			}
1360 		}
1361 		dm_bufio_release(b);
1362 
1363 		tag += to_copy;
1364 		*metadata_offset += to_copy;
1365 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1366 			(*metadata_block)++;
1367 			*metadata_offset = 0;
1368 		}
1369 
1370 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1371 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1372 		}
1373 
1374 		total_size -= to_copy;
1375 	} while (unlikely(total_size));
1376 
1377 	return 0;
1378 #undef MAY_BE_FILLER
1379 #undef MAY_BE_HASH
1380 }
1381 
1382 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1383 {
1384 	int r;
1385 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1386 	if (unlikely(r))
1387 		dm_integrity_io_error(ic, "writing tags", r);
1388 }
1389 
1390 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1391 {
1392 	DECLARE_WAITQUEUE(wait, current);
1393 	__add_wait_queue(&ic->endio_wait, &wait);
1394 	__set_current_state(TASK_UNINTERRUPTIBLE);
1395 	spin_unlock_irq(&ic->endio_wait.lock);
1396 	io_schedule();
1397 	spin_lock_irq(&ic->endio_wait.lock);
1398 	__remove_wait_queue(&ic->endio_wait, &wait);
1399 }
1400 
1401 static void autocommit_fn(struct timer_list *t)
1402 {
1403 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1404 
1405 	if (likely(!dm_integrity_failed(ic)))
1406 		queue_work(ic->commit_wq, &ic->commit_work);
1407 }
1408 
1409 static void schedule_autocommit(struct dm_integrity_c *ic)
1410 {
1411 	if (!timer_pending(&ic->autocommit_timer))
1412 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1413 }
1414 
1415 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1416 {
1417 	struct bio *bio;
1418 	unsigned long flags;
1419 
1420 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1421 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1422 	bio_list_add(&ic->flush_bio_list, bio);
1423 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1424 
1425 	queue_work(ic->commit_wq, &ic->commit_work);
1426 }
1427 
1428 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1429 {
1430 	int r = dm_integrity_failed(ic);
1431 	if (unlikely(r) && !bio->bi_status)
1432 		bio->bi_status = errno_to_blk_status(r);
1433 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1434 		unsigned long flags;
1435 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1436 		bio_list_add(&ic->synchronous_bios, bio);
1437 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1438 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1439 		return;
1440 	}
1441 	bio_endio(bio);
1442 }
1443 
1444 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1445 {
1446 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1447 
1448 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1449 		submit_flush_bio(ic, dio);
1450 	else
1451 		do_endio(ic, bio);
1452 }
1453 
1454 static void dec_in_flight(struct dm_integrity_io *dio)
1455 {
1456 	if (atomic_dec_and_test(&dio->in_flight)) {
1457 		struct dm_integrity_c *ic = dio->ic;
1458 		struct bio *bio;
1459 
1460 		remove_range(ic, &dio->range);
1461 
1462 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1463 			schedule_autocommit(ic);
1464 
1465 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1466 
1467 		if (unlikely(dio->bi_status) && !bio->bi_status)
1468 			bio->bi_status = dio->bi_status;
1469 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1470 			dio->range.logical_sector += dio->range.n_sectors;
1471 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1472 			INIT_WORK(&dio->work, integrity_bio_wait);
1473 			queue_work(ic->offload_wq, &dio->work);
1474 			return;
1475 		}
1476 		do_endio_flush(ic, dio);
1477 	}
1478 }
1479 
1480 static void integrity_end_io(struct bio *bio)
1481 {
1482 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1483 
1484 	dm_bio_restore(&dio->bio_details, bio);
1485 	if (bio->bi_integrity)
1486 		bio->bi_opf |= REQ_INTEGRITY;
1487 
1488 	if (dio->completion)
1489 		complete(dio->completion);
1490 
1491 	dec_in_flight(dio);
1492 }
1493 
1494 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1495 				      const char *data, char *result)
1496 {
1497 	__u64 sector_le = cpu_to_le64(sector);
1498 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1499 	int r;
1500 	unsigned digest_size;
1501 
1502 	req->tfm = ic->internal_hash;
1503 
1504 	r = crypto_shash_init(req);
1505 	if (unlikely(r < 0)) {
1506 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1507 		goto failed;
1508 	}
1509 
1510 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1511 	if (unlikely(r < 0)) {
1512 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1513 		goto failed;
1514 	}
1515 
1516 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1517 	if (unlikely(r < 0)) {
1518 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1519 		goto failed;
1520 	}
1521 
1522 	r = crypto_shash_final(req, result);
1523 	if (unlikely(r < 0)) {
1524 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1525 		goto failed;
1526 	}
1527 
1528 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1529 	if (unlikely(digest_size < ic->tag_size))
1530 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1531 
1532 	return;
1533 
1534 failed:
1535 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1536 	get_random_bytes(result, ic->tag_size);
1537 }
1538 
1539 static void integrity_metadata(struct work_struct *w)
1540 {
1541 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1542 	struct dm_integrity_c *ic = dio->ic;
1543 
1544 	int r;
1545 
1546 	if (ic->internal_hash) {
1547 		struct bvec_iter iter;
1548 		struct bio_vec bv;
1549 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1550 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1551 		char *checksums;
1552 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1553 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1554 		sector_t sector;
1555 		unsigned sectors_to_process;
1556 
1557 		if (unlikely(ic->mode == 'R'))
1558 			goto skip_io;
1559 
1560 		if (likely(dio->op != REQ_OP_DISCARD))
1561 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1562 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1563 		else
1564 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1565 		if (!checksums) {
1566 			checksums = checksums_onstack;
1567 			if (WARN_ON(extra_space &&
1568 				    digest_size > sizeof(checksums_onstack))) {
1569 				r = -EINVAL;
1570 				goto error;
1571 			}
1572 		}
1573 
1574 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1575 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1576 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1577 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1578 			unsigned max_blocks = max_size / ic->tag_size;
1579 			memset(checksums, DISCARD_FILLER, max_size);
1580 
1581 			while (bi_size) {
1582 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1583 				this_step_blocks = min(this_step_blocks, max_blocks);
1584 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1585 							this_step_blocks * ic->tag_size, TAG_WRITE);
1586 				if (unlikely(r)) {
1587 					if (likely(checksums != checksums_onstack))
1588 						kfree(checksums);
1589 					goto error;
1590 				}
1591 
1592 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1593 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1594 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1595 					BUG();
1596 				}*/
1597 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1598 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1599 			}
1600 
1601 			if (likely(checksums != checksums_onstack))
1602 				kfree(checksums);
1603 			goto skip_io;
1604 		}
1605 
1606 		sector = dio->range.logical_sector;
1607 		sectors_to_process = dio->range.n_sectors;
1608 
1609 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1610 			unsigned pos;
1611 			char *mem, *checksums_ptr;
1612 
1613 again:
1614 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1615 			pos = 0;
1616 			checksums_ptr = checksums;
1617 			do {
1618 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1619 				checksums_ptr += ic->tag_size;
1620 				sectors_to_process -= ic->sectors_per_block;
1621 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1622 				sector += ic->sectors_per_block;
1623 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1624 			kunmap_atomic(mem);
1625 
1626 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1627 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1628 			if (unlikely(r)) {
1629 				if (r > 0) {
1630 					char b[BDEVNAME_SIZE];
1631 					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1632 						    (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1633 					r = -EILSEQ;
1634 					atomic64_inc(&ic->number_of_mismatches);
1635 				}
1636 				if (likely(checksums != checksums_onstack))
1637 					kfree(checksums);
1638 				goto error;
1639 			}
1640 
1641 			if (!sectors_to_process)
1642 				break;
1643 
1644 			if (unlikely(pos < bv.bv_len)) {
1645 				bv.bv_offset += pos;
1646 				bv.bv_len -= pos;
1647 				goto again;
1648 			}
1649 		}
1650 
1651 		if (likely(checksums != checksums_onstack))
1652 			kfree(checksums);
1653 	} else {
1654 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1655 
1656 		if (bip) {
1657 			struct bio_vec biv;
1658 			struct bvec_iter iter;
1659 			unsigned data_to_process = dio->range.n_sectors;
1660 			sector_to_block(ic, data_to_process);
1661 			data_to_process *= ic->tag_size;
1662 
1663 			bip_for_each_vec(biv, bip, iter) {
1664 				unsigned char *tag;
1665 				unsigned this_len;
1666 
1667 				BUG_ON(PageHighMem(biv.bv_page));
1668 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1669 				this_len = min(biv.bv_len, data_to_process);
1670 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1671 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1672 				if (unlikely(r))
1673 					goto error;
1674 				data_to_process -= this_len;
1675 				if (!data_to_process)
1676 					break;
1677 			}
1678 		}
1679 	}
1680 skip_io:
1681 	dec_in_flight(dio);
1682 	return;
1683 error:
1684 	dio->bi_status = errno_to_blk_status(r);
1685 	dec_in_flight(dio);
1686 }
1687 
1688 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1689 {
1690 	struct dm_integrity_c *ic = ti->private;
1691 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1692 	struct bio_integrity_payload *bip;
1693 
1694 	sector_t area, offset;
1695 
1696 	dio->ic = ic;
1697 	dio->bi_status = 0;
1698 	dio->op = bio_op(bio);
1699 
1700 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1701 		if (ti->max_io_len) {
1702 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1703 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1704 			sector_t start_boundary = sec >> log2_max_io_len;
1705 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1706 			if (start_boundary < end_boundary) {
1707 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1708 				dm_accept_partial_bio(bio, len);
1709 			}
1710 		}
1711 	}
1712 
1713 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1714 		submit_flush_bio(ic, dio);
1715 		return DM_MAPIO_SUBMITTED;
1716 	}
1717 
1718 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1719 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1720 	if (unlikely(dio->fua)) {
1721 		/*
1722 		 * Don't pass down the FUA flag because we have to flush
1723 		 * disk cache anyway.
