xref: /openbmc/linux/drivers/md/dm-integrity.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #define DM_MSG_PREFIX "integrity"
27 
28 #define DEFAULT_INTERLEAVE_SECTORS	32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
31 #define DEFAULT_BUFFER_SECTORS		128
32 #define DEFAULT_JOURNAL_WATERMARK	50
33 #define DEFAULT_SYNC_MSEC		10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS	3
36 #define MAX_LOG2_INTERLEAVE_SECTORS	31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
38 #define RECALC_SECTORS			32768
39 #define RECALC_WRITE_SUPER		16
40 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
41 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
42 #define DISCARD_FILLER			0xf6
43 #define SALT_SIZE			16
44 
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51 
52 /*
53  * On disk structures
54  */
55 
56 #define SB_MAGIC			"integrt"
57 #define SB_VERSION_1			1
58 #define SB_VERSION_2			2
59 #define SB_VERSION_3			3
60 #define SB_VERSION_4			4
61 #define SB_VERSION_5			5
62 #define SB_SECTORS			8
63 #define MAX_SECTORS_PER_BLOCK		8
64 
65 struct superblock {
66 	__u8 magic[8];
67 	__u8 version;
68 	__u8 log2_interleave_sectors;
69 	__le16 integrity_tag_size;
70 	__le32 journal_sections;
71 	__le64 provided_data_sectors;	/* userspace uses this value */
72 	__le32 flags;
73 	__u8 log2_sectors_per_block;
74 	__u8 log2_blocks_per_bitmap_bit;
75 	__u8 pad[2];
76 	__le64 recalc_sector;
77 	__u8 pad2[8];
78 	__u8 salt[SALT_SIZE];
79 };
80 
81 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
82 #define SB_FLAG_RECALCULATING		0x2
83 #define SB_FLAG_DIRTY_BITMAP		0x4
84 #define SB_FLAG_FIXED_PADDING		0x8
85 #define SB_FLAG_FIXED_HMAC		0x10
86 
87 #define	JOURNAL_ENTRY_ROUNDUP		8
88 
89 typedef __le64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR		8
91 
92 struct journal_entry {
93 	union {
94 		struct {
95 			__le32 sector_lo;
96 			__le32 sector_hi;
97 		} s;
98 		__le64 sector;
99 	} u;
100 	commit_id_t last_bytes[];
101 	/* __u8 tag[0]; */
102 };
103 
104 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105 
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116 
117 #define JOURNAL_BLOCK_SECTORS		8
118 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120 
121 struct journal_sector {
122 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
124 	commit_id_t commit_id;
125 };
126 
127 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128 
129 #define METADATA_PADDING_SECTORS	8
130 
131 #define N_COMMIT_IDS			4
132 
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137 
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140 	return (seq + 1) % N_COMMIT_IDS;
141 }
142 
143 /*
144  * In-memory structures
145  */
146 
147 struct journal_node {
148 	struct rb_node node;
149 	sector_t sector;
150 };
151 
152 struct alg_spec {
153 	char *alg_string;
154 	char *key_string;
155 	__u8 *key;
156 	unsigned key_size;
157 };
158 
159 struct dm_integrity_c {
160 	struct dm_dev *dev;
161 	struct dm_dev *meta_dev;
162 	unsigned tag_size;
163 	__s8 log2_tag_size;
164 	sector_t start;
165 	mempool_t journal_io_mempool;
166 	struct dm_io_client *io;
167 	struct dm_bufio_client *bufio;
168 	struct workqueue_struct *metadata_wq;
169 	struct superblock *sb;
170 	unsigned journal_pages;
171 	unsigned n_bitmap_blocks;
172 
173 	struct page_list *journal;
174 	struct page_list *journal_io;
175 	struct page_list *journal_xor;
176 	struct page_list *recalc_bitmap;
177 	struct page_list *may_write_bitmap;
178 	struct bitmap_block_status *bbs;
179 	unsigned bitmap_flush_interval;
180 	int synchronous_mode;
181 	struct bio_list synchronous_bios;
182 	struct delayed_work bitmap_flush_work;
183 
184 	struct crypto_skcipher *journal_crypt;
185 	struct scatterlist **journal_scatterlist;
186 	struct scatterlist **journal_io_scatterlist;
187 	struct skcipher_request **sk_requests;
188 
189 	struct crypto_shash *journal_mac;
190 
191 	struct journal_node *journal_tree;
192 	struct rb_root journal_tree_root;
193 
194 	sector_t provided_data_sectors;
195 
196 	unsigned short journal_entry_size;
197 	unsigned char journal_entries_per_sector;
198 	unsigned char journal_section_entries;
199 	unsigned short journal_section_sectors;
200 	unsigned journal_sections;
201 	unsigned journal_entries;
202 	sector_t data_device_sectors;
203 	sector_t meta_device_sectors;
204 	unsigned initial_sectors;
205 	unsigned metadata_run;
206 	__s8 log2_metadata_run;
207 	__u8 log2_buffer_sectors;
208 	__u8 sectors_per_block;
209 	__u8 log2_blocks_per_bitmap_bit;
210 
211 	unsigned char mode;
212 
213 	int failed;
214 
215 	struct crypto_shash *internal_hash;
216 
217 	struct dm_target *ti;
218 
219 	/* these variables are locked with endio_wait.lock */
220 	struct rb_root in_progress;
221 	struct list_head wait_list;
222 	wait_queue_head_t endio_wait;
223 	struct workqueue_struct *wait_wq;
224 	struct workqueue_struct *offload_wq;
225 
226 	unsigned char commit_seq;
227 	commit_id_t commit_ids[N_COMMIT_IDS];
228 
229 	unsigned committed_section;
230 	unsigned n_committed_sections;
231 
232 	unsigned uncommitted_section;
233 	unsigned n_uncommitted_sections;
234 
235 	unsigned free_section;
236 	unsigned char free_section_entry;
237 	unsigned free_sectors;
238 
239 	unsigned free_sectors_threshold;
240 
241 	struct workqueue_struct *commit_wq;
242 	struct work_struct commit_work;
243 
244 	struct workqueue_struct *writer_wq;
245 	struct work_struct writer_work;
246 
247 	struct workqueue_struct *recalc_wq;
248 	struct work_struct recalc_work;
249 	u8 *recalc_buffer;
250 	u8 *recalc_tags;
251 
252 	struct bio_list flush_bio_list;
253 
254 	unsigned long autocommit_jiffies;
255 	struct timer_list autocommit_timer;
256 	unsigned autocommit_msec;
257 
258 	wait_queue_head_t copy_to_journal_wait;
259 
260 	struct completion crypto_backoff;
261 
262 	bool journal_uptodate;
263 	bool just_formatted;
264 	bool recalculate_flag;
265 	bool reset_recalculate_flag;
266 	bool discard;
267 	bool fix_padding;
268 	bool fix_hmac;
269 	bool legacy_recalculate;
270 
271 	struct alg_spec internal_hash_alg;
272 	struct alg_spec journal_crypt_alg;
273 	struct alg_spec journal_mac_alg;
274 
275 	atomic64_t number_of_mismatches;
276 
277 	struct notifier_block reboot_notifier;
278 };
279 
280 struct dm_integrity_range {
281 	sector_t logical_sector;
282 	sector_t n_sectors;
283 	bool waiting;
284 	union {
285 		struct rb_node node;
286 		struct {
287 			struct task_struct *task;
288 			struct list_head wait_entry;
289 		};
290 	};
291 };
292 
293 struct dm_integrity_io {
294 	struct work_struct work;
295 
296 	struct dm_integrity_c *ic;
297 	enum req_opf op;
298 	bool fua;
299 
300 	struct dm_integrity_range range;
301 
302 	sector_t metadata_block;
303 	unsigned metadata_offset;
304 
305 	atomic_t in_flight;
306 	blk_status_t bi_status;
307 
308 	struct completion *completion;
309 
310 	struct dm_bio_details bio_details;
311 };
312 
313 struct journal_completion {
314 	struct dm_integrity_c *ic;
315 	atomic_t in_flight;
316 	struct completion comp;
317 };
318 
319 struct journal_io {
320 	struct dm_integrity_range range;
321 	struct journal_completion *comp;
322 };
323 
324 struct bitmap_block_status {
325 	struct work_struct work;
326 	struct dm_integrity_c *ic;
327 	unsigned idx;
328 	unsigned long *bitmap;
329 	struct bio_list bio_queue;
330 	spinlock_t bio_queue_lock;
331 
332 };
333 
334 static struct kmem_cache *journal_io_cache;
335 
336 #define JOURNAL_IO_MEMPOOL	32
337 
338 #ifdef DEBUG_PRINT
339 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
341 {
342 	va_list args;
343 	va_start(args, msg);
344 	vprintk(msg, args);
345 	va_end(args);
346 	if (len)
347 		pr_cont(":");
348 	while (len) {
349 		pr_cont(" %02x", *bytes);
350 		bytes++;
351 		len--;
352 	}
353 	pr_cont("\n");
354 }
355 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
356 #else
357 #define DEBUG_print(x, ...)			do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
359 #endif
360 
361 static void dm_integrity_prepare(struct request *rq)
362 {
363 }
364 
365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
366 {
367 }
368 
369 /*
370  * DM Integrity profile, protection is performed layer above (dm-crypt)
371  */
372 static const struct blk_integrity_profile dm_integrity_profile = {
373 	.name			= "DM-DIF-EXT-TAG",
374 	.generate_fn		= NULL,
375 	.verify_fn		= NULL,
376 	.prepare_fn		= dm_integrity_prepare,
377 	.complete_fn		= dm_integrity_complete,
378 };
379 
380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
381 static void integrity_bio_wait(struct work_struct *w);
382 static void dm_integrity_dtr(struct dm_target *ti);
383 
384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
385 {
386 	if (err == -EILSEQ)
387 		atomic64_inc(&ic->number_of_mismatches);
388 	if (!cmpxchg(&ic->failed, 0, err))
389 		DMERR("Error on %s: %d", msg, err);
390 }
391 
392 static int dm_integrity_failed(struct dm_integrity_c *ic)
393 {
394 	return READ_ONCE(ic->failed);
395 }
396 
397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
398 {
399 	if (ic->legacy_recalculate)
400 		return false;
401 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
402 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
403 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
404 		return true;
405 	return false;
406 }
407 
408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
409 					  unsigned j, unsigned char seq)
410 {
411 	/*
412 	 * Xor the number with section and sector, so that if a piece of
413 	 * journal is written at wrong place, it is detected.
414 	 */
415 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
416 }
417 
418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
419 				sector_t *area, sector_t *offset)
420 {
421 	if (!ic->meta_dev) {
422 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
423 		*area = data_sector >> log2_interleave_sectors;
424 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
425 	} else {
426 		*area = 0;
427 		*offset = data_sector;
428 	}
429 }
430 
431 #define sector_to_block(ic, n)						\
432 do {									\
433 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
434 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
435 } while (0)
436 
437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
438 					    sector_t offset, unsigned *metadata_offset)
439 {
440 	__u64 ms;
441 	unsigned mo;
442 
443 	ms = area << ic->sb->log2_interleave_sectors;
444 	if (likely(ic->log2_metadata_run >= 0))
445 		ms += area << ic->log2_metadata_run;
446 	else
447 		ms += area * ic->metadata_run;
448 	ms >>= ic->log2_buffer_sectors;
449 
450 	sector_to_block(ic, offset);
451 
452 	if (likely(ic->log2_tag_size >= 0)) {
453 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
454 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
455 	} else {
456 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
457 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
458 	}
459 	*metadata_offset = mo;
460 	return ms;
461 }
462 
463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
464 {
465 	sector_t result;
466 
467 	if (ic->meta_dev)
468 		return offset;
469 
470 	result = area << ic->sb->log2_interleave_sectors;
471 	if (likely(ic->log2_metadata_run >= 0))
472 		result += (area + 1) << ic->log2_metadata_run;
473 	else
474 		result += (area + 1) * ic->metadata_run;
475 
476 	result += (sector_t)ic->initial_sectors + offset;
477 	result += ic->start;
478 
479 	return result;
480 }
481 
482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
483 {
484 	if (unlikely(*sec_ptr >= ic->journal_sections))
485 		*sec_ptr -= ic->journal_sections;
486 }
487 
488 static void sb_set_version(struct dm_integrity_c *ic)
489 {
490 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
491 		ic->sb->version = SB_VERSION_5;
492 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
493 		ic->sb->version = SB_VERSION_4;
494 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
495 		ic->sb->version = SB_VERSION_3;
496 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
497 		ic->sb->version = SB_VERSION_2;
498 	else
499 		ic->sb->version = SB_VERSION_1;
500 }
501 
502 static int sb_mac(struct dm_integrity_c *ic, bool wr)
503 {
504 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
505 	int r;
506 	unsigned size = crypto_shash_digestsize(ic->journal_mac);
507 
508 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
509 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
510 		return -EINVAL;
511 	}
512 
513 	desc->tfm = ic->journal_mac;
514 
515 	r = crypto_shash_init(desc);
516 	if (unlikely(r < 0)) {
517 		dm_integrity_io_error(ic, "crypto_shash_init", r);
518 		return r;
519 	}
520 
521 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
522 	if (unlikely(r < 0)) {
523 		dm_integrity_io_error(ic, "crypto_shash_update", r);
524 		return r;
525 	}
526 
527 	if (likely(wr)) {
528 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
529 		if (unlikely(r < 0)) {
530 			dm_integrity_io_error(ic, "crypto_shash_final", r);
531 			return r;
532 		}
533 	} else {
534 		__u8 result[HASH_MAX_DIGESTSIZE];
535 		r = crypto_shash_final(desc, result);
536 		if (unlikely(r < 0)) {
537 			dm_integrity_io_error(ic, "crypto_shash_final", r);
538 			return r;
539 		}
540 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
541 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
542 			return -EILSEQ;
543 		}
544 	}
545 
546 	return 0;
547 }
548 
549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
550 {
551 	struct dm_io_request io_req;
552 	struct dm_io_region io_loc;
553 	int r;
554 
555 	io_req.bi_op = op;
556 	io_req.bi_op_flags = op_flags;
557 	io_req.mem.type = DM_IO_KMEM;
558 	io_req.mem.ptr.addr = ic->sb;
559 	io_req.notify.fn = NULL;
560 	io_req.client = ic->io;
561 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
562 	io_loc.sector = ic->start;
563 	io_loc.count = SB_SECTORS;
564 
565 	if (op == REQ_OP_WRITE) {
566 		sb_set_version(ic);
567 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
568 			r = sb_mac(ic, true);
569 			if (unlikely(r))
570 				return r;
571 		}
572 	}
573 
574 	r = dm_io(&io_req, 1, &io_loc, NULL);
575 	if (unlikely(r))
576 		return r;
577 
578 	if (op == REQ_OP_READ) {
579 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
580 			r = sb_mac(ic, false);
581 			if (unlikely(r))
582 				return r;
583 		}
584 	}
585 
586 	return 0;
587 }
588 
589 #define BITMAP_OP_TEST_ALL_SET		0
590 #define BITMAP_OP_TEST_ALL_CLEAR	1
591 #define BITMAP_OP_SET			2
592 #define BITMAP_OP_CLEAR			3
593 
594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
595 			    sector_t sector, sector_t n_sectors, int mode)
596 {
597 	unsigned long bit, end_bit, this_end_bit, page, end_page;
598 	unsigned long *data;
599 
600 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
601 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
602 			sector,
603 			n_sectors,
604 			ic->sb->log2_sectors_per_block,
605 			ic->log2_blocks_per_bitmap_bit,
606 			mode);
607 		BUG();
608 	}
609 
610 	if (unlikely(!n_sectors))
611 		return true;
612 
613 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
614 	end_bit = (sector + n_sectors - 1) >>
615 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
616 
617 	page = bit / (PAGE_SIZE * 8);
618 	bit %= PAGE_SIZE * 8;
619 
620 	end_page = end_bit / (PAGE_SIZE * 8);
621 	end_bit %= PAGE_SIZE * 8;
622 
623 repeat:
624 	if (page < end_page) {
625 		this_end_bit = PAGE_SIZE * 8 - 1;
626 	} else {
627 		this_end_bit = end_bit;
628 	}
629 
630 	data = lowmem_page_address(bitmap[page].page);
631 
632 	if (mode == BITMAP_OP_TEST_ALL_SET) {
633 		while (bit <= this_end_bit) {
634 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
635 				do {
636 					if (data[bit / BITS_PER_LONG] != -1)
637 						return false;
638 					bit += BITS_PER_LONG;
639 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
640 				continue;
641 			}
642 			if (!test_bit(bit, data))
643 				return false;
644 			bit++;
645 		}
646 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
647 		while (bit <= this_end_bit) {
648 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
649 				do {
650 					if (data[bit / BITS_PER_LONG] != 0)
651 						return false;
652 					bit += BITS_PER_LONG;
653 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
654 				continue;
655 			}
656 			if (test_bit(bit, data))
657 				return false;
658 			bit++;
659 		}
660 	} else if (mode == BITMAP_OP_SET) {
661 		while (bit <= this_end_bit) {
662 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
663 				do {
664 					data[bit / BITS_PER_LONG] = -1;
665 					bit += BITS_PER_LONG;
666 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
667 				continue;
668 			}
669 			__set_bit(bit, data);
670 			bit++;
671 		}
672 	} else if (mode == BITMAP_OP_CLEAR) {
673 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
674 			clear_page(data);
675 		else while (bit <= this_end_bit) {
676 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
677 				do {
678 					data[bit / BITS_PER_LONG] = 0;
679 					bit += BITS_PER_LONG;
680 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
681 				continue;
682 			}
683 			__clear_bit(bit, data);
684 			bit++;
685 		}
686 	} else {
687 		BUG();
688 	}
689 
690 	if (unlikely(page < end_page)) {
691 		bit = 0;
692 		page++;
693 		goto repeat;
694 	}
695 
696 	return true;
697 }
698 
699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
700 {
701 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
702 	unsigned i;
703 
