1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #define DM_MSG_PREFIX "integrity" 27 28 #define DEFAULT_INTERLEAVE_SECTORS 32768 29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 31 #define DEFAULT_BUFFER_SECTORS 128 32 #define DEFAULT_JOURNAL_WATERMARK 50 33 #define DEFAULT_SYNC_MSEC 10000 34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 35 #define MIN_LOG2_INTERLEAVE_SECTORS 3 36 #define MAX_LOG2_INTERLEAVE_SECTORS 31 37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 38 #define RECALC_SECTORS 8192 39 #define RECALC_WRITE_SUPER 16 40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 41 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 42 43 /* 44 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 45 * so it should not be enabled in the official kernel 46 */ 47 //#define DEBUG_PRINT 48 //#define INTERNAL_VERIFY 49 50 /* 51 * On disk structures 52 */ 53 54 #define SB_MAGIC "integrt" 55 #define SB_VERSION_1 1 56 #define SB_VERSION_2 2 57 #define SB_VERSION_3 3 58 #define SB_VERSION_4 4 59 #define SB_SECTORS 8 60 #define MAX_SECTORS_PER_BLOCK 8 61 62 struct superblock { 63 __u8 magic[8]; 64 __u8 version; 65 __u8 log2_interleave_sectors; 66 __u16 integrity_tag_size; 67 __u32 journal_sections; 68 __u64 provided_data_sectors; /* userspace uses this value */ 69 __u32 flags; 70 __u8 log2_sectors_per_block; 71 __u8 log2_blocks_per_bitmap_bit; 72 __u8 pad[2]; 73 __u64 recalc_sector; 74 }; 75 76 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 77 #define SB_FLAG_RECALCULATING 0x2 78 #define SB_FLAG_DIRTY_BITMAP 0x4 79 #define SB_FLAG_FIXED_PADDING 0x8 80 81 #define JOURNAL_ENTRY_ROUNDUP 8 82 83 typedef __u64 commit_id_t; 84 #define JOURNAL_MAC_PER_SECTOR 8 85 86 struct journal_entry { 87 union { 88 struct { 89 __u32 sector_lo; 90 __u32 sector_hi; 91 } s; 92 __u64 sector; 93 } u; 94 commit_id_t last_bytes[0]; 95 /* __u8 tag[0]; */ 96 }; 97 98 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 99 100 #if BITS_PER_LONG == 64 101 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 102 #else 103 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 104 #endif 105 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 106 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 107 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 108 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 109 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 110 111 #define JOURNAL_BLOCK_SECTORS 8 112 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 113 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 114 115 struct journal_sector { 116 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 117 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 118 commit_id_t commit_id; 119 }; 120 121 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 122 123 #define METADATA_PADDING_SECTORS 8 124 125 #define N_COMMIT_IDS 4 126 127 static unsigned char prev_commit_seq(unsigned char seq) 128 { 129 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 130 } 131 132 static unsigned char next_commit_seq(unsigned char seq) 133 { 134 return (seq + 1) % N_COMMIT_IDS; 135 } 136 137 /* 138 * In-memory structures 139 */ 140 141 struct journal_node { 142 struct rb_node node; 143 sector_t sector; 144 }; 145 146 struct alg_spec { 147 char *alg_string; 148 char *key_string; 149 __u8 *key; 150 unsigned key_size; 151 }; 152 153 struct dm_integrity_c { 154 struct dm_dev *dev; 155 struct dm_dev *meta_dev; 156 unsigned tag_size; 157 __s8 log2_tag_size; 158 sector_t start; 159 mempool_t journal_io_mempool; 160 struct dm_io_client *io; 161 struct dm_bufio_client *bufio; 162 struct workqueue_struct *metadata_wq; 163 struct superblock *sb; 164 unsigned journal_pages; 165 unsigned n_bitmap_blocks; 166 167 struct page_list *journal; 168 struct page_list *journal_io; 169 struct page_list *journal_xor; 170 struct page_list *recalc_bitmap; 171 struct page_list *may_write_bitmap; 172 struct bitmap_block_status *bbs; 173 unsigned bitmap_flush_interval; 174 int synchronous_mode; 175 struct bio_list synchronous_bios; 176 struct delayed_work bitmap_flush_work; 177 178 struct crypto_skcipher *journal_crypt; 179 struct scatterlist **journal_scatterlist; 180 struct scatterlist **journal_io_scatterlist; 181 struct skcipher_request **sk_requests; 182 183 struct crypto_shash *journal_mac; 184 185 struct journal_node *journal_tree; 186 struct rb_root journal_tree_root; 187 188 sector_t provided_data_sectors; 189 190 unsigned short journal_entry_size; 191 unsigned char journal_entries_per_sector; 192 unsigned char journal_section_entries; 193 unsigned short journal_section_sectors; 194 unsigned journal_sections; 195 unsigned journal_entries; 196 sector_t data_device_sectors; 197 sector_t meta_device_sectors; 198 unsigned initial_sectors; 199 unsigned metadata_run; 200 __s8 log2_metadata_run; 201 __u8 log2_buffer_sectors; 202 __u8 sectors_per_block; 203 __u8 log2_blocks_per_bitmap_bit; 204 205 unsigned char mode; 206 207 int failed; 208 209 struct crypto_shash *internal_hash; 210 211 struct dm_target *ti; 212 213 /* these variables are locked with endio_wait.lock */ 214 struct rb_root in_progress; 215 struct list_head wait_list; 216 wait_queue_head_t endio_wait; 217 struct workqueue_struct *wait_wq; 218 struct workqueue_struct *offload_wq; 219 220 unsigned char commit_seq; 221 commit_id_t commit_ids[N_COMMIT_IDS]; 222 223 unsigned committed_section; 224 unsigned n_committed_sections; 225 226 unsigned uncommitted_section; 227 unsigned n_uncommitted_sections; 228 229 unsigned free_section; 230 unsigned char free_section_entry; 231 unsigned free_sectors; 232 233 unsigned free_sectors_threshold; 234 235 struct workqueue_struct *commit_wq; 236 struct work_struct commit_work; 237 238 struct workqueue_struct *writer_wq; 239 struct work_struct writer_work; 240 241 struct workqueue_struct *recalc_wq; 242 struct work_struct recalc_work; 243 u8 *recalc_buffer; 244 u8 *recalc_tags; 245 246 struct bio_list flush_bio_list; 247 248 unsigned long autocommit_jiffies; 249 struct timer_list autocommit_timer; 250 unsigned autocommit_msec; 251 252 wait_queue_head_t copy_to_journal_wait; 253 254 struct completion crypto_backoff; 255 256 bool journal_uptodate; 257 bool just_formatted; 258 bool recalculate_flag; 259 bool fix_padding; 260 261 struct alg_spec internal_hash_alg; 262 struct alg_spec journal_crypt_alg; 263 struct alg_spec journal_mac_alg; 264 265 atomic64_t number_of_mismatches; 266 267 struct notifier_block reboot_notifier; 268 }; 269 270 struct dm_integrity_range { 271 sector_t logical_sector; 272 sector_t n_sectors; 273 bool waiting; 274 union { 275 struct rb_node node; 276 struct { 277 struct task_struct *task; 278 struct list_head wait_entry; 279 }; 280 }; 281 }; 282 283 struct dm_integrity_io { 284 struct work_struct work; 285 286 struct dm_integrity_c *ic; 287 bool write; 288 bool fua; 289 290 struct dm_integrity_range range; 291 292 sector_t metadata_block; 293 unsigned metadata_offset; 294 295 atomic_t in_flight; 296 blk_status_t bi_status; 297 298 struct completion *completion; 299 300 struct dm_bio_details bio_details; 301 }; 302 303 struct journal_completion { 304 struct dm_integrity_c *ic; 305 atomic_t in_flight; 306 struct completion comp; 307 }; 308 309 struct journal_io { 310 struct dm_integrity_range range; 311 struct journal_completion *comp; 312 }; 313 314 struct bitmap_block_status { 315 struct work_struct work; 316 struct dm_integrity_c *ic; 317 unsigned idx; 318 unsigned long *bitmap; 319 struct bio_list bio_queue; 320 spinlock_t bio_queue_lock; 321 322 }; 323 324 static struct kmem_cache *journal_io_cache; 325 326 #define JOURNAL_IO_MEMPOOL 32 327 328 #ifdef DEBUG_PRINT 329 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 330 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 331 { 332 va_list args; 333 va_start(args, msg); 334 vprintk(msg, args); 335 va_end(args); 336 if (len) 337 pr_cont(":"); 338 while (len) { 339 pr_cont(" %02x", *bytes); 340 bytes++; 341 len--; 342 } 343 pr_cont("\n"); 344 } 345 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 346 #else 347 #define DEBUG_print(x, ...) do { } while (0) 348 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 349 #endif 350 351 static void dm_integrity_prepare(struct request *rq) 352 { 353 } 354 355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 356 { 357 } 358 359 /* 360 * DM Integrity profile, protection is performed layer above (dm-crypt) 361 */ 362 static const struct blk_integrity_profile dm_integrity_profile = { 363 .name = "DM-DIF-EXT-TAG", 364 .generate_fn = NULL, 365 .verify_fn = NULL, 366 .prepare_fn = dm_integrity_prepare, 367 .complete_fn = dm_integrity_complete, 368 }; 369 370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 371 static void integrity_bio_wait(struct work_struct *w); 372 static void dm_integrity_dtr(struct dm_target *ti); 373 374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 375 { 376 if (err == -EILSEQ) 377 atomic64_inc(&ic->number_of_mismatches); 378 if (!cmpxchg(&ic->failed, 0, err)) 379 DMERR("Error on %s: %d", msg, err); 380 } 381 382 static int dm_integrity_failed(struct dm_integrity_c *ic) 383 { 384 return READ_ONCE(ic->failed); 385 } 386 387 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 388 unsigned j, unsigned char seq) 389 { 390 /* 391 * Xor the number with section and sector, so that if a piece of 392 * journal is written at wrong place, it is detected. 393 */ 394 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 395 } 396 397 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 398 sector_t *area, sector_t *offset) 399 { 400 if (!ic->meta_dev) { 401 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 402 *area = data_sector >> log2_interleave_sectors; 403 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 404 } else { 405 *area = 0; 406 *offset = data_sector; 407 } 408 } 409 410 #define sector_to_block(ic, n) \ 411 do { \ 412 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 413 (n) >>= (ic)->sb->log2_sectors_per_block; \ 414 } while (0) 415 416 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 417 sector_t offset, unsigned *metadata_offset) 418 { 419 __u64 ms; 420 unsigned mo; 421 422 ms = area << ic->sb->log2_interleave_sectors; 423 if (likely(ic->log2_metadata_run >= 0)) 424 ms += area << ic->log2_metadata_run; 425 else 426 ms += area * ic->metadata_run; 427 ms >>= ic->log2_buffer_sectors; 428 429 sector_to_block(ic, offset); 430 431 if (likely(ic->log2_tag_size >= 0)) { 432 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 433 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 434 } else { 435 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 436 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 437 } 438 *metadata_offset = mo; 439 return ms; 440 } 441 442 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 443 { 444 sector_t result; 445 446 if (ic->meta_dev) 447 return offset; 448 449 result = area << ic->sb->log2_interleave_sectors; 450 if (likely(ic->log2_metadata_run >= 0)) 451 result += (area + 1) << ic->log2_metadata_run; 452 else 453 result += (area + 1) * ic->metadata_run; 454 455 result += (sector_t)ic->initial_sectors + offset; 456 result += ic->start; 457 458 return result; 459 } 460 461 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 462 { 463 if (unlikely(*sec_ptr >= ic->journal_sections)) 464 *sec_ptr -= ic->journal_sections; 465 } 466 467 static void sb_set_version(struct dm_integrity_c *ic) 468 { 469 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 470 ic->sb->version = SB_VERSION_4; 471 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 472 ic->sb->version = SB_VERSION_3; 473 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 474 ic->sb->version = SB_VERSION_2; 475 else 476 ic->sb->version = SB_VERSION_1; 477 } 478 479 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 480 { 481 struct dm_io_request io_req; 482 struct dm_io_region io_loc; 483 484 io_req.bi_op = op; 485 io_req.bi_op_flags = op_flags; 486 io_req.mem.type = DM_IO_KMEM; 487 io_req.mem.ptr.addr = ic->sb; 488 io_req.notify.fn = NULL; 489 io_req.client = ic->io; 490 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 491 io_loc.sector = ic->start; 492 io_loc.count = SB_SECTORS; 493 494 if (op == REQ_OP_WRITE) 495 sb_set_version(ic); 496 497 return dm_io(&io_req, 1, &io_loc, NULL); 498 } 499 500 #define BITMAP_OP_TEST_ALL_SET 0 501 #define BITMAP_OP_TEST_ALL_CLEAR 1 502 #define BITMAP_OP_SET 2 503 #define BITMAP_OP_CLEAR 3 504 505 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 506 sector_t sector, sector_t n_sectors, int mode) 507 { 508 unsigned long bit, end_bit, this_end_bit, page, end_page; 509 unsigned long *data; 510 511 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 512 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 513 (unsigned long long)sector, 514 (unsigned long long)n_sectors, 515 ic->sb->log2_sectors_per_block, 516 ic->log2_blocks_per_bitmap_bit, 517 mode); 518 BUG(); 519 } 520 521 if (unlikely(!n_sectors)) 522 return true; 523 524 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 525 end_bit = (sector + n_sectors - 1) >> 526 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 527 528 page = bit / (PAGE_SIZE * 8); 529 bit %= PAGE_SIZE * 8; 530 531 end_page = end_bit / (PAGE_SIZE * 8); 532 end_bit %= PAGE_SIZE * 8; 533 534 repeat: 535 if (page < end_page) { 536 this_end_bit = PAGE_SIZE * 8 - 1; 537 } else { 538 this_end_bit = end_bit; 539 } 540 541 data = lowmem_page_address(bitmap[page].page); 542 543 if (mode == BITMAP_OP_TEST_ALL_SET) { 544 while (bit <= this_end_bit) { 545 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 546 do { 547 if (data[bit / BITS_PER_LONG] != -1) 548 return false; 549 bit += BITS_PER_LONG; 550 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 551 continue; 552 } 553 if (!test_bit(bit, data)) 554 return false; 555 bit++; 556 } 557 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 558 while (bit <= this_end_bit) { 559 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 560 do { 561 if (data[bit / BITS_PER_LONG] != 0) 562 return false; 563 bit += BITS_PER_LONG; 564 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 565 continue; 566 } 567 if (test_bit(bit, data)) 568 return false; 569 bit++; 570 } 571 } else if (mode == BITMAP_OP_SET) { 572 while (bit <= this_end_bit) { 573 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 574 do { 575 data[bit / BITS_PER_LONG] = -1; 576 bit += BITS_PER_LONG; 577 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 578 continue; 579 } 580 __set_bit(bit, data); 581 bit++; 582 } 583 } else if (mode == BITMAP_OP_CLEAR) { 584 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 585 clear_page(data); 586 else while (bit <= this_end_bit) { 587 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 588 do { 589 data[bit / BITS_PER_LONG] = 0; 590 bit += BITS_PER_LONG; 591 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 592 continue; 593 } 594 __clear_bit(bit, data); 595 bit++; 596 } 597 } else { 598 BUG(); 599 } 600 601 if (unlikely(page < end_page)) { 602 bit = 0; 603 page++; 604 goto repeat; 605 } 606 607 return true; 608 } 609 610 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 611 { 612 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 613 unsigned i; 614 615 for (i = 0; i < n_bitmap_pages; i++) { 616 unsigned long *dst_data = lowmem_page_address(dst[i].page); 617 unsigned long *src_data = lowmem_page_address(src[i].page); 618 copy_page(dst_data, src_data); 619 } 620 } 621 622 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 623 { 624 