xref: /openbmc/linux/drivers/md/dm-integrity.c (revision e8069f5a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	struct notifier_block reboot_notifier;
282 };
283 
284 struct dm_integrity_range {
285 	sector_t logical_sector;
286 	sector_t n_sectors;
287 	bool waiting;
288 	union {
289 		struct rb_node node;
290 		struct {
291 			struct task_struct *task;
292 			struct list_head wait_entry;
293 		};
294 	};
295 };
296 
297 struct dm_integrity_io {
298 	struct work_struct work;
299 
300 	struct dm_integrity_c *ic;
301 	enum req_op op;
302 	bool fua;
303 
304 	struct dm_integrity_range range;
305 
306 	sector_t metadata_block;
307 	unsigned int metadata_offset;
308 
309 	atomic_t in_flight;
310 	blk_status_t bi_status;
311 
312 	struct completion *completion;
313 
314 	struct dm_bio_details bio_details;
315 };
316 
317 struct journal_completion {
318 	struct dm_integrity_c *ic;
319 	atomic_t in_flight;
320 	struct completion comp;
321 };
322 
323 struct journal_io {
324 	struct dm_integrity_range range;
325 	struct journal_completion *comp;
326 };
327 
328 struct bitmap_block_status {
329 	struct work_struct work;
330 	struct dm_integrity_c *ic;
331 	unsigned int idx;
332 	unsigned long *bitmap;
333 	struct bio_list bio_queue;
334 	spinlock_t bio_queue_lock;
335 
336 };
337 
338 static struct kmem_cache *journal_io_cache;
339 
340 #define JOURNAL_IO_MEMPOOL	32
341 
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345 						       len ? ": " : "", len, bytes)
346 #else
347 #define DEBUG_print(x, ...)			do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
349 #endif
350 
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354 
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358 
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363 	.name			= "DM-DIF-EXT-TAG",
364 	.generate_fn		= NULL,
365 	.verify_fn		= NULL,
366 	.prepare_fn		= dm_integrity_prepare,
367 	.complete_fn		= dm_integrity_complete,
368 };
369 
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373 
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376 	if (err == -EILSEQ)
377 		atomic64_inc(&ic->number_of_mismatches);
378 	if (!cmpxchg(&ic->failed, 0, err))
379 		DMERR("Error on %s: %d", msg, err);
380 }
381 
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384 	return READ_ONCE(ic->failed);
385 }
386 
387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388 {
389 	if (ic->legacy_recalculate)
390 		return false;
391 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394 		return true;
395 	return false;
396 }
397 
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399 					  unsigned int j, unsigned char seq)
400 {
401 	/*
402 	 * Xor the number with section and sector, so that if a piece of
403 	 * journal is written at wrong place, it is detected.
404 	 */
405 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407 
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409 				sector_t *area, sector_t *offset)
410 {
411 	if (!ic->meta_dev) {
412 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413 		*area = data_sector >> log2_interleave_sectors;
414 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415 	} else {
416 		*area = 0;
417 		*offset = data_sector;
418 	}
419 }
420 
421 #define sector_to_block(ic, n)						\
422 do {									\
423 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
424 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
425 } while (0)
426 
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428 					    sector_t offset, unsigned int *metadata_offset)
429 {
430 	__u64 ms;
431 	unsigned int mo;
432 
433 	ms = area << ic->sb->log2_interleave_sectors;
434 	if (likely(ic->log2_metadata_run >= 0))
435 		ms += area << ic->log2_metadata_run;
436 	else
437 		ms += area * ic->metadata_run;
438 	ms >>= ic->log2_buffer_sectors;
439 
440 	sector_to_block(ic, offset);
441 
442 	if (likely(ic->log2_tag_size >= 0)) {
443 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445 	} else {
446 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448 	}
449 	*metadata_offset = mo;
450 	return ms;
451 }
452 
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455 	sector_t result;
456 
457 	if (ic->meta_dev)
458 		return offset;
459 
460 	result = area << ic->sb->log2_interleave_sectors;
461 	if (likely(ic->log2_metadata_run >= 0))
462 		result += (area + 1) << ic->log2_metadata_run;
463 	else
464 		result += (area + 1) * ic->metadata_run;
465 
466 	result += (sector_t)ic->initial_sectors + offset;
467 	result += ic->start;
468 
469 	return result;
470 }
471 
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473 {
474 	if (unlikely(*sec_ptr >= ic->journal_sections))
475 		*sec_ptr -= ic->journal_sections;
476 }
477 
478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481 		ic->sb->version = SB_VERSION_5;
482 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483 		ic->sb->version = SB_VERSION_4;
484 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485 		ic->sb->version = SB_VERSION_3;
486 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487 		ic->sb->version = SB_VERSION_2;
488 	else
489 		ic->sb->version = SB_VERSION_1;
490 }
491 
492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
493 {
494 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495 	int r;
496 	unsigned int size = crypto_shash_digestsize(ic->journal_mac);
497 
498 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
499 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
500 		return -EINVAL;
501 	}
502 
503 	desc->tfm = ic->journal_mac;
504 
505 	r = crypto_shash_init(desc);
506 	if (unlikely(r < 0)) {
507 		dm_integrity_io_error(ic, "crypto_shash_init", r);
508 		return r;
509 	}
510 
511 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
512 	if (unlikely(r < 0)) {
513 		dm_integrity_io_error(ic, "crypto_shash_update", r);
514 		return r;
515 	}
516 
517 	if (likely(wr)) {
518 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
519 		if (unlikely(r < 0)) {
520 			dm_integrity_io_error(ic, "crypto_shash_final", r);
521 			return r;
522 		}
523 	} else {
524 		__u8 result[HASH_MAX_DIGESTSIZE];
525 
526 		r = crypto_shash_final(desc, result);
527 		if (unlikely(r < 0)) {
528 			dm_integrity_io_error(ic, "crypto_shash_final", r);
529 			return r;
530 		}
531 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
532 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
533 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
534 			return -EILSEQ;
535 		}
536 	}
537 
538 	return 0;
539 }
540 
541 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
542 {
543 	struct dm_io_request io_req;
544 	struct dm_io_region io_loc;
545 	const enum req_op op = opf & REQ_OP_MASK;
546 	int r;
547 
548 	io_req.bi_opf = opf;
549 	io_req.mem.type = DM_IO_KMEM;
550 	io_req.mem.ptr.addr = ic->sb;
551 	io_req.notify.fn = NULL;
552 	io_req.client = ic->io;
553 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
554 	io_loc.sector = ic->start;
555 	io_loc.count = SB_SECTORS;
556 
557 	if (op == REQ_OP_WRITE) {
558 		sb_set_version(ic);
559 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
560 			r = sb_mac(ic, true);
561 			if (unlikely(r))
562 				return r;
563 		}
564 	}
565 
566 	r = dm_io(&io_req, 1, &io_loc, NULL);
567 	if (unlikely(r))
568 		return r;
569 
570 	if (op == REQ_OP_READ) {
571 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
572 			r = sb_mac(ic, false);
573 			if (unlikely(r))
574 				return r;
575 		}
576 	}
577 
578 	return 0;
579 }
580 
581 #define BITMAP_OP_TEST_ALL_SET		0
582 #define BITMAP_OP_TEST_ALL_CLEAR	1
583 #define BITMAP_OP_SET			2
584 #define BITMAP_OP_CLEAR			3
585 
586 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
587 			    sector_t sector, sector_t n_sectors, int mode)
588 {
589 	unsigned long bit, end_bit, this_end_bit, page, end_page;
590 	unsigned long *data;
591 
592 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
593 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
594 			sector,
595 			n_sectors,
596 			ic->sb->log2_sectors_per_block,
597 			ic->log2_blocks_per_bitmap_bit,
598 			mode);
599 		BUG();
600 	}
601 
602 	if (unlikely(!n_sectors))
603 		return true;
604 
605 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
606 	end_bit = (sector + n_sectors - 1) >>
607 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608 
609 	page = bit / (PAGE_SIZE * 8);
610 	bit %= PAGE_SIZE * 8;
611 
612 	end_page = end_bit / (PAGE_SIZE * 8);
613 	end_bit %= PAGE_SIZE * 8;
614 
615 repeat:
616 	if (page < end_page)
617 		this_end_bit = PAGE_SIZE * 8 - 1;
618 	else
619 		this_end_bit = end_bit;
620 
621 	data = lowmem_page_address(bitmap[page].page);
622 
623 	if (mode == BITMAP_OP_TEST_ALL_SET) {
624 		while (bit <= this_end_bit) {
625 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
626 				do {
627 					if (data[bit / BITS_PER_LONG] != -1)
628 						return false;
629 					bit += BITS_PER_LONG;
630 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
631 				continue;
632 			}
633 			if (!test_bit(bit, data))
634 				return false;
635 			bit++;
636 		}
637 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
638 		while (bit <= this_end_bit) {
639 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640 				do {
641 					if (data[bit / BITS_PER_LONG] != 0)
642 						return false;
643 					bit += BITS_PER_LONG;
644 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
645 				continue;
646 			}
647 			if (test_bit(bit, data))
648 				return false;
649 			bit++;
650 		}
651 	} else if (mode == BITMAP_OP_SET) {
652 		while (bit <= this_end_bit) {
653 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654 				do {
655 					data[bit / BITS_PER_LONG] = -1;
656 					bit += BITS_PER_LONG;
657 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
658 				continue;
659 			}
660 			__set_bit(bit, data);
661 			bit++;
662 		}
663 	} else if (mode == BITMAP_OP_CLEAR) {
664 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
665 			clear_page(data);
666 		else {
667 			while (bit <= this_end_bit) {
668 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
669 					do {
670 						data[bit / BITS_PER_LONG] = 0;
671 						bit += BITS_PER_LONG;
672 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
673 					continue;
674 				}
675 				__clear_bit(bit, data);
676 				bit++;
677 			}
678 		}
679 	} else {
680 		BUG();
681 	}
682 
683 	if (unlikely(page < end_page)) {
684 		bit = 0;
685 		page++;
686 		goto repeat;
687 	}
688 
689 	return true;
690 }