1724 		 */
1725 		bio->bi_opf &= ~REQ_FUA;
1726 	}
1727 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1728 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1729 		      dio->range.logical_sector, bio_sectors(bio),
1730 		      ic->provided_data_sectors);
1731 		return DM_MAPIO_KILL;
1732 	}
1733 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1734 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1735 		      ic->sectors_per_block,
1736 		      dio->range.logical_sector, bio_sectors(bio));
1737 		return DM_MAPIO_KILL;
1738 	}
1739 
1740 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1741 		struct bvec_iter iter;
1742 		struct bio_vec bv;
1743 		bio_for_each_segment(bv, bio, iter) {
1744 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1745 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1746 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1747 				return DM_MAPIO_KILL;
1748 			}
1749 		}
1750 	}
1751 
1752 	bip = bio_integrity(bio);
1753 	if (!ic->internal_hash) {
1754 		if (bip) {
1755 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1756 			if (ic->log2_tag_size >= 0)
1757 				wanted_tag_size <<= ic->log2_tag_size;
1758 			else
1759 				wanted_tag_size *= ic->tag_size;
1760 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1761 				DMERR("Invalid integrity data size %u, expected %u",
1762 				      bip->bip_iter.bi_size, wanted_tag_size);
1763 				return DM_MAPIO_KILL;
1764 			}
1765 		}
1766 	} else {
1767 		if (unlikely(bip != NULL)) {
1768 			DMERR("Unexpected integrity data when using internal hash");
1769 			return DM_MAPIO_KILL;
1770 		}
1771 	}
1772 
1773 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1774 		return DM_MAPIO_KILL;
1775 
1776 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1777 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1778 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1779 
1780 	dm_integrity_map_continue(dio, true);
1781 	return DM_MAPIO_SUBMITTED;
1782 }
1783 
1784 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1785 				 unsigned journal_section, unsigned journal_entry)
1786 {
1787 	struct dm_integrity_c *ic = dio->ic;
1788 	sector_t logical_sector;
1789 	unsigned n_sectors;
1790 
1791 	logical_sector = dio->range.logical_sector;
1792 	n_sectors = dio->range.n_sectors;
1793 	do {
1794 		struct bio_vec bv = bio_iovec(bio);
1795 		char *mem;
1796 
1797 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1798 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1799 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1800 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1801 retry_kmap:
1802 		mem = kmap_atomic(bv.bv_page);
1803 		if (likely(dio->op == REQ_OP_WRITE))
1804 			flush_dcache_page(bv.bv_page);
1805 
1806 		do {
1807 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1808 
1809 			if (unlikely(dio->op == REQ_OP_READ)) {
1810 				struct journal_sector *js;
1811 				char *mem_ptr;
1812 				unsigned s;
1813 
1814 				if (unlikely(journal_entry_is_inprogress(je))) {
1815 					flush_dcache_page(bv.bv_page);
1816 					kunmap_atomic(mem);
1817 
1818 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1819 					goto retry_kmap;
1820 				}
1821 				smp_rmb();
1822 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1823 				js = access_journal_data(ic, journal_section, journal_entry);
1824 				mem_ptr = mem + bv.bv_offset;
1825 				s = 0;
1826 				do {
1827 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1828 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1829 					js++;
1830 					mem_ptr += 1 << SECTOR_SHIFT;
1831 				} while (++s < ic->sectors_per_block);
1832 #ifdef INTERNAL_VERIFY
1833 				if (ic->internal_hash) {
1834 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1835 
1836 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1837 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1838 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1839 							    logical_sector);
1840 					}
1841 				}
1842 #endif
1843 			}
1844 
1845 			if (!ic->internal_hash) {
1846 				struct bio_integrity_payload *bip = bio_integrity(bio);
1847 				unsigned tag_todo = ic->tag_size;
1848 				char *tag_ptr = journal_entry_tag(ic, je);
1849 
1850 				if (bip) do {
1851 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1852 					unsigned tag_now = min(biv.bv_len, tag_todo);
1853 					char *tag_addr;
1854 					BUG_ON(PageHighMem(biv.bv_page));
1855 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1856 					if (likely(dio->op == REQ_OP_WRITE))
1857 						memcpy(tag_ptr, tag_addr, tag_now);
1858 					else
1859 						memcpy(tag_addr, tag_ptr, tag_now);
1860 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1861 					tag_ptr += tag_now;
1862 					tag_todo -= tag_now;
1863 				} while (unlikely(tag_todo)); else {
1864 					if (likely(dio->op == REQ_OP_WRITE))
1865 						memset(tag_ptr, 0, tag_todo);
1866 				}
1867 			}
1868 
1869 			if (likely(dio->op == REQ_OP_WRITE)) {
1870 				struct journal_sector *js;
1871 				unsigned s;
1872 
1873 				js = access_journal_data(ic, journal_section, journal_entry);
1874 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1875 
1876 				s = 0;
1877 				do {
1878 					je->last_bytes[s] = js[s].commit_id;
1879 				} while (++s < ic->sectors_per_block);
1880 
1881 				if (ic->internal_hash) {
1882 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1883 					if (unlikely(digest_size > ic->tag_size)) {
1884 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1885 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1886 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1887 					} else
1888 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1889 				}
1890 
1891 				journal_entry_set_sector(je, logical_sector);
1892 			}
1893 			logical_sector += ic->sectors_per_block;
1894 
1895 			journal_entry++;
1896 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1897 				journal_entry = 0;
1898 				journal_section++;
1899 				wraparound_section(ic, &journal_section);
1900 			}
1901 
1902 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1903 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1904 
1905 		if (unlikely(dio->op == REQ_OP_READ))
1906 			flush_dcache_page(bv.bv_page);
1907 		kunmap_atomic(mem);
1908 	} while (n_sectors);
1909 
1910 	if (likely(dio->op == REQ_OP_WRITE)) {
1911 		smp_mb();
1912 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1913 			wake_up(&ic->copy_to_journal_wait);
1914 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1915 			queue_work(ic->commit_wq, &ic->commit_work);
1916 		} else {
1917 			schedule_autocommit(ic);
1918 		}
1919 	} else {
1920 		remove_range(ic, &dio->range);
1921 	}
1922 
1923 	if (unlikely(bio->bi_iter.bi_size)) {
1924 		sector_t area, offset;
1925 
1926 		dio->range.logical_sector = logical_sector;
1927 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1928 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1929 		return true;
1930 	}
1931 
1932 	return false;
1933 }
1934 
1935 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1936 {
1937 	struct dm_integrity_c *ic = dio->ic;
1938 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1939 	unsigned journal_section, journal_entry;
1940 	unsigned journal_read_pos;
1941 	struct completion read_comp;
1942 	bool discard_retried = false;
1943 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
1944 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1945 		need_sync_io = true;
1946 
1947 	if (need_sync_io && from_map) {
1948 		INIT_WORK(&dio->work, integrity_bio_wait);
1949 		queue_work(ic->offload_wq, &dio->work);
1950 		return;
1951 	}
1952 
1953 lock_retry:
1954 	spin_lock_irq(&ic->endio_wait.lock);
1955 retry:
1956 	if (unlikely(dm_integrity_failed(ic))) {
1957 		spin_unlock_irq(&ic->endio_wait.lock);
1958 		do_endio(ic, bio);
1959 		return;
1960 	}
1961 	dio->range.n_sectors = bio_sectors(bio);
1962 	journal_read_pos = NOT_FOUND;
1963 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
1964 		if (dio->op == REQ_OP_WRITE) {
1965 			unsigned next_entry, i, pos;
1966 			unsigned ws, we, range_sectors;
1967 
1968 			dio->range.n_sectors = min(dio->range.n_sectors,
1969 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1970 			if (unlikely(!dio->range.n_sectors)) {
1971 				if (from_map)
1972 					goto offload_to_thread;
1973 				sleep_on_endio_wait(ic);
1974 				goto retry;
1975 			}
1976 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1977 			ic->free_sectors -= range_sectors;
1978 			journal_section = ic->free_section;
1979 			journal_entry = ic->free_section_entry;
1980 
1981 			next_entry = ic->free_section_entry + range_sectors;
1982 			ic->free_section_entry = next_entry % ic->journal_section_entries;
1983 			ic->free_section += next_entry / ic->journal_section_entries;
1984 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1985 			wraparound_section(ic, &ic->free_section);
1986 
1987 			pos = journal_section * ic->journal_section_entries + journal_entry;
1988 			ws = journal_section;
1989 			we = journal_entry;
1990 			i = 0;
1991 			do {
1992 				struct journal_entry *je;
1993 
1994 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1995 				pos++;
1996 				if (unlikely(pos >= ic->journal_entries))
1997 					pos = 0;
1998 
1999 				je = access_journal_entry(ic, ws, we);
2000 				BUG_ON(!journal_entry_is_unused(je));
2001 				journal_entry_set_inprogress(je);
2002 				we++;
2003 				if (unlikely(we == ic->journal_section_entries)) {
2004 					we = 0;
2005 					ws++;
2006 					wraparound_section(ic, &ws);
2007 				}
2008 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2009 
2010 			spin_unlock_irq(&ic->endio_wait.lock);
2011 			goto journal_read_write;
2012 		} else {
2013 			sector_t next_sector;
2014 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2015 			if (likely(journal_read_pos == NOT_FOUND)) {
2016 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2017 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2018 			} else {
2019 				unsigned i;
2020 				unsigned jp = journal_read_pos + 1;
2021 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2022 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2023 						break;
2024 				}
2025 				dio->range.n_sectors = i;
2026 			}
2027 		}
2028 	}
2029 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2030 		/*
2031 		 * We must not sleep in the request routine because it could
2032 		 * stall bios on current->bio_list.
2033 		 * So, we offload the bio to a workqueue if we have to sleep.
2034 		 */
2035 		if (from_map) {
2036 offload_to_thread:
2037 			spin_unlock_irq(&ic->endio_wait.lock);
2038 			INIT_WORK(&dio->work, integrity_bio_wait);
2039 			queue_work(ic->wait_wq, &dio->work);
2040 			return;
2041 		}
2042 		if (journal_read_pos != NOT_FOUND)
2043 			dio->range.n_sectors = ic->sectors_per_block;
2044 		wait_and_add_new_range(ic, &dio->range);
2045 		/*
2046 		 * wait_and_add_new_range drops the spinlock, so the journal
2047 		 * may have been changed arbitrarily. We need to recheck.
2048 		 * To simplify the code, we restrict I/O size to just one block.