704 	for (i = 0; i < n_bitmap_pages; i++) {
705 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
706 		unsigned long *src_data = lowmem_page_address(src[i].page);
707 		copy_page(dst_data, src_data);
708 	}
709 }
710 
711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
712 {
713 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
714 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
715 
716 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
717 	return &ic->bbs[bitmap_block];
718 }
719 
720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
721 				 bool e, const char *function)
722 {
723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
724 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
725 
726 	if (unlikely(section >= ic->journal_sections) ||
727 	    unlikely(offset >= limit)) {
728 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
729 		       function, section, offset, ic->journal_sections, limit);
730 		BUG();
731 	}
732 #endif
733 }
734 
735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
736 			       unsigned *pl_index, unsigned *pl_offset)
737 {
738 	unsigned sector;
739 
740 	access_journal_check(ic, section, offset, false, "page_list_location");
741 
742 	sector = section * ic->journal_section_sectors + offset;
743 
744 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
745 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
746 }
747 
748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
749 					       unsigned section, unsigned offset, unsigned *n_sectors)
750 {
751 	unsigned pl_index, pl_offset;
752 	char *va;
753 
754 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
755 
756 	if (n_sectors)
757 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
758 
759 	va = lowmem_page_address(pl[pl_index].page);
760 
761 	return (struct journal_sector *)(va + pl_offset);
762 }
763 
764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
765 {
766 	return access_page_list(ic, ic->journal, section, offset, NULL);
767 }
768 
769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
770 {
771 	unsigned rel_sector, offset;
772 	struct journal_sector *js;
773 
774 	access_journal_check(ic, section, n, true, "access_journal_entry");
775 
776 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
777 	offset = n / JOURNAL_BLOCK_SECTORS;
778 
779 	js = access_journal(ic, section, rel_sector);
780 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
781 }
782 
783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
784 {
785 	n <<= ic->sb->log2_sectors_per_block;
786 
787 	n += JOURNAL_BLOCK_SECTORS;
788 
789 	access_journal_check(ic, section, n, false, "access_journal_data");
790 
791 	return access_journal(ic, section, n);
792 }
793 
794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
795 {
796 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
797 	int r;
798 	unsigned j, size;
799 
800 	desc->tfm = ic->journal_mac;
801 
802 	r = crypto_shash_init(desc);
803 	if (unlikely(r < 0)) {
804 		dm_integrity_io_error(ic, "crypto_shash_init", r);
805 		goto err;
806 	}
807 
808 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
809 		__le64 section_le;
810 
811 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
812 		if (unlikely(r < 0)) {
813 			dm_integrity_io_error(ic, "crypto_shash_update", r);
814 			goto err;
815 		}
816 
817 		section_le = cpu_to_le64(section);
818 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
819 		if (unlikely(r < 0)) {
820 			dm_integrity_io_error(ic, "crypto_shash_update", r);
821 			goto err;
822 		}
823 	}
824 
825 	for (j = 0; j < ic->journal_section_entries; j++) {
826 		struct journal_entry *je = access_journal_entry(ic, section, j);
827 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
828 		if (unlikely(r < 0)) {
829 			dm_integrity_io_error(ic, "crypto_shash_update", r);
830 			goto err;
831 		}
832 	}
833 
834 	size = crypto_shash_digestsize(ic->journal_mac);
835 
836 	if (likely(size <= JOURNAL_MAC_SIZE)) {
837 		r = crypto_shash_final(desc, result);
838 		if (unlikely(r < 0)) {
839 			dm_integrity_io_error(ic, "crypto_shash_final", r);
840 			goto err;
841 		}
842 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
843 	} else {
844 		__u8 digest[HASH_MAX_DIGESTSIZE];
845 
846 		if (WARN_ON(size > sizeof(digest))) {
847 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
848 			goto err;
849 		}
850 		r = crypto_shash_final(desc, digest);
851 		if (unlikely(r < 0)) {
852 			dm_integrity_io_error(ic, "crypto_shash_final", r);
853 			goto err;
854 		}
855 		memcpy(result, digest, JOURNAL_MAC_SIZE);
856 	}
857 
858 	return;
859 err:
860 	memset(result, 0, JOURNAL_MAC_SIZE);
861 }
862 
863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
864 {
865 	__u8 result[JOURNAL_MAC_SIZE];
866 	unsigned j;
867 
868 	if (!ic->journal_mac)
869 		return;
870 
871 	section_mac(ic, section, result);
872 
873 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
874 		struct journal_sector *js = access_journal(ic, section, j);
875 
876 		if (likely(wr))
877 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
878 		else {
879 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
880 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
881 		}
882 	}
883 }
884 
885 static void complete_journal_op(void *context)
886 {
887 	struct journal_completion *comp = context;
888 	BUG_ON(!atomic_read(&comp->in_flight));
889 	if (likely(atomic_dec_and_test(&comp->in_flight)))
890 		complete(&comp->comp);
891 }
892 
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
894 			unsigned n_sections, struct journal_completion *comp)
895 {
896 	struct async_submit_ctl submit;
897 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 	unsigned pl_index, pl_offset, section_index;
899 	struct page_list *source_pl, *target_pl;
900 
901 	if (likely(encrypt)) {
902 		source_pl = ic->journal;
903 		target_pl = ic->journal_io;
904 	} else {
905 		source_pl = ic->journal_io;
906 		target_pl = ic->journal;
907 	}
908 
909 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
910 
911 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912 
913 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914 
915 	section_index = pl_index;
916 
917 	do {
918 		size_t this_step;
919 		struct page *src_pages[2];
920 		struct page *dst_page;
921 
922 		while (unlikely(pl_index == section_index)) {
923 			unsigned dummy;
924 			if (likely(encrypt))
925 				rw_section_mac(ic, section, true);
926 			section++;
927 			n_sections--;
928 			if (!n_sections)
929 				break;
930 			page_list_location(ic, section, 0, &section_index, &dummy);
931 		}
932 
933 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
934 		dst_page = target_pl[pl_index].page;
935 		src_pages[0] = source_pl[pl_index].page;
936 		src_pages[1] = ic->journal_xor[pl_index].page;
937 
938 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
939 
940 		pl_index++;
941 		pl_offset = 0;
942 		n_bytes -= this_step;
943 	} while (n_bytes);
944 
945 	BUG_ON(n_sections);
946 
947 	async_tx_issue_pending_all();
948 }
949 
950 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
951 {
952 	struct journal_completion *comp = req->data;
953 	if (unlikely(err)) {
954 		if (likely(err == -EINPROGRESS)) {
955 			complete(&comp->ic->crypto_backoff);
956 			return;
957 		}
958 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959 	}
960 	complete_journal_op(comp);
961 }
962 
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965 	int r;
966 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
967 				      complete_journal_encrypt, comp);
968 	if (likely(encrypt))
969 		r = crypto_skcipher_encrypt(req);
970 	else
971 		r = crypto_skcipher_decrypt(req);
972 	if (likely(!r))
973 		return false;
974 	if (likely(r == -EINPROGRESS))
975 		return true;
976 	if (likely(r == -EBUSY)) {
977 		wait_for_completion(&comp->ic->crypto_backoff);
978 		reinit_completion(&comp->ic->crypto_backoff);
979 		return true;
980 	}
981 	dm_integrity_io_error(comp->ic, "encrypt", r);
982 	return false;
983 }
984 
985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
986 			  unsigned n_sections, struct journal_completion *comp)
987 {
988 	struct scatterlist **source_sg;
989 	struct scatterlist **target_sg;
990 
991 	atomic_add(2, &comp->in_flight);
992 
993 	if (likely(encrypt)) {
994 		source_sg = ic->journal_scatterlist;
995 		target_sg = ic->journal_io_scatterlist;
996 	} else {
997 		source_sg = ic->journal_io_scatterlist;
998 		target_sg = ic->journal_scatterlist;
999 	}
1000 
1001 	do {
1002 		struct skcipher_request *req;
1003 		unsigned ivsize;
1004 		char *iv;
1005 
1006 		if (likely(encrypt))
1007 			rw_section_mac(ic, section, true);
1008 
1009 		req = ic->sk_requests[section];
1010 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1011 		iv = req->iv;
1012 
1013 		memcpy(iv, iv + ivsize, ivsize);
1014 
1015 		req->src = source_sg[section];
1016 		req->dst = target_sg[section];
1017 
1018 		if (unlikely(do_crypt(encrypt, req, comp)))
1019 			atomic_inc(&comp->in_flight);
1020 
1021 		section++;
1022 		n_sections--;
1023 	} while (n_sections);
1024 
1025 	atomic_dec(&comp->in_flight);
1026 	complete_journal_op(comp);
1027 }
1028 
1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1030 			    unsigned n_sections, struct journal_completion *comp)
1031 {
1032 	if (ic->journal_xor)
1033 		return xor_journal(ic, encrypt, section, n_sections, comp);
1034 	else
1035 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1036 }
1037 
1038 static void complete_journal_io(unsigned long error, void *context)
1039 {
1040 	struct journal_completion *comp = context;
1041 	if (unlikely(error != 0))
1042 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1043 	complete_journal_op(comp);
1044 }
1045 
1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1047 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1048 {
1049 	struct dm_io_request io_req;
1050 	struct dm_io_region io_loc;
1051 	unsigned pl_index, pl_offset;
1052 	int r;
1053 
1054 	if (unlikely(dm_integrity_failed(ic))) {
1055 		if (comp)
1056 			complete_journal_io(-1UL, comp);
1057 		return;
1058 	}
1059 
1060 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1061 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1062 
1063 	io_req.bi_op = op;
1064 	io_req.bi_op_flags = op_flags;
1065 	io_req.mem.type = DM_IO_PAGE_LIST;
1066 	if (ic->journal_io)
1067 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1068 	else
1069 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1070 	io_req.mem.offset = pl_offset;
1071 	if (likely(comp != NULL)) {
1072 		io_req.notify.fn = complete_journal_io;
1073 		io_req.notify.context = comp;
1074 	} else {
1075 		io_req.notify.fn = NULL;
1076 	}
1077 	io_req.client = ic->io;
1078 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1079 	io_loc.sector = ic->start + SB_SECTORS + sector;
1080 	io_loc.count = n_sectors;
1081 
1082 	r = dm_io(&io_req, 1, &io_loc, NULL);
1083 	if (unlikely(r)) {
1084 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1085 		if (comp) {
1086 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1087 			complete_journal_io(-1UL, comp);
1088 		}
1089 	}
1090 }
1091 
1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1093 		       unsigned n_sections, struct journal_completion *comp)
1094 {
1095 	unsigned sector, n_sectors;
1096 
1097 	sector = section * ic->journal_section_sectors;
1098 	n_sectors = n_sections * ic->journal_section_sectors;
1099 
1100 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1101 }
1102 
1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1104 {
1105 	struct journal_completion io_comp;
1106 	struct journal_completion crypt_comp_1;
1107 	struct journal_completion crypt_comp_2;
1108 	unsigned i;
1109 
1110 	io_comp.ic = ic;
1111 	init_completion(&io_comp.comp);
1112 
1113 	if (commit_start + commit_sections <= ic->journal_sections) {
1114 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1115 		if (ic->journal_io) {
1116 			crypt_comp_1.ic = ic;
1117 			init_completion(&crypt_comp_1.comp);
1118 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1119 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1120 			wait_for_completion_io(&crypt_comp_1.comp);
1121 		} else {
1122 			for (i = 0; i < commit_sections; i++)
1123 				rw_section_mac(ic, commit_start + i, true);
1124 		}
1125 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1126 			   commit_sections, &io_comp);
1127 	} else {
1128 		unsigned to_end;
1129 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1130 		to_end = ic->journal_sections - commit_start;
1131 		if (ic->journal_io) {
1132 			crypt_comp_1.ic = ic;
1133 			init_completion(&crypt_comp_1.comp);
1134 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1136 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1137 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1138 				reinit_completion(&crypt_comp_1.comp);
1139 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1141 				wait_for_completion_io(&crypt_comp_1.comp);
1142 			} else {
1143 				crypt_comp_2.ic = ic;
1144 				init_completion(&crypt_comp_2.comp);
1145 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1146 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1147 				wait_for_completion_io(&crypt_comp_1.comp);
1148 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1149 				wait_for_completion_io(&crypt_comp_2.comp);
1150 			}
1151 		} else {
1152 			for (i = 0; i < to_end; i++)
1153 				rw_section_mac(ic, commit_start + i, true);
1154 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1155 			for (i = 0; i < commit_sections - to_end; i++)
1156 				rw_section_mac(ic, i, true);
1157 		}
1158 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1159 	}
1160 
1161 	wait_for_completion_io(&io_comp.comp);
1162 }
1163 
1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1165 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1166 {
1167 	struct dm_io_request io_req;
1168 	struct dm_io_region io_loc;
1169 	int r;
1170 	unsigned sector, pl_index, pl_offset;
1171 
1172 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1173 
1174 	if (unlikely(dm_integrity_failed(ic))) {
1175 		fn(-1UL, data);
1176 		return;
1177 	}
1178 
1179 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1180 
1181 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1182 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1183 
1184 	io_req.bi_op = REQ_OP_WRITE;
1185 	io_req.bi_op_flags = 0;
1186 	io_req.mem.type = DM_IO_PAGE_LIST;
1187 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1188 	io_req.mem.offset = pl_offset;
1189 	io_req.notify.fn = fn;
1190 	io_req.notify.context = data;
1191 	io_req.client = ic->io;
1192 	io_loc.bdev = ic->dev->bdev;
1193 	io_loc.sector = target;
1194 	io_loc.count = n_sectors;
1195 
1196 	r = dm_io(&io_req, 1, &io_loc, NULL);
1197 	if (unlikely(r)) {
1198 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1199 		fn(-1UL, data);
1200 	}
1201 }
1202 
1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1204 {
1205 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1206 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1207 }
1208 
1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1210 {
1211 	struct rb_node **n = &ic->in_progress.rb_node;
1212 	struct rb_node *parent;
1213 
1214 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1215 
1216 	if (likely(check_waiting)) {
1217 		struct dm_integrity_range *range;
1218 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1219 			if (unlikely(ranges_overlap(range, new_range)))
1220 				return false;
1221 		}
1222 	}
1223 
1224 	parent = NULL;
1225 
1226 	while (*n) {
1227 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1228 
1229 		parent = *n;
1230 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1231 			n = &range->node.rb_left;
1232 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1233 			n = &range->node.rb_right;
1234 		} else {
1235 			return false;
1236 		}
1237 	}
1238 
1239 	rb_link_node(&new_range->node, parent, n);
1240 	rb_insert_color(&new_range->node, &ic->in_progress);
1241 
1242 	return true;
1243 }
1244 
1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1246 {
1247 	rb_erase(&range->node, &ic->in_progress);
1248 	while (unlikely(!list_empty(&ic->wait_list))) {
1249 		struct dm_integrity_range *last_range =
1250 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1251 		struct task_struct *last_range_task;
1252 		last_range_task = last_range->task;
1253 		list_del(&last_range->wait_entry);
1254 		if (!add_new_range(ic, last_range, false)) {
1255 			last_range->task = last_range_task;
1256 			list_add(&last_range->wait_entry, &ic->wait_list);
1257 			break;
1258 		}
1259 		last_range->waiting = false;
1260 		wake_up_process(last_range_task);
1261 	}
1262 }
1263 
1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1265 {
1266 	unsigned long flags;
1267 
1268 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1269 	remove_range_unlocked(ic, range);
1270 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1271 }
1272 
1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1274 {
1275 	new_range->waiting = true;
1276 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1277 	new_range->task = current;
1278 	do {
1279 		__set_current_state(TASK_UNINTERRUPTIBLE);
1280 		spin_unlock_irq(&ic->endio_wait.lock);
1281 		io_schedule();
1282 		spin_lock_irq(&ic->endio_wait.lock);
1283 	} while (unlikely(new_range->waiting));
1284 }
1285 
1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1287 {