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 625 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 626 627 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 628 return &ic->bbs[bitmap_block]; 629 } 630 631 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 632 bool e, const char *function) 633 { 634 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 635 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 636 637 if (unlikely(section >= ic->journal_sections) || 638 unlikely(offset >= limit)) { 639 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 640 function, section, offset, ic->journal_sections, limit); 641 BUG(); 642 } 643 #endif 644 } 645 646 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 647 unsigned *pl_index, unsigned *pl_offset) 648 { 649 unsigned sector; 650 651 access_journal_check(ic, section, offset, false, "page_list_location"); 652 653 sector = section * ic->journal_section_sectors + offset; 654 655 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 656 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 657 } 658 659 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 660 unsigned section, unsigned offset, unsigned *n_sectors) 661 { 662 unsigned pl_index, pl_offset; 663 char *va; 664 665 page_list_location(ic, section, offset, &pl_index, &pl_offset); 666 667 if (n_sectors) 668 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 669 670 va = lowmem_page_address(pl[pl_index].page); 671 672 return (struct journal_sector *)(va + pl_offset); 673 } 674 675 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 676 { 677 return access_page_list(ic, ic->journal, section, offset, NULL); 678 } 679 680 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 681 { 682 unsigned rel_sector, offset; 683 struct journal_sector *js; 684 685 access_journal_check(ic, section, n, true, "access_journal_entry"); 686 687 rel_sector = n % JOURNAL_BLOCK_SECTORS; 688 offset = n / JOURNAL_BLOCK_SECTORS; 689 690 js = access_journal(ic, section, rel_sector); 691 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 692 } 693 694 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 695 { 696 n <<= ic->sb->log2_sectors_per_block; 697 698 n += JOURNAL_BLOCK_SECTORS; 699 700 access_journal_check(ic, section, n, false, "access_journal_data"); 701 702 return access_journal(ic, section, n); 703 } 704 705 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 706 { 707 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 708 int r; 709 unsigned j, size; 710 711 desc->tfm = ic->journal_mac; 712 713 r = crypto_shash_init(desc); 714 if (unlikely(r)) { 715 dm_integrity_io_error(ic, "crypto_shash_init", r); 716 goto err; 717 } 718 719 for (j = 0; j < ic->journal_section_entries; j++) { 720 struct journal_entry *je = access_journal_entry(ic, section, j); 721 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 722 if (unlikely(r)) { 723 dm_integrity_io_error(ic, "crypto_shash_update", r); 724 goto err; 725 } 726 } 727 728 size = crypto_shash_digestsize(ic->journal_mac); 729 730 if (likely(size <= JOURNAL_MAC_SIZE)) { 731 r = crypto_shash_final(desc, result); 732 if (unlikely(r)) { 733 dm_integrity_io_error(ic, "crypto_shash_final", r); 734 goto err; 735 } 736 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 737 } else { 738 __u8 digest[HASH_MAX_DIGESTSIZE]; 739 740 if (WARN_ON(size > sizeof(digest))) { 741 dm_integrity_io_error(ic, "digest_size", -EINVAL); 742 goto err; 743 } 744 r = crypto_shash_final(desc, digest); 745 if (unlikely(r)) { 746 dm_integrity_io_error(ic, "crypto_shash_final", r); 747 goto err; 748 } 749 memcpy(result, digest, JOURNAL_MAC_SIZE); 750 } 751 752 return; 753 err: 754 memset(result, 0, JOURNAL_MAC_SIZE); 755 } 756 757 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 758 { 759 __u8 result[JOURNAL_MAC_SIZE]; 760 unsigned j; 761 762 if (!ic->journal_mac) 763 return; 764 765 section_mac(ic, section, result); 766 767 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 768 struct journal_sector *js = access_journal(ic, section, j); 769 770 if (likely(wr)) 771 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 772 else { 773 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 774 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 775 } 776 } 777 } 778 779 static void complete_journal_op(void *context) 780 { 781 struct journal_completion *comp = context; 782 BUG_ON(!atomic_read(&comp->in_flight)); 783 if (likely(atomic_dec_and_test(&comp->in_flight))) 784 complete(&comp->comp); 785 } 786 787 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 788 unsigned n_sections, struct journal_completion *comp) 789 { 790 struct async_submit_ctl submit; 791 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 792 unsigned pl_index, pl_offset, section_index; 793 struct page_list *source_pl, *target_pl; 794 795 if (likely(encrypt)) { 796 source_pl = ic->journal; 797 target_pl = ic->journal_io; 798 } else { 799 source_pl = ic->journal_io; 800 target_pl = ic->journal; 801 } 802 803 page_list_location(ic, section, 0, &pl_index, &pl_offset); 804 805 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 806 807 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 808 809 section_index = pl_index; 810 811 do { 812 size_t this_step; 813 struct page *src_pages[2]; 814 struct page *dst_page; 815 816 while (unlikely(pl_index == section_index)) { 817 unsigned dummy; 818 if (likely(encrypt)) 819 rw_section_mac(ic, section, true); 820 section++; 821 n_sections--; 822 if (!n_sections) 823 break; 824 page_list_location(ic, section, 0, §ion_index, &dummy); 825 } 826 827 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 828 dst_page = target_pl[pl_index].page; 829 src_pages[0] = source_pl[pl_index].page; 830 src_pages[1] = ic->journal_xor[pl_index].page; 831 832 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 833 834 pl_index++; 835 pl_offset = 0; 836 n_bytes -= this_step; 837 } while (n_bytes); 838 839 BUG_ON(n_sections); 840 841 async_tx_issue_pending_all(); 842 } 843 844 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 845 { 846 struct journal_completion *comp = req->data; 847 if (unlikely(err)) { 848 if (likely(err == -EINPROGRESS)) { 849 complete(&comp->ic->crypto_backoff); 850 return; 851 } 852 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 853 } 854 complete_journal_op(comp); 855 } 856 857 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 858 { 859 int r; 860 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 861 complete_journal_encrypt, comp); 862 if (likely(encrypt)) 863 r = crypto_skcipher_encrypt(req); 864 else 865 r = crypto_skcipher_decrypt(req); 866 if (likely(!r)) 867 return false; 868 if (likely(r == -EINPROGRESS)) 869 return true; 870 if (likely(r == -EBUSY)) { 871 wait_for_completion(&comp->ic->crypto_backoff); 872 reinit_completion(&comp->ic->crypto_backoff); 873 return true; 874 } 875 dm_integrity_io_error(comp->ic, "encrypt", r); 876 return false; 877 } 878 879 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 880 unsigned n_sections, struct journal_completion *comp) 881 { 882 struct scatterlist **source_sg; 883 struct scatterlist **target_sg; 884 885 atomic_add(2, &comp->in_flight); 886 887 if (likely(encrypt)) { 888 source_sg = ic->journal_scatterlist; 889 target_sg = ic->journal_io_scatterlist; 890 } else { 891 source_sg = ic->journal_io_scatterlist; 892 target_sg = ic->journal_scatterlist; 893 } 894 895 do { 896 struct skcipher_request *req; 897 unsigned ivsize; 898 char *iv; 899 900 if (likely(encrypt)) 901 rw_section_mac(ic, section, true); 902 903 req = ic->sk_requests[section]; 904 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 905 iv = req->iv; 906 907 memcpy(iv, iv + ivsize, ivsize); 908 909 req->src = source_sg[section]; 910 req->dst = target_sg[section]; 911 912 if (unlikely(do_crypt(encrypt, req, comp))) 913 atomic_inc(&comp->in_flight); 914 915 section++; 916 n_sections--; 917 } while (n_sections); 918 919 atomic_dec(&comp->in_flight); 920 complete_journal_op(comp); 921 } 922 923 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 924 unsigned n_sections, struct journal_completion *comp) 925 { 926 if (ic->journal_xor) 927 return xor_journal(ic, encrypt, section, n_sections, comp); 928 else 929 return crypt_journal(ic, encrypt, section, n_sections, comp); 930 } 931 932 static void complete_journal_io(unsigned long error, void *context) 933 { 934 struct journal_completion *comp = context; 935 if (unlikely(error != 0)) 936 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 937 complete_journal_op(comp); 938 } 939 940 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 941 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 942 { 943 struct dm_io_request io_req; 944 struct dm_io_region io_loc; 945 unsigned pl_index, pl_offset; 946 int r; 947 948 if (unlikely(dm_integrity_failed(ic))) { 949 if (comp) 950 complete_journal_io(-1UL, comp); 951 return; 952 } 953 954 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 955 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 956 957 io_req.bi_op = op; 958 io_req.bi_op_flags = op_flags; 959 io_req.mem.type = DM_IO_PAGE_LIST; 960 if (ic->journal_io) 961 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 962 else 963 io_req.mem.ptr.pl = &ic->journal[pl_index]; 964 io_req.mem.offset = pl_offset; 965 if (likely(comp != NULL)) { 966 io_req.notify.fn = complete_journal_io; 967 io_req.notify.context = comp; 968 } else { 969 io_req.notify.fn = NULL; 970 } 971 io_req.client = ic->io; 972 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 973 io_loc.sector = ic->start + SB_SECTORS + sector; 974 io_loc.count = n_sectors; 975 976 r = dm_io(&io_req, 1, &io_loc, NULL); 977 if (unlikely(r)) { 978 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 979 if (comp) { 980 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 981 complete_journal_io(-1UL, comp); 982 } 983 } 984 } 985 986 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 987 unsigned n_sections, struct journal_completion *comp) 988 { 989 unsigned sector, n_sectors; 990 991 sector = section * ic->journal_section_sectors; 992 n_sectors = n_sections * ic->journal_section_sectors; 993 994 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 995 } 996 997 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 998 { 999 struct journal_completion io_comp; 1000 struct journal_completion crypt_comp_1; 1001 struct journal_completion crypt_comp_2; 1002 unsigned i; 1003 1004 io_comp.ic = ic; 1005 init_completion(&io_comp.comp); 1006 1007 if (commit_start + commit_sections <= ic->journal_sections) { 1008 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1009 if (ic->journal_io) { 1010 crypt_comp_1.ic = ic; 1011 init_completion(&crypt_comp_1.comp); 1012 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1013 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1014 wait_for_completion_io(&crypt_comp_1.comp); 1015 } else { 1016 for (i = 0; i < commit_sections; i++) 1017 rw_section_mac(ic, commit_start + i, true); 1018 } 1019 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1020 commit_sections, &io_comp); 1021 } else { 1022 unsigned to_end; 1023 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1024 to_end = ic->journal_sections - commit_start; 1025 if (ic->journal_io) { 1026 crypt_comp_1.ic = ic; 1027 init_completion(&crypt_comp_1.comp); 1028 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1029 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1030 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1031 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1032 reinit_completion(&crypt_comp_1.comp); 1033 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1034 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1035 wait_for_completion_io(&crypt_comp_1.comp); 1036 } else { 1037 crypt_comp_2.ic = ic; 1038 init_completion(&crypt_comp_2.comp); 1039 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1040 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1041 wait_for_completion_io(&crypt_comp_1.comp); 1042 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1043 wait_for_completion_io(&crypt_comp_2.comp); 1044 } 1045 } else { 1046 for (i = 0; i < to_end; i++) 1047 rw_section_mac(ic, commit_start + i, true); 1048 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1049 for (i = 0; i < commit_sections - to_end; i++) 1050 rw_section_mac(ic, i, true); 1051 } 1052 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1053 } 1054 1055 wait_for_completion_io(&io_comp.comp); 1056 } 1057 1058 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1059 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1060 { 1061 struct dm_io_request io_req; 1062 struct dm_io_region io_loc; 1063 int r; 1064 unsigned sector, pl_index, pl_offset; 1065 1066 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1067 1068 if (unlikely(dm_integrity_failed(ic))) { 1069 fn(-1UL, data); 1070 return; 1071 } 1072 1073 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1074 1075 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1076 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1077 1078 io_req.bi_op = REQ_OP_WRITE; 1079 io_req.bi_op_flags = 0; 1080 io_req.mem.type = DM_IO_PAGE_LIST; 1081 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1082 io_req.mem.offset = pl_offset; 1083 io_req.notify.fn = fn; 1084 io_req.notify.context = data; 1085 io_req.client = ic->io; 1086 io_loc.bdev = ic->dev->bdev; 1087 io_loc.sector = target; 1088 io_loc.count = n_sectors; 1089 1090 r = dm_io(&io_req, 1, &io_loc, NULL); 1091 if (unlikely(r)) { 1092 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1093 fn(-1UL, data); 1094 } 1095 } 1096 1097 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1098 { 1099 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1100 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1101 } 1102 1103 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1104 { 1105 struct rb_node **n = &ic->in_progress.rb_node; 1106 struct rb_node *parent; 1107 1108 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1109 1110 if (likely(check_waiting)) { 1111 struct dm_integrity_range *range; 1112 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1113 if (unlikely(ranges_overlap(range, new_range))) 1114 return false; 1115 } 1116 } 1117 1118 parent = NULL; 1119 1120 while (*n) { 1121 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1122 1123 parent = *n; 1124 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1125 n = &range->node.rb_left; 1126 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1127 n = &range->node.rb_right; 1128 } else { 1129 return false; 1130 } 1131 } 1132 1133 rb_link_node(&new_range->node, parent, n); 1134 rb_insert_color(&new_range->node, &ic->in_progress); 1135 1136 return true; 1137 } 1138 1139 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1140 { 1141 rb_erase(&range->node, &ic->in_progress); 1142 while (unlikely(!list_empty(&ic->wait_list))) { 1143 struct dm_integrity_range *last_range = 1144 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1145 struct task_struct *last_range_task; 1146 last_range_task = last_range->task; 1147 list_del(&last_range->wait_entry); 1148 if (!add_new_range(ic, last_range, false)) { 1149 last_range->task = last_range_task; 1150 list_add(&last_range->wait_entry, &ic->wait_list); 1151 break; 1152 } 1153 last_range->waiting = false; 1154 wake_up_process(last_range_task); 1155 } 1156 } 1157 1158 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1159 { 1160 unsigned long flags; 1161 1162 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1163 