2049 		 */
2050 		if (journal_read_pos != NOT_FOUND) {
2051 			sector_t next_sector;
2052 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2053 			if (unlikely(new_pos != journal_read_pos)) {
2054 				remove_range_unlocked(ic, &dio->range);
2055 				goto retry;
2056 			}
2057 		}
2058 	}
2059 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2060 		sector_t next_sector;
2061 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2062 		if (unlikely(new_pos != NOT_FOUND) ||
2063 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2064 			remove_range_unlocked(ic, &dio->range);
2065 			spin_unlock_irq(&ic->endio_wait.lock);
2066 			queue_work(ic->commit_wq, &ic->commit_work);
2067 			flush_workqueue(ic->commit_wq);
2068 			queue_work(ic->writer_wq, &ic->writer_work);
2069 			flush_workqueue(ic->writer_wq);
2070 			discard_retried = true;
2071 			goto lock_retry;
2072 		}
2073 	}
2074 	spin_unlock_irq(&ic->endio_wait.lock);
2075 
2076 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2077 		journal_section = journal_read_pos / ic->journal_section_entries;
2078 		journal_entry = journal_read_pos % ic->journal_section_entries;
2079 		goto journal_read_write;
2080 	}
2081 
2082 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2083 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2084 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2085 			struct bitmap_block_status *bbs;
2086 
2087 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2088 			spin_lock(&bbs->bio_queue_lock);
2089 			bio_list_add(&bbs->bio_queue, bio);
2090 			spin_unlock(&bbs->bio_queue_lock);
2091 			queue_work(ic->writer_wq, &bbs->work);
2092 			return;
2093 		}
2094 	}
2095 
2096 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2097 
2098 	if (need_sync_io) {
2099 		init_completion(&read_comp);
2100 		dio->completion = &read_comp;
2101 	} else
2102 		dio->completion = NULL;
2103 
2104 	dm_bio_record(&dio->bio_details, bio);
2105 	bio_set_dev(bio, ic->dev->bdev);
2106 	bio->bi_integrity = NULL;
2107 	bio->bi_opf &= ~REQ_INTEGRITY;
2108 	bio->bi_end_io = integrity_end_io;
2109 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2110 
2111 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2112 		integrity_metadata(&dio->work);
2113 		dm_integrity_flush_buffers(ic);
2114 
2115 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2116 		dio->completion = NULL;
2117 
2118 		submit_bio_noacct(bio);
2119 
2120 		return;
2121 	}
2122 
2123 	submit_bio_noacct(bio);
2124 
2125 	if (need_sync_io) {
2126 		wait_for_completion_io(&read_comp);
2127 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2128 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2129 			goto skip_check;
2130 		if (ic->mode == 'B') {
2131 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2132 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2133 				goto skip_check;
2134 		}
2135 
2136 		if (likely(!bio->bi_status))
2137 			integrity_metadata(&dio->work);
2138 		else
2139 skip_check:
2140 			dec_in_flight(dio);
2141 
2142 	} else {
2143 		INIT_WORK(&dio->work, integrity_metadata);
2144 		queue_work(ic->metadata_wq, &dio->work);
2145 	}
2146 
2147 	return;
2148 
2149 journal_read_write:
2150 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2151 		goto lock_retry;
2152 
2153 	do_endio_flush(ic, dio);
2154 }
2155 
2156 
2157 static void integrity_bio_wait(struct work_struct *w)
2158 {
2159 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2160 
2161 	dm_integrity_map_continue(dio, false);
2162 }
2163 
2164 static void pad_uncommitted(struct dm_integrity_c *ic)
2165 {
2166 	if (ic->free_section_entry) {
2167 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2168 		ic->free_section_entry = 0;
2169 		ic->free_section++;
2170 		wraparound_section(ic, &ic->free_section);
2171 		ic->n_uncommitted_sections++;
2172 	}
2173 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2174 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2175 		    ic->journal_section_entries + ic->free_sectors)) {
2176 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2177 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2178 		       "journal_section_entries %u, free_sectors %u",
2179 		       ic->journal_sections, ic->journal_section_entries,
2180 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2181 		       ic->journal_section_entries, ic->free_sectors);
2182 	}
2183 }
2184 
2185 static void integrity_commit(struct work_struct *w)
2186 {
2187 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2188 	unsigned commit_start, commit_sections;
2189 	unsigned i, j, n;
2190 	struct bio *flushes;
2191 
2192 	del_timer(&ic->autocommit_timer);
2193 
2194 	spin_lock_irq(&ic->endio_wait.lock);
2195 	flushes = bio_list_get(&ic->flush_bio_list);
2196 	if (unlikely(ic->mode != 'J')) {
2197 		spin_unlock_irq(&ic->endio_wait.lock);
2198 		dm_integrity_flush_buffers(ic);
2199 		goto release_flush_bios;
2200 	}
2201 
2202 	pad_uncommitted(ic);
2203 	commit_start = ic->uncommitted_section;
2204 	commit_sections = ic->n_uncommitted_sections;
2205 	spin_unlock_irq(&ic->endio_wait.lock);
2206 
2207 	if (!commit_sections)
2208 		goto release_flush_bios;
2209 
2210 	i = commit_start;
2211 	for (n = 0; n < commit_sections; n++) {
2212 		for (j = 0; j < ic->journal_section_entries; j++) {
2213 			struct journal_entry *je;
2214 			je = access_journal_entry(ic, i, j);
2215 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2216 		}
2217 		for (j = 0; j < ic->journal_section_sectors; j++) {
2218 			struct journal_sector *js;
2219 			js = access_journal(ic, i, j);
2220 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2221 		}
2222 		i++;
2223 		if (unlikely(i >= ic->journal_sections))
2224 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2225 		wraparound_section(ic, &i);
2226 	}
2227 	smp_rmb();
2228 
2229 	write_journal(ic, commit_start, commit_sections);
2230 
2231 	spin_lock_irq(&ic->endio_wait.lock);
2232 	ic->uncommitted_section += commit_sections;
2233 	wraparound_section(ic, &ic->uncommitted_section);
2234 	ic->n_uncommitted_sections -= commit_sections;
2235 	ic->n_committed_sections += commit_sections;
2236 	spin_unlock_irq(&ic->endio_wait.lock);
2237 
2238 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2239 		queue_work(ic->writer_wq, &ic->writer_work);
2240 
2241 release_flush_bios:
2242 	while (flushes) {
2243 		struct bio *next = flushes->bi_next;
2244 		flushes->bi_next = NULL;
2245 		do_endio(ic, flushes);
2246 		flushes = next;
2247 	}
2248 }
2249 
2250 static void complete_copy_from_journal(unsigned long error, void *context)
2251 {
2252 	struct journal_io *io = context;
2253 	struct journal_completion *comp = io->comp;
2254 	struct dm_integrity_c *ic = comp->ic;
2255 	remove_range(ic, &io->range);
2256 	mempool_free(io, &ic->journal_io_mempool);
2257 	if (unlikely(error != 0))
2258 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2259 	complete_journal_op(comp);
2260 }
2261 
2262 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2263 			       struct journal_entry *je)
2264 {
2265 	unsigned s = 0;
2266 	do {
2267 		js->commit_id = je->last_bytes[s];
2268 		js++;
2269 	} while (++s < ic->sectors_per_block);
2270 }
2271 
2272 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2273 			     unsigned write_sections, bool from_replay)
2274 {
2275 	unsigned i, j, n;
2276 	struct journal_completion comp;
2277 	struct blk_plug plug;
2278 
2279 	blk_start_plug(&plug);
2280 
2281 	comp.ic = ic;
2282 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2283 	init_completion(&comp.comp);
2284 
2285 	i = write_start;
2286 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2287 #ifndef INTERNAL_VERIFY
2288 		if (unlikely(from_replay))
2289 #endif
2290 			rw_section_mac(ic, i, false);
2291 		for (j = 0; j < ic->journal_section_entries; j++) {
2292 			struct journal_entry *je = access_journal_entry(ic, i, j);
2293 			sector_t sec, area, offset;
2294 			unsigned k, l, next_loop;
2295 			sector_t metadata_block;
2296 			unsigned metadata_offset;
2297 			struct journal_io *io;
2298 
2299 			if (journal_entry_is_unused(je))
2300 				continue;
2301 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2302 			sec = journal_entry_get_sector(je);
2303 			if (unlikely(from_replay)) {
2304 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2305 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2306 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2307 				}
2308 			}
2309 			if (unlikely(sec >= ic->provided_data_sectors))
2310 				continue;
2311 			get_area_and_offset(ic, sec, &area, &offset);
2312 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2313 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2314 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2315 				sector_t sec2, area2, offset2;
2316 				if (journal_entry_is_unused(je2))
2317 					break;
2318 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2319 				sec2 = journal_entry_get_sector(je2);
2320 				if (unlikely(sec2 >= ic->provided_data_sectors))
2321 					break;
2322 				get_area_and_offset(ic, sec2, &area2, &offset2);
2323 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2324 					break;
2325 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2326 			}
2327 			next_loop = k - 1;
2328 
2329 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2330 			io->comp = &comp;
2331 			io->range.logical_sector = sec;
2332 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2333 
2334 			spin_lock_irq(&ic->endio_wait.lock);
2335 			add_new_range_and_wait(ic, &io->range);
2336 
2337 			if (likely(!from_replay)) {
2338 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2339 
2340 				/* don't write if there is newer committed sector */
2341 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2342 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2343 
2344 					journal_entry_set_unused(je2);
2345 					remove_journal_node(ic, &section_node[j]);
2346 					j++;
2347 					sec += ic->sectors_per_block;
2348 					offset += ic->sectors_per_block;
2349 				}
2350 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2351 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2352 
2353 					journal_entry_set_unused(je2);
2354 					remove_journal_node(ic, &section_node[k - 1]);
2355 					k--;
2356 				}
2357 				if (j == k) {
2358 					remove_range_unlocked(ic, &io->range);
2359 					spin_unlock_irq(&ic->endio_wait.lock);
2360 					mempool_free(io, &ic->journal_io_mempool);
2361 					goto skip_io;
2362 				}
2363 				for (l = j; l < k; l++) {
2364 					remove_journal_node(ic, &section_node[l]);
2365 				}
2366 			}
2367 			spin_unlock_irq(&ic->endio_wait.lock);
2368 
2369 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2370 			for (l = j; l < k; l++) {
2371 				int r;
2372 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2373 
2374 				if (
2375 #ifndef INTERNAL_VERIFY
2376 				    unlikely(from_replay) &&
2377 #endif
2378 				    ic->internal_hash) {
2379 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2380 
2381 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2382 								  (char *)access_journal_data(ic, i, l), test_tag);
2383 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2384 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2385 				}
2386 
2387 				journal_entry_set_unused(je2);
2388 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2389 							ic->tag_size, TAG_WRITE);
2390 				if (unlikely(r)) {
2391 					dm_integrity_io_error(ic, "reading tags", r);
2392 				}
2393 			}
2394 
2395 			atomic_inc(&comp.in_flight);
2396 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2397 					  (k - j) << ic->sb->log2_sectors_per_block,
2398 					  get_data_sector(ic, area, offset),
2399 					  complete_copy_from_journal, io);
2400 skip_io:
2401 			j = next_loop;
2402 		}
2403 	}
2404 
2405 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2406 
2407 	blk_finish_plug(&plug);
2408 
2409 	complete_journal_op(&comp);
2410 	wait_for_completion_io(&comp.comp);
2411 
2412 	dm_integrity_flush_buffers(ic);
2413 }
2414 
2415 static void integrity_writer(struct work_struct *w)
2416 {
2417 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2418 	unsigned write_start, write_sections;
2419 
2420 	unsigned prev_free_sectors;
2421 
2422 	/* the following test is not needed, but it tests the replay code */
2423 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2424 		return;
2425 
2426 	spin_lock_irq(&ic->endio_wait.lock);
2427 	write_start = ic->committed_section;
2428 	write_sections = ic->n_committed_sections;
2429 	spin_unlock_irq(&ic->endio_wait.lock);
2430 
2431 	if (!write_sections)
2432 		return;
2433 
2434 	do_journal_write(ic, write_start, write_sections, false);