1288 	if (unlikely(!add_new_range(ic, new_range, true)))
1289 		wait_and_add_new_range(ic, new_range);
1290 }
1291 
1292 static void init_journal_node(struct journal_node *node)
1293 {
1294 	RB_CLEAR_NODE(&node->node);
1295 	node->sector = (sector_t)-1;
1296 }
1297 
1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1299 {
1300 	struct rb_node **link;
1301 	struct rb_node *parent;
1302 
1303 	node->sector = sector;
1304 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1305 
1306 	link = &ic->journal_tree_root.rb_node;
1307 	parent = NULL;
1308 
1309 	while (*link) {
1310 		struct journal_node *j;
1311 		parent = *link;
1312 		j = container_of(parent, struct journal_node, node);
1313 		if (sector < j->sector)
1314 			link = &j->node.rb_left;
1315 		else
1316 			link = &j->node.rb_right;
1317 	}
1318 
1319 	rb_link_node(&node->node, parent, link);
1320 	rb_insert_color(&node->node, &ic->journal_tree_root);
1321 }
1322 
1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1324 {
1325 	BUG_ON(RB_EMPTY_NODE(&node->node));
1326 	rb_erase(&node->node, &ic->journal_tree_root);
1327 	init_journal_node(node);
1328 }
1329 
1330 #define NOT_FOUND	(-1U)
1331 
1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1333 {
1334 	struct rb_node *n = ic->journal_tree_root.rb_node;
1335 	unsigned found = NOT_FOUND;
1336 	*next_sector = (sector_t)-1;
1337 	while (n) {
1338 		struct journal_node *j = container_of(n, struct journal_node, node);
1339 		if (sector == j->sector) {
1340 			found = j - ic->journal_tree;
1341 		}
1342 		if (sector < j->sector) {
1343 			*next_sector = j->sector;
1344 			n = j->node.rb_left;
1345 		} else {
1346 			n = j->node.rb_right;
1347 		}
1348 	}
1349 
1350 	return found;
1351 }
1352 
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1354 {
1355 	struct journal_node *node, *next_node;
1356 	struct rb_node *next;
1357 
1358 	if (unlikely(pos >= ic->journal_entries))
1359 		return false;
1360 	node = &ic->journal_tree[pos];
1361 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 		return false;
1363 	if (unlikely(node->sector != sector))
1364 		return false;
1365 
1366 	next = rb_next(&node->node);
1367 	if (unlikely(!next))
1368 		return true;
1369 
1370 	next_node = container_of(next, struct journal_node, node);
1371 	return next_node->sector != sector;
1372 }
1373 
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376 	struct rb_node *next;
1377 	struct journal_node *next_node;
1378 	unsigned next_section;
1379 
1380 	BUG_ON(RB_EMPTY_NODE(&node->node));
1381 
1382 	next = rb_next(&node->node);
1383 	if (unlikely(!next))
1384 		return false;
1385 
1386 	next_node = container_of(next, struct journal_node, node);
1387 
1388 	if (next_node->sector != node->sector)
1389 		return false;
1390 
1391 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 	if (next_section >= ic->committed_section &&
1393 	    next_section < ic->committed_section + ic->n_committed_sections)
1394 		return true;
1395 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 		return true;
1397 
1398 	return false;
1399 }
1400 
1401 #define TAG_READ	0
1402 #define TAG_WRITE	1
1403 #define TAG_CMP		2
1404 
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 			       unsigned *metadata_offset, unsigned total_size, int op)
1407 {
1408 #define MAY_BE_FILLER		1
1409 #define MAY_BE_HASH		2
1410 	unsigned hash_offset = 0;
1411 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412 
1413 	do {
1414 		unsigned char *data, *dp;
1415 		struct dm_buffer *b;
1416 		unsigned to_copy;
1417 		int r;
1418 
1419 		r = dm_integrity_failed(ic);
1420 		if (unlikely(r))
1421 			return r;
1422 
1423 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424 		if (IS_ERR(data))
1425 			return PTR_ERR(data);
1426 
1427 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 		dp = data + *metadata_offset;
1429 		if (op == TAG_READ) {
1430 			memcpy(tag, dp, to_copy);
1431 		} else if (op == TAG_WRITE) {
1432 			if (memcmp(dp, tag, to_copy)) {
1433 				memcpy(dp, tag, to_copy);
1434 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 			}
1436 		} else {
1437 			/* e.g.: op == TAG_CMP */
1438 
1439 			if (likely(is_power_of_2(ic->tag_size))) {
1440 				if (unlikely(memcmp(dp, tag, to_copy)))
1441 					if (unlikely(!ic->discard) ||
1442 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 						goto thorough_test;
1444 				}
1445 			} else {
1446 				unsigned i, ts;
1447 thorough_test:
1448 				ts = total_size;
1449 
1450 				for (i = 0; i < to_copy; i++, ts--) {
1451 					if (unlikely(dp[i] != tag[i]))
1452 						may_be &= ~MAY_BE_HASH;
1453 					if (likely(dp[i] != DISCARD_FILLER))
1454 						may_be &= ~MAY_BE_FILLER;
1455 					hash_offset++;
1456 					if (unlikely(hash_offset == ic->tag_size)) {
1457 						if (unlikely(!may_be)) {
1458 							dm_bufio_release(b);
1459 							return ts;
1460 						}
1461 						hash_offset = 0;
1462 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 					}
1464 				}
1465 			}
1466 		}
1467 		dm_bufio_release(b);
1468 
1469 		tag += to_copy;
1470 		*metadata_offset += to_copy;
1471 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 			(*metadata_block)++;
1473 			*metadata_offset = 0;
1474 		}
1475 
1476 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1477 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478 		}
1479 
1480 		total_size -= to_copy;
1481 	} while (unlikely(total_size));
1482 
1483 	return 0;
1484 #undef MAY_BE_FILLER
1485 #undef MAY_BE_HASH
1486 }
1487 
1488 struct flush_request {
1489 	struct dm_io_request io_req;
1490 	struct dm_io_region io_reg;
1491 	struct dm_integrity_c *ic;
1492 	struct completion comp;
1493 };
1494 
1495 static void flush_notify(unsigned long error, void *fr_)
1496 {
1497 	struct flush_request *fr = fr_;
1498 	if (unlikely(error != 0))
1499 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500 	complete(&fr->comp);
1501 }
1502 
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505 	int r;
1506 
1507 	struct flush_request fr;
1508 
1509 	if (!ic->meta_dev)
1510 		flush_data = false;
1511 	if (flush_data) {
1512 		fr.io_req.bi_op = REQ_OP_WRITE,
1513 		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1514 		fr.io_req.mem.type = DM_IO_KMEM,
1515 		fr.io_req.mem.ptr.addr = NULL,
1516 		fr.io_req.notify.fn = flush_notify,
1517 		fr.io_req.notify.context = &fr;
1518 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1519 		fr.io_reg.bdev = ic->dev->bdev,
1520 		fr.io_reg.sector = 0,
1521 		fr.io_reg.count = 0,
1522 		fr.ic = ic;
1523 		init_completion(&fr.comp);
1524 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1525 		BUG_ON(r);
1526 	}
1527 
1528 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1529 	if (unlikely(r))
1530 		dm_integrity_io_error(ic, "writing tags", r);
1531 
1532 	if (flush_data)
1533 		wait_for_completion(&fr.comp);
1534 }
1535 
1536 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1537 {
1538 	DECLARE_WAITQUEUE(wait, current);
1539 	__add_wait_queue(&ic->endio_wait, &wait);
1540 	__set_current_state(TASK_UNINTERRUPTIBLE);
1541 	spin_unlock_irq(&ic->endio_wait.lock);
1542 	io_schedule();
1543 	spin_lock_irq(&ic->endio_wait.lock);
1544 	__remove_wait_queue(&ic->endio_wait, &wait);
1545 }
1546 
1547 static void autocommit_fn(struct timer_list *t)
1548 {
1549 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1550 
1551 	if (likely(!dm_integrity_failed(ic)))
1552 		queue_work(ic->commit_wq, &ic->commit_work);
1553 }
1554 
1555 static void schedule_autocommit(struct dm_integrity_c *ic)
1556 {
1557 	if (!timer_pending(&ic->autocommit_timer))
1558 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1559 }
1560 
1561 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1562 {
1563 	struct bio *bio;
1564 	unsigned long flags;
1565 
1566 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1567 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1568 	bio_list_add(&ic->flush_bio_list, bio);
1569 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1570 
1571 	queue_work(ic->commit_wq, &ic->commit_work);
1572 }
1573 
1574 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1575 {
1576 	int r = dm_integrity_failed(ic);
1577 	if (unlikely(r) && !bio->bi_status)
1578 		bio->bi_status = errno_to_blk_status(r);
1579 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1580 		unsigned long flags;
1581 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582 		bio_list_add(&ic->synchronous_bios, bio);
1583 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585 		return;
1586 	}
1587 	bio_endio(bio);
1588 }
1589 
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593 
1594 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595 		submit_flush_bio(ic, dio);
1596 	else
1597 		do_endio(ic, bio);
1598 }
1599 
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602 	if (atomic_dec_and_test(&dio->in_flight)) {
1603 		struct dm_integrity_c *ic = dio->ic;
1604 		struct bio *bio;
1605 
1606 		remove_range(ic, &dio->range);
1607 
1608 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609 			schedule_autocommit(ic);
1610 
1611 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612 
1613 		if (unlikely(dio->bi_status) && !bio->bi_status)
1614 			bio->bi_status = dio->bi_status;
1615 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1616 			dio->range.logical_sector += dio->range.n_sectors;
1617 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1618 			INIT_WORK(&dio->work, integrity_bio_wait);
1619 			queue_work(ic->offload_wq, &dio->work);
1620 			return;
1621 		}
1622 		do_endio_flush(ic, dio);
1623 	}
1624 }
1625 
1626 static void integrity_end_io(struct bio *bio)
1627 {
1628 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1629 
1630 	dm_bio_restore(&dio->bio_details, bio);
1631 	if (bio->bi_integrity)
1632 		bio->bi_opf |= REQ_INTEGRITY;
1633 
1634 	if (dio->completion)
1635 		complete(dio->completion);
1636 
1637 	dec_in_flight(dio);
1638 }
1639 
1640 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1641 				      const char *data, char *result)
1642 {
1643 	__le64 sector_le = cpu_to_le64(sector);
1644 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1645 	int r;
1646 	unsigned digest_size;
1647 
1648 	req->tfm = ic->internal_hash;
1649 
1650 	r = crypto_shash_init(req);
1651 	if (unlikely(r < 0)) {
1652 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1653 		goto failed;
1654 	}
1655 
1656 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1657 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1658 		if (unlikely(r < 0)) {
1659 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1660 			goto failed;
1661 		}
1662 	}
1663 
1664 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1665 	if (unlikely(r < 0)) {
1666 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1667 		goto failed;
1668 	}
1669 
1670 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1671 	if (unlikely(r < 0)) {
1672 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1673 		goto failed;
1674 	}
1675 
1676 	r = crypto_shash_final(req, result);
1677 	if (unlikely(r < 0)) {
1678 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1679 		goto failed;
1680 	}
1681 
1682 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1683 	if (unlikely(digest_size < ic->tag_size))
1684 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1685 
1686 	return;
1687 
1688 failed:
1689 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1690 	get_random_bytes(result, ic->tag_size);
1691 }
1692 
1693 static void integrity_metadata(struct work_struct *w)
1694 {
1695 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1696 	struct dm_integrity_c *ic = dio->ic;
1697 
1698 	int r;
1699 
1700 	if (ic->internal_hash) {
1701 		struct bvec_iter iter;
1702 		struct bio_vec bv;
1703 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1704 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1705 		char *checksums;
1706 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1707 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1708 		sector_t sector;
1709 		unsigned sectors_to_process;
1710 
1711 		if (unlikely(ic->mode == 'R'))
1712 			goto skip_io;
1713 
1714 		if (likely(dio->op != REQ_OP_DISCARD))
1715 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1716 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1717 		else
1718 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1719 		if (!checksums) {
1720 			checksums = checksums_onstack;
1721 			if (WARN_ON(extra_space &&
1722 				    digest_size > sizeof(checksums_onstack))) {
1723 				r = -EINVAL;
1724 				goto error;
1725 			}
1726 		}
1727 
1728 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1729 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1730 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1731 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1732 			unsigned max_blocks = max_size / ic->tag_size;
1733 			memset(checksums, DISCARD_FILLER, max_size);
1734 
1735 			while (bi_size) {
1736 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1737 				this_step_blocks = min(this_step_blocks, max_blocks);
1738 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739 							this_step_blocks * ic->tag_size, TAG_WRITE);
1740 				if (unlikely(r)) {
1741 					if (likely(checksums != checksums_onstack))
1742 						kfree(checksums);
1743 					goto error;
1744 				}
1745 
1746 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1747 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1748 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1749 					BUG();
1750 				}*/
1751 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1752 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1753 			}
1754 
1755 			if (likely(checksums != checksums_onstack))
1756 				kfree(checksums);
1757 			goto skip_io;
1758 		}
1759 
1760 		sector = dio->range.logical_sector;
1761 		sectors_to_process = dio->range.n_sectors;
1762 
1763 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1764 			unsigned pos;
1765 			char *mem, *checksums_ptr;
1766 
1767 again:
1768 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1769 			pos = 0;
1770 			checksums_ptr = checksums;
1771 			do {
1772 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1773 				checksums_ptr += ic->tag_size;
1774 				sectors_to_process -= ic->sectors_per_block;
1775 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1776 				sector += ic->sectors_per_block;
1777 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1778 			kunmap_atomic(mem);
1779 
1780 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1781 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1782 			if (unlikely(r)) {
1783 				if (r > 0) {
1784 					char b[BDEVNAME_SIZE];
1785 					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1786 						    (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1787 					r = -EILSEQ;
1788 					atomic64_inc(&ic->number_of_mismatches);
1789 				}
1790 				if (likely(checksums != checksums_onstack))
1791 					kfree(checksums);
1792 				goto error;
1793 			}
1794 
1795 			if (!sectors_to_process)
1796 				break;
1797 
1798 			if (unlikely(pos < bv.bv_len)) {
1799 				bv.bv_offset += pos;
1800 				bv.bv_len -= pos;
1801 				goto again;
1802 			}
1803 		}
1804 
1805 		if (likely(checksums != checksums_onstack))
1806 			kfree(checksums);
1807 	} else {
1808 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1809 
1810 		if (bip) {
1811 			struct bio_vec biv;
1812 			struct bvec_iter iter;
1813 			unsigned data_to_process = dio->range.n_sectors;
1814 			sector_to_block(ic, data_to_process);
1815 			data_to_process *= ic->tag_size;
1816 
1817 			bip_for_each_vec(biv, bip, iter) {
1818 				unsigned char *tag;
1819 				unsigned this_len;
1820 
1821 				BUG_ON(PageHighMem(biv.bv_page));
1822 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1823 				this_len = min(biv.bv_len, data_to_process);
1824 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1825 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1826 				if (unlikely(r))
1827 					goto error;
1828 				data_to_process -= this_len;
1829 				if (!data_to_process)
1830 					break;
1831 			}
1832 		}
1833 	}
1834 skip_io:
1835 	dec_in_flight(dio);
1836 	return;
1837 error:
1838 	dio->bi_status = errno_to_blk_status(r);
1839 	dec_in_flight(dio);
1840 }
1841 
1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1843 {
1844 	struct dm_integrity_c *ic = ti->private;
1845 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1846 	struct bio_integrity_payload *bip;
1847 
1848 	sector_t area, offset;
1849 
1850 	dio->ic = ic;
1851 	dio->bi_status = 0;
1852 	dio->op = bio_op(bio);
1853 
1854 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1855 		if (ti->max_io_len) {
1856 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1857 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1858 			sector_t start_boundary = sec >> log2_max_io_len;
1859 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1860 			if (start_boundary < end_boundary) {
1861 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862 				dm_accept_partial_bio(bio, len);
1863 			}
1864 		}
1865 	}
1866 
1867 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1868 		submit_flush_bio(ic, dio);
1869 		return DM_MAPIO_SUBMITTED;
1870 	}
1871 
1872 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1873 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1874 	if (unlikely(dio->fua)) {
1875 		/*
1876 		 * Don't pass down the FUA flag because we have to flush
1877 		 * disk cache anyway.