691 
692 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
693 {
694 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
695 	unsigned int i;
696 
697 	for (i = 0; i < n_bitmap_pages; i++) {
698 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
699 		unsigned long *src_data = lowmem_page_address(src[i].page);
700 
701 		copy_page(dst_data, src_data);
702 	}
703 }
704 
705 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
706 {
707 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
708 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
709 
710 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
711 	return &ic->bbs[bitmap_block];
712 }
713 
714 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
715 				 bool e, const char *function)
716 {
717 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
718 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
719 
720 	if (unlikely(section >= ic->journal_sections) ||
721 	    unlikely(offset >= limit)) {
722 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
723 		       function, section, offset, ic->journal_sections, limit);
724 		BUG();
725 	}
726 #endif
727 }
728 
729 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
730 			       unsigned int *pl_index, unsigned int *pl_offset)
731 {
732 	unsigned int sector;
733 
734 	access_journal_check(ic, section, offset, false, "page_list_location");
735 
736 	sector = section * ic->journal_section_sectors + offset;
737 
738 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
739 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
740 }
741 
742 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
743 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
744 {
745 	unsigned int pl_index, pl_offset;
746 	char *va;
747 
748 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
749 
750 	if (n_sectors)
751 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
752 
753 	va = lowmem_page_address(pl[pl_index].page);
754 
755 	return (struct journal_sector *)(va + pl_offset);
756 }
757 
758 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
759 {
760 	return access_page_list(ic, ic->journal, section, offset, NULL);
761 }
762 
763 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
764 {
765 	unsigned int rel_sector, offset;
766 	struct journal_sector *js;
767 
768 	access_journal_check(ic, section, n, true, "access_journal_entry");
769 
770 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
771 	offset = n / JOURNAL_BLOCK_SECTORS;
772 
773 	js = access_journal(ic, section, rel_sector);
774 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
775 }
776 
777 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
778 {
779 	n <<= ic->sb->log2_sectors_per_block;
780 
781 	n += JOURNAL_BLOCK_SECTORS;
782 
783 	access_journal_check(ic, section, n, false, "access_journal_data");
784 
785 	return access_journal(ic, section, n);
786 }
787 
788 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
789 {
790 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
791 	int r;
792 	unsigned int j, size;
793 
794 	desc->tfm = ic->journal_mac;
795 
796 	r = crypto_shash_init(desc);
797 	if (unlikely(r < 0)) {
798 		dm_integrity_io_error(ic, "crypto_shash_init", r);
799 		goto err;
800 	}
801 
802 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
803 		__le64 section_le;
804 
805 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
806 		if (unlikely(r < 0)) {
807 			dm_integrity_io_error(ic, "crypto_shash_update", r);
808 			goto err;
809 		}
810 
811 		section_le = cpu_to_le64(section);
812 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
813 		if (unlikely(r < 0)) {
814 			dm_integrity_io_error(ic, "crypto_shash_update", r);
815 			goto err;
816 		}
817 	}
818 
819 	for (j = 0; j < ic->journal_section_entries; j++) {
820 		struct journal_entry *je = access_journal_entry(ic, section, j);
821 
822 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
823 		if (unlikely(r < 0)) {
824 			dm_integrity_io_error(ic, "crypto_shash_update", r);
825 			goto err;
826 		}
827 	}
828 
829 	size = crypto_shash_digestsize(ic->journal_mac);
830 
831 	if (likely(size <= JOURNAL_MAC_SIZE)) {
832 		r = crypto_shash_final(desc, result);
833 		if (unlikely(r < 0)) {
834 			dm_integrity_io_error(ic, "crypto_shash_final", r);
835 			goto err;
836 		}
837 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
838 	} else {
839 		__u8 digest[HASH_MAX_DIGESTSIZE];
840 
841 		if (WARN_ON(size > sizeof(digest))) {
842 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
843 			goto err;
844 		}
845 		r = crypto_shash_final(desc, digest);
846 		if (unlikely(r < 0)) {
847 			dm_integrity_io_error(ic, "crypto_shash_final", r);
848 			goto err;
849 		}
850 		memcpy(result, digest, JOURNAL_MAC_SIZE);
851 	}
852 
853 	return;
854 err:
855 	memset(result, 0, JOURNAL_MAC_SIZE);
856 }
857 
858 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
859 {
860 	__u8 result[JOURNAL_MAC_SIZE];
861 	unsigned int j;
862 
863 	if (!ic->journal_mac)
864 		return;
865 
866 	section_mac(ic, section, result);
867 
868 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
869 		struct journal_sector *js = access_journal(ic, section, j);
870 
871 		if (likely(wr))
872 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
873 		else {
874 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
875 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
876 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
877 			}
878 		}
879 	}
880 }
881 
882 static void complete_journal_op(void *context)
883 {
884 	struct journal_completion *comp = context;
885 
886 	BUG_ON(!atomic_read(&comp->in_flight));
887 	if (likely(atomic_dec_and_test(&comp->in_flight)))
888 		complete(&comp->comp);
889 }
890 
891 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
892 			unsigned int n_sections, struct journal_completion *comp)
893 {
894 	struct async_submit_ctl submit;
895 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
896 	unsigned int pl_index, pl_offset, section_index;
897 	struct page_list *source_pl, *target_pl;
898 
899 	if (likely(encrypt)) {
900 		source_pl = ic->journal;
901 		target_pl = ic->journal_io;
902 	} else {
903 		source_pl = ic->journal_io;
904 		target_pl = ic->journal;
905 	}
906 
907 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
908 
909 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
910 
911 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
912 
913 	section_index = pl_index;
914 
915 	do {
916 		size_t this_step;
917 		struct page *src_pages[2];
918 		struct page *dst_page;
919 
920 		while (unlikely(pl_index == section_index)) {
921 			unsigned int dummy;
922 
923 			if (likely(encrypt))
924 				rw_section_mac(ic, section, true);
925 			section++;
926 			n_sections--;
927 			if (!n_sections)
928 				break;
929 			page_list_location(ic, section, 0, &section_index, &dummy);
930 		}
931 
932 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
933 		dst_page = target_pl[pl_index].page;
934 		src_pages[0] = source_pl[pl_index].page;
935 		src_pages[1] = ic->journal_xor[pl_index].page;
936 
937 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
938 
939 		pl_index++;
940 		pl_offset = 0;
941 		n_bytes -= this_step;
942 	} while (n_bytes);
943 
944 	BUG_ON(n_sections);
945 
946 	async_tx_issue_pending_all();
947 }
948 
949 static void complete_journal_encrypt(void *data, int err)
950 {
951 	struct journal_completion *comp = data;
952 
953 	if (unlikely(err)) {
954 		if (likely(err == -EINPROGRESS)) {
955 			complete(&comp->ic->crypto_backoff);
956 			return;
957 		}
958 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959 	}
960 	complete_journal_op(comp);
961 }
962 
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965 	int r;
966 
967 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
968 				      complete_journal_encrypt, comp);
969 	if (likely(encrypt))
970 		r = crypto_skcipher_encrypt(req);
971 	else
972 		r = crypto_skcipher_decrypt(req);
973 	if (likely(!r))
974 		return false;
975 	if (likely(r == -EINPROGRESS))
976 		return true;
977 	if (likely(r == -EBUSY)) {
978 		wait_for_completion(&comp->ic->crypto_backoff);
979 		reinit_completion(&comp->ic->crypto_backoff);
980 		return true;
981 	}
982 	dm_integrity_io_error(comp->ic, "encrypt", r);
983 	return false;
984 }
985 
986 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
987 			  unsigned int n_sections, struct journal_completion *comp)
988 {
989 	struct scatterlist **source_sg;
990 	struct scatterlist **target_sg;
991 
992 	atomic_add(2, &comp->in_flight);
993 
994 	if (likely(encrypt)) {
995 		source_sg = ic->journal_scatterlist;
996 		target_sg = ic->journal_io_scatterlist;
997 	} else {
998 		source_sg = ic->journal_io_scatterlist;
999 		target_sg = ic->journal_scatterlist;
1000 	}
1001 
1002 	do {
1003 		struct skcipher_request *req;
1004 		unsigned int ivsize;
1005 		char *iv;
1006 
1007 		if (likely(encrypt))
1008 			rw_section_mac(ic, section, true);
1009 
1010 		req = ic->sk_requests[section];
1011 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1012 		iv = req->iv;
1013 
1014 		memcpy(iv, iv + ivsize, ivsize);
1015 
1016 		req->src = source_sg[section];
1017 		req->dst = target_sg[section];
1018 
1019 		if (unlikely(do_crypt(encrypt, req, comp)))
1020 			atomic_inc(&comp->in_flight);
1021 
1022 		section++;
1023 		n_sections--;
1024 	} while (n_sections);
1025 
1026 	atomic_dec(&comp->in_flight);
1027 	complete_journal_op(comp);
1028 }
1029 
1030 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1031 			    unsigned int n_sections, struct journal_completion *comp)
1032 {
1033 	if (ic->journal_xor)
1034 		return xor_journal(ic, encrypt, section, n_sections, comp);
1035 	else
1036 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1037 }
1038 
1039 static void complete_journal_io(unsigned long error, void *context)
1040 {
1041 	struct journal_completion *comp = context;
1042 
1043 	if (unlikely(error != 0))
1044 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1045 	complete_journal_op(comp);
1046 }
1047 
1048 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1049 			       unsigned int sector, unsigned int n_sectors,
1050 			       struct journal_completion *comp)
1051 {
1052 	struct dm_io_request io_req;
1053 	struct dm_io_region io_loc;
1054 	unsigned int pl_index, pl_offset;
1055 	int r;
1056 
1057 	if (unlikely(dm_integrity_failed(ic))) {
1058 		if (comp)
1059 			complete_journal_io(-1UL, comp);