remove_range_unlocked(ic, range); 1164 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1165 } 1166 1167 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1168 { 1169 new_range->waiting = true; 1170 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1171 new_range->task = current; 1172 do { 1173 __set_current_state(TASK_UNINTERRUPTIBLE); 1174 spin_unlock_irq(&ic->endio_wait.lock); 1175 io_schedule(); 1176 spin_lock_irq(&ic->endio_wait.lock); 1177 } while (unlikely(new_range->waiting)); 1178 } 1179 1180 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1181 { 1182 if (unlikely(!add_new_range(ic, new_range, true))) 1183 wait_and_add_new_range(ic, new_range); 1184 } 1185 1186 static void init_journal_node(struct journal_node *node) 1187 { 1188 RB_CLEAR_NODE(&node->node); 1189 node->sector = (sector_t)-1; 1190 } 1191 1192 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1193 { 1194 struct rb_node **link; 1195 struct rb_node *parent; 1196 1197 node->sector = sector; 1198 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1199 1200 link = &ic->journal_tree_root.rb_node; 1201 parent = NULL; 1202 1203 while (*link) { 1204 struct journal_node *j; 1205 parent = *link; 1206 j = container_of(parent, struct journal_node, node); 1207 if (sector < j->sector) 1208 link = &j->node.rb_left; 1209 else 1210 link = &j->node.rb_right; 1211 } 1212 1213 rb_link_node(&node->node, parent, link); 1214 rb_insert_color(&node->node, &ic->journal_tree_root); 1215 } 1216 1217 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1218 { 1219 BUG_ON(RB_EMPTY_NODE(&node->node)); 1220 rb_erase(&node->node, &ic->journal_tree_root); 1221 init_journal_node(node); 1222 } 1223 1224 #define NOT_FOUND (-1U) 1225 1226 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1227 { 1228 struct rb_node *n = ic->journal_tree_root.rb_node; 1229 unsigned found = NOT_FOUND; 1230 *next_sector = (sector_t)-1; 1231 while (n) { 1232 struct journal_node *j = container_of(n, struct journal_node, node); 1233 if (sector == j->sector) { 1234 found = j - ic->journal_tree; 1235 } 1236 if (sector < j->sector) { 1237 *next_sector = j->sector; 1238 n = j->node.rb_left; 1239 } else { 1240 n = j->node.rb_right; 1241 } 1242 } 1243 1244 return found; 1245 } 1246 1247 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1248 { 1249 struct journal_node *node, *next_node; 1250 struct rb_node *next; 1251 1252 if (unlikely(pos >= ic->journal_entries)) 1253 return false; 1254 node = &ic->journal_tree[pos]; 1255 if (unlikely(RB_EMPTY_NODE(&node->node))) 1256 return false; 1257 if (unlikely(node->sector != sector)) 1258 return false; 1259 1260 next = rb_next(&node->node); 1261 if (unlikely(!next)) 1262 return true; 1263 1264 next_node = container_of(next, struct journal_node, node); 1265 return next_node->sector != sector; 1266 } 1267 1268 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1269 { 1270 struct rb_node *next; 1271 struct journal_node *next_node; 1272 unsigned next_section; 1273 1274 BUG_ON(RB_EMPTY_NODE(&node->node)); 1275 1276 next = rb_next(&node->node); 1277 if (unlikely(!next)) 1278 return false; 1279 1280 next_node = container_of(next, struct journal_node, node); 1281 1282 if (next_node->sector != node->sector) 1283 return false; 1284 1285 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1286 if (next_section >= ic->committed_section && 1287 next_section < ic->committed_section + ic->n_committed_sections) 1288 return true; 1289 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1290 return true; 1291 1292 return false; 1293 } 1294 1295 #define TAG_READ 0 1296 #define TAG_WRITE 1 1297 #define TAG_CMP 2 1298 1299 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1300 unsigned *metadata_offset, unsigned total_size, int op) 1301 { 1302 do { 1303 unsigned char *data, *dp; 1304 struct dm_buffer *b; 1305 unsigned to_copy; 1306 int r; 1307 1308 r = dm_integrity_failed(ic); 1309 if (unlikely(r)) 1310 return r; 1311 1312 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1313 if (IS_ERR(data)) 1314 return PTR_ERR(data); 1315 1316 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1317 dp = data + *metadata_offset; 1318 if (op == TAG_READ) { 1319 memcpy(tag, dp, to_copy); 1320 } else if (op == TAG_WRITE) { 1321 memcpy(dp, tag, to_copy); 1322 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1323 } else { 1324 /* e.g.: op == TAG_CMP */ 1325 if (unlikely(memcmp(dp, tag, to_copy))) { 1326 unsigned i; 1327 1328 for (i = 0; i < to_copy; i++) { 1329 if (dp[i] != tag[i]) 1330 break; 1331 total_size--; 1332 } 1333 dm_bufio_release(b); 1334 return total_size; 1335 } 1336 } 1337 dm_bufio_release(b); 1338 1339 tag += to_copy; 1340 *metadata_offset += to_copy; 1341 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1342 (*metadata_block)++; 1343 *metadata_offset = 0; 1344 } 1345 total_size -= to_copy; 1346 } while (unlikely(total_size)); 1347 1348 return 0; 1349 } 1350 1351 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1352 { 1353 int r; 1354 r = dm_bufio_write_dirty_buffers(ic->bufio); 1355 if (unlikely(r)) 1356 dm_integrity_io_error(ic, "writing tags", r); 1357 } 1358 1359 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1360 { 1361 DECLARE_WAITQUEUE(wait, current); 1362 __add_wait_queue(&ic->endio_wait, &wait); 1363 __set_current_state(TASK_UNINTERRUPTIBLE); 1364 spin_unlock_irq(&ic->endio_wait.lock); 1365 io_schedule(); 1366 spin_lock_irq(&ic->endio_wait.lock); 1367 __remove_wait_queue(&ic->endio_wait, &wait); 1368 } 1369 1370 static void autocommit_fn(struct timer_list *t) 1371 { 1372 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1373 1374 if (likely(!dm_integrity_failed(ic))) 1375 queue_work(ic->commit_wq, &ic->commit_work); 1376 } 1377 1378 static void schedule_autocommit(struct dm_integrity_c *ic) 1379 { 1380 if (!timer_pending(&ic->autocommit_timer)) 1381 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1382 } 1383 1384 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1385 { 1386 struct bio *bio; 1387 unsigned long flags; 1388 1389 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1390 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1391 bio_list_add(&ic->flush_bio_list, bio); 1392 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1393 1394 queue_work(ic->commit_wq, &ic->commit_work); 1395 } 1396 1397 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1398 { 1399 int r = dm_integrity_failed(ic); 1400 if (unlikely(r) && !bio->bi_status) 1401 bio->bi_status = errno_to_blk_status(r); 1402 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1403 unsigned long flags; 1404 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1405 bio_list_add(&ic->synchronous_bios, bio); 1406 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1407 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1408 return; 1409 } 1410 bio_endio(bio); 1411 } 1412 1413 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1414 { 1415 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1416 1417 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1418 submit_flush_bio(ic, dio); 1419 else 1420 do_endio(ic, bio); 1421 } 1422 1423 static void dec_in_flight(struct dm_integrity_io *dio) 1424 { 1425 if (atomic_dec_and_test(&dio->in_flight)) { 1426 struct dm_integrity_c *ic = dio->ic; 1427 struct bio *bio; 1428 1429 remove_range(ic, &dio->range); 1430 1431 if (unlikely(dio->write)) 1432 schedule_autocommit(ic); 1433 1434 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1435 1436 if (unlikely(dio->bi_status) && !bio->bi_status) 1437 bio->bi_status = dio->bi_status; 1438 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1439 dio->range.logical_sector += dio->range.n_sectors; 1440 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1441 INIT_WORK(&dio->work, integrity_bio_wait); 1442 queue_work(ic->offload_wq, &dio->work); 1443 return; 1444 } 1445 do_endio_flush(ic, dio); 1446 } 1447 } 1448 1449 static void integrity_end_io(struct bio *bio) 1450 { 1451 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1452 1453 dm_bio_restore(&dio->bio_details, bio); 1454 if (bio->bi_integrity) 1455 bio->bi_opf |= REQ_INTEGRITY; 1456 1457 if (dio->completion) 1458 complete(dio->completion); 1459 1460 dec_in_flight(dio); 1461 } 1462 1463 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1464 const char *data, char *result) 1465 { 1466 __u64 sector_le = cpu_to_le64(sector); 1467 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1468 int r; 1469 unsigned digest_size; 1470 1471 req->tfm = ic->internal_hash; 1472 1473 r = crypto_shash_init(req); 1474 if (unlikely(r < 0)) { 1475 dm_integrity_io_error(ic, "crypto_shash_init", r); 1476 goto failed; 1477 } 1478 1479 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1480 if (unlikely(r < 0)) { 1481 dm_integrity_io_error(ic, "crypto_shash_update", r); 1482 goto failed; 1483 } 1484 1485 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1486 if (unlikely(r < 0)) { 1487 dm_integrity_io_error(ic, "crypto_shash_update", r); 1488 goto failed; 1489 } 1490 1491 r = crypto_shash_final(req, result); 1492 if (unlikely(r < 0)) { 1493 dm_integrity_io_error(ic, "crypto_shash_final", r); 1494 goto failed; 1495 } 1496 1497 digest_size = crypto_shash_digestsize(ic->internal_hash); 1498 if (unlikely(digest_size < ic->tag_size)) 1499 memset(result + digest_size, 0, ic->tag_size - digest_size); 1500 1501 return; 1502 1503 failed: 1504 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1505 get_random_bytes(result, ic->tag_size); 1506 } 1507 1508 static void integrity_metadata(struct work_struct *w) 1509 { 1510 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1511 struct dm_integrity_c *ic = dio->ic; 1512 1513 int r; 1514 1515 if (ic->internal_hash) { 1516 struct bvec_iter iter; 1517 struct bio_vec bv; 1518 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1519 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1520 char *checksums; 1521 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1522 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1523 unsigned sectors_to_process = dio->range.n_sectors; 1524 sector_t sector = dio->range.logical_sector; 1525 1526 if (unlikely(ic->mode == 'R')) 1527 goto skip_io; 1528 1529 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1530 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1531 if (!checksums) { 1532 checksums = checksums_onstack; 1533 if (WARN_ON(extra_space && 1534 digest_size > sizeof(checksums_onstack))) { 1535 r = -EINVAL; 1536 goto error; 1537 } 1538 } 1539 1540 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1541 unsigned pos; 1542 char *mem, *checksums_ptr; 1543 1544 again: 1545 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1546 pos = 0; 1547 checksums_ptr = checksums; 1548 do { 1549 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1550 checksums_ptr += ic->tag_size; 1551 sectors_to_process -= ic->sectors_per_block; 1552 pos += ic->sectors_per_block << SECTOR_SHIFT; 1553 sector += ic->sectors_per_block; 1554 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1555 kunmap_atomic(mem); 1556 1557 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1558 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1559 if (unlikely(r)) { 1560 if (r > 0) { 1561 DMERR_LIMIT("Checksum failed at sector 0x%llx", 1562 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1563 r = -EILSEQ; 1564 atomic64_inc(&ic->number_of_mismatches); 1565 } 1566 if (likely(checksums != checksums_onstack)) 1567 kfree(checksums); 1568 goto error; 1569 } 1570 1571 if (!sectors_to_process) 1572 break; 1573 1574 if (unlikely(pos < bv.bv_len)) { 1575 bv.bv_offset += pos; 1576 bv.bv_len -= pos; 1577 goto again; 1578 } 1579 } 1580 1581 if (likely(checksums != checksums_onstack)) 1582 kfree(checksums); 1583 } else { 1584 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1585 1586 if (bip) { 1587 struct bio_vec biv; 1588 struct bvec_iter iter; 1589 unsigned data_to_process = dio->range.n_sectors; 1590 sector_to_block(ic, data_to_process); 1591 data_to_process *= ic->tag_size; 1592 1593 bip_for_each_vec(biv, bip, iter) { 1594 unsigned char *tag; 1595 unsigned this_len; 1596 1597 BUG_ON(PageHighMem(biv.bv_page)); 1598 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1599 this_len = min(biv.bv_len, data_to_process); 1600 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1601 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1602 if (unlikely(r)) 1603 goto error; 1604 data_to_process -= this_len; 1605 if (!data_to_process) 1606 break; 1607 } 1608 } 1609 } 1610 skip_io: 1611 dec_in_flight(dio); 1612 return; 1613 error: 1614 dio->bi_status = errno_to_blk_status(r); 1615 dec_in_flight(dio); 1616 } 1617 1618 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1619 { 1620 struct dm_integrity_c *ic = ti->private; 1621 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1622 struct bio_integrity_payload *bip; 1623 1624 sector_t area, offset; 1625 1626 dio->ic = ic; 1627 dio->bi_status = 0; 1628 1629 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1630 submit_flush_bio(ic, dio); 1631 return DM_MAPIO_SUBMITTED; 1632 } 1633 1634 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1635 dio->write = bio_op(bio) == REQ_OP_WRITE; 1636 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1637 if (unlikely(dio->fua)) { 1638 /* 1639 * Don't pass down the FUA flag because we have to flush 1640 * disk cache anyway. 