1878 		 */
1879 		bio->bi_opf &= ~REQ_FUA;
1880 	}
1881 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1882 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1883 		      dio->range.logical_sector, bio_sectors(bio),
1884 		      ic->provided_data_sectors);
1885 		return DM_MAPIO_KILL;
1886 	}
1887 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1888 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1889 		      ic->sectors_per_block,
1890 		      dio->range.logical_sector, bio_sectors(bio));
1891 		return DM_MAPIO_KILL;
1892 	}
1893 
1894 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1895 		struct bvec_iter iter;
1896 		struct bio_vec bv;
1897 		bio_for_each_segment(bv, bio, iter) {
1898 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1899 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1900 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1901 				return DM_MAPIO_KILL;
1902 			}
1903 		}
1904 	}
1905 
1906 	bip = bio_integrity(bio);
1907 	if (!ic->internal_hash) {
1908 		if (bip) {
1909 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1910 			if (ic->log2_tag_size >= 0)
1911 				wanted_tag_size <<= ic->log2_tag_size;
1912 			else
1913 				wanted_tag_size *= ic->tag_size;
1914 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1915 				DMERR("Invalid integrity data size %u, expected %u",
1916 				      bip->bip_iter.bi_size, wanted_tag_size);
1917 				return DM_MAPIO_KILL;
1918 			}
1919 		}
1920 	} else {
1921 		if (unlikely(bip != NULL)) {
1922 			DMERR("Unexpected integrity data when using internal hash");
1923 			return DM_MAPIO_KILL;
1924 		}
1925 	}
1926 
1927 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1928 		return DM_MAPIO_KILL;
1929 
1930 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1931 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1932 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1933 
1934 	dm_integrity_map_continue(dio, true);
1935 	return DM_MAPIO_SUBMITTED;
1936 }
1937 
1938 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1939 				 unsigned journal_section, unsigned journal_entry)
1940 {
1941 	struct dm_integrity_c *ic = dio->ic;
1942 	sector_t logical_sector;
1943 	unsigned n_sectors;
1944 
1945 	logical_sector = dio->range.logical_sector;
1946 	n_sectors = dio->range.n_sectors;
1947 	do {
1948 		struct bio_vec bv = bio_iovec(bio);
1949 		char *mem;
1950 
1951 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1952 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1953 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1954 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1955 retry_kmap:
1956 		mem = kmap_atomic(bv.bv_page);
1957 		if (likely(dio->op == REQ_OP_WRITE))
1958 			flush_dcache_page(bv.bv_page);
1959 
1960 		do {
1961 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1962 
1963 			if (unlikely(dio->op == REQ_OP_READ)) {
1964 				struct journal_sector *js;
1965 				char *mem_ptr;
1966 				unsigned s;
1967 
1968 				if (unlikely(journal_entry_is_inprogress(je))) {
1969 					flush_dcache_page(bv.bv_page);
1970 					kunmap_atomic(mem);
1971 
1972 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1973 					goto retry_kmap;
1974 				}
1975 				smp_rmb();
1976 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1977 				js = access_journal_data(ic, journal_section, journal_entry);
1978 				mem_ptr = mem + bv.bv_offset;
1979 				s = 0;
1980 				do {
1981 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1982 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1983 					js++;
1984 					mem_ptr += 1 << SECTOR_SHIFT;
1985 				} while (++s < ic->sectors_per_block);
1986 #ifdef INTERNAL_VERIFY
1987 				if (ic->internal_hash) {
1988 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1989 
1990 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1991 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1992 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1993 							    logical_sector);
1994 					}
1995 				}
1996 #endif
1997 			}
1998 
1999 			if (!ic->internal_hash) {
2000 				struct bio_integrity_payload *bip = bio_integrity(bio);
2001 				unsigned tag_todo = ic->tag_size;
2002 				char *tag_ptr = journal_entry_tag(ic, je);
2003 
2004 				if (bip) do {
2005 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2006 					unsigned tag_now = min(biv.bv_len, tag_todo);
2007 					char *tag_addr;
2008 					BUG_ON(PageHighMem(biv.bv_page));
2009 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
2010 					if (likely(dio->op == REQ_OP_WRITE))
2011 						memcpy(tag_ptr, tag_addr, tag_now);
2012 					else
2013 						memcpy(tag_addr, tag_ptr, tag_now);
2014 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2015 					tag_ptr += tag_now;
2016 					tag_todo -= tag_now;
2017 				} while (unlikely(tag_todo)); else {
2018 					if (likely(dio->op == REQ_OP_WRITE))
2019 						memset(tag_ptr, 0, tag_todo);
2020 				}
2021 			}
2022 
2023 			if (likely(dio->op == REQ_OP_WRITE)) {
2024 				struct journal_sector *js;
2025 				unsigned s;
2026 
2027 				js = access_journal_data(ic, journal_section, journal_entry);
2028 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2029 
2030 				s = 0;
2031 				do {
2032 					je->last_bytes[s] = js[s].commit_id;
2033 				} while (++s < ic->sectors_per_block);
2034 
2035 				if (ic->internal_hash) {
2036 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2037 					if (unlikely(digest_size > ic->tag_size)) {
2038 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2039 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2040 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2041 					} else
2042 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2043 				}
2044 
2045 				journal_entry_set_sector(je, logical_sector);
2046 			}
2047 			logical_sector += ic->sectors_per_block;
2048 
2049 			journal_entry++;
2050 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2051 				journal_entry = 0;
2052 				journal_section++;
2053 				wraparound_section(ic, &journal_section);
2054 			}
2055 
2056 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2057 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2058 
2059 		if (unlikely(dio->op == REQ_OP_READ))
2060 			flush_dcache_page(bv.bv_page);
2061 		kunmap_atomic(mem);
2062 	} while (n_sectors);
2063 
2064 	if (likely(dio->op == REQ_OP_WRITE)) {
2065 		smp_mb();
2066 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2067 			wake_up(&ic->copy_to_journal_wait);
2068 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2069 			queue_work(ic->commit_wq, &ic->commit_work);
2070 		} else {
2071 			schedule_autocommit(ic);
2072 		}
2073 	} else {
2074 		remove_range(ic, &dio->range);
2075 	}
2076 
2077 	if (unlikely(bio->bi_iter.bi_size)) {
2078 		sector_t area, offset;
2079 
2080 		dio->range.logical_sector = logical_sector;
2081 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2082 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2083 		return true;
2084 	}
2085 
2086 	return false;
2087 }
2088 
2089 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2090 {
2091 	struct dm_integrity_c *ic = dio->ic;
2092 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2093 	unsigned journal_section, journal_entry;
2094 	unsigned journal_read_pos;
2095 	struct completion read_comp;
2096 	bool discard_retried = false;
2097 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2098 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2099 		need_sync_io = true;
2100 
2101 	if (need_sync_io && from_map) {
2102 		INIT_WORK(&dio->work, integrity_bio_wait);
2103 		queue_work(ic->offload_wq, &dio->work);
2104 		return;
2105 	}
2106 
2107 lock_retry:
2108 	spin_lock_irq(&ic->endio_wait.lock);
2109 retry:
2110 	if (unlikely(dm_integrity_failed(ic))) {
2111 		spin_unlock_irq(&ic->endio_wait.lock);
2112 		do_endio(ic, bio);
2113 		return;
2114 	}
2115 	dio->range.n_sectors = bio_sectors(bio);
2116 	journal_read_pos = NOT_FOUND;
2117 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2118 		if (dio->op == REQ_OP_WRITE) {
2119 			unsigned next_entry, i, pos;
2120 			unsigned ws, we, range_sectors;
2121 
2122 			dio->range.n_sectors = min(dio->range.n_sectors,
2123 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2124 			if (unlikely(!dio->range.n_sectors)) {
2125 				if (from_map)
2126 					goto offload_to_thread;
2127 				sleep_on_endio_wait(ic);
2128 				goto retry;
2129 			}
2130 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2131 			ic->free_sectors -= range_sectors;
2132 			journal_section = ic->free_section;
2133 			journal_entry = ic->free_section_entry;
2134 
2135 			next_entry = ic->free_section_entry + range_sectors;
2136 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2137 			ic->free_section += next_entry / ic->journal_section_entries;
2138 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2139 			wraparound_section(ic, &ic->free_section);
2140 
2141 			pos = journal_section * ic->journal_section_entries + journal_entry;
2142 			ws = journal_section;
2143 			we = journal_entry;
2144 			i = 0;
2145 			do {
2146 				struct journal_entry *je;
2147 
2148 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2149 				pos++;
2150 				if (unlikely(pos >= ic->journal_entries))
2151 					pos = 0;
2152 
2153 				je = access_journal_entry(ic, ws, we);
2154 				BUG_ON(!journal_entry_is_unused(je));
2155 				journal_entry_set_inprogress(je);
2156 				we++;
2157 				if (unlikely(we == ic->journal_section_entries)) {
2158 					we = 0;
2159 					ws++;
2160 					wraparound_section(ic, &ws);
2161 				}
2162 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2163 
2164 			spin_unlock_irq(&ic->endio_wait.lock);
2165 			goto journal_read_write;
2166 		} else {
2167 			sector_t next_sector;
2168 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2169 			if (likely(journal_read_pos == NOT_FOUND)) {
2170 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2171 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2172 			} else {
2173 				unsigned i;
2174 				unsigned jp = journal_read_pos + 1;
2175 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2176 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2177 						break;
2178 				}
2179 				dio->range.n_sectors = i;
2180 			}
2181 		}
2182 	}
2183 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2184 		/*
2185 		 * We must not sleep in the request routine because it could
2186 		 * stall bios on current->bio_list.
2187 		 * So, we offload the bio to a workqueue if we have to sleep.
2188 		 */
2189 		if (from_map) {
2190 offload_to_thread:
2191 			spin_unlock_irq(&ic->endio_wait.lock);
2192 			INIT_WORK(&dio->work, integrity_bio_wait);
2193 			queue_work(ic->wait_wq, &dio->work);
2194 			return;
2195 		}
2196 		if (journal_read_pos != NOT_FOUND)
2197 			dio->range.n_sectors = ic->sectors_per_block;
2198 		wait_and_add_new_range(ic, &dio->range);
2199 		/*
2200 		 * wait_and_add_new_range drops the spinlock, so the journal
2201 		 * may have been changed arbitrarily. We need to recheck.
2202 		 * To simplify the code, we restrict I/O size to just one block.
2203 		 */
2204 		if (journal_read_pos != NOT_FOUND) {
2205 			sector_t next_sector;
2206 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2207 			if (unlikely(new_pos != journal_read_pos)) {
2208 				remove_range_unlocked(ic, &dio->range);
2209 				goto retry;
2210 			}
2211 		}
2212 	}
2213 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2214 		sector_t next_sector;
2215 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2216 		if (unlikely(new_pos != NOT_FOUND) ||
2217 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2218 			remove_range_unlocked(ic, &dio->range);
2219 			spin_unlock_irq(&ic->endio_wait.lock);
2220 			queue_work(ic->commit_wq, &ic->commit_work);
2221 			flush_workqueue(ic->commit_wq);
2222 			queue_work(ic->writer_wq, &ic->writer_work);
2223 			flush_workqueue(ic->writer_wq);
2224 			discard_retried = true;
2225 			goto lock_retry;
2226 		}
2227 	}
2228 	spin_unlock_irq(&ic->endio_wait.lock);
2229 
2230 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2231 		journal_section = journal_read_pos / ic->journal_section_entries;
2232 		journal_entry = journal_read_pos % ic->journal_section_entries;
2233 		goto journal_read_write;
2234 	}
2235 
2236 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2237 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2238 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2239 			struct bitmap_block_status *bbs;
2240 
2241 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2242 			spin_lock(&bbs->bio_queue_lock);
2243 			bio_list_add(&bbs->bio_queue, bio);
2244 			spin_unlock(&bbs->bio_queue_lock);
2245 			queue_work(ic->writer_wq, &bbs->work);
2246 			return;
2247 		}
2248 	}
2249 
2250 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2251 
2252 	if (need_sync_io) {
2253 		init_completion(&read_comp);
2254 		dio->completion = &read_comp;
2255 	} else
2256 		dio->completion = NULL;
2257 
2258 	dm_bio_record(&dio->bio_details, bio);
2259 	bio_set_dev(bio, ic->dev->bdev);
2260 	bio->bi_integrity = NULL;
2261 	bio->bi_opf &= ~REQ_INTEGRITY;
2262 	bio->bi_end_io = integrity_end_io;
2263 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2264 
2265 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2266 		integrity_metadata(&dio->work);
2267 		dm_integrity_flush_buffers(ic, false);
2268 
2269 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2270 		dio->completion = NULL;
2271 
2272 		submit_bio_noacct(bio);
2273 
2274 		return;
2275 	}
2276 
2277 	submit_bio_noacct(bio);
2278 
2279 	if (need_sync_io) {
2280 		wait_for_completion_io(&read_comp);
2281 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2282 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2283 			goto skip_check;
2284 		if (ic->mode == 'B') {
2285 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2286 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2287 				goto skip_check;
2288 		}
2289 
2290 		if (likely(!bio->bi_status))
2291 			integrity_metadata(&dio->work);
2292 		else
2293 skip_check:
2294 			dec_in_flight(dio);
2295 
2296 	} else {
2297 		INIT_WORK(&dio->work, integrity_metadata);
2298 		queue_work(ic->metadata_wq, &dio->work);
2299 	}
2300 
2301 	return;
2302 
2303 journal_read_write:
2304 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2305 		goto lock_retry;
2306 
2307 	do_endio_flush(ic, dio);
2308 }
2309 
2310 
2311 static void integrity_bio_wait(struct work_struct *w)
2312 {
2313 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2314 
2315 	dm_integrity_map_continue(dio, false);
2316 }
2317 
2318 static void pad_uncommitted(struct dm_integrity_c *ic)
2319 {
2320 	if (ic->free_section_entry) {
2321 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2322 		ic->free_section_entry = 0;
2323 		ic->free_section++;
2324 		wraparound_section(ic, &ic->free_section);
2325 		ic->n_uncommitted_sections++;
2326 	}
2327 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2328 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2329 		    ic->journal_section_entries + ic->free_sectors)) {
2330 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2331 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2332 		       "journal_section_entries %u, free_sectors %u",
2333 		       ic->journal_sections, ic->journal_section_entries,
2334 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2335 		       ic->journal_section_entries, ic->free_sectors);
2336 	}
2337 }
2338 
2339 static void integrity_commit(struct work_struct *w)
2340 {
2341 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2342 	unsigned commit_start, commit_sections;
2343 	unsigned i, j, n;
2344 	struct bio *flushes;
2345 
2346 	del_timer(&ic->autocommit_timer);
2347 
2348 	spin_lock_irq(&ic->endio_wait.lock);
2349 	flushes = bio_list_get(&ic->flush_bio_list);
2350 	if (unlikely(ic->mode != 'J')) {
2351 		spin_unlock_irq(&ic->endio_wait.lock);
2352 		dm_integrity_flush_buffers(ic, true);
2353 		goto release_flush_bios;
2354 	}
2355 
2356 	pad_uncommitted(ic);
2357 	commit_start = ic->uncommitted_section;
2358 	commit_sections = ic->n_uncommitted_sections;
2359 	spin_unlock_irq(&ic->endio_wait.lock);
2360 
2361 	if (!commit_sections)
2362 		goto release_flush_bios;
2363 
2364 	i = commit_start;
2365 	for (n = 0; n < commit_sections; n++) {
2366 		for (j = 0; j < ic->journal_section_entries; j++) {
2367 			struct journal_entry *je;
2368 			je = access_journal_entry(ic, i, j);
2369 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2370 		}
2371 		for (j = 0; j < ic->journal_section_sectors; j++) {
2372 			struct journal_sector *js;
2373 			js = access_journal(ic, i, j);
2374 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2375 		}
2376 		i++;
2377 		if (unlikely(i >= ic->journal_sections))
2378 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2379 		wraparound_section(ic, &i);
2380 	}
2381 	smp_rmb();
2382 
2383 	write_journal(ic, commit_start, commit_sections);
2384 
2385 	spin_lock_irq(&ic->endio_wait.lock);
2386 	ic->uncommitted_section += commit_sections;
2387 	wraparound_section(ic, &ic->uncommitted_section);
2388 	ic->n_uncommitted_sections -= commit_sections;
2389 	ic->n_committed_sections += commit_sections;
2390 	spin_unlock_irq(&ic->endio_wait.lock);
2391 
2392 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2393 		queue_work(ic->writer_wq, &ic->writer_work);
2394 
2395 release_flush_bios:
2396 	while (flushes) {
2397 		struct bio *next = flushes->bi_next;
2398 		flushes->bi_next = NULL;
2399 		do_endio(ic, flushes);
2400 		flushes = next;
2401 	}
2402 }
2403 
2404 static void complete_copy_from_journal(unsigned long error, void *context)
2405 {
2406 	struct journal_io *io = context;
2407 	struct journal_completion *comp = io->comp;
2408 	struct dm_integrity_c *ic = comp->ic;
2409 	remove_range(ic, &io->range);
2410 	mempool_free(io, &ic->journal_io_mempool);
2411 	if (unlikely(error != 0))
2412 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2413 	complete_journal_op(comp);
2414 }
2415 
2416 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2417 			       struct journal_entry *je)
2418 {
2419 	unsigned s = 0;
2420 	do {