2435 
2436 	spin_lock_irq(&ic->endio_wait.lock);
2437 
2438 	ic->committed_section += write_sections;
2439 	wraparound_section(ic, &ic->committed_section);
2440 	ic->n_committed_sections -= write_sections;
2441 
2442 	prev_free_sectors = ic->free_sectors;
2443 	ic->free_sectors += write_sections * ic->journal_section_entries;
2444 	if (unlikely(!prev_free_sectors))
2445 		wake_up_locked(&ic->endio_wait);
2446 
2447 	spin_unlock_irq(&ic->endio_wait.lock);
2448 }
2449 
2450 static void recalc_write_super(struct dm_integrity_c *ic)
2451 {
2452 	int r;
2453 
2454 	dm_integrity_flush_buffers(ic);
2455 	if (dm_integrity_failed(ic))
2456 		return;
2457 
2458 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2459 	if (unlikely(r))
2460 		dm_integrity_io_error(ic, "writing superblock", r);
2461 }
2462 
2463 static void integrity_recalc(struct work_struct *w)
2464 {
2465 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2466 	struct dm_integrity_range range;
2467 	struct dm_io_request io_req;
2468 	struct dm_io_region io_loc;
2469 	sector_t area, offset;
2470 	sector_t metadata_block;
2471 	unsigned metadata_offset;
2472 	sector_t logical_sector, n_sectors;
2473 	__u8 *t;
2474 	unsigned i;
2475 	int r;
2476 	unsigned super_counter = 0;
2477 
2478 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2479 
2480 	spin_lock_irq(&ic->endio_wait.lock);
2481 
2482 next_chunk:
2483 
2484 	if (unlikely(dm_post_suspending(ic->ti)))
2485 		goto unlock_ret;
2486 
2487 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2488 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2489 		if (ic->mode == 'B') {
2490 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2491 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2492 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2493 		}
2494 		goto unlock_ret;
2495 	}
2496 
2497 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2498 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2499 	if (!ic->meta_dev)
2500 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2501 
2502 	add_new_range_and_wait(ic, &range);
2503 	spin_unlock_irq(&ic->endio_wait.lock);
2504 	logical_sector = range.logical_sector;
2505 	n_sectors = range.n_sectors;
2506 
2507 	if (ic->mode == 'B') {
2508 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2509 			goto advance_and_next;
2510 		}
2511 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2512 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2513 			logical_sector += ic->sectors_per_block;
2514 			n_sectors -= ic->sectors_per_block;
2515 			cond_resched();
2516 		}
2517 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2518 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2519 			n_sectors -= ic->sectors_per_block;
2520 			cond_resched();
2521 		}
2522 		get_area_and_offset(ic, logical_sector, &area, &offset);
2523 	}
2524 
2525 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2526 
2527 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2528 		recalc_write_super(ic);
2529 		if (ic->mode == 'B') {
2530 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2531 		}
2532 		super_counter = 0;
2533 	}
2534 
2535 	if (unlikely(dm_integrity_failed(ic)))
2536 		goto err;
2537 
2538 	io_req.bi_op = REQ_OP_READ;
2539 	io_req.bi_op_flags = 0;
2540 	io_req.mem.type = DM_IO_VMA;
2541 	io_req.mem.ptr.addr = ic->recalc_buffer;
2542 	io_req.notify.fn = NULL;
2543 	io_req.client = ic->io;
2544 	io_loc.bdev = ic->dev->bdev;
2545 	io_loc.sector = get_data_sector(ic, area, offset);
2546 	io_loc.count = n_sectors;
2547 
2548 	r = dm_io(&io_req, 1, &io_loc, NULL);
2549 	if (unlikely(r)) {
2550 		dm_integrity_io_error(ic, "reading data", r);
2551 		goto err;
2552 	}
2553 
2554 	t = ic->recalc_tags;
2555 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2556 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2557 		t += ic->tag_size;
2558 	}
2559 
2560 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2561 
2562 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2563 	if (unlikely(r)) {
2564 		dm_integrity_io_error(ic, "writing tags", r);
2565 		goto err;
2566 	}
2567 
2568 	if (ic->mode == 'B') {
2569 		sector_t start, end;
2570 		start = (range.logical_sector >>
2571 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2572 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2573 		end = ((range.logical_sector + range.n_sectors) >>
2574 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2575 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2576 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2577 	}
2578 
2579 advance_and_next:
2580 	cond_resched();
2581 
2582 	spin_lock_irq(&ic->endio_wait.lock);
2583 	remove_range_unlocked(ic, &range);
2584 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2585 	goto next_chunk;
2586 
2587 err:
2588 	remove_range(ic, &range);
2589 	return;
2590 
2591 unlock_ret:
2592 	spin_unlock_irq(&ic->endio_wait.lock);
2593 
2594 	recalc_write_super(ic);
2595 }
2596 
2597 static void bitmap_block_work(struct work_struct *w)
2598 {
2599 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2600 	struct dm_integrity_c *ic = bbs->ic;
2601 	struct bio *bio;
2602 	struct bio_list bio_queue;
2603 	struct bio_list waiting;
2604 
2605 	bio_list_init(&waiting);
2606 
2607 	spin_lock(&bbs->bio_queue_lock);
2608 	bio_queue = bbs->bio_queue;
2609 	bio_list_init(&bbs->bio_queue);
2610 	spin_unlock(&bbs->bio_queue_lock);
2611 
2612 	while ((bio = bio_list_pop(&bio_queue))) {
2613 		struct dm_integrity_io *dio;
2614 
2615 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2616 
2617 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2618 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2619 			remove_range(ic, &dio->range);
2620 			INIT_WORK(&dio->work, integrity_bio_wait);
2621 			queue_work(ic->offload_wq, &dio->work);
2622 		} else {
2623 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2624 					dio->range.n_sectors, BITMAP_OP_SET);
2625 			bio_list_add(&waiting, bio);
2626 		}
2627 	}
2628 
2629 	if (bio_list_empty(&waiting))
2630 		return;
2631 
2632 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2633 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2634 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2635 
2636 	while ((bio = bio_list_pop(&waiting))) {
2637 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2638 
2639 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2640 				dio->range.n_sectors, BITMAP_OP_SET);
2641 
2642 		remove_range(ic, &dio->range);
2643 		INIT_WORK(&dio->work, integrity_bio_wait);
2644 		queue_work(ic->offload_wq, &dio->work);
2645 	}
2646 
2647 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2648 }
2649 
2650 static void bitmap_flush_work(struct work_struct *work)
2651 {
2652 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2653 	struct dm_integrity_range range;
2654 	unsigned long limit;
2655 	struct bio *bio;
2656 
2657 	dm_integrity_flush_buffers(ic);
2658 
2659 	range.logical_sector = 0;
2660 	range.n_sectors = ic->provided_data_sectors;
2661 
2662 	spin_lock_irq(&ic->endio_wait.lock);
2663 	add_new_range_and_wait(ic, &range);
2664 	spin_unlock_irq(&ic->endio_wait.lock);
2665 
2666 	dm_integrity_flush_buffers(ic);
2667 	if (ic->meta_dev)
2668 		blkdev_issue_flush(ic->dev->bdev, GFP_NOIO);
2669 
2670 	limit = ic->provided_data_sectors;
2671 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2672 		limit = le64_to_cpu(ic->sb->recalc_sector)
2673 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2674 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2675 	}
2676 	/*DEBUG_print("zeroing journal\n");*/
2677 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2678 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2679 
2680 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2681 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2682 
2683 	spin_lock_irq(&ic->endio_wait.lock);
2684 	remove_range_unlocked(ic, &range);
2685 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2686 		bio_endio(bio);
2687 		spin_unlock_irq(&ic->endio_wait.lock);
2688 		spin_lock_irq(&ic->endio_wait.lock);
2689 	}
2690 	spin_unlock_irq(&ic->endio_wait.lock);
2691 }
2692 
2693 
2694 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2695 			 unsigned n_sections, unsigned char commit_seq)
2696 {
2697 	unsigned i, j, n;
2698 
2699 	if (!n_sections)
2700 		return;
2701 
2702 	for (n = 0; n < n_sections; n++) {
2703 		i = start_section + n;
2704 		wraparound_section(ic, &i);
2705 		for (j = 0; j < ic->journal_section_sectors; j++) {
2706 			struct journal_sector *js = access_journal(ic, i, j);
2707 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2708 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2709 		}
2710 		for (j = 0; j < ic->journal_section_entries; j++) {
2711 			struct journal_entry *je = access_journal_entry(ic, i, j);
2712 			journal_entry_set_unused(je);
2713 		}
2714 	}
2715 
2716 	write_journal(ic, start_section, n_sections);
2717 }
2718 
2719 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2720 {
2721 	unsigned char k;
2722 	for (k = 0; k < N_COMMIT_IDS; k++) {
2723 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2724 			return k;
2725 	}
2726 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2727 	return -EIO;
2728 }
2729 
2730 static void replay_journal(struct dm_integrity_c *ic)
2731 {
2732 	unsigned i, j;
2733 	bool used_commit_ids[N_COMMIT_IDS];
2734 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2735 	unsigned write_start, write_sections;
2736 	unsigned continue_section;
2737 	bool journal_empty;
2738 	unsigned char unused, last_used, want_commit_seq;
2739 
2740 	if (ic->mode == 'R')
2741 		return;
2742 
2743 	if (ic->journal_uptodate)
2744 		return;
2745 
2746 	last_used = 0;
2747 	write_start = 0;
2748 
2749 	if (!ic->just_formatted) {
2750 		DEBUG_print("reading journal\n");
2751 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2752 		if (ic->journal_io)
2753 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2754 		if (ic->journal_io) {
2755 			struct journal_completion crypt_comp;
2756 			crypt_comp.ic = ic;
2757 			init_completion(&crypt_comp.comp);
2758 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2759 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2760 			wait_for_completion(&crypt_comp.comp);
2761 		}
2762 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2763 	}
2764 
2765 	if (dm_integrity_failed(ic))
2766 		goto clear_journal;
2767 
2768 	journal_empty = true;
2769 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2770 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2771 	for (i = 0; i < ic->journal_sections; i++) {
2772 		for (j = 0; j < ic->journal_section_sectors; j++) {
2773 			int k;
2774 			struct journal_sector *js = access_journal(ic, i, j);
2775 			k = find_commit_seq(ic, i, j, js->commit_id);
2776 			if (k < 0)
2777 				goto clear_journal;
2778 			used_commit_ids[k] = true;
2779 			max_commit_id_sections[k] = i;
2780 		}
2781 		if (journal_empty) {
2782 			for (j = 0; j < ic->journal_section_entries; j++) {
2783 				struct journal_entry *je = access_journal_entry(ic, i, j);
2784 				if (!journal_entry_is_unused(je)) {
2785 					journal_empty = false;
2786 					break;
2787 				}
2788 			}
2789 		}
2790 	}
2791 
2792 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2793 		unused = N_COMMIT_IDS - 1;
2794 		while (unused && !used_commit_ids[unused - 1])
2795 			unused--;
2796 	} else {
2797 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2798 			if (!used_commit_ids[unused])
2799 				break;
2800 		if (unused == N_COMMIT_IDS) {
2801 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2802 			goto clear_journal;
2803 		}
2804 	}
2805 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2806 		    unused, used_commit_ids[0], used_commit_ids[1],
2807 		    used_commit_ids[2], used_commit_ids[3]);
2808 
2809 	last_used = prev_commit_seq(unused);
2810 	want_commit_seq = prev_commit_seq(last_used);
2811 
2812 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2813 		journal_empty = true;
2814 
2815 	write_start = max_commit_id_sections[last_used] + 1;
2816 	if (unlikely(write_start >= ic->journal_sections))
2817 		want_commit_seq = next_commit_seq(want_commit_seq);
2818 	wraparound_section(ic, &write_start);
2819 
2820 	i = write_start;
2821 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2822 		for (j = 0; j < ic->journal_section_sectors; j++) {
2823 			struct journal_sector *js = access_journal(ic, i, j);
2824 
2825 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2826 				/*
2827 				 * This could be caused by crash during writing.
2828 				 * We won't replay the inconsistent part of the
2829 				 * journal.