1641 */ 1642 bio->bi_opf &= ~REQ_FUA; 1643 } 1644 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1645 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1646 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1647 (unsigned long long)ic->provided_data_sectors); 1648 return DM_MAPIO_KILL; 1649 } 1650 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1651 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1652 ic->sectors_per_block, 1653 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1654 return DM_MAPIO_KILL; 1655 } 1656 1657 if (ic->sectors_per_block > 1) { 1658 struct bvec_iter iter; 1659 struct bio_vec bv; 1660 bio_for_each_segment(bv, bio, iter) { 1661 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1662 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1663 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1664 return DM_MAPIO_KILL; 1665 } 1666 } 1667 } 1668 1669 bip = bio_integrity(bio); 1670 if (!ic->internal_hash) { 1671 if (bip) { 1672 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1673 if (ic->log2_tag_size >= 0) 1674 wanted_tag_size <<= ic->log2_tag_size; 1675 else 1676 wanted_tag_size *= ic->tag_size; 1677 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1678 DMERR("Invalid integrity data size %u, expected %u", 1679 bip->bip_iter.bi_size, wanted_tag_size); 1680 return DM_MAPIO_KILL; 1681 } 1682 } 1683 } else { 1684 if (unlikely(bip != NULL)) { 1685 DMERR("Unexpected integrity data when using internal hash"); 1686 return DM_MAPIO_KILL; 1687 } 1688 } 1689 1690 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1691 return DM_MAPIO_KILL; 1692 1693 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1694 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1695 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1696 1697 dm_integrity_map_continue(dio, true); 1698 return DM_MAPIO_SUBMITTED; 1699 } 1700 1701 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1702 unsigned journal_section, unsigned journal_entry) 1703 { 1704 struct dm_integrity_c *ic = dio->ic; 1705 sector_t logical_sector; 1706 unsigned n_sectors; 1707 1708 logical_sector = dio->range.logical_sector; 1709 n_sectors = dio->range.n_sectors; 1710 do { 1711 struct bio_vec bv = bio_iovec(bio); 1712 char *mem; 1713 1714 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1715 bv.bv_len = n_sectors << SECTOR_SHIFT; 1716 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1717 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1718 retry_kmap: 1719 mem = kmap_atomic(bv.bv_page); 1720 if (likely(dio->write)) 1721 flush_dcache_page(bv.bv_page); 1722 1723 do { 1724 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1725 1726 if (unlikely(!dio->write)) { 1727 struct journal_sector *js; 1728 char *mem_ptr; 1729 unsigned s; 1730 1731 if (unlikely(journal_entry_is_inprogress(je))) { 1732 flush_dcache_page(bv.bv_page); 1733 kunmap_atomic(mem); 1734 1735 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1736 goto retry_kmap; 1737 } 1738 smp_rmb(); 1739 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1740 js = access_journal_data(ic, journal_section, journal_entry); 1741 mem_ptr = mem + bv.bv_offset; 1742 s = 0; 1743 do { 1744 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1745 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1746 js++; 1747 mem_ptr += 1 << SECTOR_SHIFT; 1748 } while (++s < ic->sectors_per_block); 1749 #ifdef INTERNAL_VERIFY 1750 if (ic->internal_hash) { 1751 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1752 1753 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1754 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1755 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1756 (unsigned long long)logical_sector); 1757 } 1758 } 1759 #endif 1760 } 1761 1762 if (!ic->internal_hash) { 1763 struct bio_integrity_payload *bip = bio_integrity(bio); 1764 unsigned tag_todo = ic->tag_size; 1765 char *tag_ptr = journal_entry_tag(ic, je); 1766 1767 if (bip) do { 1768 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1769 unsigned tag_now = min(biv.bv_len, tag_todo); 1770 char *tag_addr; 1771 BUG_ON(PageHighMem(biv.bv_page)); 1772 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1773 if (likely(dio->write)) 1774 memcpy(tag_ptr, tag_addr, tag_now); 1775 else 1776 memcpy(tag_addr, tag_ptr, tag_now); 1777 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1778 tag_ptr += tag_now; 1779 tag_todo -= tag_now; 1780 } while (unlikely(tag_todo)); else { 1781 if (likely(dio->write)) 1782 memset(tag_ptr, 0, tag_todo); 1783 } 1784 } 1785 1786 if (likely(dio->write)) { 1787 struct journal_sector *js; 1788 unsigned s; 1789 1790 js = access_journal_data(ic, journal_section, journal_entry); 1791 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1792 1793 s = 0; 1794 do { 1795 je->last_bytes[s] = js[s].commit_id; 1796 } while (++s < ic->sectors_per_block); 1797 1798 if (ic->internal_hash) { 1799 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1800 if (unlikely(digest_size > ic->tag_size)) { 1801 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1802 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1803 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1804 } else 1805 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1806 } 1807 1808 journal_entry_set_sector(je, logical_sector); 1809 } 1810 logical_sector += ic->sectors_per_block; 1811 1812 journal_entry++; 1813 if (unlikely(journal_entry == ic->journal_section_entries)) { 1814 journal_entry = 0; 1815 journal_section++; 1816 wraparound_section(ic, &journal_section); 1817 } 1818 1819 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1820 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1821 1822 if (unlikely(!dio->write)) 1823 flush_dcache_page(bv.bv_page); 1824 kunmap_atomic(mem); 1825 } while (n_sectors); 1826 1827 if (likely(dio->write)) { 1828 smp_mb(); 1829 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1830 wake_up(&ic->copy_to_journal_wait); 1831 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1832 queue_work(ic->commit_wq, &ic->commit_work); 1833 } else { 1834 schedule_autocommit(ic); 1835 } 1836 } else { 1837 remove_range(ic, &dio->range); 1838 } 1839 1840 if (unlikely(bio->bi_iter.bi_size)) { 1841 sector_t area, offset; 1842 1843 dio->range.logical_sector = logical_sector; 1844 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1845 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1846 return true; 1847 } 1848 1849 return false; 1850 } 1851 1852 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1853 { 1854 struct dm_integrity_c *ic = dio->ic; 1855 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1856 unsigned journal_section, journal_entry; 1857 unsigned journal_read_pos; 1858 struct completion read_comp; 1859 bool need_sync_io = ic->internal_hash && !dio->write; 1860 1861 if (need_sync_io && from_map) { 1862 INIT_WORK(&dio->work, integrity_bio_wait); 1863 queue_work(ic->offload_wq, &dio->work); 1864 return; 1865 } 1866 1867 lock_retry: 1868 spin_lock_irq(&ic->endio_wait.lock); 1869 retry: 1870 if (unlikely(dm_integrity_failed(ic))) { 1871 spin_unlock_irq(&ic->endio_wait.lock); 1872 do_endio(ic, bio); 1873 return; 1874 } 1875 dio->range.n_sectors = bio_sectors(bio); 1876 journal_read_pos = NOT_FOUND; 1877 if (likely(ic->mode == 'J')) { 1878 if (dio->write) { 1879 unsigned next_entry, i, pos; 1880 unsigned ws, we, range_sectors; 1881 1882 dio->range.n_sectors = min(dio->range.n_sectors, 1883 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 1884 if (unlikely(!dio->range.n_sectors)) { 1885 if (from_map) 1886 goto offload_to_thread; 1887 sleep_on_endio_wait(ic); 1888 goto retry; 1889 } 1890 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1891 ic->free_sectors -= range_sectors; 1892 journal_section = ic->free_section; 1893 journal_entry = ic->free_section_entry; 1894 1895 next_entry = ic->free_section_entry + range_sectors; 1896 ic->free_section_entry = next_entry % ic->journal_section_entries; 1897 ic->free_section += next_entry / ic->journal_section_entries; 1898 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1899 wraparound_section(ic, &ic->free_section); 1900 1901 pos = journal_section * ic->journal_section_entries + journal_entry; 1902 ws = journal_section; 1903 we = journal_entry; 1904 i = 0; 1905 do { 1906 struct journal_entry *je; 1907 1908 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1909 pos++; 1910 if (unlikely(pos >= ic->journal_entries)) 1911 pos = 0; 1912 1913 je = access_journal_entry(ic, ws, we); 1914 BUG_ON(!journal_entry_is_unused(je)); 1915 journal_entry_set_inprogress(je); 1916 we++; 1917 if (unlikely(we == ic->journal_section_entries)) { 1918 we = 0; 1919 ws++; 1920 wraparound_section(ic, &ws); 1921 } 1922 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1923 1924 spin_unlock_irq(&ic->endio_wait.lock); 1925 goto journal_read_write; 1926 } else { 1927 sector_t next_sector; 1928 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1929 if (likely(journal_read_pos == NOT_FOUND)) { 1930 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1931 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1932 } else { 1933 unsigned i; 1934 unsigned jp = journal_read_pos + 1; 1935 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1936 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1937 break; 1938 } 1939 dio->range.n_sectors = i; 1940 } 1941 } 1942 } 1943 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1944 /* 1945 * We must not sleep in the request routine because it could 1946 * stall bios on current->bio_list. 1947 * So, we offload the bio to a workqueue if we have to sleep. 1948 */ 1949 if (from_map) { 1950 offload_to_thread: 1951 spin_unlock_irq(&ic->endio_wait.lock); 1952 INIT_WORK(&dio->work, integrity_bio_wait); 1953 queue_work(ic->wait_wq, &dio->work); 1954 return; 1955 } 1956 if (journal_read_pos != NOT_FOUND) 1957 dio->range.n_sectors = ic->sectors_per_block; 1958 wait_and_add_new_range(ic, &dio->range); 1959 /* 1960 * wait_and_add_new_range drops the spinlock, so the journal 1961 * may have been changed arbitrarily. We need to recheck. 1962 * To simplify the code, we restrict I/O size to just one block. 1963 */ 1964 if (journal_read_pos != NOT_FOUND) { 1965 sector_t next_sector; 1966 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1967 if (unlikely(new_pos != journal_read_pos)) { 1968 remove_range_unlocked(ic, &dio->range); 1969 goto retry; 1970 } 1971 } 1972 } 1973 spin_unlock_irq(&ic->endio_wait.lock); 1974 1975 if (unlikely(journal_read_pos != NOT_FOUND)) { 1976 journal_section = journal_read_pos / ic->journal_section_entries; 1977 journal_entry = journal_read_pos % ic->journal_section_entries; 1978 goto journal_read_write; 1979 } 1980 1981 if (ic->mode == 'B' && dio->write) { 1982 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 1983 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 1984 struct bitmap_block_status *bbs; 1985 1986 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 1987 spin_lock(&bbs->bio_queue_lock); 1988 bio_list_add(&bbs->bio_queue, bio); 1989 spin_unlock(&bbs->bio_queue_lock); 1990 queue_work(ic->writer_wq, &bbs->work); 1991 return; 1992 } 1993 } 1994 1995 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1996 1997 if (need_sync_io) { 1998 init_completion(&read_comp); 1999 dio->completion = &read_comp; 2000 } else 2001 dio->completion = NULL; 2002 2003 dm_bio_record(&dio->bio_details, bio); 2004 bio_set_dev(bio, ic->dev->bdev); 2005 bio->bi_integrity = NULL; 2006 bio->bi_opf &= ~REQ_INTEGRITY; 2007 bio->bi_end_io = integrity_end_io; 2008 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2009 2010 generic_make_request(bio); 2011 2012 if (need_sync_io) { 2013 wait_for_completion_io(&read_comp); 2014 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2015 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2016 goto skip_check; 2017 if (ic->mode == 'B') { 2018 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2019 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2020 goto skip_check; 2021 } 2022 2023 if (likely(!bio->bi_status)) 2024 integrity_metadata(&dio->work); 2025 else 2026 skip_check: 2027 dec_in_flight(dio); 2028 2029 } else { 2030 INIT_WORK(&dio->work, integrity_metadata); 2031 queue_work(ic->metadata_wq, &dio->work); 2032 } 2033 2034 return; 2035 2036 journal_read_write: 2037 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2038 goto lock_retry; 2039 2040 do_endio_flush(ic, dio); 2041 } 2042 2043 2044 static void integrity_bio_wait(struct work_struct *w) 2045 { 2046 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2047 2048 dm_integrity_map_continue(dio, false); 2049 } 2050 2051 static void pad_uncommitted(struct dm_integrity_c *ic) 2052 { 2053 if (ic->free_section_entry) { 2054 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2055 ic->free_section_entry = 0; 2056 ic->free_section++; 2057 wraparound_section(ic, &ic->free_section); 2058 ic->n_uncommitted_sections++; 2059 } 2060 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2061 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2062 ic->journal_section_entries + ic->free_sectors)) { 2063 DMCRIT("journal_sections %u, journal_section_entries %u, " 2064 "n_uncommitted_sections %u, n_committed_sections %u, " 2065 "journal_section_entries %u, free_sectors %u", 2066 ic->journal_sections, ic->journal_section_entries, 2067 ic->n_uncommitted_sections, ic->n_committed_sections, 2068 ic->journal_section_entries, ic->free_sectors); 2069 } 2070 } 2071 2072 static void integrity_commit(struct work_struct *w) 2073 { 2074 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2075 unsigned commit_start, commit_sections; 2076 unsigned i, j, n; 2077 struct bio *flushes; 2078 2079 del_timer(&ic->autocommit_timer); 2080 2081 spin_lock_irq(&ic->endio_wait.lock); 2082 flushes = bio_list_get(&ic->flush_bio_list); 2083 if (unlikely(ic->mode != 'J')) { 2084 spin_unlock_irq(&ic->endio_wait.lock); 2085 dm_integrity_flush_buffers(ic); 2086 goto release_flush_bios; 2087 } 2088 2089 pad_uncommitted(ic); 2090 commit_start = ic->uncommitted_section; 2091 commit_sections = ic->n_uncommitted_sections; 2092 spin_unlock_irq(&ic->endio_wait.lock); 2093 2094 if (!commit_sections) 2095 goto release_flush_bios; 2096 2097 i = commit_start; 2098 for (n = 0; n < commit_sections; n++) { 2099 for (j = 0; j < ic->journal_section_entries; j++) { 2100 struct journal_entry *je; 2101 je = access_journal_entry(ic, i, j); 2102 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2103 } 2104 for (j = 0; j < ic->journal_section_sectors; j++) { 2105 struct journal_sector *js; 2106 js = access_journal(ic, i, j); 2107 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2108 } 2109 i++; 2110 if (unlikely(i >= ic->journal_sections)) 2111 ic->commit_seq = next_commit_seq(ic->commit_seq); 2112 wraparound_section(ic, &i); 2113 } 2114 smp_rmb(); 2115 2116 write_journal(ic, commit_start, commit_sections); 2117 2118 spin_lock_irq(&ic->endio_wait.lock); 2119 ic->uncommitted_section += commit_sections; 2120 wraparound_section(ic, &ic->uncommitted_section); 2121 ic->n_uncommitted_sections -= commit_sections; 2122 ic->n_committed_sections += commit_sections; 2123 spin_unlock_irq(&ic->endio_wait.lock); 2124 2125 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2126 queue_work(ic->writer_wq, &ic->writer_work); 2127 2128 release_flush_bios: 2129 while (flushes) { 2130 struct bio *next = flushes->bi_next; 2131 flushes->bi_next = NULL; 2132 do_endio(ic, flushes); 2133 flushes = next; 2134 } 2135 } 2136 2137 static void complete_copy_from_journal(unsigned long error, void *context) 2138 { 2139 struct journal_io *io = context; 2140 struct journal_completion *comp = io->comp; 2141 struct dm_integrity_c *ic = comp->ic; 2142 remove_range(ic, &io->range); 2143 mempool_free(io, &ic->journal_io_mempool); 2144 if (unlikely(error != 0)) 2145 dm_integrity_io_error(ic, "copying from journal", -EIO); 2146 complete_journal_op(comp); 2147 } 2148 2149 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2150 struct journal_entry *je) 2151 { 2152 unsigned s = 0; 2153 do { 2154 js->commit_id = je->last_bytes[s]; 2155 js++; 2156 } while (++s < ic->sectors_per_block); 2157 } 2158 2159 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2160 unsigned write_sections, bool from_replay) 2161 { 2162 unsigned i, j, n; 2163 struct journal_completion comp; 2164 struct blk_plug plug; 2165 2166 blk_start_plug(&plug); 2167 2168 comp.ic = ic; 2169 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2170 init_completion(&comp.comp); 2171 2172 i = write_start; 2173 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2174 #ifndef INTERNAL_VERIFY 2175 if (unlikely(from_replay)) 2176 #endif 2177 rw_section_mac(ic, i, false); 2178 for (j = 0; j < ic->journal_section_entries; j++) { 2179 struct journal_entry *je = access_journal_entry(ic, i, j); 2180 sector_t sec, area, offset; 2181 unsigned k, l, next_loop; 2182 sector_t metadata_block; 2183 unsigned metadata_offset; 2184 struct journal_io *io; 2185 2186 if (journal_entry_is_unused(je)) 2187 continue; 2188 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2189 sec = journal_entry_get_sector(je); 2190 if (unlikely(from_replay)) { 2191 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2192 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2193 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2194 } 2195 } 2196 get_area_and_offset(ic, sec, &area, &offset); 2197 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2198 for (k = j + 1; k < ic->journal_section_entries; k++) { 2199 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2200 sector_t sec2, area2, offset2; 2201 if (journal_entry_is_unused(je2)) 2202 break; 2203 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2204 sec2 = journal_entry_get_sector(je2); 