2421 		js->commit_id = je->last_bytes[s];
2422 		js++;
2423 	} while (++s < ic->sectors_per_block);
2424 }
2425 
2426 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2427 			     unsigned write_sections, bool from_replay)
2428 {
2429 	unsigned i, j, n;
2430 	struct journal_completion comp;
2431 	struct blk_plug plug;
2432 
2433 	blk_start_plug(&plug);
2434 
2435 	comp.ic = ic;
2436 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2437 	init_completion(&comp.comp);
2438 
2439 	i = write_start;
2440 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2441 #ifndef INTERNAL_VERIFY
2442 		if (unlikely(from_replay))
2443 #endif
2444 			rw_section_mac(ic, i, false);
2445 		for (j = 0; j < ic->journal_section_entries; j++) {
2446 			struct journal_entry *je = access_journal_entry(ic, i, j);
2447 			sector_t sec, area, offset;
2448 			unsigned k, l, next_loop;
2449 			sector_t metadata_block;
2450 			unsigned metadata_offset;
2451 			struct journal_io *io;
2452 
2453 			if (journal_entry_is_unused(je))
2454 				continue;
2455 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2456 			sec = journal_entry_get_sector(je);
2457 			if (unlikely(from_replay)) {
2458 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2459 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2460 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2461 				}
2462 			}
2463 			if (unlikely(sec >= ic->provided_data_sectors))
2464 				continue;
2465 			get_area_and_offset(ic, sec, &area, &offset);
2466 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2467 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2468 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2469 				sector_t sec2, area2, offset2;
2470 				if (journal_entry_is_unused(je2))
2471 					break;
2472 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2473 				sec2 = journal_entry_get_sector(je2);
2474 				if (unlikely(sec2 >= ic->provided_data_sectors))
2475 					break;
2476 				get_area_and_offset(ic, sec2, &area2, &offset2);
2477 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2478 					break;
2479 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2480 			}
2481 			next_loop = k - 1;
2482 
2483 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2484 			io->comp = &comp;
2485 			io->range.logical_sector = sec;
2486 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2487 
2488 			spin_lock_irq(&ic->endio_wait.lock);
2489 			add_new_range_and_wait(ic, &io->range);
2490 
2491 			if (likely(!from_replay)) {
2492 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2493 
2494 				/* don't write if there is newer committed sector */
2495 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2496 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2497 
2498 					journal_entry_set_unused(je2);
2499 					remove_journal_node(ic, &section_node[j]);
2500 					j++;
2501 					sec += ic->sectors_per_block;
2502 					offset += ic->sectors_per_block;
2503 				}
2504 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2505 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2506 
2507 					journal_entry_set_unused(je2);
2508 					remove_journal_node(ic, &section_node[k - 1]);
2509 					k--;
2510 				}
2511 				if (j == k) {
2512 					remove_range_unlocked(ic, &io->range);
2513 					spin_unlock_irq(&ic->endio_wait.lock);
2514 					mempool_free(io, &ic->journal_io_mempool);
2515 					goto skip_io;
2516 				}
2517 				for (l = j; l < k; l++) {
2518 					remove_journal_node(ic, &section_node[l]);
2519 				}
2520 			}
2521 			spin_unlock_irq(&ic->endio_wait.lock);
2522 
2523 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2524 			for (l = j; l < k; l++) {
2525 				int r;
2526 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2527 
2528 				if (
2529 #ifndef INTERNAL_VERIFY
2530 				    unlikely(from_replay) &&
2531 #endif
2532 				    ic->internal_hash) {
2533 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2534 
2535 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2536 								  (char *)access_journal_data(ic, i, l), test_tag);
2537 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2538 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2539 				}
2540 
2541 				journal_entry_set_unused(je2);
2542 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2543 							ic->tag_size, TAG_WRITE);
2544 				if (unlikely(r)) {
2545 					dm_integrity_io_error(ic, "reading tags", r);
2546 				}
2547 			}
2548 
2549 			atomic_inc(&comp.in_flight);
2550 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2551 					  (k - j) << ic->sb->log2_sectors_per_block,
2552 					  get_data_sector(ic, area, offset),
2553 					  complete_copy_from_journal, io);
2554 skip_io:
2555 			j = next_loop;
2556 		}
2557 	}
2558 
2559 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2560 
2561 	blk_finish_plug(&plug);
2562 
2563 	complete_journal_op(&comp);
2564 	wait_for_completion_io(&comp.comp);
2565 
2566 	dm_integrity_flush_buffers(ic, true);
2567 }
2568 
2569 static void integrity_writer(struct work_struct *w)
2570 {
2571 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2572 	unsigned write_start, write_sections;
2573 
2574 	unsigned prev_free_sectors;
2575 
2576 	/* the following test is not needed, but it tests the replay code */
2577 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2578 		return;
2579 
2580 	spin_lock_irq(&ic->endio_wait.lock);
2581 	write_start = ic->committed_section;
2582 	write_sections = ic->n_committed_sections;
2583 	spin_unlock_irq(&ic->endio_wait.lock);
2584 
2585 	if (!write_sections)
2586 		return;
2587 
2588 	do_journal_write(ic, write_start, write_sections, false);
2589 
2590 	spin_lock_irq(&ic->endio_wait.lock);
2591 
2592 	ic->committed_section += write_sections;
2593 	wraparound_section(ic, &ic->committed_section);
2594 	ic->n_committed_sections -= write_sections;
2595 
2596 	prev_free_sectors = ic->free_sectors;
2597 	ic->free_sectors += write_sections * ic->journal_section_entries;
2598 	if (unlikely(!prev_free_sectors))
2599 		wake_up_locked(&ic->endio_wait);
2600 
2601 	spin_unlock_irq(&ic->endio_wait.lock);
2602 }
2603 
2604 static void recalc_write_super(struct dm_integrity_c *ic)
2605 {
2606 	int r;
2607 
2608 	dm_integrity_flush_buffers(ic, false);
2609 	if (dm_integrity_failed(ic))
2610 		return;
2611 
2612 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2613 	if (unlikely(r))
2614 		dm_integrity_io_error(ic, "writing superblock", r);
2615 }
2616 
2617 static void integrity_recalc(struct work_struct *w)
2618 {
2619 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2620 	struct dm_integrity_range range;
2621 	struct dm_io_request io_req;
2622 	struct dm_io_region io_loc;
2623 	sector_t area, offset;
2624 	sector_t metadata_block;
2625 	unsigned metadata_offset;
2626 	sector_t logical_sector, n_sectors;
2627 	__u8 *t;
2628 	unsigned i;
2629 	int r;
2630 	unsigned super_counter = 0;
2631 
2632 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2633 
2634 	spin_lock_irq(&ic->endio_wait.lock);
2635 
2636 next_chunk:
2637 
2638 	if (unlikely(dm_post_suspending(ic->ti)))
2639 		goto unlock_ret;
2640 
2641 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2642 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2643 		if (ic->mode == 'B') {
2644 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2645 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2646 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2647 		}
2648 		goto unlock_ret;
2649 	}
2650 
2651 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2652 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2653 	if (!ic->meta_dev)
2654 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2655 
2656 	add_new_range_and_wait(ic, &range);
2657 	spin_unlock_irq(&ic->endio_wait.lock);
2658 	logical_sector = range.logical_sector;
2659 	n_sectors = range.n_sectors;
2660 
2661 	if (ic->mode == 'B') {
2662 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2663 			goto advance_and_next;
2664 		}
2665 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2666 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2667 			logical_sector += ic->sectors_per_block;
2668 			n_sectors -= ic->sectors_per_block;
2669 			cond_resched();
2670 		}
2671 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2672 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2673 			n_sectors -= ic->sectors_per_block;
2674 			cond_resched();
2675 		}
2676 		get_area_and_offset(ic, logical_sector, &area, &offset);
2677 	}
2678 
2679 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2680 
2681 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2682 		recalc_write_super(ic);
2683 		if (ic->mode == 'B') {
2684 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2685 		}
2686 		super_counter = 0;
2687 	}
2688 
2689 	if (unlikely(dm_integrity_failed(ic)))
2690 		goto err;
2691 
2692 	io_req.bi_op = REQ_OP_READ;
2693 	io_req.bi_op_flags = 0;
2694 	io_req.mem.type = DM_IO_VMA;
2695 	io_req.mem.ptr.addr = ic->recalc_buffer;
2696 	io_req.notify.fn = NULL;
2697 	io_req.client = ic->io;
2698 	io_loc.bdev = ic->dev->bdev;
2699 	io_loc.sector = get_data_sector(ic, area, offset);
2700 	io_loc.count = n_sectors;
2701 
2702 	r = dm_io(&io_req, 1, &io_loc, NULL);
2703 	if (unlikely(r)) {
2704 		dm_integrity_io_error(ic, "reading data", r);
2705 		goto err;
2706 	}
2707 
2708 	t = ic->recalc_tags;
2709 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2710 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2711 		t += ic->tag_size;
2712 	}
2713 
2714 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2715 
2716 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2717 	if (unlikely(r)) {
2718 		dm_integrity_io_error(ic, "writing tags", r);
2719 		goto err;
2720 	}
2721 
2722 	if (ic->mode == 'B') {
2723 		sector_t start, end;
2724 		start = (range.logical_sector >>
2725 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2726 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2727 		end = ((range.logical_sector + range.n_sectors) >>
2728 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2729 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2730 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2731 	}
2732 
2733 advance_and_next:
2734 	cond_resched();
2735 
2736 	spin_lock_irq(&ic->endio_wait.lock);
2737 	remove_range_unlocked(ic, &range);
2738 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2739 	goto next_chunk;
2740 
2741 err:
2742 	remove_range(ic, &range);
2743 	return;
2744 
2745 unlock_ret:
2746 	spin_unlock_irq(&ic->endio_wait.lock);
2747 
2748 	recalc_write_super(ic);
2749 }
2750 
2751 static void bitmap_block_work(struct work_struct *w)
2752 {
2753 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2754 	struct dm_integrity_c *ic = bbs->ic;
2755 	struct bio *bio;
2756 	struct bio_list bio_queue;
2757 	struct bio_list waiting;
2758 
2759 	bio_list_init(&waiting);
2760 
2761 	spin_lock(&bbs->bio_queue_lock);
2762 	bio_queue = bbs->bio_queue;
2763 	bio_list_init(&bbs->bio_queue);
2764 	spin_unlock(&bbs->bio_queue_lock);
2765 
2766 	while ((bio = bio_list_pop(&bio_queue))) {
2767 		struct dm_integrity_io *dio;
2768 
2769 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2770 
2771 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2772 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2773 			remove_range(ic, &dio->range);
2774 			INIT_WORK(&dio->work, integrity_bio_wait);
2775 			queue_work(ic->offload_wq, &dio->work);
2776 		} else {
2777 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2778 					dio->range.n_sectors, BITMAP_OP_SET);
2779 			bio_list_add(&waiting, bio);
2780 		}
2781 	}
2782 
2783 	if (bio_list_empty(&waiting))
2784 		return;
2785 
2786 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2787 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2788 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2789 
2790 	while ((bio = bio_list_pop(&waiting))) {
2791 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2792 
2793 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2794 				dio->range.n_sectors, BITMAP_OP_SET);
2795 
2796 		remove_range(ic, &dio->range);
2797 		INIT_WORK(&dio->work, integrity_bio_wait);
2798 		queue_work(ic->offload_wq, &dio->work);
2799 	}
2800 
2801 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2802 }
2803 
2804 static void bitmap_flush_work(struct work_struct *work)
2805 {
2806 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2807 	struct dm_integrity_range range;
2808 	unsigned long limit;
2809 	struct bio *bio;
2810 
2811 	dm_integrity_flush_buffers(ic, false);
2812 
2813 	range.logical_sector = 0;
2814 	range.n_sectors = ic->provided_data_sectors;
2815 
2816 	spin_lock_irq(&ic->endio_wait.lock);
2817 	add_new_range_and_wait(ic, &range);
2818 	spin_unlock_irq(&ic->endio_wait.lock);
2819 
2820 	dm_integrity_flush_buffers(ic, true);
2821 
2822 	limit = ic->provided_data_sectors;
2823 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2824 		limit = le64_to_cpu(ic->sb->recalc_sector)
2825 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2826 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2827 	}
2828 	/*DEBUG_print("zeroing journal\n");*/
2829 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2830 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2831 
2832 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2833 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2834 
2835 	spin_lock_irq(&ic->endio_wait.lock);
2836 	remove_range_unlocked(ic, &range);
2837 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2838 		bio_endio(bio);
2839 		spin_unlock_irq(&ic->endio_wait.lock);
2840 		spin_lock_irq(&ic->endio_wait.lock);
2841 	}
2842 	spin_unlock_irq(&ic->endio_wait.lock);
2843 }
2844 
2845 
2846 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2847 			 unsigned n_sections, unsigned char commit_seq)
2848 {
2849 	unsigned i, j, n;
2850 
2851 	if (!n_sections)
2852 		return;
2853 
2854 	for (n = 0; n < n_sections; n++) {
2855 		i = start_section + n;
2856 		wraparound_section(ic, &i);
2857 		for (j = 0; j < ic->journal_section_sectors; j++) {
2858 			struct journal_sector *js = access_journal(ic, i, j);
2859 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2860 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2861 		}
2862 		for (j = 0; j < ic->journal_section_entries; j++) {
2863 			struct journal_entry *je = access_journal_entry(ic, i, j);
2864 			journal_entry_set_unused(je);
2865 		}
2866 	}
2867 
2868 	write_journal(ic, start_section, n_sections);
2869 }
2870 
2871 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2872 {
2873 	unsigned char k;
2874 	for (k = 0; k < N_COMMIT_IDS; k++) {
2875 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2876 			return k;
2877 	}
2878 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2879 	return -EIO;
2880 }
2881 
2882 static void replay_journal(struct dm_integrity_c *ic)
2883 {
2884 	unsigned i, j;
2885 	bool used_commit_ids[N_COMMIT_IDS];
2886 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2887 	unsigned write_start, write_sections;
2888 	unsigned continue_section;
2889 	bool journal_empty;
2890 	unsigned char unused, last_used, want_commit_seq;
2891 
2892 	if (ic->mode == 'R')
2893 		return;
2894 
2895 	if (ic->journal_uptodate)
2896 		return;
2897 
2898 	last_used = 0;
2899 	write_start = 0;
2900 
2901 	if (!ic->just_formatted) {
2902 		DEBUG_print("reading journal\n");
2903 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2904 		if (ic->journal_io)
2905 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2906 		if (ic->journal_io) {
2907 			struct journal_completion crypt_comp;
2908 			crypt_comp.ic = ic;
2909 			init_completion(&crypt_comp.comp);
2910 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2911 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2912 			wait_for_completion(&crypt_comp.comp);
2913 		}
2914 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2915 	}
2916 
2917 	if (dm_integrity_failed(ic))
2918 		goto clear_journal;
2919 
2920 	journal_empty = true;
2921 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2922 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2923 	for (i = 0; i < ic->journal_sections; i++) {
2924 		for (j = 0; j < ic->journal_section_sectors; j++) {
2925 			int k;
2926 			struct journal_sector *js = access_journal(ic, i, j);
2927 			k = find_commit_seq(ic, i, j, js->commit_id);
2928 			if (k < 0)
2929 				goto clear_journal;
2930 			used_commit_ids[k] = true;
2931 			max_commit_id_sections[k] = i;
2932 		}
2933 		if (journal_empty) {
2934 			for (j = 0; j < ic->journal_section_entries; j++) {
2935 				struct journal_entry *je = access_journal_entry(ic, i, j);
2936 				if (!journal_entry_is_unused(je)) {
2937 					journal_empty = false;
2938 					break;
2939 				}
2940 			}
2941 		}
2942 	}
2943 
2944 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2945 		unused = N_COMMIT_IDS - 1;
2946 		while (unused && !used_commit_ids[unused - 1])
2947 			unused--;
2948 	} else {
2949 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2950 			if (!used_commit_ids[unused])
2951 				break;
2952 		if (unused == N_COMMIT_IDS) {
2953 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2954 			goto clear_journal;
2955 		}
2956 	}
2957 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2958 		    unused, used_commit_ids[0], used_commit_ids[1],
2959 		    used_commit_ids[2], used_commit_ids[3]);
2960 
2961 	last_used = prev_commit_seq(unused);
2962 	want_commit_seq = prev_commit_seq(last_used);
2963 
2964 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2965 		journal_empty = true;
2966 
2967 	write_start = max_commit_id_sections[last_used] + 1;
2968 	if (unlikely(write_start >= ic->journal_sections))
2969 		want_commit_seq = next_commit_seq(want_commit_seq);
2970 	wraparound_section(ic, &write_start);
2971 
2972 	i = write_start;
2973 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2974 		for (j = 0; j < ic->journal_section_sectors; j++) {
2975 			struct journal_sector *js = access_journal(ic, i, j);
2976 
2977 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2978 				/*
2979 				 * This could be caused by crash during writing.