1060 		return;
1061 	}
1062 
1063 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1064 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1065 
1066 	io_req.bi_opf = opf;
1067 	io_req.mem.type = DM_IO_PAGE_LIST;
1068 	if (ic->journal_io)
1069 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1070 	else
1071 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1072 	io_req.mem.offset = pl_offset;
1073 	if (likely(comp != NULL)) {
1074 		io_req.notify.fn = complete_journal_io;
1075 		io_req.notify.context = comp;
1076 	} else {
1077 		io_req.notify.fn = NULL;
1078 	}
1079 	io_req.client = ic->io;
1080 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1081 	io_loc.sector = ic->start + SB_SECTORS + sector;
1082 	io_loc.count = n_sectors;
1083 
1084 	r = dm_io(&io_req, 1, &io_loc, NULL);
1085 	if (unlikely(r)) {
1086 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1087 				      "reading journal" : "writing journal", r);
1088 		if (comp) {
1089 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1090 			complete_journal_io(-1UL, comp);
1091 		}
1092 	}
1093 }
1094 
1095 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1096 		       unsigned int section, unsigned int n_sections,
1097 		       struct journal_completion *comp)
1098 {
1099 	unsigned int sector, n_sectors;
1100 
1101 	sector = section * ic->journal_section_sectors;
1102 	n_sectors = n_sections * ic->journal_section_sectors;
1103 
1104 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1105 }
1106 
1107 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1108 {
1109 	struct journal_completion io_comp;
1110 	struct journal_completion crypt_comp_1;
1111 	struct journal_completion crypt_comp_2;
1112 	unsigned int i;
1113 
1114 	io_comp.ic = ic;
1115 	init_completion(&io_comp.comp);
1116 
1117 	if (commit_start + commit_sections <= ic->journal_sections) {
1118 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1119 		if (ic->journal_io) {
1120 			crypt_comp_1.ic = ic;
1121 			init_completion(&crypt_comp_1.comp);
1122 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1123 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1124 			wait_for_completion_io(&crypt_comp_1.comp);
1125 		} else {
1126 			for (i = 0; i < commit_sections; i++)
1127 				rw_section_mac(ic, commit_start + i, true);
1128 		}
1129 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1130 			   commit_sections, &io_comp);
1131 	} else {
1132 		unsigned int to_end;
1133 
1134 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1135 		to_end = ic->journal_sections - commit_start;
1136 		if (ic->journal_io) {
1137 			crypt_comp_1.ic = ic;
1138 			init_completion(&crypt_comp_1.comp);
1139 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1141 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1142 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1143 					   commit_start, to_end, &io_comp);
1144 				reinit_completion(&crypt_comp_1.comp);
1145 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1146 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1147 				wait_for_completion_io(&crypt_comp_1.comp);
1148 			} else {
1149 				crypt_comp_2.ic = ic;
1150 				init_completion(&crypt_comp_2.comp);
1151 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1152 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1153 				wait_for_completion_io(&crypt_comp_1.comp);
1154 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1155 				wait_for_completion_io(&crypt_comp_2.comp);
1156 			}
1157 		} else {
1158 			for (i = 0; i < to_end; i++)
1159 				rw_section_mac(ic, commit_start + i, true);
1160 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1161 			for (i = 0; i < commit_sections - to_end; i++)
1162 				rw_section_mac(ic, i, true);
1163 		}
1164 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1165 	}
1166 
1167 	wait_for_completion_io(&io_comp.comp);
1168 }
1169 
1170 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1171 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1172 {
1173 	struct dm_io_request io_req;
1174 	struct dm_io_region io_loc;
1175 	int r;
1176 	unsigned int sector, pl_index, pl_offset;
1177 
1178 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1179 
1180 	if (unlikely(dm_integrity_failed(ic))) {
1181 		fn(-1UL, data);
1182 		return;
1183 	}
1184 
1185 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1186 
1187 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1188 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1189 
1190 	io_req.bi_opf = REQ_OP_WRITE;
1191 	io_req.mem.type = DM_IO_PAGE_LIST;
1192 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1193 	io_req.mem.offset = pl_offset;
1194 	io_req.notify.fn = fn;
1195 	io_req.notify.context = data;
1196 	io_req.client = ic->io;
1197 	io_loc.bdev = ic->dev->bdev;
1198 	io_loc.sector = target;
1199 	io_loc.count = n_sectors;
1200 
1201 	r = dm_io(&io_req, 1, &io_loc, NULL);
1202 	if (unlikely(r)) {
1203 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1204 		fn(-1UL, data);
1205 	}
1206 }
1207 
1208 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1209 {
1210 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1211 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1212 }
1213 
1214 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1215 {
1216 	struct rb_node **n = &ic->in_progress.rb_node;
1217 	struct rb_node *parent;
1218 
1219 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1220 
1221 	if (likely(check_waiting)) {
1222 		struct dm_integrity_range *range;
1223 
1224 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1225 			if (unlikely(ranges_overlap(range, new_range)))
1226 				return false;
1227 		}
1228 	}
1229 
1230 	parent = NULL;
1231 
1232 	while (*n) {
1233 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1234 
1235 		parent = *n;
1236 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1237 			n = &range->node.rb_left;
1238 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1239 			n = &range->node.rb_right;
1240 		else
1241 			return false;
1242 	}
1243 
1244 	rb_link_node(&new_range->node, parent, n);
1245 	rb_insert_color(&new_range->node, &ic->in_progress);
1246 
1247 	return true;
1248 }
1249 
1250 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1251 {
1252 	rb_erase(&range->node, &ic->in_progress);
1253 	while (unlikely(!list_empty(&ic->wait_list))) {
1254 		struct dm_integrity_range *last_range =
1255 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1256 		struct task_struct *last_range_task;
1257 
1258 		last_range_task = last_range->task;
1259 		list_del(&last_range->wait_entry);
1260 		if (!add_new_range(ic, last_range, false)) {
1261 			last_range->task = last_range_task;
1262 			list_add(&last_range->wait_entry, &ic->wait_list);
1263 			break;
1264 		}
1265 		last_range->waiting = false;
1266 		wake_up_process(last_range_task);
1267 	}
1268 }
1269 
1270 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1271 {
1272 	unsigned long flags;
1273 
1274 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1275 	remove_range_unlocked(ic, range);
1276 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1277 }
1278 
1279 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1280 {
1281 	new_range->waiting = true;
1282 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1283 	new_range->task = current;
1284 	do {
1285 		__set_current_state(TASK_UNINTERRUPTIBLE);
1286 		spin_unlock_irq(&ic->endio_wait.lock);
1287 		io_schedule();
1288 		spin_lock_irq(&ic->endio_wait.lock);
1289 	} while (unlikely(new_range->waiting));
1290 }
1291 
1292 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1293 {
1294 	if (unlikely(!add_new_range(ic, new_range, true)))
1295 		wait_and_add_new_range(ic, new_range);
1296 }
1297 
1298 static void init_journal_node(struct journal_node *node)
1299 {
1300 	RB_CLEAR_NODE(&node->node);
1301 	node->sector = (sector_t)-1;
1302 }
1303 
1304 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1305 {
1306 	struct rb_node **link;
1307 	struct rb_node *parent;
1308 
1309 	node->sector = sector;
1310 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1311 
1312 	link = &ic->journal_tree_root.rb_node;
1313 	parent = NULL;
1314 
1315 	while (*link) {
1316 		struct journal_node *j;
1317 
1318 		parent = *link;
1319 		j = container_of(parent, struct journal_node, node);
1320 		if (sector < j->sector)
1321 			link = &j->node.rb_left;
1322 		else
1323 			link = &j->node.rb_right;
1324 	}
1325 
1326 	rb_link_node(&node->node, parent, link);
1327 	rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329 
1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332 	BUG_ON(RB_EMPTY_NODE(&node->node));
1333 	rb_erase(&node->node, &ic->journal_tree_root);
1334 	init_journal_node(node);
1335 }
1336 
1337 #define NOT_FOUND	(-1U)
1338 
1339 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341 	struct rb_node *n = ic->journal_tree_root.rb_node;
1342 	unsigned int found = NOT_FOUND;
1343 
1344 	*next_sector = (sector_t)-1;
1345 	while (n) {
1346 		struct journal_node *j = container_of(n, struct journal_node, node);
1347 
1348 		if (sector == j->sector)
1349 			found = j - ic->journal_tree;
1350 
1351 		if (sector < j->sector) {
1352 			*next_sector = j->sector;
1353 			n = j->node.rb_left;
1354 		} else
1355 			n = j->node.rb_right;
1356 	}
1357 
1358 	return found;
1359 }
1360 
1361 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1362 {
1363 	struct journal_node *node, *next_node;
1364 	struct rb_node *next;
1365 
1366 	if (unlikely(pos >= ic->journal_entries))
1367 		return false;
1368 	node = &ic->journal_tree[pos];
1369 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1370 		return false;
1371 	if (unlikely(node->sector != sector))
1372 		return false;
1373 
1374 	next = rb_next(&node->node);
1375 	if (unlikely(!next))
1376 		return true;
1377 
1378 	next_node = container_of(next, struct journal_node, node);
1379 	return next_node->sector != sector;
1380 }
1381 
1382 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1383 {
1384 	struct rb_node *next;
1385 	struct journal_node *next_node;
1386 	unsigned int next_section;
1387 
1388 	BUG_ON(RB_EMPTY_NODE(&node->node));
1389 
1390 	next = rb_next(&node->node);
1391 	if (unlikely(!next))
1392 		return false;
1393 
1394 	next_node = container_of(next, struct journal_node, node);
1395 
1396 	if (next_node->sector != node->sector)
1397 		return false;
1398 
1399 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1400 	if (next_section >= ic->committed_section &&