2205 get_area_and_offset(ic, sec2, &area2, &offset2); 2206 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2207 break; 2208 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2209 } 2210 next_loop = k - 1; 2211 2212 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2213 io->comp = ∁ 2214 io->range.logical_sector = sec; 2215 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2216 2217 spin_lock_irq(&ic->endio_wait.lock); 2218 add_new_range_and_wait(ic, &io->range); 2219 2220 if (likely(!from_replay)) { 2221 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2222 2223 /* don't write if there is newer committed sector */ 2224 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2225 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2226 2227 journal_entry_set_unused(je2); 2228 remove_journal_node(ic, §ion_node[j]); 2229 j++; 2230 sec += ic->sectors_per_block; 2231 offset += ic->sectors_per_block; 2232 } 2233 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2234 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2235 2236 journal_entry_set_unused(je2); 2237 remove_journal_node(ic, §ion_node[k - 1]); 2238 k--; 2239 } 2240 if (j == k) { 2241 remove_range_unlocked(ic, &io->range); 2242 spin_unlock_irq(&ic->endio_wait.lock); 2243 mempool_free(io, &ic->journal_io_mempool); 2244 goto skip_io; 2245 } 2246 for (l = j; l < k; l++) { 2247 remove_journal_node(ic, §ion_node[l]); 2248 } 2249 } 2250 spin_unlock_irq(&ic->endio_wait.lock); 2251 2252 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2253 for (l = j; l < k; l++) { 2254 int r; 2255 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2256 2257 if ( 2258 #ifndef INTERNAL_VERIFY 2259 unlikely(from_replay) && 2260 #endif 2261 ic->internal_hash) { 2262 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2263 2264 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2265 (char *)access_journal_data(ic, i, l), test_tag); 2266 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2267 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2268 } 2269 2270 journal_entry_set_unused(je2); 2271 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2272 ic->tag_size, TAG_WRITE); 2273 if (unlikely(r)) { 2274 dm_integrity_io_error(ic, "reading tags", r); 2275 } 2276 } 2277 2278 atomic_inc(&comp.in_flight); 2279 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2280 (k - j) << ic->sb->log2_sectors_per_block, 2281 get_data_sector(ic, area, offset), 2282 complete_copy_from_journal, io); 2283 skip_io: 2284 j = next_loop; 2285 } 2286 } 2287 2288 dm_bufio_write_dirty_buffers_async(ic->bufio); 2289 2290 blk_finish_plug(&plug); 2291 2292 complete_journal_op(&comp); 2293 wait_for_completion_io(&comp.comp); 2294 2295 dm_integrity_flush_buffers(ic); 2296 } 2297 2298 static void integrity_writer(struct work_struct *w) 2299 { 2300 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2301 unsigned write_start, write_sections; 2302 2303 unsigned prev_free_sectors; 2304 2305 /* the following test is not needed, but it tests the replay code */ 2306 if (unlikely(dm_suspended(ic->ti)) && !ic->meta_dev) 2307 return; 2308 2309 spin_lock_irq(&ic->endio_wait.lock); 2310 write_start = ic->committed_section; 2311 write_sections = ic->n_committed_sections; 2312 spin_unlock_irq(&ic->endio_wait.lock); 2313 2314 if (!write_sections) 2315 return; 2316 2317 do_journal_write(ic, write_start, write_sections, false); 2318 2319 spin_lock_irq(&ic->endio_wait.lock); 2320 2321 ic->committed_section += write_sections; 2322 wraparound_section(ic, &ic->committed_section); 2323 ic->n_committed_sections -= write_sections; 2324 2325 prev_free_sectors = ic->free_sectors; 2326 ic->free_sectors += write_sections * ic->journal_section_entries; 2327 if (unlikely(!prev_free_sectors)) 2328 wake_up_locked(&ic->endio_wait); 2329 2330 spin_unlock_irq(&ic->endio_wait.lock); 2331 } 2332 2333 static void recalc_write_super(struct dm_integrity_c *ic) 2334 { 2335 int r; 2336 2337 dm_integrity_flush_buffers(ic); 2338 if (dm_integrity_failed(ic)) 2339 return; 2340 2341 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2342 if (unlikely(r)) 2343 dm_integrity_io_error(ic, "writing superblock", r); 2344 } 2345 2346 static void integrity_recalc(struct work_struct *w) 2347 { 2348 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2349 struct dm_integrity_range range; 2350 struct dm_io_request io_req; 2351 struct dm_io_region io_loc; 2352 sector_t area, offset; 2353 sector_t metadata_block; 2354 unsigned metadata_offset; 2355 sector_t logical_sector, n_sectors; 2356 __u8 *t; 2357 unsigned i; 2358 int r; 2359 unsigned super_counter = 0; 2360 2361 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2362 2363 spin_lock_irq(&ic->endio_wait.lock); 2364 2365 next_chunk: 2366 2367 if (unlikely(dm_suspended(ic->ti))) 2368 goto unlock_ret; 2369 2370 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2371 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2372 if (ic->mode == 'B') { 2373 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2374 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2375 } 2376 goto unlock_ret; 2377 } 2378 2379 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2380 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2381 if (!ic->meta_dev) 2382 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2383 2384 add_new_range_and_wait(ic, &range); 2385 spin_unlock_irq(&ic->endio_wait.lock); 2386 logical_sector = range.logical_sector; 2387 n_sectors = range.n_sectors; 2388 2389 if (ic->mode == 'B') { 2390 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2391 goto advance_and_next; 2392 } 2393 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2394 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2395 logical_sector += ic->sectors_per_block; 2396 n_sectors -= ic->sectors_per_block; 2397 cond_resched(); 2398 } 2399 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2400 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2401 n_sectors -= ic->sectors_per_block; 2402 cond_resched(); 2403 } 2404 get_area_and_offset(ic, logical_sector, &area, &offset); 2405 } 2406 2407 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors); 2408 2409 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2410 recalc_write_super(ic); 2411 if (ic->mode == 'B') { 2412 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2413 } 2414 super_counter = 0; 2415 } 2416 2417 if (unlikely(dm_integrity_failed(ic))) 2418 goto err; 2419 2420 io_req.bi_op = REQ_OP_READ; 2421 io_req.bi_op_flags = 0; 2422 io_req.mem.type = DM_IO_VMA; 2423 io_req.mem.ptr.addr = ic->recalc_buffer; 2424 io_req.notify.fn = NULL; 2425 io_req.client = ic->io; 2426 io_loc.bdev = ic->dev->bdev; 2427 io_loc.sector = get_data_sector(ic, area, offset); 2428 io_loc.count = n_sectors; 2429 2430 r = dm_io(&io_req, 1, &io_loc, NULL); 2431 if (unlikely(r)) { 2432 dm_integrity_io_error(ic, "reading data", r); 2433 goto err; 2434 } 2435 2436 t = ic->recalc_tags; 2437 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2438 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2439 t += ic->tag_size; 2440 } 2441 2442 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2443 2444 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2445 if (unlikely(r)) { 2446 dm_integrity_io_error(ic, "writing tags", r); 2447 goto err; 2448 } 2449 2450 advance_and_next: 2451 cond_resched(); 2452 2453 spin_lock_irq(&ic->endio_wait.lock); 2454 remove_range_unlocked(ic, &range); 2455 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2456 goto next_chunk; 2457 2458 err: 2459 remove_range(ic, &range); 2460 return; 2461 2462 unlock_ret: 2463 spin_unlock_irq(&ic->endio_wait.lock); 2464 2465 recalc_write_super(ic); 2466 } 2467 2468 static void bitmap_block_work(struct work_struct *w) 2469 { 2470 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2471 struct dm_integrity_c *ic = bbs->ic; 2472 struct bio *bio; 2473 struct bio_list bio_queue; 2474 struct bio_list waiting; 2475 2476 bio_list_init(&waiting); 2477 2478 spin_lock(&bbs->bio_queue_lock); 2479 bio_queue = bbs->bio_queue; 2480 bio_list_init(&bbs->bio_queue); 2481 spin_unlock(&bbs->bio_queue_lock); 2482 2483 while ((bio = bio_list_pop(&bio_queue))) { 2484 struct dm_integrity_io *dio; 2485 2486 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2487 2488 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2489 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2490 remove_range(ic, &dio->range); 2491 INIT_WORK(&dio->work, integrity_bio_wait); 2492 queue_work(ic->offload_wq, &dio->work); 2493 } else { 2494 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2495 dio->range.n_sectors, BITMAP_OP_SET); 2496 bio_list_add(&waiting, bio); 2497 } 2498 } 2499 2500 if (bio_list_empty(&waiting)) 2501 return; 2502 2503 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2504 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2505 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2506 2507 while ((bio = bio_list_pop(&waiting))) { 2508 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2509 2510 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2511 dio->range.n_sectors, BITMAP_OP_SET); 2512 2513 remove_range(ic, &dio->range); 2514 INIT_WORK(&dio->work, integrity_bio_wait); 2515 queue_work(ic->offload_wq, &dio->work); 2516 } 2517 2518 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2519 } 2520 2521 static void bitmap_flush_work(struct work_struct *work) 2522 { 2523 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2524 struct dm_integrity_range range; 2525 unsigned long limit; 2526 struct bio *bio; 2527 2528 dm_integrity_flush_buffers(ic); 2529 2530 range.logical_sector = 0; 2531 range.n_sectors = ic->provided_data_sectors; 2532 2533 spin_lock_irq(&ic->endio_wait.lock); 2534 add_new_range_and_wait(ic, &range); 2535 spin_unlock_irq(&ic->endio_wait.lock); 2536 2537 dm_integrity_flush_buffers(ic); 2538 if (ic->meta_dev) 2539 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL); 2540 2541 limit = ic->provided_data_sectors; 2542 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2543 limit = le64_to_cpu(ic->sb->recalc_sector) 2544 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2545 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2546 } 2547 /*DEBUG_print("zeroing journal\n");*/ 2548 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2549 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2550 2551 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2552 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2553 2554 spin_lock_irq(&ic->endio_wait.lock); 2555 remove_range_unlocked(ic, &range); 2556 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2557 bio_endio(bio); 2558 spin_unlock_irq(&ic->endio_wait.lock); 2559 spin_lock_irq(&ic->endio_wait.lock); 2560 } 2561 spin_unlock_irq(&ic->endio_wait.lock); 2562 } 2563 2564 2565 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2566 unsigned n_sections, unsigned char commit_seq) 2567 { 2568 unsigned i, j, n; 2569 2570 if (!n_sections) 2571 return; 2572 2573 for (n = 0; n < n_sections; n++) { 2574 i = start_section + n; 2575 wraparound_section(ic, &i); 2576 for (j = 0; j < ic->journal_section_sectors; j++) { 2577 struct journal_sector *js = access_journal(ic, i, j); 2578 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2579 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2580 } 2581 for (j = 0; j < ic->journal_section_entries; j++) { 2582 struct journal_entry *je = access_journal_entry(ic, i, j); 2583 journal_entry_set_unused(je); 2584 } 2585 } 2586 2587 write_journal(ic, start_section, n_sections); 2588 } 2589 2590 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2591 { 2592 unsigned char k; 2593 for (k = 0; k < N_COMMIT_IDS; k++) { 2594 if (dm_integrity_commit_id(ic, i, j, k) == id) 2595 return k; 2596 } 2597 dm_integrity_io_error(ic, "journal commit id", -EIO); 2598 return -EIO; 2599 } 2600 2601 static void replay_journal(struct dm_integrity_c *ic) 2602 { 2603 unsigned i, j; 2604 bool used_commit_ids[N_COMMIT_IDS]; 2605 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2606 unsigned write_start, write_sections; 2607 unsigned continue_section; 2608 bool journal_empty; 2609 unsigned char unused, last_used, want_commit_seq; 2610 2611 if (ic->mode == 'R') 2612 return; 2613 2614 if (ic->journal_uptodate) 2615 return; 2616 2617 last_used = 0; 2618 write_start = 0; 2619 2620 if (!ic->just_formatted) { 2621 DEBUG_print("reading journal\n"); 2622 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2623 if (ic->journal_io) 2624 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2625 if (ic->journal_io) { 2626 struct journal_completion crypt_comp; 2627 crypt_comp.ic = ic; 2628 init_completion(&crypt_comp.comp); 2629 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2630 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2631 wait_for_completion(&crypt_comp.comp); 2632 } 2633 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2634 } 2635 2636 if (dm_integrity_failed(ic)) 2637 goto clear_journal; 2638 2639 journal_empty = true; 2640 memset(used_commit_ids, 0, sizeof used_commit_ids); 2641 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2642 for (i = 0; i < ic->journal_sections; i++) { 2643 for (j = 0; j < ic->journal_section_sectors; j++) { 2644 int k; 2645 struct journal_sector *js = access_journal(ic, i, j); 2646 k = find_commit_seq(ic, i, j, js->commit_id); 2647 if (k < 0) 2648 goto clear_journal; 2649 used_commit_ids[k] = true; 2650 max_commit_id_sections[k] = i; 2651 } 2652 if (journal_empty) { 2653 for (j = 0; j < ic->journal_section_entries; j++) { 2654 struct journal_entry *je = access_journal_entry(ic, i, j); 2655 if (!journal_entry_is_unused(je)) { 2656 journal_empty = false; 2657 break; 2658 } 2659 } 2660 } 2661 } 2662 2663 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2664 unused = N_COMMIT_IDS - 1; 2665 while (unused && !used_commit_ids[unused - 1]) 2666 unused--; 2667 } else { 2668 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2669 if (!used_commit_ids[unused]) 2670 break; 2671 if (unused == N_COMMIT_IDS) { 2672 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2673 goto clear_journal; 2674 } 2675 } 2676 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2677 unused, used_commit_ids[0], used_commit_ids[1], 2678 used_commit_ids[2], used_commit_ids[3]); 2679 2680 last_used = prev_commit_seq(unused); 2681 want_commit_seq = prev_commit_seq(last_used); 2682 2683 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2684 journal_empty = true; 2685 2686 write_start = max_commit_id_sections[last_used] + 1; 2687 if (unlikely(write_start >= ic->journal_sections)) 2688 want_commit_seq = next_commit_seq(want_commit_seq); 2689 wraparound_section(ic, &write_start); 2690 2691 i = write_start; 2692 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2693 for (j = 0; j < ic->journal_section_sectors; j++) { 2694 struct journal_sector *js = access_journal(ic, i, j); 2695 2696 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2697 /* 2698 * This could be caused by crash during writing. 2699 * We won't replay the inconsistent part of the 2700 * journal. 