2980 				 * We won't replay the inconsistent part of the
2981 				 * journal.
2982 				 */
2983 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2984 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2985 				goto brk;
2986 			}
2987 		}
2988 		i++;
2989 		if (unlikely(i >= ic->journal_sections))
2990 			want_commit_seq = next_commit_seq(want_commit_seq);
2991 		wraparound_section(ic, &i);
2992 	}
2993 brk:
2994 
2995 	if (!journal_empty) {
2996 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2997 			    write_sections, write_start, want_commit_seq);
2998 		do_journal_write(ic, write_start, write_sections, true);
2999 	}
3000 
3001 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3002 		continue_section = write_start;
3003 		ic->commit_seq = want_commit_seq;
3004 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3005 	} else {
3006 		unsigned s;
3007 		unsigned char erase_seq;
3008 clear_journal:
3009 		DEBUG_print("clearing journal\n");
3010 
3011 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3012 		s = write_start;
3013 		init_journal(ic, s, 1, erase_seq);
3014 		s++;
3015 		wraparound_section(ic, &s);
3016 		if (ic->journal_sections >= 2) {
3017 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3018 			s += ic->journal_sections - 2;
3019 			wraparound_section(ic, &s);
3020 			init_journal(ic, s, 1, erase_seq);
3021 		}
3022 
3023 		continue_section = 0;
3024 		ic->commit_seq = next_commit_seq(erase_seq);
3025 	}
3026 
3027 	ic->committed_section = continue_section;
3028 	ic->n_committed_sections = 0;
3029 
3030 	ic->uncommitted_section = continue_section;
3031 	ic->n_uncommitted_sections = 0;
3032 
3033 	ic->free_section = continue_section;
3034 	ic->free_section_entry = 0;
3035 	ic->free_sectors = ic->journal_entries;
3036 
3037 	ic->journal_tree_root = RB_ROOT;
3038 	for (i = 0; i < ic->journal_entries; i++)
3039 		init_journal_node(&ic->journal_tree[i]);
3040 }
3041 
3042 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3043 {
3044 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3045 
3046 	if (ic->mode == 'B') {
3047 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3048 		ic->synchronous_mode = 1;
3049 
3050 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3051 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3052 		flush_workqueue(ic->commit_wq);
3053 	}
3054 }
3055 
3056 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3057 {
3058 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3059 
3060 	DEBUG_print("dm_integrity_reboot\n");
3061 
3062 	dm_integrity_enter_synchronous_mode(ic);
3063 
3064 	return NOTIFY_DONE;
3065 }
3066 
3067 static void dm_integrity_postsuspend(struct dm_target *ti)
3068 {
3069 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3070 	int r;
3071 
3072 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3073 
3074 	del_timer_sync(&ic->autocommit_timer);
3075 
3076 	if (ic->recalc_wq)
3077 		drain_workqueue(ic->recalc_wq);
3078 
3079 	if (ic->mode == 'B')
3080 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3081 
3082 	queue_work(ic->commit_wq, &ic->commit_work);
3083 	drain_workqueue(ic->commit_wq);
3084 
3085 	if (ic->mode == 'J') {
3086 		if (ic->meta_dev)
3087 			queue_work(ic->writer_wq, &ic->writer_work);
3088 		drain_workqueue(ic->writer_wq);
3089 		dm_integrity_flush_buffers(ic, true);
3090 	}
3091 
3092 	if (ic->mode == 'B') {
3093 		dm_integrity_flush_buffers(ic, true);
3094 #if 1
3095 		/* set to 0 to test bitmap replay code */
3096 		init_journal(ic, 0, ic->journal_sections, 0);
3097 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3098 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3099 		if (unlikely(r))
3100 			dm_integrity_io_error(ic, "writing superblock", r);
3101 #endif
3102 	}
3103 
3104 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3105 
3106 	ic->journal_uptodate = true;
3107 }
3108 
3109 static void dm_integrity_resume(struct dm_target *ti)
3110 {
3111 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3112 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3113 	int r;
3114 
3115 	DEBUG_print("resume\n");
3116 
3117 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3118 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3119 		    ic->mode == 'B' &&
3120 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3121 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3122 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3123 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3124 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3125 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3126 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3127 		}
3128 
3129 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3130 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3131 		if (unlikely(r))
3132 			dm_integrity_io_error(ic, "writing superblock", r);
3133 	}
3134 
3135 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3136 		DEBUG_print("resume dirty_bitmap\n");
3137 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3138 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3139 		if (ic->mode == 'B') {
3140 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3141 			    !ic->reset_recalculate_flag) {
3142 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3143 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3144 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3145 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3146 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3147 					ic->sb->recalc_sector = cpu_to_le64(0);
3148 				}
3149 			} else {
3150 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3151 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3152 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3153 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3154 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3155 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3156 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3157 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3158 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3159 				ic->sb->recalc_sector = cpu_to_le64(0);
3160 			}
3161 		} else {
3162 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3163 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3164 			    ic->reset_recalculate_flag) {
3165 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3166 				ic->sb->recalc_sector = cpu_to_le64(0);
3167 			}
3168 			init_journal(ic, 0, ic->journal_sections, 0);
3169 			replay_journal(ic);
3170 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3171 		}
3172 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3173 		if (unlikely(r))
3174 			dm_integrity_io_error(ic, "writing superblock", r);
3175 	} else {
3176 		replay_journal(ic);
3177 		if (ic->reset_recalculate_flag) {
3178 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3179 			ic->sb->recalc_sector = cpu_to_le64(0);
3180 		}
3181 		if (ic->mode == 'B') {
3182 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3183 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3184 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3185 			if (unlikely(r))
3186 				dm_integrity_io_error(ic, "writing superblock", r);
3187 
3188 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3189 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3190 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3191 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3192 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3193 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3194 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3195 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3196 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3197 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3198 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3199 			}
3200 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3201 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3202 		}
3203 	}
3204 
3205 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3206 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3207 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3208 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3209 		if (recalc_pos < ic->provided_data_sectors) {
3210 			queue_work(ic->recalc_wq, &ic->recalc_work);
3211 		} else if (recalc_pos > ic->provided_data_sectors) {
3212 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3213 			recalc_write_super(ic);
3214 		}
3215 	}
3216 
3217 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3218 	ic->reboot_notifier.next = NULL;
3219 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3220 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3221 
3222 #if 0
3223 	/* set to 1 to stress test synchronous mode */
3224 	dm_integrity_enter_synchronous_mode(ic);
3225 #endif
3226 }
3227 
3228 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3229 				unsigned status_flags, char *result, unsigned maxlen)
3230 {
3231 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3232 	unsigned arg_count;
3233 	size_t sz = 0;
3234 
3235 	switch (type) {
3236 	case STATUSTYPE_INFO:
3237 		DMEMIT("%llu %llu",
3238 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3239 			ic->provided_data_sectors);
3240 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3241 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3242 		else
3243 			DMEMIT(" -");
3244 		break;
3245 
3246 	case STATUSTYPE_TABLE: {
3247 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3248 		watermark_percentage += ic->journal_entries / 2;
3249 		do_div(watermark_percentage, ic->journal_entries);
3250 		arg_count = 3;
3251 		arg_count += !!ic->meta_dev;
3252 		arg_count += ic->sectors_per_block != 1;
3253 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3254 		arg_count += ic->reset_recalculate_flag;
3255 		arg_count += ic->discard;
3256 		arg_count += ic->mode == 'J';
3257 		arg_count += ic->mode == 'J';
3258 		arg_count += ic->mode == 'B';
3259 		arg_count += ic->mode == 'B';
3260 		arg_count += !!ic->internal_hash_alg.alg_string;
3261 		arg_count += !!ic->journal_crypt_alg.alg_string;
3262 		arg_count += !!ic->journal_mac_alg.alg_string;
3263 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3264 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3265 		arg_count += ic->legacy_recalculate;
3266 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3267 		       ic->tag_size, ic->mode, arg_count);
3268 		if (ic->meta_dev)
3269 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3270 		if (ic->sectors_per_block != 1)
3271 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3272 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3273 			DMEMIT(" recalculate");
3274 		if (ic->reset_recalculate_flag)
3275 			DMEMIT(" reset_recalculate");
3276 		if (ic->discard)
3277 			DMEMIT(" allow_discards");
3278 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3279 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3280 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3281 		if (ic->mode == 'J') {
3282 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3283 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3284 		}
3285 		if (ic->mode == 'B') {
3286 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3287 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3288 		}
3289 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3290 			DMEMIT(" fix_padding");
3291 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3292 			DMEMIT(" fix_hmac");
3293 		if (ic->legacy_recalculate)
3294 			DMEMIT(" legacy_recalculate");
3295 
3296 #define EMIT_ALG(a, n)							\
3297 		do {							\
3298 			if (ic->a.alg_string) {				\
3299 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3300 				if (ic->a.key_string)			\
3301 					DMEMIT(":%s", ic->a.key_string);\
3302 			}						\
3303 		} while (0)
3304 		EMIT_ALG(internal_hash_alg, "internal_hash");
3305 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3306 		EMIT_ALG(journal_mac_alg, "journal_mac");
3307 		break;
3308 	}
3309 	}
3310 }
3311 
3312 static int dm_integrity_iterate_devices(struct dm_target *ti,
3313 					iterate_devices_callout_fn fn, void *data)
3314 {
3315 	struct dm_integrity_c *ic = ti->private;
3316 
3317 	if (!ic->meta_dev)
3318 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3319 	else
3320 		return fn(ti, ic->dev, 0, ti->len, data);
3321 }
3322 
3323 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3324 {
3325 	struct dm_integrity_c *ic = ti->private;
3326 
3327 	if (ic->sectors_per_block > 1) {
3328 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3329 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3330 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3331 	}
3332 }
3333 
3334 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3335 {
3336 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3337 
3338 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3339 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3340 					 JOURNAL_ENTRY_ROUNDUP);
3341 
3342 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3343 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3344 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3345 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3346 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3347 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3348 }
3349 
3350 static int calculate_device_limits(struct dm_integrity_c *ic)
3351 {
3352 	__u64 initial_sectors;
3353 
3354 	calculate_journal_section_size(ic);
3355 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3356 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3357 		return -EINVAL;
3358 	ic->initial_sectors = initial_sectors;
3359 
3360 	if (!ic->meta_dev) {
3361 		sector_t last_sector, last_area, last_offset;
3362 
3363 		/* we have to maintain excessive padding for compatibility with existing volumes */
3364 		__u64 metadata_run_padding =
3365 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3366 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3367 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3368 
3369 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3370 					    metadata_run_padding) >> SECTOR_SHIFT;
3371 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3372 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3373 		else
3374 			ic->log2_metadata_run = -1;
3375 
3376 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3377 		last_sector = get_data_sector(ic, last_area, last_offset);
3378 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3379 			return -EINVAL;
3380 	} else {
3381 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3382 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3383 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3384 		meta_size <<= ic->log2_buffer_sectors;
3385 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3386 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3387 			return -EINVAL;
3388 		ic->metadata_run = 1;
3389 		ic->log2_metadata_run = 0;
3390 	}
3391 
3392 	return 0;
3393 }
3394 
3395 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3396 {
3397 	if (!ic->meta_dev) {
3398 		int test_bit;
3399 		ic->provided_data_sectors = 0;
3400 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3401 			__u64 prev_data_sectors = ic->provided_data_sectors;
3402 
3403 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3404 			if (calculate_device_limits(ic))
3405 				ic->provided_data_sectors = prev_data_sectors;
3406 		}
3407 	} else {
3408 		ic->provided_data_sectors = ic->data_device_sectors;
3409 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3410 	}
3411 }
3412 
3413 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3414 {
3415 	unsigned journal_sections;
3416 	int test_bit;
3417 
3418 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3419 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3420 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3421 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3422 	if (ic->journal_mac_alg.alg_string)
3423 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3424 
3425 	calculate_journal_section_size(ic);
3426 	journal_sections = journal_sectors / ic->journal_section_sectors;
3427 	if (!journal_sections)
3428 		journal_sections = 1;
3429 
3430 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3431 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3432 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3433 	}
3434 
3435 	if (!ic->meta_dev) {
3436 		if (ic->fix_padding)
3437 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3438 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3439 		if (!interleave_sectors)
3440 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3441 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3442 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3443 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3444 
3445 		get_provided_data_sectors(ic);
3446 		if (!ic->provided_data_sectors)
3447 			return -EINVAL;
3448 	} else {
3449 		ic->sb->log2_interleave_sectors = 0;
3450 
3451 		get_provided_data_sectors(ic);
3452 		if (!ic->provided_data_sectors)
3453 			return -EINVAL;
3454 
3455 try_smaller_buffer:
3456 		ic->sb->journal_sections = cpu_to_le32(0);
3457 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3458 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3459 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3460 			if (test_journal_sections > journal_sections)
3461 				continue;
3462 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3463 			if (calculate_device_limits(ic))
3464 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3465 
3466 		}
3467 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3468 			if (ic->log2_buffer_sectors > 3) {
3469 				ic->log2_buffer_sectors--;
3470 				goto try_smaller_buffer;
3471 			}
3472 			return -EINVAL;
3473 		}
3474 	}
3475 
3476 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3477 
3478 	sb_set_version(ic);
3479 
3480 	return 0;
3481 }
3482 
3483 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3484 {
3485 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3486 	struct blk_integrity bi;
3487 
3488 	memset(&bi, 0, sizeof(bi));
3489 	bi.profile = &dm_integrity_profile;
3490 	bi.tuple_size = ic->tag_size;
3491 	bi.tag_size = bi.tuple_size;
3492 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3493 
3494 	blk_integrity_register(disk, &bi);
3495 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3496 }
3497 
3498 static void dm_integrity_free_page_list(struct page_list *pl)
3499 {
3500 	unsigned i;
3501 
3502 	if (!pl)
3503 		return;
3504 	for (i = 0; pl[i].page; i++)
3505 		__free_page(pl[i].page);
3506 	kvfree(pl);
3507 }
3508 
3509 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3510 {
3511 	struct page_list *pl;
3512 	unsigned i;
3513 
3514 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3515 	if (!pl)
3516 		return NULL;
3517 
3518 	for (i = 0; i < n_pages; i++) {
3519 		pl[i].page = alloc_page(GFP_KERNEL);
3520 		if (!pl[i].page) {
3521 			dm_integrity_free_page_list(pl);
3522 			return NULL;
3523 		}
3524 		if (i)
3525 			pl[i - 1].next = &pl[i];
3526 	}
3527 	pl[i].page = NULL;
3528 	pl[i].next = NULL;
3529 
3530 	return pl;
3531 }
3532 
3533 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3534 {
3535 	unsigned i;
3536 	for (i = 0; i < ic->journal_sections; i++)