2830 				 */
2831 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2832 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2833 				goto brk;
2834 			}
2835 		}
2836 		i++;
2837 		if (unlikely(i >= ic->journal_sections))
2838 			want_commit_seq = next_commit_seq(want_commit_seq);
2839 		wraparound_section(ic, &i);
2840 	}
2841 brk:
2842 
2843 	if (!journal_empty) {
2844 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2845 			    write_sections, write_start, want_commit_seq);
2846 		do_journal_write(ic, write_start, write_sections, true);
2847 	}
2848 
2849 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2850 		continue_section = write_start;
2851 		ic->commit_seq = want_commit_seq;
2852 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2853 	} else {
2854 		unsigned s;
2855 		unsigned char erase_seq;
2856 clear_journal:
2857 		DEBUG_print("clearing journal\n");
2858 
2859 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2860 		s = write_start;
2861 		init_journal(ic, s, 1, erase_seq);
2862 		s++;
2863 		wraparound_section(ic, &s);
2864 		if (ic->journal_sections >= 2) {
2865 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2866 			s += ic->journal_sections - 2;
2867 			wraparound_section(ic, &s);
2868 			init_journal(ic, s, 1, erase_seq);
2869 		}
2870 
2871 		continue_section = 0;
2872 		ic->commit_seq = next_commit_seq(erase_seq);
2873 	}
2874 
2875 	ic->committed_section = continue_section;
2876 	ic->n_committed_sections = 0;
2877 
2878 	ic->uncommitted_section = continue_section;
2879 	ic->n_uncommitted_sections = 0;
2880 
2881 	ic->free_section = continue_section;
2882 	ic->free_section_entry = 0;
2883 	ic->free_sectors = ic->journal_entries;
2884 
2885 	ic->journal_tree_root = RB_ROOT;
2886 	for (i = 0; i < ic->journal_entries; i++)
2887 		init_journal_node(&ic->journal_tree[i]);
2888 }
2889 
2890 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2891 {
2892 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2893 
2894 	if (ic->mode == 'B') {
2895 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2896 		ic->synchronous_mode = 1;
2897 
2898 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2899 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2900 		flush_workqueue(ic->commit_wq);
2901 	}
2902 }
2903 
2904 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2905 {
2906 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2907 
2908 	DEBUG_print("dm_integrity_reboot\n");
2909 
2910 	dm_integrity_enter_synchronous_mode(ic);
2911 
2912 	return NOTIFY_DONE;
2913 }
2914 
2915 static void dm_integrity_postsuspend(struct dm_target *ti)
2916 {
2917 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2918 	int r;
2919 
2920 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2921 
2922 	del_timer_sync(&ic->autocommit_timer);
2923 
2924 	if (ic->recalc_wq)
2925 		drain_workqueue(ic->recalc_wq);
2926 
2927 	if (ic->mode == 'B')
2928 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2929 
2930 	queue_work(ic->commit_wq, &ic->commit_work);
2931 	drain_workqueue(ic->commit_wq);
2932 
2933 	if (ic->mode == 'J') {
2934 		if (ic->meta_dev)
2935 			queue_work(ic->writer_wq, &ic->writer_work);
2936 		drain_workqueue(ic->writer_wq);
2937 		dm_integrity_flush_buffers(ic);
2938 	}
2939 
2940 	if (ic->mode == 'B') {
2941 		dm_integrity_flush_buffers(ic);
2942 #if 1
2943 		/* set to 0 to test bitmap replay code */
2944 		init_journal(ic, 0, ic->journal_sections, 0);
2945 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2946 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2947 		if (unlikely(r))
2948 			dm_integrity_io_error(ic, "writing superblock", r);
2949 #endif
2950 	}
2951 
2952 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2953 
2954 	ic->journal_uptodate = true;
2955 }
2956 
2957 static void dm_integrity_resume(struct dm_target *ti)
2958 {
2959 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2960 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
2961 	int r;
2962 
2963 	DEBUG_print("resume\n");
2964 
2965 	if (ic->provided_data_sectors != old_provided_data_sectors) {
2966 		if (ic->provided_data_sectors > old_provided_data_sectors &&
2967 		    ic->mode == 'B' &&
2968 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2969 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2970 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2971 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
2972 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
2973 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2974 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2975 		}
2976 
2977 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2978 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2979 		if (unlikely(r))
2980 			dm_integrity_io_error(ic, "writing superblock", r);
2981 	}
2982 
2983 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2984 		DEBUG_print("resume dirty_bitmap\n");
2985 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2986 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2987 		if (ic->mode == 'B') {
2988 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2989 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2990 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2991 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2992 						     BITMAP_OP_TEST_ALL_CLEAR)) {
2993 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2994 					ic->sb->recalc_sector = cpu_to_le64(0);
2995 				}
2996 			} else {
2997 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2998 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2999 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3000 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3001 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3002 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3003 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3004 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3005 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3006 				ic->sb->recalc_sector = cpu_to_le64(0);
3007 			}
3008 		} else {
3009 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3010 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3011 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3012 				ic->sb->recalc_sector = cpu_to_le64(0);
3013 			}
3014 			init_journal(ic, 0, ic->journal_sections, 0);
3015 			replay_journal(ic);
3016 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3017 		}
3018 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3019 		if (unlikely(r))
3020 			dm_integrity_io_error(ic, "writing superblock", r);
3021 	} else {
3022 		replay_journal(ic);
3023 		if (ic->mode == 'B') {
3024 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3025 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3026 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3027 			if (unlikely(r))
3028 				dm_integrity_io_error(ic, "writing superblock", r);
3029 
3030 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3031 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3032 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3033 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3034 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3035 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3036 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3037 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3038 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3039 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3040 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3041 			}
3042 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3043 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3044 		}
3045 	}
3046 
3047 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3048 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3049 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3050 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3051 		if (recalc_pos < ic->provided_data_sectors) {
3052 			queue_work(ic->recalc_wq, &ic->recalc_work);
3053 		} else if (recalc_pos > ic->provided_data_sectors) {
3054 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3055 			recalc_write_super(ic);
3056 		}
3057 	}
3058 
3059 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3060 	ic->reboot_notifier.next = NULL;
3061 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3062 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3063 
3064 #if 0
3065 	/* set to 1 to stress test synchronous mode */
3066 	dm_integrity_enter_synchronous_mode(ic);
3067 #endif
3068 }
3069 
3070 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3071 				unsigned status_flags, char *result, unsigned maxlen)
3072 {
3073 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3074 	unsigned arg_count;
3075 	size_t sz = 0;
3076 
3077 	switch (type) {
3078 	case STATUSTYPE_INFO:
3079 		DMEMIT("%llu %llu",
3080 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3081 			ic->provided_data_sectors);
3082 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3083 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3084 		else
3085 			DMEMIT(" -");
3086 		break;
3087 
3088 	case STATUSTYPE_TABLE: {
3089 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3090 		watermark_percentage += ic->journal_entries / 2;
3091 		do_div(watermark_percentage, ic->journal_entries);
3092 		arg_count = 3;
3093 		arg_count += !!ic->meta_dev;
3094 		arg_count += ic->sectors_per_block != 1;
3095 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3096 		arg_count += ic->discard;
3097 		arg_count += ic->mode == 'J';
3098 		arg_count += ic->mode == 'J';
3099 		arg_count += ic->mode == 'B';
3100 		arg_count += ic->mode == 'B';
3101 		arg_count += !!ic->internal_hash_alg.alg_string;
3102 		arg_count += !!ic->journal_crypt_alg.alg_string;
3103 		arg_count += !!ic->journal_mac_alg.alg_string;
3104 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3105 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3106 		       ic->tag_size, ic->mode, arg_count);
3107 		if (ic->meta_dev)
3108 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3109 		if (ic->sectors_per_block != 1)
3110 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3111 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3112 			DMEMIT(" recalculate");
3113 		if (ic->discard)
3114 			DMEMIT(" allow_discards");
3115 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3116 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3117 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3118 		if (ic->mode == 'J') {
3119 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3120 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3121 		}
3122 		if (ic->mode == 'B') {
3123 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3124 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3125 		}
3126 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3127 			DMEMIT(" fix_padding");
3128 
3129 #define EMIT_ALG(a, n)							\
3130 		do {							\
3131 			if (ic->a.alg_string) {				\
3132 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3133 				if (ic->a.key_string)			\
3134 					DMEMIT(":%s", ic->a.key_string);\
3135 			}						\
3136 		} while (0)
3137 		EMIT_ALG(internal_hash_alg, "internal_hash");
3138 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3139 		EMIT_ALG(journal_mac_alg, "journal_mac");
3140 		break;
3141 	}
3142 	}
3143 }
3144 
3145 static int dm_integrity_iterate_devices(struct dm_target *ti,
3146 					iterate_devices_callout_fn fn, void *data)
3147 {
3148 	struct dm_integrity_c *ic = ti->private;
3149 
3150 	if (!ic->meta_dev)
3151 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3152 	else
3153 		return fn(ti, ic->dev, 0, ti->len, data);
3154 }
3155 
3156 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3157 {
3158 	struct dm_integrity_c *ic = ti->private;
3159 
3160 	if (ic->sectors_per_block > 1) {
3161 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3162 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3163 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3164 	}
3165 }
3166 
3167 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3168 {
3169 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3170 
3171 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3172 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3173 					 JOURNAL_ENTRY_ROUNDUP);
3174 
3175 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3176 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3177 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3178 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3179 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3180 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3181 }