2701 */ 2702 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2703 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2704 goto brk; 2705 } 2706 } 2707 i++; 2708 if (unlikely(i >= ic->journal_sections)) 2709 want_commit_seq = next_commit_seq(want_commit_seq); 2710 wraparound_section(ic, &i); 2711 } 2712 brk: 2713 2714 if (!journal_empty) { 2715 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2716 write_sections, write_start, want_commit_seq); 2717 do_journal_write(ic, write_start, write_sections, true); 2718 } 2719 2720 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2721 continue_section = write_start; 2722 ic->commit_seq = want_commit_seq; 2723 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2724 } else { 2725 unsigned s; 2726 unsigned char erase_seq; 2727 clear_journal: 2728 DEBUG_print("clearing journal\n"); 2729 2730 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2731 s = write_start; 2732 init_journal(ic, s, 1, erase_seq); 2733 s++; 2734 wraparound_section(ic, &s); 2735 if (ic->journal_sections >= 2) { 2736 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2737 s += ic->journal_sections - 2; 2738 wraparound_section(ic, &s); 2739 init_journal(ic, s, 1, erase_seq); 2740 } 2741 2742 continue_section = 0; 2743 ic->commit_seq = next_commit_seq(erase_seq); 2744 } 2745 2746 ic->committed_section = continue_section; 2747 ic->n_committed_sections = 0; 2748 2749 ic->uncommitted_section = continue_section; 2750 ic->n_uncommitted_sections = 0; 2751 2752 ic->free_section = continue_section; 2753 ic->free_section_entry = 0; 2754 ic->free_sectors = ic->journal_entries; 2755 2756 ic->journal_tree_root = RB_ROOT; 2757 for (i = 0; i < ic->journal_entries; i++) 2758 init_journal_node(&ic->journal_tree[i]); 2759 } 2760 2761 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2762 { 2763 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2764 2765 if (ic->mode == 'B') { 2766 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2767 ic->synchronous_mode = 1; 2768 2769 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2770 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2771 flush_workqueue(ic->commit_wq); 2772 } 2773 } 2774 2775 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2776 { 2777 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2778 2779 DEBUG_print("dm_integrity_reboot\n"); 2780 2781 dm_integrity_enter_synchronous_mode(ic); 2782 2783 return NOTIFY_DONE; 2784 } 2785 2786 static void dm_integrity_postsuspend(struct dm_target *ti) 2787 { 2788 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2789 int r; 2790 2791 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2792 2793 del_timer_sync(&ic->autocommit_timer); 2794 2795 if (ic->recalc_wq) 2796 drain_workqueue(ic->recalc_wq); 2797 2798 if (ic->mode == 'B') 2799 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2800 2801 queue_work(ic->commit_wq, &ic->commit_work); 2802 drain_workqueue(ic->commit_wq); 2803 2804 if (ic->mode == 'J') { 2805 if (ic->meta_dev) 2806 queue_work(ic->writer_wq, &ic->writer_work); 2807 drain_workqueue(ic->writer_wq); 2808 dm_integrity_flush_buffers(ic); 2809 } 2810 2811 if (ic->mode == 'B') { 2812 dm_integrity_flush_buffers(ic); 2813 #if 1 2814 /* set to 0 to test bitmap replay code */ 2815 init_journal(ic, 0, ic->journal_sections, 0); 2816 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2817 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2818 if (unlikely(r)) 2819 dm_integrity_io_error(ic, "writing superblock", r); 2820 #endif 2821 } 2822 2823 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2824 2825 ic->journal_uptodate = true; 2826 } 2827 2828 static void dm_integrity_resume(struct dm_target *ti) 2829 { 2830 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2831 int r; 2832 DEBUG_print("resume\n"); 2833 2834 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 2835 DEBUG_print("resume dirty_bitmap\n"); 2836 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2837 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2838 if (ic->mode == 'B') { 2839 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2840 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 2841 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 2842 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 2843 BITMAP_OP_TEST_ALL_CLEAR)) { 2844 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2845 ic->sb->recalc_sector = cpu_to_le64(0); 2846 } 2847 } else { 2848 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 2849 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 2850 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2851 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2852 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2853 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2854 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2855 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2856 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2857 ic->sb->recalc_sector = cpu_to_le64(0); 2858 } 2859 } else { 2860 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 2861 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 2862 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2863 ic->sb->recalc_sector = cpu_to_le64(0); 2864 } 2865 init_journal(ic, 0, ic->journal_sections, 0); 2866 replay_journal(ic); 2867 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2868 } 2869 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2870 if (unlikely(r)) 2871 dm_integrity_io_error(ic, "writing superblock", r); 2872 } else { 2873 replay_journal(ic); 2874 if (ic->mode == 'B') { 2875 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2876 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2877 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2878 if (unlikely(r)) 2879 dm_integrity_io_error(ic, "writing superblock", r); 2880 2881 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2882 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2883 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2884 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2885 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 2886 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 2887 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 2888 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 2889 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 2890 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 2891 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 2892 } 2893 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2894 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2895 } 2896 } 2897 2898 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 2899 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2900 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2901 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors); 2902 if (recalc_pos < ic->provided_data_sectors) { 2903 queue_work(ic->recalc_wq, &ic->recalc_work); 2904 } else if (recalc_pos > ic->provided_data_sectors) { 2905 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2906 recalc_write_super(ic); 2907 } 2908 } 2909 2910 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 2911 ic->reboot_notifier.next = NULL; 2912 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 2913 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 2914 2915 #if 0 2916 /* set to 1 to stress test synchronous mode */ 2917 dm_integrity_enter_synchronous_mode(ic); 2918 #endif 2919 } 2920 2921 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2922 unsigned status_flags, char *result, unsigned maxlen) 2923 { 2924 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2925 unsigned arg_count; 2926 size_t sz = 0; 2927 2928 switch (type) { 2929 case STATUSTYPE_INFO: 2930 DMEMIT("%llu %llu", 2931 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2932 (unsigned long long)ic->provided_data_sectors); 2933 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2934 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2935 else 2936 DMEMIT(" -"); 2937 break; 2938 2939 case STATUSTYPE_TABLE: { 2940 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2941 watermark_percentage += ic->journal_entries / 2; 2942 do_div(watermark_percentage, ic->journal_entries); 2943 arg_count = 3; 2944 arg_count += !!ic->meta_dev; 2945 arg_count += ic->sectors_per_block != 1; 2946 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2947 arg_count += ic->mode == 'J'; 2948 arg_count += ic->mode == 'J'; 2949 arg_count += ic->mode == 'B'; 2950 arg_count += ic->mode == 'B'; 2951 arg_count += !!ic->internal_hash_alg.alg_string; 2952 arg_count += !!ic->journal_crypt_alg.alg_string; 2953 arg_count += !!ic->journal_mac_alg.alg_string; 2954 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 2955 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2956 ic->tag_size, ic->mode, arg_count); 2957 if (ic->meta_dev) 2958 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2959 if (ic->sectors_per_block != 1) 2960 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2961 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2962 DMEMIT(" recalculate"); 2963 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2964 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2965 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2966 if (ic->mode == 'J') { 2967 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2968 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2969 } 2970 if (ic->mode == 'B') { 2971 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 2972 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 2973 } 2974 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 2975 DMEMIT(" fix_padding"); 2976 2977 #define EMIT_ALG(a, n) \ 2978 do { \ 2979 if (ic->a.alg_string) { \ 2980 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2981 if (ic->a.key_string) \ 2982 DMEMIT(":%s", ic->a.key_string);\ 2983 } \ 2984 } while (0) 2985 EMIT_ALG(internal_hash_alg, "internal_hash"); 2986 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2987 EMIT_ALG(journal_mac_alg, "journal_mac"); 2988 break; 2989 } 2990 } 2991 } 2992 2993 static int dm_integrity_iterate_devices(struct dm_target *ti, 2994 iterate_devices_callout_fn fn, void *data) 2995 { 2996 struct dm_integrity_c *ic = ti->private; 2997 2998 if (!ic->meta_dev) 2999 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3000 else 3001 return fn(ti, ic->dev, 0, ti->len, data); 3002 } 3003 3004 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3005 { 3006 struct dm_integrity_c *ic = ti->private; 3007 3008 if (ic->sectors_per_block > 1) { 3009 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3010 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3011 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3012 } 3013 } 3014 3015 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3016 { 3017 unsigned sector_space = JOURNAL_SECTOR_DATA; 3018 3019 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3020 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3021 JOURNAL_ENTRY_ROUNDUP); 3022 3023 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3024 sector_space -= JOURNAL_MAC_PER_SECTOR; 3025 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3026 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3027 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3028 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3029 } 3030 3031 static int calculate_device_limits(struct dm_integrity_c *ic) 3032 { 3033 __u64 initial_sectors; 3034 3035 calculate_journal_section_size(ic); 3036 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3037 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3038 return -EINVAL; 3039 ic->initial_sectors = initial_sectors; 3040 3041 if (!ic->meta_dev) { 3042 sector_t last_sector, last_area, last_offset; 3043 3044 /* we have to maintain excessive padding for compatibility with existing volumes */ 3045 __u64 metadata_run_padding = 3046 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3047 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3048 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3049 3050 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3051 metadata_run_padding) >> SECTOR_SHIFT; 3052 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3053 ic->log2_metadata_run = __ffs(ic->metadata_run); 3054 else 3055 ic->log2_metadata_run = -1; 3056 3057 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3058 last_sector = get_data_sector(ic, last_area, last_offset); 3059 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3060 return -EINVAL; 3061 } else { 3062 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3063 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3064 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3065 meta_size <<= ic->log2_buffer_sectors; 3066 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3067 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3068 return -EINVAL; 3069 ic->metadata_run = 1; 3070 ic->log2_metadata_run = 0; 3071 } 3072 3073 return 0; 3074 } 3075 3076 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3077 { 3078 unsigned journal_sections; 3079 int test_bit; 3080 3081 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3082 memcpy(ic->sb->magic, SB_MAGIC, 8); 3083 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3084 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3085 if (ic->journal_mac_alg.alg_string) 3086 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3087 3088 calculate_journal_section_size(ic); 3089 journal_sections = journal_sectors / ic->journal_section_sectors; 3090 if (!journal_sections) 3091 journal_sections = 1; 3092 3093 if (!ic->meta_dev) { 3094 if (ic->fix_padding) 3095 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3096 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3097 if (!interleave_sectors) 3098 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3099 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3100 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3101 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3102 3103 ic->provided_data_sectors = 0; 3104 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3105 __u64 prev_data_sectors = ic->provided_data_sectors; 3106 3107 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3108 if (calculate_device_limits(ic)) 3109 ic->provided_data_sectors = prev_data_sectors; 3110 } 3111 if (!ic->provided_data_sectors) 3112 return -EINVAL; 3113 } else { 3114 ic->sb->log2_interleave_sectors = 0; 3115 ic->provided_data_sectors = ic->data_device_sectors; 3116 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3117 3118 try_smaller_buffer: 3119 ic->sb->journal_sections = cpu_to_le32(0); 3120 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3121 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3122 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3123 if (test_journal_sections > journal_sections) 3124 continue; 3125 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3126 if (calculate_device_limits(ic)) 3127 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3128 3129 } 3130 if (!le32_to_cpu(ic->sb->journal_sections)) { 3131 if (ic->log2_buffer_sectors > 3) { 3132 ic->log2_buffer_sectors--; 3133 goto try_smaller_buffer; 3134 } 3135 return -EINVAL; 3136 } 3137 } 3138 3139 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3140 3141 sb_set_version(ic); 3142 3143 return 0; 3144 } 3145 3146 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3147 { 3148 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3149 struct blk_integrity bi; 3150 3151 memset(&bi, 0, sizeof(bi)); 3152 bi.profile = &dm_integrity_profile; 3153 bi.tuple_size = ic->tag_size; 3154 bi.tag_size = bi.tuple_size; 3155 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3156 3157 blk_integrity_register(disk, &bi); 3158 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3159 } 3160 3161 static void dm_integrity_free_page_list(struct page_list *pl) 3162 { 3163 unsigned i; 3164 3165 if (!pl) 3166 