3537 		kvfree(sl[i]);
3538 	kvfree(sl);
3539 }
3540 
3541 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3542 								   struct page_list *pl)
3543 {
3544 	struct scatterlist **sl;
3545 	unsigned i;
3546 
3547 	sl = kvmalloc_array(ic->journal_sections,
3548 			    sizeof(struct scatterlist *),
3549 			    GFP_KERNEL | __GFP_ZERO);
3550 	if (!sl)
3551 		return NULL;
3552 
3553 	for (i = 0; i < ic->journal_sections; i++) {
3554 		struct scatterlist *s;
3555 		unsigned start_index, start_offset;
3556 		unsigned end_index, end_offset;
3557 		unsigned n_pages;
3558 		unsigned idx;
3559 
3560 		page_list_location(ic, i, 0, &start_index, &start_offset);
3561 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3562 				   &end_index, &end_offset);
3563 
3564 		n_pages = (end_index - start_index + 1);
3565 
3566 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3567 				   GFP_KERNEL);
3568 		if (!s) {
3569 			dm_integrity_free_journal_scatterlist(ic, sl);
3570 			return NULL;
3571 		}
3572 
3573 		sg_init_table(s, n_pages);
3574 		for (idx = start_index; idx <= end_index; idx++) {
3575 			char *va = lowmem_page_address(pl[idx].page);
3576 			unsigned start = 0, end = PAGE_SIZE;
3577 			if (idx == start_index)
3578 				start = start_offset;
3579 			if (idx == end_index)
3580 				end = end_offset + (1 << SECTOR_SHIFT);
3581 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3582 		}
3583 
3584 		sl[i] = s;
3585 	}
3586 
3587 	return sl;
3588 }
3589 
3590 static void free_alg(struct alg_spec *a)
3591 {
3592 	kfree_sensitive(a->alg_string);
3593 	kfree_sensitive(a->key);
3594 	memset(a, 0, sizeof *a);
3595 }
3596 
3597 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3598 {
3599 	char *k;
3600 
3601 	free_alg(a);
3602 
3603 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3604 	if (!a->alg_string)
3605 		goto nomem;
3606 
3607 	k = strchr(a->alg_string, ':');
3608 	if (k) {
3609 		*k = 0;
3610 		a->key_string = k + 1;
3611 		if (strlen(a->key_string) & 1)
3612 			goto inval;
3613 
3614 		a->key_size = strlen(a->key_string) / 2;
3615 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3616 		if (!a->key)
3617 			goto nomem;
3618 		if (hex2bin(a->key, a->key_string, a->key_size))
3619 			goto inval;
3620 	}
3621 
3622 	return 0;
3623 inval:
3624 	*error = error_inval;
3625 	return -EINVAL;
3626 nomem:
3627 	*error = "Out of memory for an argument";
3628 	return -ENOMEM;
3629 }
3630 
3631 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3632 		   char *error_alg, char *error_key)
3633 {
3634 	int r;
3635 
3636 	if (a->alg_string) {
3637 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3638 		if (IS_ERR(*hash)) {
3639 			*error = error_alg;
3640 			r = PTR_ERR(*hash);
3641 			*hash = NULL;
3642 			return r;
3643 		}
3644 
3645 		if (a->key) {
3646 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3647 			if (r) {
3648 				*error = error_key;
3649 				return r;
3650 			}
3651 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3652 			*error = error_key;
3653 			return -ENOKEY;
3654 		}
3655 	}
3656 
3657 	return 0;
3658 }
3659 
3660 static int create_journal(struct dm_integrity_c *ic, char **error)
3661 {
3662 	int r = 0;
3663 	unsigned i;
3664 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3665 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3666 	struct skcipher_request *req = NULL;
3667 
3668 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3669 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3670 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3671 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3672 
3673 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3674 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3675 	journal_desc_size = journal_pages * sizeof(struct page_list);
3676 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3677 		*error = "Journal doesn't fit into memory";
3678 		r = -ENOMEM;
3679 		goto bad;
3680 	}
3681 	ic->journal_pages = journal_pages;
3682 
3683 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3684 	if (!ic->journal) {
3685 		*error = "Could not allocate memory for journal";
3686 		r = -ENOMEM;
3687 		goto bad;
3688 	}
3689 	if (ic->journal_crypt_alg.alg_string) {
3690 		unsigned ivsize, blocksize;
3691 		struct journal_completion comp;
3692 
3693 		comp.ic = ic;
3694 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3695 		if (IS_ERR(ic->journal_crypt)) {
3696 			*error = "Invalid journal cipher";
3697 			r = PTR_ERR(ic->journal_crypt);
3698 			ic->journal_crypt = NULL;
3699 			goto bad;
3700 		}
3701 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3702 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3703 
3704 		if (ic->journal_crypt_alg.key) {
3705 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3706 						   ic->journal_crypt_alg.key_size);
3707 			if (r) {
3708 				*error = "Error setting encryption key";
3709 				goto bad;
3710 			}
3711 		}
3712 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3713 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3714 
3715 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3716 		if (!ic->journal_io) {
3717 			*error = "Could not allocate memory for journal io";
3718 			r = -ENOMEM;
3719 			goto bad;
3720 		}
3721 
3722 		if (blocksize == 1) {
3723 			struct scatterlist *sg;
3724 
3725 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3726 			if (!req) {
3727 				*error = "Could not allocate crypt request";
3728 				r = -ENOMEM;
3729 				goto bad;
3730 			}
3731 
3732 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3733 			if (!crypt_iv) {
3734 				*error = "Could not allocate iv";
3735 				r = -ENOMEM;
3736 				goto bad;
3737 			}
3738 
3739 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3740 			if (!ic->journal_xor) {
3741 				*error = "Could not allocate memory for journal xor";
3742 				r = -ENOMEM;
3743 				goto bad;
3744 			}
3745 
3746 			sg = kvmalloc_array(ic->journal_pages + 1,
3747 					    sizeof(struct scatterlist),
3748 					    GFP_KERNEL);
3749 			if (!sg) {
3750 				*error = "Unable to allocate sg list";
3751 				r = -ENOMEM;
3752 				goto bad;
3753 			}
3754 			sg_init_table(sg, ic->journal_pages + 1);
3755 			for (i = 0; i < ic->journal_pages; i++) {
3756 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3757 				clear_page(va);
3758 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3759 			}
3760 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3761 
3762 			skcipher_request_set_crypt(req, sg, sg,
3763 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3764 			init_completion(&comp.comp);
3765 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3766 			if (do_crypt(true, req, &comp))
3767 				wait_for_completion(&comp.comp);
3768 			kvfree(sg);
3769 			r = dm_integrity_failed(ic);
3770 			if (r) {
3771 				*error = "Unable to encrypt journal";
3772 				goto bad;
3773 			}
3774 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3775 
3776 			crypto_free_skcipher(ic->journal_crypt);
3777 			ic->journal_crypt = NULL;
3778 		} else {
3779 			unsigned crypt_len = roundup(ivsize, blocksize);
3780 
3781 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3782 			if (!req) {
3783 				*error = "Could not allocate crypt request";
3784 				r = -ENOMEM;
3785 				goto bad;
3786 			}
3787 
3788 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3789 			if (!crypt_iv) {
3790 				*error = "Could not allocate iv";
3791 				r = -ENOMEM;
3792 				goto bad;
3793 			}
3794 
3795 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3796 			if (!crypt_data) {
3797 				*error = "Unable to allocate crypt data";
3798 				r = -ENOMEM;
3799 				goto bad;
3800 			}
3801 
3802 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3803 			if (!ic->journal_scatterlist) {
3804 				*error = "Unable to allocate sg list";
3805 				r = -ENOMEM;
3806 				goto bad;
3807 			}
3808 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3809 			if (!ic->journal_io_scatterlist) {
3810 				*error = "Unable to allocate sg list";
3811 				r = -ENOMEM;
3812 				goto bad;
3813 			}
3814 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3815 							 sizeof(struct skcipher_request *),
3816 							 GFP_KERNEL | __GFP_ZERO);
3817 			if (!ic->sk_requests) {
3818 				*error = "Unable to allocate sk requests";
3819 				r = -ENOMEM;
3820 				goto bad;
3821 			}
3822 			for (i = 0; i < ic->journal_sections; i++) {
3823 				struct scatterlist sg;
3824 				struct skcipher_request *section_req;
3825 				__le32 section_le = cpu_to_le32(i);
3826 
3827 				memset(crypt_iv, 0x00, ivsize);
3828 				memset(crypt_data, 0x00, crypt_len);
3829 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3830 
3831 				sg_init_one(&sg, crypt_data, crypt_len);
3832 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3833 				init_completion(&comp.comp);
3834 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3835 				if (do_crypt(true, req, &comp))
3836 					wait_for_completion(&comp.comp);
3837 
3838 				r = dm_integrity_failed(ic);
3839 				if (r) {
3840 					*error = "Unable to generate iv";
3841 					goto bad;
3842 				}
3843 
3844 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3845 				if (!section_req) {
3846 					*error = "Unable to allocate crypt request";
3847 					r = -ENOMEM;
3848 					goto bad;
3849 				}
3850 				section_req->iv = kmalloc_array(ivsize, 2,
3851 								GFP_KERNEL);
3852 				if (!section_req->iv) {
3853 					skcipher_request_free(section_req);
3854 					*error = "Unable to allocate iv";
3855 					r = -ENOMEM;
3856 					goto bad;
3857 				}
3858 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3859 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3860 				ic->sk_requests[i] = section_req;
3861 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3862 			}
3863 		}
3864 	}
3865 
3866 	for (i = 0; i < N_COMMIT_IDS; i++) {
3867 		unsigned j;
3868 retest_commit_id:
3869 		for (j = 0; j < i; j++) {
3870 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3871 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3872 				goto retest_commit_id;
3873 			}
3874 		}
3875 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3876 	}
3877 
3878 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3879 	if (journal_tree_size > ULONG_MAX) {
3880 		*error = "Journal doesn't fit into memory";
3881 		r = -ENOMEM;
3882 		goto bad;
3883 	}
3884 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3885 	if (!ic->journal_tree) {
3886 		*error = "Could not allocate memory for journal tree";
3887 		r = -ENOMEM;
3888 	}
3889 bad:
3890 	kfree(crypt_data);
3891 	kfree(crypt_iv);
3892 	skcipher_request_free(req);
3893 
3894 	return r;
3895 }
3896 
3897 /*
3898  * Construct a integrity mapping
3899  *
3900  * Arguments:
3901  *	device
3902  *	offset from the start of the device
3903  *	tag size
3904  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3905  *	number of optional arguments
3906  *	optional arguments:
3907  *		journal_sectors
3908  *		interleave_sectors
3909  *		buffer_sectors
3910  *		journal_watermark
3911  *		commit_time
3912  *		meta_device
3913  *		block_size
3914  *		sectors_per_bit
3915  *		bitmap_flush_interval
3916  *		internal_hash
3917  *		journal_crypt
3918  *		journal_mac
3919  *		recalculate
3920  */
3921 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3922 {
3923 	struct dm_integrity_c *ic;
3924 	char dummy;
3925 	int r;
3926 	unsigned extra_args;
3927 	struct dm_arg_set as;
3928 	static const struct dm_arg _args[] = {
3929 		{0, 18, "Invalid number of feature args"},
3930 	};
3931 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3932 	bool should_write_sb;
3933 	__u64 threshold;
3934 	unsigned long long start;
3935 	__s8 log2_sectors_per_bitmap_bit = -1;
3936 	__s8 log2_blocks_per_bitmap_bit;
3937 	__u64 bits_in_journal;
3938 	__u64 n_bitmap_bits;
3939 
3940 #define DIRECT_ARGUMENTS	4
3941 
3942 	if (argc <= DIRECT_ARGUMENTS) {
3943 		ti->error = "Invalid argument count";
3944 		return -EINVAL;
3945 	}
3946 
3947 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3948 	if (!ic) {
3949 		ti->error = "Cannot allocate integrity context";
3950 		return -ENOMEM;
3951 	}
3952 	ti->private = ic;
3953 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3954 	ic->ti = ti;
3955 
3956 	ic->in_progress = RB_ROOT;
3957 	INIT_LIST_HEAD(&ic->wait_list);
3958 	init_waitqueue_head(&ic->endio_wait);
3959 	bio_list_init(&ic->flush_bio_list);
3960 	init_waitqueue_head(&ic->copy_to_journal_wait);
3961 	init_completion(&ic->crypto_backoff);
3962 	atomic64_set(&ic->number_of_mismatches, 0);
3963 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3964 
3965 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3966 	if (r) {
3967 		ti->error = "Device lookup failed";
3968 		goto bad;
3969 	}
3970 
3971 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3972 		ti->error = "Invalid starting offset";
3973 		r = -EINVAL;
3974 		goto bad;
3975 	}
3976 	ic->start = start;
3977 
3978 	if (strcmp(argv[2], "-")) {
3979 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3980 			ti->error = "Invalid tag size";
3981 			r = -EINVAL;
3982 			goto bad;
3983 		}
3984 	}
3985 
3986 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3987 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3988 		ic->mode = argv[3][0];
3989 	} else {
3990 		ti->error = "Invalid mode (expecting J, B, D, R)";
3991 		r = -EINVAL;
3992 		goto bad;
3993 	}
3994 
3995 	journal_sectors = 0;
3996 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3997 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3998 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3999 	sync_msec = DEFAULT_SYNC_MSEC;
4000 	ic->sectors_per_block = 1;
4001 
4002 	as.argc = argc - DIRECT_ARGUMENTS;
4003 	as.argv = argv + DIRECT_ARGUMENTS;
4004 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4005 	if (r)
4006 		goto bad;
4007 
4008 	while (extra_args--) {
4009 		const char *opt_string;
4010 		unsigned val;
4011 		unsigned long long llval;
4012 		opt_string = dm_shift_arg(&as);
4013 		if (!opt_string) {
4014 			r = -EINVAL;
4015 			ti->error = "Not enough feature arguments";
4016 			goto bad;
4017 		}
4018 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4019 			journal_sectors = val ? val : 1;
4020 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4021 			interleave_sectors = val;
4022 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4023 			buffer_sectors = val;
4024 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4025 			journal_watermark = val;
4026 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4027 			sync_msec = val;
4028 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4029 			if (ic->meta_dev) {
4030 				dm_put_device(ti, ic->meta_dev);
4031 				ic->meta_dev = NULL;
4032 			}
4033 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4034 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4035 			if (r) {
4036 				ti->error = "Device lookup failed";
4037 				goto bad;
4038 			}
4039 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4040 			if (val < 1 << SECTOR_SHIFT ||
4041 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4042 			    (val & (val -1))) {
4043 				r = -EINVAL;
4044 				ti->error = "Invalid block_size argument";
4045 				goto bad;
4046 			}
4047 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4048 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4049 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4050 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4051 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4052 				r = -EINVAL;
4053 				ti->error = "Invalid bitmap_flush_interval argument";
4054 				goto bad;
4055 			}
4056 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4057 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4058 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4059 					    "Invalid internal_hash argument");
4060 			if (r)
4061 				goto bad;
4062 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4063 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4064 					    "Invalid journal_crypt argument");
4065 			if (r)
4066 				goto bad;
4067 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4068 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4069 					    "Invalid journal_mac argument");
4070 			if (r)
4071 				goto bad;
4072 		} else if (!strcmp(opt_string, "recalculate")) {
4073 			ic->recalculate_flag = true;
4074 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4075 			ic->recalculate_flag = true;
4076 			ic->reset_recalculate_flag = true;
4077 		} else if (!strcmp(opt_string, "allow_discards")) {
4078 			ic->discard = true;
4079 		} else if (!strcmp(opt_string, "fix_padding")) {
4080 			ic->fix_padding = true;
4081 		} else if (!strcmp(opt_string, "fix_hmac")) {
4082 			ic->fix_hmac = true;
4083 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4084 			ic->legacy_recalculate = true;
4085 		} else {
4086 			r = -EINVAL;
4087 			ti->error = "Invalid argument";
4088 			goto bad;
4089 		}
4090 	}
4091 
4092 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4093 	if (!ic->meta_dev)
4094 		ic->meta_device_sectors = ic->data_device_sectors;
4095 	else
4096 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4097 
4098 	if (!journal_sectors) {
4099 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4100 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4101 	}
4102 
4103 	if (!buffer_sectors)
4104 		buffer_sectors = 1;
4105 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4106 
4107 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4108 		    "Invalid internal hash", "Error setting internal hash key");
4109 	if (r)
4110 		goto bad;
4111 
4112 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4113 		    "Invalid journal mac", "Error setting journal mac key");
4114 	if (r)
4115 		goto bad;
4116 
4117 	if (!ic->tag_size) {
4118 		if (!ic->internal_hash) {
4119 			ti->error = "Unknown tag size";
4120 			r = -EINVAL;
4121 			goto bad;
4122 		}
4123 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4124 	}
4125 	if (ic->tag_size > MAX_TAG_SIZE) {
4126 		ti->error = "Too big tag size";
4127 		r = -EINVAL;
4128 		goto bad;
4129 	}
4130 	if (!(ic->tag_size & (ic->tag_size - 1)))
4131 		ic->log2_tag_size = __ffs(ic->tag_size);
4132 	else
4133 		ic->log2_tag_size = -1;
4134 
4135 	if (ic->mode == 'B' && !ic->internal_hash) {
4136 		r = -EINVAL;
4137 		ti->error = "Bitmap mode can be only used with internal hash";
4138 		goto bad;
4139 	}
4140 
4141 	if (ic->discard && !ic->internal_hash) {
4142 		r = -EINVAL;
4143 		ti->error = "Discard can be only used with internal hash";
4144 		goto bad;
4145 	}
4146 
4147 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4148 	ic->autocommit_msec = sync_msec;
4149 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4150 
4151 	ic->io = dm_io_client_create();
4152 	if (IS_ERR(ic->io)) {
4153 		r = PTR_ERR(ic->io);
4154 		ic->io = NULL;
4155 		ti->error = "Cannot allocate dm io";
4156 		goto bad;
4157 	}
4158 
4159 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4160 	if (r) {
4161 		ti->error = "Cannot allocate mempool";
4162 		goto bad;
4163 	}
4164 
4165 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4166 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4167 	if (!ic->metadata_wq) {
4168 		ti->error = "Cannot allocate workqueue";
4169 		r = -ENOMEM;
4170 		goto bad;
4171 	}
4172 
4173 	/*
4174 	 * If this workqueue were percpu, it would cause bio reordering
4175 	 * and reduced performance.