1401 	    next_section < ic->committed_section + ic->n_committed_sections)
1402 		return true;
1403 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1404 		return true;
1405 
1406 	return false;
1407 }
1408 
1409 #define TAG_READ	0
1410 #define TAG_WRITE	1
1411 #define TAG_CMP		2
1412 
1413 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1414 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1415 {
1416 #define MAY_BE_FILLER		1
1417 #define MAY_BE_HASH		2
1418 	unsigned int hash_offset = 0;
1419 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1420 
1421 	do {
1422 		unsigned char *data, *dp;
1423 		struct dm_buffer *b;
1424 		unsigned int to_copy;
1425 		int r;
1426 
1427 		r = dm_integrity_failed(ic);
1428 		if (unlikely(r))
1429 			return r;
1430 
1431 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1432 		if (IS_ERR(data))
1433 			return PTR_ERR(data);
1434 
1435 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1436 		dp = data + *metadata_offset;
1437 		if (op == TAG_READ) {
1438 			memcpy(tag, dp, to_copy);
1439 		} else if (op == TAG_WRITE) {
1440 			if (memcmp(dp, tag, to_copy)) {
1441 				memcpy(dp, tag, to_copy);
1442 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1443 			}
1444 		} else {
1445 			/* e.g.: op == TAG_CMP */
1446 
1447 			if (likely(is_power_of_2(ic->tag_size))) {
1448 				if (unlikely(memcmp(dp, tag, to_copy)))
1449 					if (unlikely(!ic->discard) ||
1450 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1451 						goto thorough_test;
1452 				}
1453 			} else {
1454 				unsigned int i, ts;
1455 thorough_test:
1456 				ts = total_size;
1457 
1458 				for (i = 0; i < to_copy; i++, ts--) {
1459 					if (unlikely(dp[i] != tag[i]))
1460 						may_be &= ~MAY_BE_HASH;
1461 					if (likely(dp[i] != DISCARD_FILLER))
1462 						may_be &= ~MAY_BE_FILLER;
1463 					hash_offset++;
1464 					if (unlikely(hash_offset == ic->tag_size)) {
1465 						if (unlikely(!may_be)) {
1466 							dm_bufio_release(b);
1467 							return ts;
1468 						}
1469 						hash_offset = 0;
1470 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1471 					}
1472 				}
1473 			}
1474 		}
1475 		dm_bufio_release(b);
1476 
1477 		tag += to_copy;
1478 		*metadata_offset += to_copy;
1479 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1480 			(*metadata_block)++;
1481 			*metadata_offset = 0;
1482 		}
1483 
1484 		if (unlikely(!is_power_of_2(ic->tag_size)))
1485 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1486 
1487 		total_size -= to_copy;
1488 	} while (unlikely(total_size));
1489 
1490 	return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494 
1495 struct flush_request {
1496 	struct dm_io_request io_req;
1497 	struct dm_io_region io_reg;
1498 	struct dm_integrity_c *ic;
1499 	struct completion comp;
1500 };
1501 
1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504 	struct flush_request *fr = fr_;
1505 
1506 	if (unlikely(error != 0))
1507 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1508 	complete(&fr->comp);
1509 }
1510 
1511 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1512 {
1513 	int r;
1514 	struct flush_request fr;
1515 
1516 	if (!ic->meta_dev)
1517 		flush_data = false;
1518 	if (flush_data) {
1519 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1520 		fr.io_req.mem.type = DM_IO_KMEM,
1521 		fr.io_req.mem.ptr.addr = NULL,
1522 		fr.io_req.notify.fn = flush_notify,
1523 		fr.io_req.notify.context = &fr;
1524 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1525 		fr.io_reg.bdev = ic->dev->bdev,
1526 		fr.io_reg.sector = 0,
1527 		fr.io_reg.count = 0,
1528 		fr.ic = ic;
1529 		init_completion(&fr.comp);
1530 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1531 		BUG_ON(r);
1532 	}
1533 
1534 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1535 	if (unlikely(r))
1536 		dm_integrity_io_error(ic, "writing tags", r);
1537 
1538 	if (flush_data)
1539 		wait_for_completion(&fr.comp);
1540 }
1541 
1542 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1543 {
1544 	DECLARE_WAITQUEUE(wait, current);
1545 
1546 	__add_wait_queue(&ic->endio_wait, &wait);
1547 	__set_current_state(TASK_UNINTERRUPTIBLE);
1548 	spin_unlock_irq(&ic->endio_wait.lock);
1549 	io_schedule();
1550 	spin_lock_irq(&ic->endio_wait.lock);
1551 	__remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553 
1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557 
1558 	if (likely(!dm_integrity_failed(ic)))
1559 		queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561 
1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564 	if (!timer_pending(&ic->autocommit_timer))
1565 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567 
1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570 	struct bio *bio;
1571 	unsigned long flags;
1572 
1573 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575 	bio_list_add(&ic->flush_bio_list, bio);
1576 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577 
1578 	queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580 
1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583 	int r;
1584 
1585 	r = dm_integrity_failed(ic);
1586 	if (unlikely(r) && !bio->bi_status)
1587 		bio->bi_status = errno_to_blk_status(r);
1588 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1589 		unsigned long flags;
1590 
1591 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1592 		bio_list_add(&ic->synchronous_bios, bio);
1593 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1594 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1595 		return;
1596 	}
1597 	bio_endio(bio);
1598 }
1599 
1600 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1601 {
1602 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1603 
1604 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1605 		submit_flush_bio(ic, dio);
1606 	else
1607 		do_endio(ic, bio);
1608 }
1609 
1610 static void dec_in_flight(struct dm_integrity_io *dio)
1611 {
1612 	if (atomic_dec_and_test(&dio->in_flight)) {
1613 		struct dm_integrity_c *ic = dio->ic;
1614 		struct bio *bio;
1615 
1616 		remove_range(ic, &dio->range);
1617 
1618 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1619 			schedule_autocommit(ic);
1620 
1621 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1622 		if (unlikely(dio->bi_status) && !bio->bi_status)
1623 			bio->bi_status = dio->bi_status;
1624 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1625 			dio->range.logical_sector += dio->range.n_sectors;
1626 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1627 			INIT_WORK(&dio->work, integrity_bio_wait);
1628 			queue_work(ic->offload_wq, &dio->work);
1629 			return;
1630 		}
1631 		do_endio_flush(ic, dio);
1632 	}
1633 }
1634 
1635 static void integrity_end_io(struct bio *bio)
1636 {
1637 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1638 
1639 	dm_bio_restore(&dio->bio_details, bio);
1640 	if (bio->bi_integrity)
1641 		bio->bi_opf |= REQ_INTEGRITY;
1642 
1643 	if (dio->completion)
1644 		complete(dio->completion);
1645 
1646 	dec_in_flight(dio);
1647 }
1648 
1649 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1650 				      const char *data, char *result)
1651 {
1652 	__le64 sector_le = cpu_to_le64(sector);
1653 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1654 	int r;
1655 	unsigned int digest_size;
1656 
1657 	req->tfm = ic->internal_hash;
1658 
1659 	r = crypto_shash_init(req);
1660 	if (unlikely(r < 0)) {
1661 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1662 		goto failed;
1663 	}
1664 
1665 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1666 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1667 		if (unlikely(r < 0)) {
1668 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 			goto failed;
1670 		}
1671 	}
1672 
1673 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1674 	if (unlikely(r < 0)) {
1675 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1676 		goto failed;
1677 	}
1678 
1679 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1680 	if (unlikely(r < 0)) {
1681 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1682 		goto failed;
1683 	}
1684 
1685 	r = crypto_shash_final(req, result);
1686 	if (unlikely(r < 0)) {
1687 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1688 		goto failed;
1689 	}
1690 
1691 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1692 	if (unlikely(digest_size < ic->tag_size))
1693 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1694 
1695 	return;
1696 
1697 failed:
1698 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1699 	get_random_bytes(result, ic->tag_size);
1700 }
1701 
1702 static void integrity_metadata(struct work_struct *w)
1703 {
1704 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1705 	struct dm_integrity_c *ic = dio->ic;
1706 
1707 	int r;
1708 
1709 	if (ic->internal_hash) {
1710 		struct bvec_iter iter;
1711 		struct bio_vec bv;
1712 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1713 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1714 		char *checksums;
1715 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1716 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1717 		sector_t sector;
1718 		unsigned int sectors_to_process;
1719 
1720 		if (unlikely(ic->mode == 'R'))
1721 			goto skip_io;
1722 
1723 		if (likely(dio->op != REQ_OP_DISCARD))
1724 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1725 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726 		else
1727 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1728 		if (!checksums) {
1729 			checksums = checksums_onstack;
1730 			if (WARN_ON(extra_space &&
1731 				    digest_size > sizeof(checksums_onstack))) {
1732 				r = -EINVAL;
1733 				goto error;
1734 			}
1735 		}
1736 
1737 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1738 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1739 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1740 			unsigned int max_blocks = max_size / ic->tag_size;
1741 
1742 			memset(checksums, DISCARD_FILLER, max_size);
1743 
1744 			while (bi_size) {
1745 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1746 
1747 				this_step_blocks = min(this_step_blocks, max_blocks);
1748 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1749 							this_step_blocks * ic->tag_size, TAG_WRITE);
1750 				if (unlikely(r)) {
1751 					if (likely(checksums != checksums_onstack))
1752 						kfree(checksums);
1753 					goto error;
1754 				}
1755 