return; 3167 for (i = 0; pl[i].page; i++) 3168 __free_page(pl[i].page); 3169 kvfree(pl); 3170 } 3171 3172 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3173 { 3174 struct page_list *pl; 3175 unsigned i; 3176 3177 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3178 if (!pl) 3179 return NULL; 3180 3181 for (i = 0; i < n_pages; i++) { 3182 pl[i].page = alloc_page(GFP_KERNEL); 3183 if (!pl[i].page) { 3184 dm_integrity_free_page_list(pl); 3185 return NULL; 3186 } 3187 if (i) 3188 pl[i - 1].next = &pl[i]; 3189 } 3190 pl[i].page = NULL; 3191 pl[i].next = NULL; 3192 3193 return pl; 3194 } 3195 3196 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3197 { 3198 unsigned i; 3199 for (i = 0; i < ic->journal_sections; i++) 3200 kvfree(sl[i]); 3201 kvfree(sl); 3202 } 3203 3204 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3205 struct page_list *pl) 3206 { 3207 struct scatterlist **sl; 3208 unsigned i; 3209 3210 sl = kvmalloc_array(ic->journal_sections, 3211 sizeof(struct scatterlist *), 3212 GFP_KERNEL | __GFP_ZERO); 3213 if (!sl) 3214 return NULL; 3215 3216 for (i = 0; i < ic->journal_sections; i++) { 3217 struct scatterlist *s; 3218 unsigned start_index, start_offset; 3219 unsigned end_index, end_offset; 3220 unsigned n_pages; 3221 unsigned idx; 3222 3223 page_list_location(ic, i, 0, &start_index, &start_offset); 3224 page_list_location(ic, i, ic->journal_section_sectors - 1, 3225 &end_index, &end_offset); 3226 3227 n_pages = (end_index - start_index + 1); 3228 3229 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3230 GFP_KERNEL); 3231 if (!s) { 3232 dm_integrity_free_journal_scatterlist(ic, sl); 3233 return NULL; 3234 } 3235 3236 sg_init_table(s, n_pages); 3237 for (idx = start_index; idx <= end_index; idx++) { 3238 char *va = lowmem_page_address(pl[idx].page); 3239 unsigned start = 0, end = PAGE_SIZE; 3240 if (idx == start_index) 3241 start = start_offset; 3242 if (idx == end_index) 3243 end = end_offset + (1 << SECTOR_SHIFT); 3244 sg_set_buf(&s[idx - start_index], va + start, end - start); 3245 } 3246 3247 sl[i] = s; 3248 } 3249 3250 return sl; 3251 } 3252 3253 static void free_alg(struct alg_spec *a) 3254 { 3255 kzfree(a->alg_string); 3256 kzfree(a->key); 3257 memset(a, 0, sizeof *a); 3258 } 3259 3260 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3261 { 3262 char *k; 3263 3264 free_alg(a); 3265 3266 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3267 if (!a->alg_string) 3268 goto nomem; 3269 3270 k = strchr(a->alg_string, ':'); 3271 if (k) { 3272 *k = 0; 3273 a->key_string = k + 1; 3274 if (strlen(a->key_string) & 1) 3275 goto inval; 3276 3277 a->key_size = strlen(a->key_string) / 2; 3278 a->key = kmalloc(a->key_size, GFP_KERNEL); 3279 if (!a->key) 3280 goto nomem; 3281 if (hex2bin(a->key, a->key_string, a->key_size)) 3282 goto inval; 3283 } 3284 3285 return 0; 3286 inval: 3287 *error = error_inval; 3288 return -EINVAL; 3289 nomem: 3290 *error = "Out of memory for an argument"; 3291 return -ENOMEM; 3292 } 3293 3294 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3295 char *error_alg, char *error_key) 3296 { 3297 int r; 3298 3299 if (a->alg_string) { 3300 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 3301 if (IS_ERR(*hash)) { 3302 *error = error_alg; 3303 r = PTR_ERR(*hash); 3304 *hash = NULL; 3305 return r; 3306 } 3307 3308 if (a->key) { 3309 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3310 if (r) { 3311 *error = error_key; 3312 return r; 3313 } 3314 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3315 *error = error_key; 3316 return -ENOKEY; 3317 } 3318 } 3319 3320 return 0; 3321 } 3322 3323 static int create_journal(struct dm_integrity_c *ic, char **error) 3324 { 3325 int r = 0; 3326 unsigned i; 3327 __u64 journal_pages, journal_desc_size, journal_tree_size; 3328 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3329 struct skcipher_request *req = NULL; 3330 3331 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3332 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3333 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3334 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3335 3336 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3337 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3338 journal_desc_size = journal_pages * sizeof(struct page_list); 3339 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3340 *error = "Journal doesn't fit into memory"; 3341 r = -ENOMEM; 3342 goto bad; 3343 } 3344 ic->journal_pages = journal_pages; 3345 3346 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3347 if (!ic->journal) { 3348 *error = "Could not allocate memory for journal"; 3349 r = -ENOMEM; 3350 goto bad; 3351 } 3352 if (ic->journal_crypt_alg.alg_string) { 3353 unsigned ivsize, blocksize; 3354 struct journal_completion comp; 3355 3356 comp.ic = ic; 3357 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 3358 if (IS_ERR(ic->journal_crypt)) { 3359 *error = "Invalid journal cipher"; 3360 r = PTR_ERR(ic->journal_crypt); 3361 ic->journal_crypt = NULL; 3362 goto bad; 3363 } 3364 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3365 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3366 3367 if (ic->journal_crypt_alg.key) { 3368 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3369 ic->journal_crypt_alg.key_size); 3370 if (r) { 3371 *error = "Error setting encryption key"; 3372 goto bad; 3373 } 3374 } 3375 DEBUG_print("cipher %s, block size %u iv size %u\n", 3376 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3377 3378 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3379 if (!ic->journal_io) { 3380 *error = "Could not allocate memory for journal io"; 3381 r = -ENOMEM; 3382 goto bad; 3383 } 3384 3385 if (blocksize == 1) { 3386 struct scatterlist *sg; 3387 3388 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3389 if (!req) { 3390 *error = "Could not allocate crypt request"; 3391 r = -ENOMEM; 3392 goto bad; 3393 } 3394 3395 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3396 if (!crypt_iv) { 3397 *error = "Could not allocate iv"; 3398 r = -ENOMEM; 3399 goto bad; 3400 } 3401 3402 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3403 if (!ic->journal_xor) { 3404 *error = "Could not allocate memory for journal xor"; 3405 r = -ENOMEM; 3406 goto bad; 3407 } 3408 3409 sg = kvmalloc_array(ic->journal_pages + 1, 3410 sizeof(struct scatterlist), 3411 GFP_KERNEL); 3412 if (!sg) { 3413 *error = "Unable to allocate sg list"; 3414 r = -ENOMEM; 3415 goto bad; 3416 } 3417 sg_init_table(sg, ic->journal_pages + 1); 3418 for (i = 0; i < ic->journal_pages; i++) { 3419 char *va = lowmem_page_address(ic->journal_xor[i].page); 3420 clear_page(va); 3421 sg_set_buf(&sg[i], va, PAGE_SIZE); 3422 } 3423 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3424 3425 skcipher_request_set_crypt(req, sg, sg, 3426 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3427 init_completion(&comp.comp); 3428 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3429 if (do_crypt(true, req, &comp)) 3430 wait_for_completion(&comp.comp); 3431 kvfree(sg); 3432 r = dm_integrity_failed(ic); 3433 if (r) { 3434 *error = "Unable to encrypt journal"; 3435 goto bad; 3436 } 3437 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3438 3439 crypto_free_skcipher(ic->journal_crypt); 3440 ic->journal_crypt = NULL; 3441 } else { 3442 unsigned crypt_len = roundup(ivsize, blocksize); 3443 3444 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3445 if (!req) { 3446 *error = "Could not allocate crypt request"; 3447 r = -ENOMEM; 3448 goto bad; 3449 } 3450 3451 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3452 if (!crypt_iv) { 3453 *error = "Could not allocate iv"; 3454 r = -ENOMEM; 3455 goto bad; 3456 } 3457 3458 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3459 if (!crypt_data) { 3460 *error = "Unable to allocate crypt data"; 3461 r = -ENOMEM; 3462 goto bad; 3463 } 3464 3465 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3466 if (!ic->journal_scatterlist) { 3467 *error = "Unable to allocate sg list"; 3468 r = -ENOMEM; 3469 goto bad; 3470 } 3471 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3472 if (!ic->journal_io_scatterlist) { 3473 *error = "Unable to allocate sg list"; 3474 r = -ENOMEM; 3475 goto bad; 3476 } 3477 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3478 sizeof(struct skcipher_request *), 3479 GFP_KERNEL | __GFP_ZERO); 3480 if (!ic->sk_requests) { 3481 *error = "Unable to allocate sk requests"; 3482 r = -ENOMEM; 3483 goto bad; 3484 } 3485 for (i = 0; i < ic->journal_sections; i++) { 3486 struct scatterlist sg; 3487 struct skcipher_request *section_req; 3488 __u32 section_le = cpu_to_le32(i); 3489 3490 memset(crypt_iv, 0x00, ivsize); 3491 memset(crypt_data, 0x00, crypt_len); 3492 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3493 3494 sg_init_one(&sg, crypt_data, crypt_len); 3495 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3496 init_completion(&comp.comp); 3497 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3498 if (do_crypt(true, req, &comp)) 3499 wait_for_completion(&comp.comp); 3500 3501 r = dm_integrity_failed(ic); 3502 if (r) { 3503 *error = "Unable to generate iv"; 3504 goto bad; 3505 } 3506 3507 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3508 if (!section_req) { 3509 *error = "Unable to allocate crypt request"; 3510 r = -ENOMEM; 3511 goto bad; 3512 } 3513 section_req->iv = kmalloc_array(ivsize, 2, 3514 GFP_KERNEL); 3515 if (!section_req->iv) { 3516 skcipher_request_free(section_req); 3517 *error = "Unable to allocate iv"; 3518 r = -ENOMEM; 3519 goto bad; 3520 } 3521 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3522 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3523 ic->sk_requests[i] = section_req; 3524 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3525 } 3526 } 3527 } 3528 3529 for (i = 0; i < N_COMMIT_IDS; i++) { 3530 unsigned j; 3531 retest_commit_id: 3532 for (j = 0; j < i; j++) { 3533 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3534 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3535 goto retest_commit_id; 3536 } 3537 } 3538 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3539 } 3540 3541 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3542 if (journal_tree_size > ULONG_MAX) { 3543 *error = "Journal doesn't fit into memory"; 3544 r = -ENOMEM; 3545 goto bad; 3546 } 3547 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3548 if (!ic->journal_tree) { 3549 *error = "Could not allocate memory for journal tree"; 3550 r = -ENOMEM; 3551 } 3552 bad: 3553 kfree(crypt_data); 3554 kfree(crypt_iv); 3555 skcipher_request_free(req); 3556 3557 return r; 3558 } 3559 3560 /* 3561 * Construct a integrity mapping 3562 * 3563 * Arguments: 3564 * device 3565 * offset from the start of the device 3566 * tag size 3567 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3568 * number of optional arguments 3569 * optional arguments: 3570 * journal_sectors 3571 * interleave_sectors 3572 * buffer_sectors 3573 * journal_watermark 3574 * commit_time 3575 * meta_device 3576 * block_size 3577 * sectors_per_bit 3578 * bitmap_flush_interval 3579 * internal_hash 3580 * journal_crypt 3581 * journal_mac 3582 * recalculate 3583 */ 3584 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3585 { 3586 struct dm_integrity_c *ic; 3587 char dummy; 3588 int r; 3589 unsigned extra_args; 3590 struct dm_arg_set as; 3591 static const struct dm_arg _args[] = { 3592 {0, 9, "Invalid number of feature args"}, 3593 }; 3594 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3595 bool should_write_sb; 3596 __u64 threshold; 3597 unsigned long long start; 3598 __s8 log2_sectors_per_bitmap_bit = -1; 3599 __s8 log2_blocks_per_bitmap_bit; 3600 __u64 bits_in_journal; 3601 __u64 n_bitmap_bits; 3602 3603 #define DIRECT_ARGUMENTS 4 3604 3605 if (argc <= DIRECT_ARGUMENTS) { 3606 ti->error = "Invalid argument count"; 3607 return -EINVAL; 3608 } 3609 3610 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3611 if (!ic) { 3612 ti->error = "Cannot allocate integrity context"; 3613 return -ENOMEM; 3614 } 3615 ti->private = ic; 3616 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3617 ic->ti = ti; 3618 3619 ic->in_progress = RB_ROOT; 3620 INIT_LIST_HEAD(&ic->wait_list); 3621 init_waitqueue_head(&ic->endio_wait); 3622 bio_list_init(&ic->flush_bio_list); 3623 init_waitqueue_head(&ic->copy_to_journal_wait); 3624 init_completion(&ic->crypto_backoff); 3625 atomic64_set(&ic->number_of_mismatches, 0); 3626 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3627 3628 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3629 if (r) { 3630 ti->error = "Device lookup failed"; 3631 goto bad; 3632 } 3633 3634 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3635 ti->error = "Invalid starting offset"; 3636 r = -EINVAL; 3637 goto bad; 3638 } 3639 ic->start = start; 3640 3641 if (strcmp(argv[2], "-")) { 3642 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3643 ti->error = "Invalid tag size"; 3644 r = -EINVAL; 3645 goto bad; 3646 } 3647 } 3648 3649 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3650 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3651 ic->mode = argv[3][0]; 3652 } else { 3653 ti->error = "Invalid mode (expecting J, B, D, R)"; 3654 r = -EINVAL; 3655 goto bad; 3656 } 3657 3658 journal_sectors = 0; 3659 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3660 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3661 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3662 sync_msec = DEFAULT_SYNC_MSEC; 3663 ic->sectors_per_block = 1; 3664 3665 as.argc = argc - DIRECT_ARGUMENTS; 3666 as.argv = argv + DIRECT_ARGUMENTS; 3667 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3668 if (r) 3669 goto bad; 3670 3671 while (extra_args--) { 3672 const char *opt_string; 3673 unsigned val; 3674 unsigned long long llval; 3675 opt_string = dm_shift_arg(&as); 3676 if (!opt_string) { 3677 r = -EINVAL; 3678 ti->error = "Not enough feature arguments"; 3679 goto bad; 3680 } 3681 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3682 journal_sectors = val ? val : 1; 3683 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3684 interleave_sectors = val; 3685 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3686 buffer_sectors = val; 3687 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3688 journal_watermark = val; 3689 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3690 sync_msec = val; 3691 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3692 if (ic->meta_dev) { 3693 dm_put_device(ti, ic->meta_dev); 3694 ic->meta_dev = NULL; 3695 } 3696 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3697 dm_table_get_mode(ti->table), &ic->meta_dev); 3698 if (r) { 3699 ti->error = "Device lookup failed"; 3700 goto bad; 3701 } 3702 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3703 if (val < 1 << SECTOR_SHIFT || 3704 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3705 (val & (val -1))) { 3706 r = -EINVAL; 3707 ti->error = "Invalid block_size argument"; 3708 goto bad; 3709 } 3710 ic->sectors_per_block = val >> SECTOR_SHIFT; 3711 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3712 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3713 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3714 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3715 r = -EINVAL; 3716 ti->error = "Invalid bitmap_flush_interval argument"; 3717 } 3718 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3719 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3720 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3721 "Invalid internal_hash argument"); 3722 if (r) 3723 goto bad; 3724 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3725 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3726 "Invalid journal_crypt argument"); 3727 if (r) 3728 goto bad; 3729 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3730 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3731 "Invalid journal_mac argument"); 3732 if (r) 3733 goto bad; 3734 } else if (!strcmp(opt_string, "recalculate")) { 3735 ic->recalculate_flag = true; 3736 } else if (!strcmp(opt_string, "fix_padding")) { 3737 ic->fix_padding = true; 3738 } else { 3739 r = -EINVAL; 3740 ti->error = "Invalid argument"; 3741 goto bad; 3742 } 3743 } 3744 3745 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3746 if (!ic->meta_dev) 3747 ic->meta_device_sectors = ic->data_device_sectors; 3748 else 3749 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3750 3751 if (!journal_sectors) { 3752 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3753 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3754 } 3755 3756 if (!buffer_sectors) 3757 buffer_sectors = 1; 3758 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3759 3760 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3761 "Invalid internal hash", "Error setting internal hash key"); 3762 if (r) 3763 goto bad; 3764 3765 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3766 "Invalid journal mac", "Error setting journal mac key"); 3767 if (r) 3768 goto bad; 3769 3770 if (!ic->tag_size) { 3771 if (!ic->internal_hash) { 3772 ti->error = "Unknown tag size"; 3773 r = -EINVAL; 3774 goto bad; 3775 } 3776 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3777 } 3778 if (ic->tag_size > MAX_TAG_SIZE) { 3779 ti->error = "Too big tag size"; 3780 r = -EINVAL; 3781 goto bad; 3782 } 3783 if (!