3182 
3183 static int calculate_device_limits(struct dm_integrity_c *ic)
3184 {
3185 	__u64 initial_sectors;
3186 
3187 	calculate_journal_section_size(ic);
3188 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3189 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3190 		return -EINVAL;
3191 	ic->initial_sectors = initial_sectors;
3192 
3193 	if (!ic->meta_dev) {
3194 		sector_t last_sector, last_area, last_offset;
3195 
3196 		/* we have to maintain excessive padding for compatibility with existing volumes */
3197 		__u64 metadata_run_padding =
3198 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3199 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3200 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3201 
3202 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3203 					    metadata_run_padding) >> SECTOR_SHIFT;
3204 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3205 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3206 		else
3207 			ic->log2_metadata_run = -1;
3208 
3209 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3210 		last_sector = get_data_sector(ic, last_area, last_offset);
3211 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3212 			return -EINVAL;
3213 	} else {
3214 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3215 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3216 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3217 		meta_size <<= ic->log2_buffer_sectors;
3218 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3219 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3220 			return -EINVAL;
3221 		ic->metadata_run = 1;
3222 		ic->log2_metadata_run = 0;
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3229 {
3230 	if (!ic->meta_dev) {
3231 		int test_bit;
3232 		ic->provided_data_sectors = 0;
3233 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3234 			__u64 prev_data_sectors = ic->provided_data_sectors;
3235 
3236 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3237 			if (calculate_device_limits(ic))
3238 				ic->provided_data_sectors = prev_data_sectors;
3239 		}
3240 	} else {
3241 		ic->provided_data_sectors = ic->data_device_sectors;
3242 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3243 	}
3244 }
3245 
3246 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3247 {
3248 	unsigned journal_sections;
3249 	int test_bit;
3250 
3251 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3252 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3253 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3254 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3255 	if (ic->journal_mac_alg.alg_string)
3256 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3257 
3258 	calculate_journal_section_size(ic);
3259 	journal_sections = journal_sectors / ic->journal_section_sectors;
3260 	if (!journal_sections)
3261 		journal_sections = 1;
3262 
3263 	if (!ic->meta_dev) {
3264 		if (ic->fix_padding)
3265 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3266 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3267 		if (!interleave_sectors)
3268 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3269 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3270 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3271 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3272 
3273 		get_provided_data_sectors(ic);
3274 		if (!ic->provided_data_sectors)
3275 			return -EINVAL;
3276 	} else {
3277 		ic->sb->log2_interleave_sectors = 0;
3278 
3279 		get_provided_data_sectors(ic);
3280 		if (!ic->provided_data_sectors)
3281 			return -EINVAL;
3282 
3283 try_smaller_buffer:
3284 		ic->sb->journal_sections = cpu_to_le32(0);
3285 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3286 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3287 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3288 			if (test_journal_sections > journal_sections)
3289 				continue;
3290 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3291 			if (calculate_device_limits(ic))
3292 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3293 
3294 		}
3295 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3296 			if (ic->log2_buffer_sectors > 3) {
3297 				ic->log2_buffer_sectors--;
3298 				goto try_smaller_buffer;
3299 			}
3300 			return -EINVAL;
3301 		}
3302 	}
3303 
3304 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3305 
3306 	sb_set_version(ic);
3307 
3308 	return 0;
3309 }
3310 
3311 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3312 {
3313 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3314 	struct blk_integrity bi;
3315 
3316 	memset(&bi, 0, sizeof(bi));
3317 	bi.profile = &dm_integrity_profile;
3318 	bi.tuple_size = ic->tag_size;
3319 	bi.tag_size = bi.tuple_size;
3320 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3321 
3322 	blk_integrity_register(disk, &bi);
3323 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3324 }
3325 
3326 static void dm_integrity_free_page_list(struct page_list *pl)
3327 {
3328 	unsigned i;
3329 
3330 	if (!pl)
3331 		return;
3332 	for (i = 0; pl[i].page; i++)
3333 		__free_page(pl[i].page);
3334 	kvfree(pl);
3335 }
3336 
3337 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3338 {
3339 	struct page_list *pl;
3340 	unsigned i;
3341 
3342 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3343 	if (!pl)
3344 		return NULL;
3345 
3346 	for (i = 0; i < n_pages; i++) {
3347 		pl[i].page = alloc_page(GFP_KERNEL);
3348 		if (!pl[i].page) {
3349 			dm_integrity_free_page_list(pl);
3350 			return NULL;
3351 		}
3352 		if (i)
3353 			pl[i - 1].next = &pl[i];
3354 	}
3355 	pl[i].page = NULL;
3356 	pl[i].next = NULL;
3357 
3358 	return pl;
3359 }
3360 
3361 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3362 {
3363 	unsigned i;
3364 	for (i = 0; i < ic->journal_sections; i++)
3365 		kvfree(sl[i]);
3366 	kvfree(sl);
3367 }
3368 
3369 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3370 								   struct page_list *pl)
3371 {
3372 	struct scatterlist **sl;
3373 	unsigned i;
3374 
3375 	sl = kvmalloc_array(ic->journal_sections,
3376 			    sizeof(struct scatterlist *),
3377 			    GFP_KERNEL | __GFP_ZERO);
3378 	if (!sl)
3379 		return NULL;
3380 
3381 	for (i = 0; i < ic->journal_sections; i++) {
3382 		struct scatterlist *s;
3383 		unsigned start_index, start_offset;
3384 		unsigned end_index, end_offset;
3385 		unsigned n_pages;
3386 		unsigned idx;
3387 
3388 		page_list_location(ic, i, 0, &start_index, &start_offset);
3389 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3390 				   &end_index, &end_offset);
3391 
3392 		n_pages = (end_index - start_index + 1);
3393 
3394 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3395 				   GFP_KERNEL);
3396 		if (!s) {
3397 			dm_integrity_free_journal_scatterlist(ic, sl);
3398 			return NULL;
3399 		}
3400 
3401 		sg_init_table(s, n_pages);
3402 		for (idx = start_index; idx <= end_index; idx++) {
3403 			char *va = lowmem_page_address(pl[idx].page);
3404 			unsigned start = 0, end = PAGE_SIZE;
3405 			if (idx == start_index)
3406 				start = start_offset;
3407 			if (idx == end_index)
3408 				end = end_offset + (1 << SECTOR_SHIFT);
3409 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3410 		}
3411 
3412 		sl[i] = s;
3413 	}
3414 
3415 	return sl;
3416 }
3417 
3418 static void free_alg(struct alg_spec *a)
3419 {
3420 	kfree_sensitive(a->alg_string);
3421 	kfree_sensitive(a->key);
3422 	memset(a, 0, sizeof *a);
3423 }
3424 
3425 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3426 {
3427 	char *k;
3428 
3429 	free_alg(a);
3430 
3431 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3432 	if (!a->alg_string)
3433 		goto nomem;
3434 
3435 	k = strchr(a->alg_string, ':');
3436 	if (k) {
3437 		*k = 0;
3438 		a->key_string = k + 1;
3439 		if (strlen(a->key_string) & 1)
3440 			goto inval;
3441 
3442 		a->key_size = strlen(a->key_string) / 2;
3443 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3444 		if (!a->key)
3445 			goto nomem;
3446 		if (hex2bin(a->key, a->key_string, a->key_size))
3447 			goto inval;
3448 	}
3449 
3450 	return 0;
3451 inval:
3452 	*error = error_inval;
3453 	return -EINVAL;
3454 nomem:
3455 	*error = "Out of memory for an argument";
3456 	return -ENOMEM;
3457 }
3458 
3459 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3460 		   char *error_alg, char *error_key)
3461 {
3462 	int r;
3463 
3464 	if (a->alg_string) {
3465 		*hash = crypto_alloc_shash(a->alg_string, 0, 0);
3466 		if (IS_ERR(*hash)) {
3467 			*error = error_alg;
3468 			r = PTR_ERR(*hash);
3469 			*hash = NULL;
3470 			return r;
3471 		}
3472 
3473 		if (a->key) {
3474 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3475 			if (r) {
3476 				*error = error_key;
3477 				return r;
3478 			}
3479 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3480 			*error = error_key;
3481 			return -ENOKEY;
3482 		}
3483 	}
3484 
3485 	return 0;
3486 }
3487 
3488 static int create_journal(struct dm_integrity_c *ic, char **error)
3489 {
3490 	int r = 0;
3491 	unsigned i;
3492 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3493 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3494 	struct skcipher_request *req = NULL;
3495 
3496 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3497 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3498 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3499 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3500 
3501 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3502 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3503 	journal_desc_size = journal_pages * sizeof(struct page_list);
3504 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3505 		*error = "Journal doesn't fit into memory";
3506 		r = -ENOMEM;
3507 		goto bad;
3508 	}
3509 	ic->journal_pages = journal_pages;
3510 
3511 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3512 	if (!ic->journal) {
3513 		*error = "Could not allocate memory for journal";
3514 		r = -ENOMEM;
3515 		goto bad;
3516 	}
3517 	if (ic->journal_crypt_alg.alg_string) {
3518 		unsigned ivsize, blocksize;
3519 		struct journal_completion comp;
3520 
3521 		comp.ic = ic;
3522 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3523 		if (IS_ERR(ic->journal_crypt)) {
3524 			*error = "Invalid journal cipher";
3525 			r = PTR_ERR(ic->journal_crypt);
3526 			ic->journal_crypt = NULL;
3527 			goto bad;
3528 		}
3529 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3530 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3531 
3532 		if (ic->journal_crypt_alg.key) {
3533 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3534 						   ic->journal_crypt_alg.key_size);
3535 			if (r) {
3536 				*error = "Error setting encryption key";
3537 				goto bad;
3538 			}
3539 		}
3540 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3541 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3542 
3543 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3544 		if (!ic->journal_io) {
3545 			*error = "Could not allocate memory for journal io";
3546 			r = -ENOMEM;
3547 			goto bad;
3548 		}
3549 
3550 		if (blocksize == 1) {
3551 			struct scatterlist *sg;
3552 
3553 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3554 			if (!req) {
3555 				*error = "Could not allocate crypt request";
3556 				r = -ENOMEM;
3557 				goto bad;
3558 			}
3559 
3560 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3561 			if (!crypt_iv) {
3562 				*error = "Could not allocate iv";
3563 				r = -ENOMEM;
3564 				goto bad;
3565 			}
3566 
3567 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3568 			if (!ic->journal_xor) {
3569 				*error = "Could not allocate memory for journal xor";
3570 				r = -ENOMEM;
3571 				goto bad;
3572 			}
3573 
3574 			sg = kvmalloc_array(ic->journal_pages + 1,
3575 					    sizeof(struct scatterlist),
3576 					    GFP_KERNEL);
3577 			if (!sg) {
3578 				*error = "Unable to allocate sg list";
3579 				r = -ENOMEM;
3580 				goto bad;
3581 			}
3582 			sg_init_table(sg, ic->journal_pages + 1);
3583 			for (i = 0; i < ic->journal_pages; i++) {
3584 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3585 				clear_page(va);
3586 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3587 			}
3588 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3589 
3590 			skcipher_request_set_crypt(req, sg, sg,
3591 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3592 			init_completion(&comp.comp);