1756 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1757 			}
1758 
1759 			if (likely(checksums != checksums_onstack))
1760 				kfree(checksums);
1761 			goto skip_io;
1762 		}
1763 
1764 		sector = dio->range.logical_sector;
1765 		sectors_to_process = dio->range.n_sectors;
1766 
1767 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1768 			unsigned int pos;
1769 			char *mem, *checksums_ptr;
1770 
1771 again:
1772 			mem = bvec_kmap_local(&bv);
1773 			pos = 0;
1774 			checksums_ptr = checksums;
1775 			do {
1776 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1777 				checksums_ptr += ic->tag_size;
1778 				sectors_to_process -= ic->sectors_per_block;
1779 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1780 				sector += ic->sectors_per_block;
1781 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1782 			kunmap_local(mem);
1783 
1784 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1785 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1786 			if (unlikely(r)) {
1787 				if (r > 0) {
1788 					sector_t s;
1789 
1790 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1791 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1792 						    bio->bi_bdev, s);
1793 					r = -EILSEQ;
1794 					atomic64_inc(&ic->number_of_mismatches);
1795 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1796 							 bio, s, 0);
1797 				}
1798 				if (likely(checksums != checksums_onstack))
1799 					kfree(checksums);
1800 				goto error;
1801 			}
1802 
1803 			if (!sectors_to_process)
1804 				break;
1805 
1806 			if (unlikely(pos < bv.bv_len)) {
1807 				bv.bv_offset += pos;
1808 				bv.bv_len -= pos;
1809 				goto again;
1810 			}
1811 		}
1812 
1813 		if (likely(checksums != checksums_onstack))
1814 			kfree(checksums);
1815 	} else {
1816 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1817 
1818 		if (bip) {
1819 			struct bio_vec biv;
1820 			struct bvec_iter iter;
1821 			unsigned int data_to_process = dio->range.n_sectors;
1822 
1823 			sector_to_block(ic, data_to_process);
1824 			data_to_process *= ic->tag_size;
1825 
1826 			bip_for_each_vec(biv, bip, iter) {
1827 				unsigned char *tag;
1828 				unsigned int this_len;
1829 
1830 				BUG_ON(PageHighMem(biv.bv_page));
1831 				tag = bvec_virt(&biv);
1832 				this_len = min(biv.bv_len, data_to_process);
1833 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1834 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1835 				if (unlikely(r))
1836 					goto error;
1837 				data_to_process -= this_len;
1838 				if (!data_to_process)
1839 					break;
1840 			}
1841 		}
1842 	}
1843 skip_io:
1844 	dec_in_flight(dio);
1845 	return;
1846 error:
1847 	dio->bi_status = errno_to_blk_status(r);
1848 	dec_in_flight(dio);
1849 }
1850 
1851 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1852 {
1853 	struct dm_integrity_c *ic = ti->private;
1854 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1855 	struct bio_integrity_payload *bip;
1856 
1857 	sector_t area, offset;
1858 
1859 	dio->ic = ic;
1860 	dio->bi_status = 0;
1861 	dio->op = bio_op(bio);
1862 
1863 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1864 		if (ti->max_io_len) {
1865 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1866 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1867 			sector_t start_boundary = sec >> log2_max_io_len;
1868 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1869 
1870 			if (start_boundary < end_boundary) {
1871 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1872 
1873 				dm_accept_partial_bio(bio, len);
1874 			}
1875 		}
1876 	}
1877 
1878 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1879 		submit_flush_bio(ic, dio);
1880 		return DM_MAPIO_SUBMITTED;
1881 	}
1882 
1883 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1884 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1885 	if (unlikely(dio->fua)) {
1886 		/*
1887 		 * Don't pass down the FUA flag because we have to flush
1888 		 * disk cache anyway.
1889 		 */
1890 		bio->bi_opf &= ~REQ_FUA;
1891 	}
1892 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1893 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1894 		      dio->range.logical_sector, bio_sectors(bio),
1895 		      ic->provided_data_sectors);
1896 		return DM_MAPIO_KILL;
1897 	}
1898 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1899 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1900 		      ic->sectors_per_block,
1901 		      dio->range.logical_sector, bio_sectors(bio));
1902 		return DM_MAPIO_KILL;
1903 	}
1904 
1905 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1906 		struct bvec_iter iter;
1907 		struct bio_vec bv;
1908 
1909 		bio_for_each_segment(bv, bio, iter) {
1910 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1911 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1912 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1913 				return DM_MAPIO_KILL;
1914 			}
1915 		}
1916 	}
1917 
1918 	bip = bio_integrity(bio);
1919 	if (!ic->internal_hash) {
1920 		if (bip) {
1921 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1922 
1923 			if (ic->log2_tag_size >= 0)
1924 				wanted_tag_size <<= ic->log2_tag_size;
1925 			else
1926 				wanted_tag_size *= ic->tag_size;
1927 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1928 				DMERR("Invalid integrity data size %u, expected %u",
1929 				      bip->bip_iter.bi_size, wanted_tag_size);
1930 				return DM_MAPIO_KILL;
1931 			}
1932 		}
1933 	} else {
1934 		if (unlikely(bip != NULL)) {
1935 			DMERR("Unexpected integrity data when using internal hash");
1936 			return DM_MAPIO_KILL;
1937 		}
1938 	}
1939 
1940 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1941 		return DM_MAPIO_KILL;
1942 
1943 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1944 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1945 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1946 
1947 	dm_integrity_map_continue(dio, true);
1948 	return DM_MAPIO_SUBMITTED;
1949 }
1950 
1951 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1952 				 unsigned int journal_section, unsigned int journal_entry)
1953 {
1954 	struct dm_integrity_c *ic = dio->ic;
1955 	sector_t logical_sector;
1956 	unsigned int n_sectors;
1957 
1958 	logical_sector = dio->range.logical_sector;
1959 	n_sectors = dio->range.n_sectors;
1960 	do {
1961 		struct bio_vec bv = bio_iovec(bio);
1962 		char *mem;
1963 
1964 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1965 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1966 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1967 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1968 retry_kmap:
1969 		mem = kmap_local_page(bv.bv_page);
1970 		if (likely(dio->op == REQ_OP_WRITE))
1971 			flush_dcache_page(bv.bv_page);
1972 
1973 		do {
1974 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1975 
1976 			if (unlikely(dio->op == REQ_OP_READ)) {
1977 				struct journal_sector *js;
1978 				char *mem_ptr;
1979 				unsigned int s;
1980 
1981 				if (unlikely(journal_entry_is_inprogress(je))) {
1982 					flush_dcache_page(bv.bv_page);
1983 					kunmap_local(mem);
1984 
1985 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1986 					goto retry_kmap;
1987 				}
1988 				smp_rmb();
1989 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1990 				js = access_journal_data(ic, journal_section, journal_entry);
1991 				mem_ptr = mem + bv.bv_offset;
1992 				s = 0;
1993 				do {
1994 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1995 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1996 					js++;
1997 					mem_ptr += 1 << SECTOR_SHIFT;
1998 				} while (++s < ic->sectors_per_block);
1999 #ifdef INTERNAL_VERIFY
2000 				if (ic->internal_hash) {
2001 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2002 
2003 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2004 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2005 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2006 							    logical_sector);
2007 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2008 								 bio, logical_sector, 0);
2009 					}
2010 				}
2011 #endif
2012 			}
2013 
2014 			if (!ic->internal_hash) {
2015 				struct bio_integrity_payload *bip = bio_integrity(bio);
2016 				unsigned int tag_todo = ic->tag_size;
2017 				char *tag_ptr = journal_entry_tag(ic, je);
2018 
2019 				if (bip) {
2020 					do {
2021 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2022 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2023 						char *tag_addr;
2024 
2025 						BUG_ON(PageHighMem(biv.bv_page));
2026 						tag_addr = bvec_virt(&biv);
2027 						if (likely(dio->op == REQ_OP_WRITE))
2028 							memcpy(tag_ptr, tag_addr, tag_now);
2029 						else
2030 							memcpy(tag_addr, tag_ptr, tag_now);
2031 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2032 						tag_ptr += tag_now;
2033 						tag_todo -= tag_now;
2034 					} while (unlikely(tag_todo));
2035 				} else if (likely(dio->op == REQ_OP_WRITE))
2036 					memset(tag_ptr, 0, tag_todo);
2037 			}
2038 
2039 			if (likely(dio->op == REQ_OP_WRITE)) {
2040 				struct journal_sector *js;
2041 				unsigned int s;
2042 
2043 				js = access_journal_data(ic, journal_section, journal_entry);
2044 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2045 
2046 				s = 0;
2047 				do {
2048 					je->last_bytes[s] = js[s].commit_id;
2049 				} while (++s < ic->sectors_per_block);
2050 
2051 				if (ic->internal_hash) {
2052 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2053 
2054 					if (unlikely(digest_size > ic->tag_size)) {
2055 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2056 
2057 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2058 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2059 					} else
2060 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2061 				}
2062 
2063 				journal_entry_set_sector(je, logical_sector);
2064 			}
2065 			logical_sector += ic->sectors_per_block;
2066 
2067 			journal_entry++;
2068 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2069 				journal_entry = 0;
2070 				journal_section++;
2071 				wraparound_section(ic, &journal_section);
2072 			}
2073 
2074 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2075 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2076 
2077 		if (unlikely(dio->op == REQ_OP_READ))
2078 			flush_dcache_page(bv.bv_page);
2079 		kunmap_local(mem);
2080 	} while (n_sectors);
2081 
2082 	if (likely(dio->op == REQ_OP_WRITE)) {
2083 		smp_mb();