4176 	 */
4177 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4178 	if (!ic->wait_wq) {
4179 		ti->error = "Cannot allocate workqueue";
4180 		r = -ENOMEM;
4181 		goto bad;
4182 	}
4183 
4184 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4185 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4186 	if (!ic->offload_wq) {
4187 		ti->error = "Cannot allocate workqueue";
4188 		r = -ENOMEM;
4189 		goto bad;
4190 	}
4191 
4192 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4193 	if (!ic->commit_wq) {
4194 		ti->error = "Cannot allocate workqueue";
4195 		r = -ENOMEM;
4196 		goto bad;
4197 	}
4198 	INIT_WORK(&ic->commit_work, integrity_commit);
4199 
4200 	if (ic->mode == 'J' || ic->mode == 'B') {
4201 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4202 		if (!ic->writer_wq) {
4203 			ti->error = "Cannot allocate workqueue";
4204 			r = -ENOMEM;
4205 			goto bad;
4206 		}
4207 		INIT_WORK(&ic->writer_work, integrity_writer);
4208 	}
4209 
4210 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4211 	if (!ic->sb) {
4212 		r = -ENOMEM;
4213 		ti->error = "Cannot allocate superblock area";
4214 		goto bad;
4215 	}
4216 
4217 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4218 	if (r) {
4219 		ti->error = "Error reading superblock";
4220 		goto bad;
4221 	}
4222 	should_write_sb = false;
4223 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4224 		if (ic->mode != 'R') {
4225 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4226 				r = -EINVAL;
4227 				ti->error = "The device is not initialized";
4228 				goto bad;
4229 			}
4230 		}
4231 
4232 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4233 		if (r) {
4234 			ti->error = "Could not initialize superblock";
4235 			goto bad;
4236 		}
4237 		if (ic->mode != 'R')
4238 			should_write_sb = true;
4239 	}
4240 
4241 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4242 		r = -EINVAL;
4243 		ti->error = "Unknown version";
4244 		goto bad;
4245 	}
4246 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4247 		r = -EINVAL;
4248 		ti->error = "Tag size doesn't match the information in superblock";
4249 		goto bad;
4250 	}
4251 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4252 		r = -EINVAL;
4253 		ti->error = "Block size doesn't match the information in superblock";
4254 		goto bad;
4255 	}
4256 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4257 		r = -EINVAL;
4258 		ti->error = "Corrupted superblock, journal_sections is 0";
4259 		goto bad;
4260 	}
4261 	/* make sure that ti->max_io_len doesn't overflow */
4262 	if (!ic->meta_dev) {
4263 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4264 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4265 			r = -EINVAL;
4266 			ti->error = "Invalid interleave_sectors in the superblock";
4267 			goto bad;
4268 		}
4269 	} else {
4270 		if (ic->sb->log2_interleave_sectors) {
4271 			r = -EINVAL;
4272 			ti->error = "Invalid interleave_sectors in the superblock";
4273 			goto bad;
4274 		}
4275 	}
4276 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4277 		r = -EINVAL;
4278 		ti->error = "Journal mac mismatch";
4279 		goto bad;
4280 	}
4281 
4282 	get_provided_data_sectors(ic);
4283 	if (!ic->provided_data_sectors) {
4284 		r = -EINVAL;
4285 		ti->error = "The device is too small";
4286 		goto bad;
4287 	}
4288 
4289 try_smaller_buffer:
4290 	r = calculate_device_limits(ic);
4291 	if (r) {
4292 		if (ic->meta_dev) {
4293 			if (ic->log2_buffer_sectors > 3) {
4294 				ic->log2_buffer_sectors--;
4295 				goto try_smaller_buffer;
4296 			}
4297 		}
4298 		ti->error = "The device is too small";
4299 		goto bad;
4300 	}
4301 
4302 	if (log2_sectors_per_bitmap_bit < 0)
4303 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4304 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4305 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4306 
4307 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4308 	if (bits_in_journal > UINT_MAX)
4309 		bits_in_journal = UINT_MAX;
4310 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4311 		log2_sectors_per_bitmap_bit++;
4312 
4313 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4314 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4315 	if (should_write_sb) {
4316 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4317 	}
4318 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4319 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4320 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4321 
4322 	if (!ic->meta_dev)
4323 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4324 
4325 	if (ti->len > ic->provided_data_sectors) {
4326 		r = -EINVAL;
4327 		ti->error = "Not enough provided sectors for requested mapping size";
4328 		goto bad;
4329 	}
4330 
4331 
4332 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4333 	threshold += 50;
4334 	do_div(threshold, 100);
4335 	ic->free_sectors_threshold = threshold;
4336 
4337 	DEBUG_print("initialized:\n");
4338 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4339 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4340 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4341 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4342 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4343 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4344 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4345 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4346 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4347 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4348 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4349 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4350 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4351 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4352 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4353 
4354 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4355 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4356 		ic->sb->recalc_sector = cpu_to_le64(0);
4357 	}
4358 
4359 	if (ic->internal_hash) {
4360 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4361 		if (!ic->recalc_wq ) {
4362 			ti->error = "Cannot allocate workqueue";
4363 			r = -ENOMEM;
4364 			goto bad;
4365 		}
4366 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4367 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4368 		if (!ic->recalc_buffer) {
4369 			ti->error = "Cannot allocate buffer for recalculating";
4370 			r = -ENOMEM;
4371 			goto bad;
4372 		}
4373 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4374 						 ic->tag_size, GFP_KERNEL);
4375 		if (!ic->recalc_tags) {
4376 			ti->error = "Cannot allocate tags for recalculating";
4377 			r = -ENOMEM;
4378 			goto bad;
4379 		}
4380 	} else {
4381 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4382 			ti->error = "Recalculate can only be specified with internal_hash";
4383 			r = -EINVAL;
4384 			goto bad;
4385 		}
4386 	}
4387 
4388 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4389 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4390 	    dm_integrity_disable_recalculate(ic)) {
4391 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4392 		r = -EOPNOTSUPP;
4393 		goto bad;
4394 	}
4395 
4396 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4397 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4398 	if (IS_ERR(ic->bufio)) {
4399 		r = PTR_ERR(ic->bufio);
4400 		ti->error = "Cannot initialize dm-bufio";
4401 		ic->bufio = NULL;
4402 		goto bad;
4403 	}
4404 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4405 
4406 	if (ic->mode != 'R') {
4407 		r = create_journal(ic, &ti->error);
4408 		if (r)
4409 			goto bad;
4410 
4411 	}
4412 
4413 	if (ic->mode == 'B') {
4414 		unsigned i;
4415 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4416 
4417 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4418 		if (!ic->recalc_bitmap) {
4419 			r = -ENOMEM;
4420 			goto bad;
4421 		}
4422 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4423 		if (!ic->may_write_bitmap) {
4424 			r = -ENOMEM;
4425 			goto bad;
4426 		}
4427 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4428 		if (!ic->bbs) {
4429 			r = -ENOMEM;
4430 			goto bad;
4431 		}
4432 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4433 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4434 			struct bitmap_block_status *bbs = &ic->bbs[i];
4435 			unsigned sector, pl_index, pl_offset;
4436 
4437 			INIT_WORK(&bbs->work, bitmap_block_work);
4438 			bbs->ic = ic;
4439 			bbs->idx = i;
4440 			bio_list_init(&bbs->bio_queue);
4441 			spin_lock_init(&bbs->bio_queue_lock);
4442 
4443 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4444 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4445 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4446 
4447 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4448 		}
4449 	}
4450 
4451 	if (should_write_sb) {
4452 		int r;
4453 
4454 		init_journal(ic, 0, ic->journal_sections, 0);
4455 		r = dm_integrity_failed(ic);
4456 		if (unlikely(r)) {
4457 			ti->error = "Error initializing journal";
4458 			goto bad;
4459 		}
4460 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4461 		if (r) {
4462 			ti->error = "Error initializing superblock";
4463 			goto bad;
4464 		}
4465 		ic->just_formatted = true;
4466 	}
4467 
4468 	if (!ic->meta_dev) {
4469 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4470 		if (r)
4471 			goto bad;
4472 	}
4473 	if (ic->mode == 'B') {
4474 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4475 		if (!max_io_len)
4476 			max_io_len = 1U << 31;
4477 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4478 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4479 			r = dm_set_target_max_io_len(ti, max_io_len);
4480 			if (r)
4481 				goto bad;
4482 		}
4483 	}
4484 
4485 	if (!ic->internal_hash)
4486 		dm_integrity_set(ti, ic);
4487 
4488 	ti->num_flush_bios = 1;
4489 	ti->flush_supported = true;
4490 	if (ic->discard)
4491 		ti->num_discard_bios = 1;
4492 
4493 	return 0;
4494 
4495 bad:
4496 	dm_integrity_dtr(ti);
4497 	return r;
4498 }
4499 
4500 static void dm_integrity_dtr(struct dm_target *ti)
4501 {
4502 	struct dm_integrity_c *ic = ti->private;
4503 
4504 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4505 	BUG_ON(!list_empty(&ic->wait_list));
4506 
4507 	if (ic->metadata_wq)
4508 		destroy_workqueue(ic->metadata_wq);
4509 	if (ic->wait_wq)
4510 		destroy_workqueue(ic->wait_wq);
4511 	if (ic->offload_wq)
4512 		destroy_workqueue(ic->offload_wq);
4513 	if (ic->commit_wq)
4514 		destroy_workqueue(ic->commit_wq);
4515 	if (ic->writer_wq)
4516 		destroy_workqueue(ic->writer_wq);
4517 	if (ic->recalc_wq)
4518 		destroy_workqueue(ic->recalc_wq);
4519 	vfree(ic->recalc_buffer);
4520 	kvfree(ic->recalc_tags);
4521 	kvfree(ic->bbs);
4522 	if (ic->bufio)
4523 		dm_bufio_client_destroy(ic->bufio);
4524 	mempool_exit(&ic->journal_io_mempool);
4525 	if (ic->io)
4526 		dm_io_client_destroy(ic->io);
4527 	if (ic->dev)
4528 		dm_put_device(ti, ic->dev);
4529 	if (ic->meta_dev)
4530 		dm_put_device(ti, ic->meta_dev);
4531 	dm_integrity_free_page_list(ic->journal);
4532 	dm_integrity_free_page_list(ic->journal_io);
4533 	dm_integrity_free_page_list(ic->journal_xor);
4534 	dm_integrity_free_page_list(ic->recalc_bitmap);
4535 	dm_integrity_free_page_list(ic->may_write_bitmap);
4536 	if (ic->journal_scatterlist)
4537 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4538 	if (ic->journal_io_scatterlist)
4539 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4540 	if (ic->sk_requests) {
4541 		unsigned i;
4542 
4543 		for (i = 0; i < ic->journal_sections; i++) {
4544 			struct skcipher_request *req = ic->sk_requests[i];
4545 			if (req) {
4546 				kfree_sensitive(req->iv);
4547 				skcipher_request_free(req);
4548 			}
4549 		}
4550 		kvfree(ic->sk_requests);
4551 	}
4552 	kvfree(ic->journal_tree);
4553 	if (ic->sb)
4554 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4555 
4556 	if (ic->internal_hash)
4557 		crypto_free_shash(ic->internal_hash);
4558 	free_alg(&ic->internal_hash_alg);
4559 
4560 	if (ic->journal_crypt)
4561 		crypto_free_skcipher(ic->journal_crypt);
4562 	free_alg(&ic->journal_crypt_alg);
4563 
4564 	if (ic->journal_mac)
4565 		crypto_free_shash(ic->journal_mac);
4566 	free_alg(&ic->journal_mac_alg);
4567 
4568 	kfree(ic);
4569 }
4570 
4571 static struct target_type integrity_target = {
4572 	.name			= "integrity",
4573 	.version		= {1, 10, 0},
4574 	.module			= THIS_MODULE,
4575 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4576 	.ctr			= dm_integrity_ctr,
4577 	.dtr			= dm_integrity_dtr,
4578 	.map			= dm_integrity_map,
4579 	.postsuspend		= dm_integrity_postsuspend,
4580 	.resume			= dm_integrity_resume,
4581 	.status			= dm_integrity_status,
4582 	.iterate_devices	= dm_integrity_iterate_devices,
4583 	.io_hints		= dm_integrity_io_hints,
4584 };
4585 
4586 static int __init dm_integrity_init(void)
4587 {
4588 	int r;
4589 
4590 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4591 					     sizeof(struct journal_io), 0, 0, NULL);
4592 	if (!journal_io_cache) {
4593 		DMERR("can't allocate journal io cache");
4594 		return -ENOMEM;
4595 	}
4596 
4597 	r = dm_register_target(&integrity_target);
4598 
4599 	if (r < 0)
4600 		DMERR("register failed %d", r);
4601 
4602 	return r;
4603 }
4604 
4605 static void __exit dm_integrity_exit(void)
4606 {
4607 	dm_unregister_target(&integrity_target);
4608 	kmem_cache_destroy(journal_io_cache);
4609 }
4610 
4611 module_init(dm_integrity_init);
4612 module_exit(dm_integrity_exit);
4613 
4614 MODULE_AUTHOR("Milan Broz");
4615 MODULE_AUTHOR("Mikulas Patocka");
4616 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4617 MODULE_LICENSE("GPL");
4618