3593 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3594 			if (do_crypt(true, req, &comp))
3595 				wait_for_completion(&comp.comp);
3596 			kvfree(sg);
3597 			r = dm_integrity_failed(ic);
3598 			if (r) {
3599 				*error = "Unable to encrypt journal";
3600 				goto bad;
3601 			}
3602 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3603 
3604 			crypto_free_skcipher(ic->journal_crypt);
3605 			ic->journal_crypt = NULL;
3606 		} else {
3607 			unsigned crypt_len = roundup(ivsize, blocksize);
3608 
3609 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3610 			if (!req) {
3611 				*error = "Could not allocate crypt request";
3612 				r = -ENOMEM;
3613 				goto bad;
3614 			}
3615 
3616 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3617 			if (!crypt_iv) {
3618 				*error = "Could not allocate iv";
3619 				r = -ENOMEM;
3620 				goto bad;
3621 			}
3622 
3623 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3624 			if (!crypt_data) {
3625 				*error = "Unable to allocate crypt data";
3626 				r = -ENOMEM;
3627 				goto bad;
3628 			}
3629 
3630 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3631 			if (!ic->journal_scatterlist) {
3632 				*error = "Unable to allocate sg list";
3633 				r = -ENOMEM;
3634 				goto bad;
3635 			}
3636 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3637 			if (!ic->journal_io_scatterlist) {
3638 				*error = "Unable to allocate sg list";
3639 				r = -ENOMEM;
3640 				goto bad;
3641 			}
3642 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3643 							 sizeof(struct skcipher_request *),
3644 							 GFP_KERNEL | __GFP_ZERO);
3645 			if (!ic->sk_requests) {
3646 				*error = "Unable to allocate sk requests";
3647 				r = -ENOMEM;
3648 				goto bad;
3649 			}
3650 			for (i = 0; i < ic->journal_sections; i++) {
3651 				struct scatterlist sg;
3652 				struct skcipher_request *section_req;
3653 				__u32 section_le = cpu_to_le32(i);
3654 
3655 				memset(crypt_iv, 0x00, ivsize);
3656 				memset(crypt_data, 0x00, crypt_len);
3657 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3658 
3659 				sg_init_one(&sg, crypt_data, crypt_len);
3660 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3661 				init_completion(&comp.comp);
3662 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3663 				if (do_crypt(true, req, &comp))
3664 					wait_for_completion(&comp.comp);
3665 
3666 				r = dm_integrity_failed(ic);
3667 				if (r) {
3668 					*error = "Unable to generate iv";
3669 					goto bad;
3670 				}
3671 
3672 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3673 				if (!section_req) {
3674 					*error = "Unable to allocate crypt request";
3675 					r = -ENOMEM;
3676 					goto bad;
3677 				}
3678 				section_req->iv = kmalloc_array(ivsize, 2,
3679 								GFP_KERNEL);
3680 				if (!section_req->iv) {
3681 					skcipher_request_free(section_req);
3682 					*error = "Unable to allocate iv";
3683 					r = -ENOMEM;
3684 					goto bad;
3685 				}
3686 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3687 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3688 				ic->sk_requests[i] = section_req;
3689 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3690 			}
3691 		}
3692 	}
3693 
3694 	for (i = 0; i < N_COMMIT_IDS; i++) {
3695 		unsigned j;
3696 retest_commit_id:
3697 		for (j = 0; j < i; j++) {
3698 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3699 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3700 				goto retest_commit_id;
3701 			}
3702 		}
3703 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3704 	}
3705 
3706 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3707 	if (journal_tree_size > ULONG_MAX) {
3708 		*error = "Journal doesn't fit into memory";
3709 		r = -ENOMEM;
3710 		goto bad;
3711 	}
3712 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3713 	if (!ic->journal_tree) {
3714 		*error = "Could not allocate memory for journal tree";
3715 		r = -ENOMEM;
3716 	}
3717 bad:
3718 	kfree(crypt_data);
3719 	kfree(crypt_iv);
3720 	skcipher_request_free(req);
3721 
3722 	return r;
3723 }
3724 
3725 /*
3726  * Construct a integrity mapping
3727  *
3728  * Arguments:
3729  *	device
3730  *	offset from the start of the device
3731  *	tag size
3732  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3733  *	number of optional arguments
3734  *	optional arguments:
3735  *		journal_sectors
3736  *		interleave_sectors
3737  *		buffer_sectors
3738  *		journal_watermark
3739  *		commit_time
3740  *		meta_device
3741  *		block_size
3742  *		sectors_per_bit
3743  *		bitmap_flush_interval
3744  *		internal_hash
3745  *		journal_crypt
3746  *		journal_mac
3747  *		recalculate
3748  */
3749 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3750 {
3751 	struct dm_integrity_c *ic;
3752 	char dummy;
3753 	int r;
3754 	unsigned extra_args;
3755 	struct dm_arg_set as;
3756 	static const struct dm_arg _args[] = {
3757 		{0, 9, "Invalid number of feature args"},
3758 	};
3759 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3760 	bool should_write_sb;
3761 	__u64 threshold;
3762 	unsigned long long start;
3763 	__s8 log2_sectors_per_bitmap_bit = -1;
3764 	__s8 log2_blocks_per_bitmap_bit;
3765 	__u64 bits_in_journal;
3766 	__u64 n_bitmap_bits;
3767 
3768 #define DIRECT_ARGUMENTS	4
3769 
3770 	if (argc <= DIRECT_ARGUMENTS) {
3771 		ti->error = "Invalid argument count";
3772 		return -EINVAL;
3773 	}
3774 
3775 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3776 	if (!ic) {
3777 		ti->error = "Cannot allocate integrity context";
3778 		return -ENOMEM;
3779 	}
3780 	ti->private = ic;
3781 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3782 	ic->ti = ti;
3783 
3784 	ic->in_progress = RB_ROOT;
3785 	INIT_LIST_HEAD(&ic->wait_list);
3786 	init_waitqueue_head(&ic->endio_wait);
3787 	bio_list_init(&ic->flush_bio_list);
3788 	init_waitqueue_head(&ic->copy_to_journal_wait);
3789 	init_completion(&ic->crypto_backoff);
3790 	atomic64_set(&ic->number_of_mismatches, 0);
3791 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3792 
3793 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3794 	if (r) {
3795 		ti->error = "Device lookup failed";
3796 		goto bad;
3797 	}
3798 
3799 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3800 		ti->error = "Invalid starting offset";
3801 		r = -EINVAL;
3802 		goto bad;
3803 	}
3804 	ic->start = start;
3805 
3806 	if (strcmp(argv[2], "-")) {
3807 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3808 			ti->error = "Invalid tag size";
3809 			r = -EINVAL;
3810 			goto bad;
3811 		}
3812 	}
3813 
3814 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3815 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3816 		ic->mode = argv[3][0];
3817 	} else {
3818 		ti->error = "Invalid mode (expecting J, B, D, R)";
3819 		r = -EINVAL;
3820 		goto bad;
3821 	}
3822 
3823 	journal_sectors = 0;
3824 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3825 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3826 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3827 	sync_msec = DEFAULT_SYNC_MSEC;
3828 	ic->sectors_per_block = 1;
3829 
3830 	as.argc = argc - DIRECT_ARGUMENTS;
3831 	as.argv = argv + DIRECT_ARGUMENTS;
3832 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3833 	if (r)
3834 		goto bad;
3835 
3836 	while (extra_args--) {
3837 		const char *opt_string;
3838 		unsigned val;
3839 		unsigned long long llval;
3840 		opt_string = dm_shift_arg(&as);
3841 		if (!opt_string) {
3842 			r = -EINVAL;
3843 			ti->error = "Not enough feature arguments";
3844 			goto bad;
3845 		}
3846 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3847 			journal_sectors = val ? val : 1;
3848 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3849 			interleave_sectors = val;
3850 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3851 			buffer_sectors = val;
3852 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3853 			journal_watermark = val;
3854 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3855 			sync_msec = val;
3856 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3857 			if (ic->meta_dev) {
3858 				dm_put_device(ti, ic->meta_dev);
3859 				ic->meta_dev = NULL;
3860 			}
3861 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3862 					  dm_table_get_mode(ti->table), &ic->meta_dev);
3863 			if (r) {
3864 				ti->error = "Device lookup failed";
3865 				goto bad;
3866 			}
3867 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3868 			if (val < 1 << SECTOR_SHIFT ||
3869 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3870 			    (val & (val -1))) {
3871 				r = -EINVAL;
3872 				ti->error = "Invalid block_size argument";
3873 				goto bad;
3874 			}
3875 			ic->sectors_per_block = val >> SECTOR_SHIFT;
3876 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3877 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3878 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3879 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3880 				r = -EINVAL;
3881 				ti->error = "Invalid bitmap_flush_interval argument";
3882 			}
3883 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
3884 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3885 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3886 					    "Invalid internal_hash argument");
3887 			if (r)
3888 				goto bad;
3889 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3890 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3891 					    "Invalid journal_crypt argument");
3892 			if (r)
3893 				goto bad;
3894 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3895 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3896 					    "Invalid journal_mac argument");
3897 			if (r)
3898 				goto bad;
3899 		} else if (!strcmp(opt_string, "recalculate")) {
3900 			ic->recalculate_flag = true;
3901 		} else if (!strcmp(opt_string, "allow_discards")) {
3902 			ic->discard = true;
3903 		} else if (!strcmp(opt_string, "fix_padding")) {
3904 			ic->fix_padding = true;
3905 		} else {
3906 			r = -EINVAL;
3907 			ti->error = "Invalid argument";
3908 			goto bad;
3909 		}
3910 	}
3911 
3912 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3913 	if (!ic->meta_dev)
3914 		ic->meta_device_sectors = ic->data_device_sectors;
3915 	else
3916 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3917 
3918 	if (!journal_sectors) {
3919 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3920 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3921 	}
3922 
3923 	if (!buffer_sectors)
3924 		buffer_sectors = 1;
3925 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3926 
3927 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3928 		    "Invalid internal hash", "Error setting internal hash key");
3929 	if (r)
3930 		goto bad;
3931 
3932 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3933 		    "Invalid journal mac", "Error setting journal mac key");
3934 	if (r)
3935 		goto bad;
3936 
3937 	if (!ic->tag_size) {
3938 		if (!ic->internal_hash) {
3939 			ti->error = "Unknown tag size";
3940 			r = -EINVAL;
3941 			goto bad;
3942 		}
3943 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3944 	}
3945 	if (ic->tag_size > MAX_TAG_SIZE) {
3946 		ti->error = "Too big tag size";
3947 		r = -EINVAL;
3948 		goto bad;
3949 	}
3950 	if (!(ic->tag_size & (ic->tag_size - 1)))
3951 		ic->log2_tag_size = __ffs(ic->tag_size);
3952 	else
3953 		ic->log2_tag_size = -1;
3954 
3955 	if (ic->mode == 'B' && !ic->internal_hash) {
3956 		r = -EINVAL;
3957 		ti->error = "Bitmap mode can be only used with internal hash";
3958 		goto bad;
3959 	}
3960 
3961 	if (ic->discard && !ic->internal_hash) {
3962 		r = -EINVAL;
3963 		ti->error = "Discard can be only used with internal hash";
3964 		goto bad;
3965 	}
3966 
3967 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3968 	ic->autocommit_msec = sync_msec;
3969 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3970 
3971 	ic->io = dm_io_client_create();
3972 	if (IS_ERR(ic->io)) {
3973 		r = PTR_ERR(ic->io);
3974 		ic->io = NULL;
3975 		ti->error = "Cannot allocate dm io";
3976 		goto bad;
3977 	}
3978 
3979 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3980 	if (r) {
3981 		ti->error = "Cannot allocate mempool";
3982 		goto bad;
3983 	}
3984 
3985 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3986 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3987 	if (!ic->metadata_wq) {
3988 		ti->error = "Cannot allocate workqueue";
3989 		r = -ENOMEM;
3990 		goto bad;
3991 	}
3992 
3993 	/*
3994 	 * If this workqueue were percpu, it would cause bio reordering
3995 	 * and reduced performance.