2084 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2085 			wake_up(&ic->copy_to_journal_wait);
2086 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2087 			queue_work(ic->commit_wq, &ic->commit_work);
2088 		else
2089 			schedule_autocommit(ic);
2090 	} else
2091 		remove_range(ic, &dio->range);
2092 
2093 	if (unlikely(bio->bi_iter.bi_size)) {
2094 		sector_t area, offset;
2095 
2096 		dio->range.logical_sector = logical_sector;
2097 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2098 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2099 		return true;
2100 	}
2101 
2102 	return false;
2103 }
2104 
2105 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2106 {
2107 	struct dm_integrity_c *ic = dio->ic;
2108 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2109 	unsigned int journal_section, journal_entry;
2110 	unsigned int journal_read_pos;
2111 	struct completion read_comp;
2112 	bool discard_retried = false;
2113 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2114 
2115 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2116 		need_sync_io = true;
2117 
2118 	if (need_sync_io && from_map) {
2119 		INIT_WORK(&dio->work, integrity_bio_wait);
2120 		queue_work(ic->offload_wq, &dio->work);
2121 		return;
2122 	}
2123 
2124 lock_retry:
2125 	spin_lock_irq(&ic->endio_wait.lock);
2126 retry:
2127 	if (unlikely(dm_integrity_failed(ic))) {
2128 		spin_unlock_irq(&ic->endio_wait.lock);
2129 		do_endio(ic, bio);
2130 		return;
2131 	}
2132 	dio->range.n_sectors = bio_sectors(bio);
2133 	journal_read_pos = NOT_FOUND;
2134 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2135 		if (dio->op == REQ_OP_WRITE) {
2136 			unsigned int next_entry, i, pos;
2137 			unsigned int ws, we, range_sectors;
2138 
2139 			dio->range.n_sectors = min(dio->range.n_sectors,
2140 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2141 			if (unlikely(!dio->range.n_sectors)) {
2142 				if (from_map)
2143 					goto offload_to_thread;
2144 				sleep_on_endio_wait(ic);
2145 				goto retry;
2146 			}
2147 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2148 			ic->free_sectors -= range_sectors;
2149 			journal_section = ic->free_section;
2150 			journal_entry = ic->free_section_entry;
2151 
2152 			next_entry = ic->free_section_entry + range_sectors;
2153 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2154 			ic->free_section += next_entry / ic->journal_section_entries;
2155 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2156 			wraparound_section(ic, &ic->free_section);
2157 
2158 			pos = journal_section * ic->journal_section_entries + journal_entry;
2159 			ws = journal_section;
2160 			we = journal_entry;
2161 			i = 0;
2162 			do {
2163 				struct journal_entry *je;
2164 
2165 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2166 				pos++;
2167 				if (unlikely(pos >= ic->journal_entries))
2168 					pos = 0;
2169 
2170 				je = access_journal_entry(ic, ws, we);
2171 				BUG_ON(!journal_entry_is_unused(je));
2172 				journal_entry_set_inprogress(je);
2173 				we++;
2174 				if (unlikely(we == ic->journal_section_entries)) {
2175 					we = 0;
2176 					ws++;
2177 					wraparound_section(ic, &ws);
2178 				}
2179 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2180 
2181 			spin_unlock_irq(&ic->endio_wait.lock);
2182 			goto journal_read_write;
2183 		} else {
2184 			sector_t next_sector;
2185 
2186 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2187 			if (likely(journal_read_pos == NOT_FOUND)) {
2188 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2189 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2190 			} else {
2191 				unsigned int i;
2192 				unsigned int jp = journal_read_pos + 1;
2193 
2194 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2195 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2196 						break;
2197 				}
2198 				dio->range.n_sectors = i;
2199 			}
2200 		}
2201 	}
2202 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2203 		/*
2204 		 * We must not sleep in the request routine because it could
2205 		 * stall bios on current->bio_list.
2206 		 * So, we offload the bio to a workqueue if we have to sleep.
2207 		 */
2208 		if (from_map) {
2209 offload_to_thread:
2210 			spin_unlock_irq(&ic->endio_wait.lock);
2211 			INIT_WORK(&dio->work, integrity_bio_wait);
2212 			queue_work(ic->wait_wq, &dio->work);
2213 			return;
2214 		}
2215 		if (journal_read_pos != NOT_FOUND)
2216 			dio->range.n_sectors = ic->sectors_per_block;
2217 		wait_and_add_new_range(ic, &dio->range);
2218 		/*
2219 		 * wait_and_add_new_range drops the spinlock, so the journal
2220 		 * may have been changed arbitrarily. We need to recheck.
2221 		 * To simplify the code, we restrict I/O size to just one block.
2222 		 */
2223 		if (journal_read_pos != NOT_FOUND) {
2224 			sector_t next_sector;
2225 			unsigned int new_pos;
2226 
2227 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2228 			if (unlikely(new_pos != journal_read_pos)) {
2229 				remove_range_unlocked(ic, &dio->range);
2230 				goto retry;
2231 			}
2232 		}
2233 	}
2234 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2235 		sector_t next_sector;
2236 		unsigned int new_pos;
2237 
2238 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2239 		if (unlikely(new_pos != NOT_FOUND) ||
2240 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2241 			remove_range_unlocked(ic, &dio->range);
2242 			spin_unlock_irq(&ic->endio_wait.lock);
2243 			queue_work(ic->commit_wq, &ic->commit_work);
2244 			flush_workqueue(ic->commit_wq);
2245 			queue_work(ic->writer_wq, &ic->writer_work);
2246 			flush_workqueue(ic->writer_wq);
2247 			discard_retried = true;
2248 			goto lock_retry;
2249 		}
2250 	}
2251 	spin_unlock_irq(&ic->endio_wait.lock);
2252 
2253 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2254 		journal_section = journal_read_pos / ic->journal_section_entries;
2255 		journal_entry = journal_read_pos % ic->journal_section_entries;
2256 		goto journal_read_write;
2257 	}
2258 
2259 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2260 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2261 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2262 			struct bitmap_block_status *bbs;
2263 
2264 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2265 			spin_lock(&bbs->bio_queue_lock);
2266 			bio_list_add(&bbs->bio_queue, bio);
2267 			spin_unlock(&bbs->bio_queue_lock);
2268 			queue_work(ic->writer_wq, &bbs->work);
2269 			return;
2270 		}
2271 	}
2272 
2273 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2274 
2275 	if (need_sync_io) {
2276 		init_completion(&read_comp);
2277 		dio->completion = &read_comp;
2278 	} else
2279 		dio->completion = NULL;
2280 
2281 	dm_bio_record(&dio->bio_details, bio);
2282 	bio_set_dev(bio, ic->dev->bdev);
2283 	bio->bi_integrity = NULL;
2284 	bio->bi_opf &= ~REQ_INTEGRITY;
2285 	bio->bi_end_io = integrity_end_io;
2286 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2287 
2288 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2289 		integrity_metadata(&dio->work);
2290 		dm_integrity_flush_buffers(ic, false);
2291 
2292 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2293 		dio->completion = NULL;
2294 
2295 		submit_bio_noacct(bio);
2296 
2297 		return;
2298 	}
2299 
2300 	submit_bio_noacct(bio);
2301 
2302 	if (need_sync_io) {
2303 		wait_for_completion_io(&read_comp);
2304 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2305 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2306 			goto skip_check;
2307 		if (ic->mode == 'B') {
2308 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2309 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2310 				goto skip_check;
2311 		}
2312 
2313 		if (likely(!bio->bi_status))
2314 			integrity_metadata(&dio->work);
2315 		else
2316 skip_check:
2317 			dec_in_flight(dio);
2318 	} else {
2319 		INIT_WORK(&dio->work, integrity_metadata);
2320 		queue_work(ic->metadata_wq, &dio->work);
2321 	}
2322 
2323 	return;
2324 
2325 journal_read_write:
2326 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2327 		goto lock_retry;
2328 
2329 	do_endio_flush(ic, dio);
2330 }
2331 
2332 
2333 static void integrity_bio_wait(struct work_struct *w)
2334 {
2335 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2336 
2337 	dm_integrity_map_continue(dio, false);
2338 }
2339 
2340 static void pad_uncommitted(struct dm_integrity_c *ic)
2341 {
2342 	if (ic->free_section_entry) {
2343 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2344 		ic->free_section_entry = 0;
2345 		ic->free_section++;
2346 		wraparound_section(ic, &ic->free_section);
2347 		ic->n_uncommitted_sections++;
2348 	}
2349 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2350 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2351 		    ic->journal_section_entries + ic->free_sectors)) {
2352 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2353 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2354 		       "journal_section_entries %u, free_sectors %u",
2355 		       ic->journal_sections, ic->journal_section_entries,
2356 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2357 		       ic->journal_section_entries, ic->free_sectors);
2358 	}
2359 }
2360 
2361 static void integrity_commit(struct work_struct *w)
2362 {
2363 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2364 	unsigned int commit_start, commit_sections;
2365 	unsigned int i, j, n;
2366 	struct bio *flushes;
2367 
2368 	del_timer(&ic->autocommit_timer);
2369 
2370 	spin_lock_irq(&ic->endio_wait.lock);
2371 	flushes = bio_list_get(&ic->flush_bio_list);
2372 	if (unlikely(ic->mode != 'J')) {
2373 		spin_unlock_irq(&ic->endio_wait.lock);
2374 		dm_integrity_flush_buffers(ic, true);
2375 		goto release_flush_bios;
2376 	}
2377 
2378 	pad_uncommitted(ic);
2379 	commit_start = ic->uncommitted_section;
2380 	commit_sections = ic->n_uncommitted_sections;
2381 	spin_unlock_irq(&ic->endio_wait.lock);
2382 
2383 	if (!commit_sections)
2384 		goto release_flush_bios;
2385 
2386 	ic->wrote_to_journal = true;
2387 
2388 	i = commit_start;
2389 	for (n = 0; n < commit_sections; n++) {
2390 		for (j = 0; j < ic->journal_section_entries; j++) {
2391 			struct journal_entry *je;
2392 
2393 			je = access_journal_entry(ic, i, j);
2394 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2395 		}
2396 		for (j = 0; j < ic->journal_section_sectors; j++) {
2397 			struct journal_sector *js;
2398 
2399 			js = access_journal(ic, i, j);