(ic->tag_size & (ic->tag_size - 1))) 3784 ic->log2_tag_size = __ffs(ic->tag_size); 3785 else 3786 ic->log2_tag_size = -1; 3787 3788 if (ic->mode == 'B' && !ic->internal_hash) { 3789 r = -EINVAL; 3790 ti->error = "Bitmap mode can be only used with internal hash"; 3791 goto bad; 3792 } 3793 3794 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3795 ic->autocommit_msec = sync_msec; 3796 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3797 3798 ic->io = dm_io_client_create(); 3799 if (IS_ERR(ic->io)) { 3800 r = PTR_ERR(ic->io); 3801 ic->io = NULL; 3802 ti->error = "Cannot allocate dm io"; 3803 goto bad; 3804 } 3805 3806 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3807 if (r) { 3808 ti->error = "Cannot allocate mempool"; 3809 goto bad; 3810 } 3811 3812 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3813 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3814 if (!ic->metadata_wq) { 3815 ti->error = "Cannot allocate workqueue"; 3816 r = -ENOMEM; 3817 goto bad; 3818 } 3819 3820 /* 3821 * If this workqueue were percpu, it would cause bio reordering 3822 * and reduced performance. 3823 */ 3824 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3825 if (!ic->wait_wq) { 3826 ti->error = "Cannot allocate workqueue"; 3827 r = -ENOMEM; 3828 goto bad; 3829 } 3830 3831 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 3832 METADATA_WORKQUEUE_MAX_ACTIVE); 3833 if (!ic->offload_wq) { 3834 ti->error = "Cannot allocate workqueue"; 3835 r = -ENOMEM; 3836 goto bad; 3837 } 3838 3839 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3840 if (!ic->commit_wq) { 3841 ti->error = "Cannot allocate workqueue"; 3842 r = -ENOMEM; 3843 goto bad; 3844 } 3845 INIT_WORK(&ic->commit_work, integrity_commit); 3846 3847 if (ic->mode == 'J' || ic->mode == 'B') { 3848 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3849 if (!ic->writer_wq) { 3850 ti->error = "Cannot allocate workqueue"; 3851 r = -ENOMEM; 3852 goto bad; 3853 } 3854 INIT_WORK(&ic->writer_work, integrity_writer); 3855 } 3856 3857 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3858 if (!ic->sb) { 3859 r = -ENOMEM; 3860 ti->error = "Cannot allocate superblock area"; 3861 goto bad; 3862 } 3863 3864 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3865 if (r) { 3866 ti->error = "Error reading superblock"; 3867 goto bad; 3868 } 3869 should_write_sb = false; 3870 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3871 if (ic->mode != 'R') { 3872 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3873 r = -EINVAL; 3874 ti->error = "The device is not initialized"; 3875 goto bad; 3876 } 3877 } 3878 3879 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3880 if (r) { 3881 ti->error = "Could not initialize superblock"; 3882 goto bad; 3883 } 3884 if (ic->mode != 'R') 3885 should_write_sb = true; 3886 } 3887 3888 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) { 3889 r = -EINVAL; 3890 ti->error = "Unknown version"; 3891 goto bad; 3892 } 3893 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3894 r = -EINVAL; 3895 ti->error = "Tag size doesn't match the information in superblock"; 3896 goto bad; 3897 } 3898 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3899 r = -EINVAL; 3900 ti->error = "Block size doesn't match the information in superblock"; 3901 goto bad; 3902 } 3903 if (!le32_to_cpu(ic->sb->journal_sections)) { 3904 r = -EINVAL; 3905 ti->error = "Corrupted superblock, journal_sections is 0"; 3906 goto bad; 3907 } 3908 /* make sure that ti->max_io_len doesn't overflow */ 3909 if (!ic->meta_dev) { 3910 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3911 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3912 r = -EINVAL; 3913 ti->error = "Invalid interleave_sectors in the superblock"; 3914 goto bad; 3915 } 3916 } else { 3917 if (ic->sb->log2_interleave_sectors) { 3918 r = -EINVAL; 3919 ti->error = "Invalid interleave_sectors in the superblock"; 3920 goto bad; 3921 } 3922 } 3923 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3924 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3925 /* test for overflow */ 3926 r = -EINVAL; 3927 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3928 goto bad; 3929 } 3930 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3931 r = -EINVAL; 3932 ti->error = "Journal mac mismatch"; 3933 goto bad; 3934 } 3935 3936 try_smaller_buffer: 3937 r = calculate_device_limits(ic); 3938 if (r) { 3939 if (ic->meta_dev) { 3940 if (ic->log2_buffer_sectors > 3) { 3941 ic->log2_buffer_sectors--; 3942 goto try_smaller_buffer; 3943 } 3944 } 3945 ti->error = "The device is too small"; 3946 goto bad; 3947 } 3948 3949 if (log2_sectors_per_bitmap_bit < 0) 3950 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 3951 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 3952 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 3953 3954 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 3955 if (bits_in_journal > UINT_MAX) 3956 bits_in_journal = UINT_MAX; 3957 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 3958 log2_sectors_per_bitmap_bit++; 3959 3960 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 3961 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3962 if (should_write_sb) { 3963 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3964 } 3965 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 3966 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 3967 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 3968 3969 if (!ic->meta_dev) 3970 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3971 3972 if (ti->len > ic->provided_data_sectors) { 3973 r = -EINVAL; 3974 ti->error = "Not enough provided sectors for requested mapping size"; 3975 goto bad; 3976 } 3977 3978 3979 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3980 threshold += 50; 3981 do_div(threshold, 100); 3982 ic->free_sectors_threshold = threshold; 3983 3984 DEBUG_print("initialized:\n"); 3985 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3986 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3987 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3988 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3989 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3990 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3991 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3992 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3993 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 3994 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3995 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3996 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3997 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3998 (unsigned long long)ic->provided_data_sectors); 3999 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4000 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal); 4001 4002 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4003 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4004 ic->sb->recalc_sector = cpu_to_le64(0); 4005 } 4006 4007 if (ic->internal_hash) { 4008 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4009 if (!ic->recalc_wq ) { 4010 ti->error = "Cannot allocate workqueue"; 4011 r = -ENOMEM; 4012 goto bad; 4013 } 4014 INIT_WORK(&ic->recalc_work, integrity_recalc); 4015 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4016 if (!ic->recalc_buffer) { 4017 ti->error = "Cannot allocate buffer for recalculating"; 4018 r = -ENOMEM; 4019 goto bad; 4020 } 4021 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4022 ic->tag_size, GFP_KERNEL); 4023 if (!ic->recalc_tags) { 4024 ti->error = "Cannot allocate tags for recalculating"; 4025 r = -ENOMEM; 4026 goto bad; 4027 } 4028 } 4029 4030 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4031 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4032 if (IS_ERR(ic->bufio)) { 4033 r = PTR_ERR(ic->bufio); 4034 ti->error = "Cannot initialize dm-bufio"; 4035 ic->bufio = NULL; 4036 goto bad; 4037 } 4038 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4039 4040 if (ic->mode != 'R') { 4041 r = create_journal(ic, &ti->error); 4042 if (r) 4043 goto bad; 4044 4045 } 4046 4047 if (ic->mode == 'B') { 4048 unsigned i; 4049 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4050 4051 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4052 if (!ic->recalc_bitmap) { 4053 r = -ENOMEM; 4054 goto bad; 4055 } 4056 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4057 if (!ic->may_write_bitmap) { 4058 r = -ENOMEM; 4059 goto bad; 4060 } 4061 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4062 if (!ic->bbs) { 4063 r = -ENOMEM; 4064 goto bad; 4065 } 4066 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4067 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4068 struct bitmap_block_status *bbs = &ic->bbs[i]; 4069 unsigned sector, pl_index, pl_offset; 4070 4071 INIT_WORK(&bbs->work, bitmap_block_work); 4072 bbs->ic = ic; 4073 bbs->idx = i; 4074 bio_list_init(&bbs->bio_queue); 4075 spin_lock_init(&bbs->bio_queue_lock); 4076 4077 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4078 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4079 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4080 4081 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4082 } 4083 } 4084 4085 if (should_write_sb) { 4086 int r; 4087 4088 init_journal(ic, 0, ic->journal_sections, 0); 4089 r = dm_integrity_failed(ic); 4090 if (unlikely(r)) { 4091 ti->error = "Error initializing journal"; 4092 goto bad; 4093 } 4094 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4095 if (r) { 4096 ti->error = "Error initializing superblock"; 4097 goto bad; 4098 } 4099 ic->just_formatted = true; 4100 } 4101 4102 if (!ic->meta_dev) { 4103 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4104 if (r) 4105 goto bad; 4106 } 4107 if (ic->mode == 'B') { 4108 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4109 if (!max_io_len) 4110 max_io_len = 1U << 31; 4111 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4112 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4113 r = dm_set_target_max_io_len(ti, max_io_len); 4114 if (r) 4115 goto bad; 4116 } 4117 } 4118 4119 if (!ic->internal_hash) 4120 dm_integrity_set(ti, ic); 4121 4122 ti->num_flush_bios = 1; 4123 ti->flush_supported = true; 4124 4125 return 0; 4126 4127 bad: 4128 dm_integrity_dtr(ti); 4129 return r; 4130 } 4131 4132 static void dm_integrity_dtr(struct dm_target *ti) 4133 { 4134 struct dm_integrity_c *ic = ti->private; 4135 4136 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4137 BUG_ON(!list_empty(&ic->wait_list)); 4138 4139 if (ic->metadata_wq) 4140 destroy_workqueue(ic->metadata_wq); 4141 if (ic->wait_wq) 4142 destroy_workqueue(ic->wait_wq); 4143 if (ic->offload_wq) 4144 destroy_workqueue(ic->offload_wq); 4145 if (ic->commit_wq) 4146 destroy_workqueue(ic->commit_wq); 4147 if (ic->writer_wq) 4148 destroy_workqueue(ic->writer_wq); 4149 if (ic->recalc_wq) 4150 destroy_workqueue(ic->recalc_wq); 4151 vfree(ic->recalc_buffer); 4152 kvfree(ic->recalc_tags); 4153 kvfree(ic->bbs); 4154 if (ic->bufio) 4155 dm_bufio_client_destroy(ic->bufio); 4156 mempool_exit(&ic->journal_io_mempool); 4157 if (ic->io) 4158 dm_io_client_destroy(ic->io); 4159 if (ic->dev) 4160 dm_put_device(ti, ic->dev); 4161 if (ic->meta_dev) 4162 dm_put_device(ti, ic->meta_dev); 4163 dm_integrity_free_page_list(ic->journal); 4164 dm_integrity_free_page_list(ic->journal_io); 4165 dm_integrity_free_page_list(ic->journal_xor); 4166 dm_integrity_free_page_list(ic->recalc_bitmap); 4167 dm_integrity_free_page_list(ic->may_write_bitmap); 4168 if (ic->journal_scatterlist) 4169 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4170 if (ic->journal_io_scatterlist) 4171 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4172 if (ic->sk_requests) { 4173 unsigned i; 4174 4175 for (i = 0; i < ic->journal_sections; i++) { 4176 struct skcipher_request *req = ic->sk_requests[i]; 4177 if (req) { 4178 kzfree(req->iv); 4179 skcipher_request_free(req); 4180 } 4181 } 4182 kvfree(ic->sk_requests); 4183 } 4184 kvfree(ic->journal_tree); 4185 if (ic->sb) 4186 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4187 4188 if (ic->internal_hash) 4189 crypto_free_shash(ic->internal_hash); 4190 free_alg(&ic->internal_hash_alg); 4191 4192 if (ic->journal_crypt) 4193 crypto_free_skcipher(ic->journal_crypt); 4194 free_alg(&ic->journal_crypt_alg); 4195 4196 if (ic->journal_mac) 4197 crypto_free_shash(ic->journal_mac); 4198 free_alg(&ic->journal_mac_alg); 4199 4200 kfree(ic); 4201 } 4202 4203 static struct target_type integrity_target = { 4204 .name = "integrity", 4205 .version = {1, 5, 0}, 4206 .module = THIS_MODULE, 4207 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4208 .ctr = dm_integrity_ctr, 4209 .dtr = dm_integrity_dtr, 4210 .map = dm_integrity_map, 4211 .postsuspend = dm_integrity_postsuspend, 4212 .resume = dm_integrity_resume, 4213 .status = dm_integrity_status, 4214 .iterate_devices = dm_integrity_iterate_devices, 4215 .io_hints = dm_integrity_io_hints, 4216 }; 4217 4218 static int __init dm_integrity_init(void) 4219 { 4220 int r; 4221 4222 journal_io_cache = kmem_cache_create("integrity_journal_io", 4223 sizeof(struct journal_io), 0, 0, NULL); 4224 if (!journal_io_cache) { 4225 DMERR("can't allocate journal io cache"); 4226 return -ENOMEM; 4227 } 4228 4229 r = dm_register_target(&integrity_target); 4230 4231 if (r < 0) 4232 DMERR("register failed %d", r); 4233 4234 return r; 4235 } 4236 4237 static void __exit dm_integrity_exit(void) 4238 { 4239 dm_unregister_target(&integrity_target); 4240 kmem_cache_destroy(journal_io_cache); 4241 } 4242 4243 module_init(dm_integrity_init); 4244 module_exit(dm_integrity_exit); 4245 4246 MODULE_AUTHOR("Milan Broz"); 4247 MODULE_AUTHOR("Mikulas Patocka"); 4248 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4249 MODULE_LICENSE("GPL"); 4250