3996 	 */
3997 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3998 	if (!ic->wait_wq) {
3999 		ti->error = "Cannot allocate workqueue";
4000 		r = -ENOMEM;
4001 		goto bad;
4002 	}
4003 
4004 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4005 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4006 	if (!ic->offload_wq) {
4007 		ti->error = "Cannot allocate workqueue";
4008 		r = -ENOMEM;
4009 		goto bad;
4010 	}
4011 
4012 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4013 	if (!ic->commit_wq) {
4014 		ti->error = "Cannot allocate workqueue";
4015 		r = -ENOMEM;
4016 		goto bad;
4017 	}
4018 	INIT_WORK(&ic->commit_work, integrity_commit);
4019 
4020 	if (ic->mode == 'J' || ic->mode == 'B') {
4021 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4022 		if (!ic->writer_wq) {
4023 			ti->error = "Cannot allocate workqueue";
4024 			r = -ENOMEM;
4025 			goto bad;
4026 		}
4027 		INIT_WORK(&ic->writer_work, integrity_writer);
4028 	}
4029 
4030 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4031 	if (!ic->sb) {
4032 		r = -ENOMEM;
4033 		ti->error = "Cannot allocate superblock area";
4034 		goto bad;
4035 	}
4036 
4037 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4038 	if (r) {
4039 		ti->error = "Error reading superblock";
4040 		goto bad;
4041 	}
4042 	should_write_sb = false;
4043 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4044 		if (ic->mode != 'R') {
4045 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4046 				r = -EINVAL;
4047 				ti->error = "The device is not initialized";
4048 				goto bad;
4049 			}
4050 		}
4051 
4052 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4053 		if (r) {
4054 			ti->error = "Could not initialize superblock";
4055 			goto bad;
4056 		}
4057 		if (ic->mode != 'R')
4058 			should_write_sb = true;
4059 	}
4060 
4061 	if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4062 		r = -EINVAL;
4063 		ti->error = "Unknown version";
4064 		goto bad;
4065 	}
4066 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4067 		r = -EINVAL;
4068 		ti->error = "Tag size doesn't match the information in superblock";
4069 		goto bad;
4070 	}
4071 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4072 		r = -EINVAL;
4073 		ti->error = "Block size doesn't match the information in superblock";
4074 		goto bad;
4075 	}
4076 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4077 		r = -EINVAL;
4078 		ti->error = "Corrupted superblock, journal_sections is 0";
4079 		goto bad;
4080 	}
4081 	/* make sure that ti->max_io_len doesn't overflow */
4082 	if (!ic->meta_dev) {
4083 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4084 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4085 			r = -EINVAL;
4086 			ti->error = "Invalid interleave_sectors in the superblock";
4087 			goto bad;
4088 		}
4089 	} else {
4090 		if (ic->sb->log2_interleave_sectors) {
4091 			r = -EINVAL;
4092 			ti->error = "Invalid interleave_sectors in the superblock";
4093 			goto bad;
4094 		}
4095 	}
4096 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4097 		r = -EINVAL;
4098 		ti->error = "Journal mac mismatch";
4099 		goto bad;
4100 	}
4101 
4102 	get_provided_data_sectors(ic);
4103 	if (!ic->provided_data_sectors) {
4104 		r = -EINVAL;
4105 		ti->error = "The device is too small";
4106 		goto bad;
4107 	}
4108 
4109 try_smaller_buffer:
4110 	r = calculate_device_limits(ic);
4111 	if (r) {
4112 		if (ic->meta_dev) {
4113 			if (ic->log2_buffer_sectors > 3) {
4114 				ic->log2_buffer_sectors--;
4115 				goto try_smaller_buffer;
4116 			}
4117 		}
4118 		ti->error = "The device is too small";
4119 		goto bad;
4120 	}
4121 
4122 	if (log2_sectors_per_bitmap_bit < 0)
4123 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4124 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4125 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4126 
4127 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4128 	if (bits_in_journal > UINT_MAX)
4129 		bits_in_journal = UINT_MAX;
4130 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4131 		log2_sectors_per_bitmap_bit++;
4132 
4133 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4134 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4135 	if (should_write_sb) {
4136 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4137 	}
4138 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4139 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4140 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4141 
4142 	if (!ic->meta_dev)
4143 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4144 
4145 	if (ti->len > ic->provided_data_sectors) {
4146 		r = -EINVAL;
4147 		ti->error = "Not enough provided sectors for requested mapping size";
4148 		goto bad;
4149 	}
4150 
4151 
4152 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4153 	threshold += 50;
4154 	do_div(threshold, 100);
4155 	ic->free_sectors_threshold = threshold;
4156 
4157 	DEBUG_print("initialized:\n");
4158 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4159 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4160 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4161 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4162 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4163 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4164 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4165 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4166 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4167 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4168 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4169 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4170 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4171 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4172 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4173 
4174 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4175 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4176 		ic->sb->recalc_sector = cpu_to_le64(0);
4177 	}
4178 
4179 	if (ic->internal_hash) {
4180 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4181 		if (!ic->recalc_wq ) {
4182 			ti->error = "Cannot allocate workqueue";
4183 			r = -ENOMEM;
4184 			goto bad;
4185 		}
4186 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4187 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4188 		if (!ic->recalc_buffer) {
4189 			ti->error = "Cannot allocate buffer for recalculating";
4190 			r = -ENOMEM;
4191 			goto bad;
4192 		}
4193 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4194 						 ic->tag_size, GFP_KERNEL);
4195 		if (!ic->recalc_tags) {
4196 			ti->error = "Cannot allocate tags for recalculating";
4197 			r = -ENOMEM;
4198 			goto bad;
4199 		}
4200 	}
4201 
4202 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4203 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4204 	if (IS_ERR(ic->bufio)) {
4205 		r = PTR_ERR(ic->bufio);
4206 		ti->error = "Cannot initialize dm-bufio";
4207 		ic->bufio = NULL;
4208 		goto bad;
4209 	}
4210 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4211 
4212 	if (ic->mode != 'R') {
4213 		r = create_journal(ic, &ti->error);
4214 		if (r)
4215 			goto bad;
4216 
4217 	}
4218 
4219 	if (ic->mode == 'B') {
4220 		unsigned i;
4221 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4222 
4223 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4224 		if (!ic->recalc_bitmap) {
4225 			r = -ENOMEM;
4226 			goto bad;
4227 		}
4228 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4229 		if (!ic->may_write_bitmap) {
4230 			r = -ENOMEM;
4231 			goto bad;
4232 		}
4233 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4234 		if (!ic->bbs) {
4235 			r = -ENOMEM;
4236 			goto bad;
4237 		}
4238 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4239 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4240 			struct bitmap_block_status *bbs = &ic->bbs[i];
4241 			unsigned sector, pl_index, pl_offset;
4242 
4243 			INIT_WORK(&bbs->work, bitmap_block_work);
4244 			bbs->ic = ic;
4245 			bbs->idx = i;
4246 			bio_list_init(&bbs->bio_queue);
4247 			spin_lock_init(&bbs->bio_queue_lock);
4248 
4249 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4250 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4251 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4252 
4253 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4254 		}
4255 	}
4256 
4257 	if (should_write_sb) {
4258 		int r;
4259 
4260 		init_journal(ic, 0, ic->journal_sections, 0);
4261 		r = dm_integrity_failed(ic);
4262 		if (unlikely(r)) {
4263 			ti->error = "Error initializing journal";
4264 			goto bad;
4265 		}
4266 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4267 		if (r) {
4268 			ti->error = "Error initializing superblock";
4269 			goto bad;
4270 		}
4271 		ic->just_formatted = true;
4272 	}
4273 
4274 	if (!ic->meta_dev) {
4275 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4276 		if (r)
4277 			goto bad;
4278 	}
4279 	if (ic->mode == 'B') {
4280 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4281 		if (!max_io_len)
4282 			max_io_len = 1U << 31;
4283 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4284 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4285 			r = dm_set_target_max_io_len(ti, max_io_len);
4286 			if (r)
4287 				goto bad;
4288 		}
4289 	}
4290 
4291 	if (!ic->internal_hash)
4292 		dm_integrity_set(ti, ic);
4293 
4294 	ti->num_flush_bios = 1;
4295 	ti->flush_supported = true;
4296 	if (ic->discard)
4297 		ti->num_discard_bios = 1;
4298 
4299 	return 0;
4300 
4301 bad:
4302 	dm_integrity_dtr(ti);
4303 	return r;
4304 }
4305 
4306 static void dm_integrity_dtr(struct dm_target *ti)
4307 {
4308 	struct dm_integrity_c *ic = ti->private;
4309 
4310 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4311 	BUG_ON(!list_empty(&ic->wait_list));
4312 
4313 	if (ic->metadata_wq)
4314 		destroy_workqueue(ic->metadata_wq);
4315 	if (ic->wait_wq)
4316 		destroy_workqueue(ic->wait_wq);
4317 	if (ic->offload_wq)
4318 		destroy_workqueue(ic->offload_wq);
4319 	if (ic->commit_wq)
4320 		destroy_workqueue(ic->commit_wq);
4321 	if (ic->writer_wq)
4322 		destroy_workqueue(ic->writer_wq);
4323 	if (ic->recalc_wq)
4324 		destroy_workqueue(ic->recalc_wq);
4325 	vfree(ic->recalc_buffer);
4326 	kvfree(ic->recalc_tags);
4327 	kvfree(ic->bbs);
4328 	if (ic->bufio)
4329 		dm_bufio_client_destroy(ic->bufio);
4330 	mempool_exit(&ic->journal_io_mempool);
4331 	if (ic->io)
4332 		dm_io_client_destroy(ic->io);
4333 	if (ic->dev)
4334 		dm_put_device(ti, ic->dev);
4335 	if (ic->meta_dev)
4336 		dm_put_device(ti, ic->meta_dev);
4337 	dm_integrity_free_page_list(ic->journal);
4338 	dm_integrity_free_page_list(ic->journal_io);
4339 	dm_integrity_free_page_list(ic->journal_xor);
4340 	dm_integrity_free_page_list(ic->recalc_bitmap);
4341 	dm_integrity_free_page_list(ic->may_write_bitmap);
4342 	if (ic->journal_scatterlist)
4343 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4344 	if (ic->journal_io_scatterlist)
4345 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4346 	if (ic->sk_requests) {
4347 		unsigned i;
4348 
4349 		for (i = 0; i < ic->journal_sections; i++) {
4350 			struct skcipher_request *req = ic->sk_requests[i];
4351 			if (req) {
4352 				kfree_sensitive(req->iv);
4353 				skcipher_request_free(req);
4354 			}
4355 		}
4356 		kvfree(ic->sk_requests);
4357 	}
4358 	kvfree(ic->journal_tree);
4359 	if (ic->sb)
4360 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4361 
4362 	if (ic->internal_hash)
4363 		crypto_free_shash(ic->internal_hash);
4364 	free_alg(&ic->internal_hash_alg);
4365 
4366 	if (ic->journal_crypt)
4367 		crypto_free_skcipher(ic->journal_crypt);
4368 	free_alg(&ic->journal_crypt_alg);
4369 
4370 	if (ic->journal_mac)
4371 		crypto_free_shash(ic->journal_mac);
4372 	free_alg(&ic->journal_mac_alg);
4373 
4374 	kfree(ic);
4375 }
4376 
4377 static struct target_type integrity_target = {
4378 	.name			= "integrity",
4379 	.version		= {1, 6, 0},
4380 	.module			= THIS_MODULE,
4381 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4382 	.ctr			= dm_integrity_ctr,
4383 	.dtr			= dm_integrity_dtr,
4384 	.map			= dm_integrity_map,
4385 	.postsuspend		= dm_integrity_postsuspend,
4386 	.resume			= dm_integrity_resume,
4387 	.status			= dm_integrity_status,
4388 	.iterate_devices	= dm_integrity_iterate_devices,
4389 	.io_hints		= dm_integrity_io_hints,
4390 };
4391 
4392 static int __init dm_integrity_init(void)
4393 {
4394 	int r;
4395 
4396 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4397 					     sizeof(struct journal_io), 0, 0, NULL);
4398 	if (!journal_io_cache) {
4399 		DMERR("can't allocate journal io cache");
4400 		return -ENOMEM;
4401 	}
4402 
4403 	r = dm_register_target(&integrity_target);
4404 
4405 	if (r < 0)
4406 		DMERR("register failed %d", r);
4407 
4408 	return r;
4409 }
4410 
4411 static void __exit dm_integrity_exit(void)
4412 {
4413 	dm_unregister_target(&integrity_target);
4414 	kmem_cache_destroy(journal_io_cache);
4415 }
4416 
4417 module_init(dm_integrity_init);
4418 module_exit(dm_integrity_exit);
4419 
4420 MODULE_AUTHOR("Milan Broz");
4421 MODULE_AUTHOR("Mikulas Patocka");
4422 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4423 MODULE_LICENSE("GPL");
4424