2400 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2401 		}
2402 		i++;
2403 		if (unlikely(i >= ic->journal_sections))
2404 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2405 		wraparound_section(ic, &i);
2406 	}
2407 	smp_rmb();
2408 
2409 	write_journal(ic, commit_start, commit_sections);
2410 
2411 	spin_lock_irq(&ic->endio_wait.lock);
2412 	ic->uncommitted_section += commit_sections;
2413 	wraparound_section(ic, &ic->uncommitted_section);
2414 	ic->n_uncommitted_sections -= commit_sections;
2415 	ic->n_committed_sections += commit_sections;
2416 	spin_unlock_irq(&ic->endio_wait.lock);
2417 
2418 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2419 		queue_work(ic->writer_wq, &ic->writer_work);
2420 
2421 release_flush_bios:
2422 	while (flushes) {
2423 		struct bio *next = flushes->bi_next;
2424 
2425 		flushes->bi_next = NULL;
2426 		do_endio(ic, flushes);
2427 		flushes = next;
2428 	}
2429 }
2430 
2431 static void complete_copy_from_journal(unsigned long error, void *context)
2432 {
2433 	struct journal_io *io = context;
2434 	struct journal_completion *comp = io->comp;
2435 	struct dm_integrity_c *ic = comp->ic;
2436 
2437 	remove_range(ic, &io->range);
2438 	mempool_free(io, &ic->journal_io_mempool);
2439 	if (unlikely(error != 0))
2440 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2441 	complete_journal_op(comp);
2442 }
2443 
2444 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2445 			       struct journal_entry *je)
2446 {
2447 	unsigned int s = 0;
2448 
2449 	do {
2450 		js->commit_id = je->last_bytes[s];
2451 		js++;
2452 	} while (++s < ic->sectors_per_block);
2453 }
2454 
2455 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2456 			     unsigned int write_sections, bool from_replay)
2457 {
2458 	unsigned int i, j, n;
2459 	struct journal_completion comp;
2460 	struct blk_plug plug;
2461 
2462 	blk_start_plug(&plug);
2463 
2464 	comp.ic = ic;
2465 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2466 	init_completion(&comp.comp);
2467 
2468 	i = write_start;
2469 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2470 #ifndef INTERNAL_VERIFY
2471 		if (unlikely(from_replay))
2472 #endif
2473 			rw_section_mac(ic, i, false);
2474 		for (j = 0; j < ic->journal_section_entries; j++) {
2475 			struct journal_entry *je = access_journal_entry(ic, i, j);
2476 			sector_t sec, area, offset;
2477 			unsigned int k, l, next_loop;
2478 			sector_t metadata_block;
2479 			unsigned int metadata_offset;
2480 			struct journal_io *io;
2481 
2482 			if (journal_entry_is_unused(je))
2483 				continue;
2484 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2485 			sec = journal_entry_get_sector(je);
2486 			if (unlikely(from_replay)) {
2487 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2488 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2489 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2490 				}
2491 				if (unlikely(sec >= ic->provided_data_sectors)) {
2492 					journal_entry_set_unused(je);
2493 					continue;
2494 				}
2495 			}
2496 			get_area_and_offset(ic, sec, &area, &offset);
2497 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2498 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2499 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2500 				sector_t sec2, area2, offset2;
2501 
2502 				if (journal_entry_is_unused(je2))
2503 					break;
2504 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2505 				sec2 = journal_entry_get_sector(je2);
2506 				if (unlikely(sec2 >= ic->provided_data_sectors))
2507 					break;
2508 				get_area_and_offset(ic, sec2, &area2, &offset2);
2509 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2510 					break;
2511 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2512 			}
2513 			next_loop = k - 1;
2514 
2515 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2516 			io->comp = &comp;
2517 			io->range.logical_sector = sec;
2518 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2519 
2520 			spin_lock_irq(&ic->endio_wait.lock);
2521 			add_new_range_and_wait(ic, &io->range);
2522 
2523 			if (likely(!from_replay)) {
2524 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2525 
2526 				/* don't write if there is newer committed sector */
2527 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2528 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2529 
2530 					journal_entry_set_unused(je2);
2531 					remove_journal_node(ic, &section_node[j]);
2532 					j++;
2533 					sec += ic->sectors_per_block;
2534 					offset += ic->sectors_per_block;
2535 				}
2536 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2537 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2538 
2539 					journal_entry_set_unused(je2);
2540 					remove_journal_node(ic, &section_node[k - 1]);
2541 					k--;
2542 				}
2543 				if (j == k) {
2544 					remove_range_unlocked(ic, &io->range);
2545 					spin_unlock_irq(&ic->endio_wait.lock);
2546 					mempool_free(io, &ic->journal_io_mempool);
2547 					goto skip_io;
2548 				}
2549 				for (l = j; l < k; l++)
2550 					remove_journal_node(ic, &section_node[l]);
2551 			}
2552 			spin_unlock_irq(&ic->endio_wait.lock);
2553 
2554 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2555 			for (l = j; l < k; l++) {
2556 				int r;
2557 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2558 
2559 				if (
2560 #ifndef INTERNAL_VERIFY
2561 				    unlikely(from_replay) &&
2562 #endif
2563 				    ic->internal_hash) {
2564 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2565 
2566 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2567 								  (char *)access_journal_data(ic, i, l), test_tag);
2568 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2569 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2570 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2571 					}
2572 				}
2573 
2574 				journal_entry_set_unused(je2);
2575 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2576 							ic->tag_size, TAG_WRITE);
2577 				if (unlikely(r))
2578 					dm_integrity_io_error(ic, "reading tags", r);
2579 			}
2580 
2581 			atomic_inc(&comp.in_flight);
2582 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2583 					  (k - j) << ic->sb->log2_sectors_per_block,
2584 					  get_data_sector(ic, area, offset),
2585 					  complete_copy_from_journal, io);
2586 skip_io:
2587 			j = next_loop;
2588 		}
2589 	}
2590 
2591 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2592 
2593 	blk_finish_plug(&plug);
2594 
2595 	complete_journal_op(&comp);
2596 	wait_for_completion_io(&comp.comp);
2597 
2598 	dm_integrity_flush_buffers(ic, true);
2599 }
2600 
2601 static void integrity_writer(struct work_struct *w)
2602 {
2603 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2604 	unsigned int write_start, write_sections;
2605 	unsigned int prev_free_sectors;
2606 
2607 	spin_lock_irq(&ic->endio_wait.lock);
2608 	write_start = ic->committed_section;
2609 	write_sections = ic->n_committed_sections;
2610 	spin_unlock_irq(&ic->endio_wait.lock);
2611 
2612 	if (!write_sections)
2613 		return;
2614 
2615 	do_journal_write(ic, write_start, write_sections, false);
2616 
2617 	spin_lock_irq(&ic->endio_wait.lock);
2618 
2619 	ic->committed_section += write_sections;
2620 	wraparound_section(ic, &ic->committed_section);
2621 	ic->n_committed_sections -= write_sections;
2622 
2623 	prev_free_sectors = ic->free_sectors;
2624 	ic->free_sectors += write_sections * ic->journal_section_entries;
2625 	if (unlikely(!prev_free_sectors))
2626 		wake_up_locked(&ic->endio_wait);
2627 
2628 	spin_unlock_irq(&ic->endio_wait.lock);
2629 }
2630 
2631 static void recalc_write_super(struct dm_integrity_c *ic)
2632 {
2633 	int r;
2634 
2635 	dm_integrity_flush_buffers(ic, false);
2636 	if (dm_integrity_failed(ic))
2637 		return;
2638 
2639 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2640 	if (unlikely(r))
2641 		dm_integrity_io_error(ic, "writing superblock", r);
2642 }
2643 
2644 static void integrity_recalc(struct work_struct *w)
2645 {
2646 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2647 	size_t recalc_tags_size;
2648 	u8 *recalc_buffer = NULL;
2649 	u8 *recalc_tags = NULL;
2650 	struct dm_integrity_range range;
2651 	struct dm_io_request io_req;
2652 	struct dm_io_region io_loc;
2653 	sector_t area, offset;
2654 	sector_t metadata_block;
2655 	unsigned int metadata_offset;
2656 	sector_t logical_sector, n_sectors;
2657 	__u8 *t;
2658 	unsigned int i;
2659 	int r;
2660 	unsigned int super_counter = 0;
2661 	unsigned recalc_sectors = RECALC_SECTORS;
2662 
2663 retry:
2664 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2665 	if (!recalc_buffer) {
2666 oom:
2667 		recalc_sectors >>= 1;
2668 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2669 			goto retry;
2670 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2671 		goto free_ret;
2672 	}
2673 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2674 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2675 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2676 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2677 	if (!recalc_tags) {
2678 		vfree(recalc_buffer);
2679 		goto oom;
2680 	}
2681 
2682 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2683 
2684 	spin_lock_irq(&ic->endio_wait.lock);
2685 
2686 next_chunk:
2687 
2688 	if (unlikely(dm_post_suspending(ic->ti)))
2689 		goto unlock_ret;
2690 
2691 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2692 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2693 		if (ic->mode == 'B') {
2694 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2695 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2696 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2697 		}
2698 		goto unlock_ret;
2699 	}
2700 
2701 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2702 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2703 	if (!ic->meta_dev)
2704 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2705 
2706 	add_new_range_and_wait(ic, &range);
2707 	spin_unlock_irq(&ic->endio_wait.lock);
2708 	logical_sector = range.logical_sector;
2709 	n_sectors = range.n_sectors;
2710 
2711 	if (ic->mode == 'B') {
2712 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2713 			goto advance_and_next;
2714 
2715 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2716 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2717 			logical_sector += ic->sectors_per_block;
2718 			n_sectors -= ic->sectors_per_block;
2719 			cond_resched();
2720 		}
2721 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2722 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2723 			n_sectors -= ic->sectors_per_block;
2724 			cond_resched();
2725 		}
2726 		get_area_and_offset(ic, logical_sector, &area, &offset);
2727 	}
2728 
2729 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2730 
2731 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2732 		recalc_write_super(ic);
2733 		if (ic->mode == 'B')
2734 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2735 
2736 		super_counter = 0;
2737 	}
2738 
2739 	if (unlikely(dm_integrity_failed(ic)))
2740 		goto err;
2741 
2742 	io_req.bi_opf = REQ_OP_READ;
2743 	io_req.mem.type = DM_IO_VMA;
2744 	io_req.mem.ptr.addr = recalc_buffer;
2745 	io_req.notify.fn = NULL;
2746 	io_req.client = ic->io;
2747 	io_loc.bdev = ic->dev->bdev;
2748 	io_loc.sector = get_data_sector(ic, area, offset);
2749 	io_loc.count = n_sectors;
2750 
2751 	r = dm_io(&io_req, 1, &io_loc, NULL);
2752 	if (unlikely(r)) {
2753 		dm_integrity_io_error(ic, "reading data", r);
2754 		goto err;
2755 	}
2756 
2757 	t = recalc_tags;
2758 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2759 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2760 		t += ic->tag_size;
2761 	}
2762 
2763 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2764 
2765 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2766 	if (unlikely(r)) {
2767 		dm_integrity_io_error(ic, "writing tags", r);
2768 		goto err;
2769 	}
2770 
2771 	if (ic->mode == 'B') {
2772 		sector_t start, end;
2773 
2774 		start = (range.logical_sector >>
2775 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2776 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2777 		end = ((range.logical_sector + range.n_sectors) >>
2778 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2779 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2780 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2781 	}
2782 
2783 advance_and_next:
2784 	cond_resched();
2785 
2786 	spin_lock_irq(&ic->endio_wait.lock);
2787 	remove_range_unlocked(ic, &range);
2788 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2789 	goto next_chunk;
2790 
2791 err:
2792 	remove_range(ic, &range);
2793 	goto free_ret;
2794 
2795 unlock_ret:
2796 	spin_unlock_irq(&ic->endio_wait.lock);
2797 
2798 	recalc_write_super(ic);
2799 
2800 free_ret:
2801 	vfree(recalc_buffer);
2802 	kvfree(recalc_tags);
2803 }
2804 
2805 static void bitmap_block_work(struct work_struct *w)
2806 {
2807 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2808 	struct dm_integrity_c *ic = bbs->ic;
2809 	struct bio *bio;
2810 	struct bio_list bio_queue;
2811 	struct bio_list waiting;
2812 
2813 	bio_list_init(&waiting);
2814 
2815 	spin_lock(&bbs->bio_queue_lock);
2816 	bio_queue = bbs->bio_queue;
2817 	bio_list_init(&bbs->bio_queue);
2818 	spin_unlock(&bbs->bio_queue_lock);
2819 
2820 	while ((bio = bio_list_pop(&bio_queue))) {
2821 		struct dm_integrity_io *dio;
2822 
2823 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2824 
2825 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2826 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2827 			remove_range(ic, &dio->range);
2828 			INIT_WORK(&dio->work, integrity_bio_wait);
2829 			queue_work(ic->offload_wq, &dio->work);
2830 		} else {
2831 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2832 					dio->range.n_sectors, BITMAP_OP_SET);
2833 			bio_list_add(&waiting, bio);
2834 		}
2835 	}
2836 
2837 	if (bio_list_empty(&waiting))
2838 		return;
2839 
2840 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2841 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2842 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2843 
2844 	while ((bio = bio_list_pop(&waiting))) {
2845 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2846 
2847 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2848 				dio->range.n_sectors, BITMAP_OP_SET);
2849 
2850 		remove_range(ic, &dio->range);
2851 		INIT_WORK(&dio->work, integrity_bio_wait);
2852 		queue_work(ic->offload_wq, &dio->work);
2853 	}
2854 
2855 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2856 }
2857 
2858 static void bitmap_flush_work(struct work_struct *work)
2859 {
2860 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2861 	struct dm_integrity_range range;
2862 	unsigned long limit;
2863 	struct bio *bio;
2864 
2865 	dm_integrity_flush_buffers(ic, false);
2866 
2867 	range.logical_sector = 0;
2868 	range.n_sectors = ic->provided_data_sectors;
2869 
2870 	spin_lock_irq(&ic->endio_wait.lock);
2871 	add_new_range_and_wait(ic, &range);
2872 	spin_unlock_irq(&ic->endio_wait.lock);
2873 
2874 	dm_integrity_flush_buffers(ic, true);
2875 
2876 	limit = ic->provided_data_sectors;
2877 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2878 		limit = le64_to_cpu(ic->sb->recalc_sector)
2879 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2880 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2881 	}
2882 	/*DEBUG_print("zeroing journal\n");*/
2883 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2884 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2885 
2886 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2887 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2888 
2889 	spin_lock_irq(&ic->endio_wait.lock);
2890 	remove_range_unlocked(ic, &range);
2891 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2892 		bio_endio(bio);
2893 		spin_unlock_irq(&ic->endio_wait.lock);
2894 		spin_lock_irq(&ic->endio_wait.lock);
2895 	}
2896 	spin_unlock_irq(&ic->endio_wait.lock);
2897 }
2898 
2899 
2900 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2901 			 unsigned int n_sections, unsigned char commit_seq)
2902 {
2903 	unsigned int i, j, n;
2904 
2905 	if (!n_sections)
2906 		return;
2907 
2908 	for (n = 0; n < n_sections; n++) {
2909 		i = start_section + n;
2910 		wraparound_section(ic, &i);
2911 		for (j = 0; j < ic->journal_section_sectors; j++) {
2912 			struct journal_sector *js = access_journal(ic, i, j);
2913 
2914 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2915 			memset(&js->sectors, 0, sizeof(js->sectors));
2916 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2917 		}
2918 		for (j = 0; j < ic->journal_section_entries; j++) {
2919 			struct journal_entry *je = access_journal_entry(ic, i, j);
2920 
2921 			journal_entry_set_unused(je);
2922 		}
2923 	}
2924 
2925 	write_journal(ic, start_section, n_sections);
2926 }
2927 
2928 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2929 {
2930 	unsigned char k;
2931 
2932 	for (k = 0; k < N_COMMIT_IDS; k++) {
2933 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2934 			return k;
2935 	}
2936 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2937 	return -EIO;
2938 }
2939 
2940 static void replay_journal(struct dm_integrity_c *ic)
2941 {
2942 	unsigned int i, j;
2943 	bool used_commit_ids[N_COMMIT_IDS];
2944 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
2945 	unsigned int write_start, write_sections;
2946 	unsigned int continue_section;
2947 	bool journal_empty;
2948 	unsigned char unused, last_used, want_commit_seq;
2949 
2950 	if (ic->mode == 'R')
2951 		return;
2952 
2953 	if (ic->journal_uptodate)
2954 		return;
2955 
2956 	last_used = 0;
2957 	write_start = 0;
2958 
2959 	if (!ic->just_formatted) {
2960 		DEBUG_print("reading journal\n");
2961 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2962 		if (ic->journal_io)
2963 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2964 		if (ic->journal_io) {
2965 			struct journal_completion crypt_comp;
2966 
2967 			crypt_comp.ic = ic;
2968 			init_completion(&crypt_comp.comp);
2969 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2970 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2971 			wait_for_completion(&crypt_comp.comp);
2972 		}
2973 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2974 	}
2975 
2976 	if (dm_integrity_failed(ic))
2977 		goto clear_journal;
2978 
2979 	journal_empty = true;
2980 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
2981 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2982 	for (i = 0; i < ic->journal_sections; i++) {
2983 		for (j = 0; j < ic->journal_section_sectors; j++) {
2984 			int k;
2985 			struct journal_sector *js = access_journal(ic, i, j);
2986 
2987 			k = find_commit_seq(ic, i, j, js->commit_id);
2988 			if (k < 0)
2989 				goto clear_journal;
2990 			used_commit_ids[k] = true;
2991 			max_commit_id_sections[k] = i;
2992 		}
2993 		if (journal_empty) {
2994 			for (j = 0; j < ic->journal_section_entries; j++) {
2995 				struct journal_entry *je = access_journal_entry(ic, i, j);
2996 
2997 				if (!journal_entry_is_unused(je)) {
2998 					journal_empty = false;
2999 					break;
3000 				}
3001 			}
3002 		}
3003 	}
3004 
3005 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3006 		unused = N_COMMIT_IDS - 1;
3007 		while (unused && !used_commit_ids[unused - 1])
3008 			unused--;
3009 	} else {
3010 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3011 			if (!used_commit_ids[unused])
3012 				break;
3013 		if (unused == N_COMMIT_IDS) {
3014 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3015 			goto clear_journal;
3016 		}
3017 	}
3018 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3019 		    unused, used_commit_ids[0], used_commit_ids[1],
3020 		    used_commit_ids[2], used_commit_ids[3]);
3021 
3022 	last_used = prev_commit_seq(unused);
3023 	want_commit_seq = prev_commit_seq(last_used);
3024 
3025 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3026 		journal_empty = true;
3027 
3028 	write_start = max_commit_id_sections[last_used] + 1;
3029 	if (unlikely(write_start >= ic->journal_sections))
3030 		want_commit_seq = next_commit_seq(want_commit_seq);
3031 	wraparound_section(ic, &write_start);
3032 
3033 	i = write_start;
3034 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3035 		for (j = 0; j < ic->journal_section_sectors; j++) {
3036 			struct journal_sector *js = access_journal(ic, i, j);
3037 
3038 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3039 				/*
3040 				 * This could be caused by crash during writing.
3041 				 * We won't replay the inconsistent part of the
3042 				 * journal.
3043 				 */
3044 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3045 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3046 				goto brk;
3047 			}
3048 		}
3049 		i++;
3050 		if (unlikely(i >= ic->journal_sections))
3051 			want_commit_seq = next_commit_seq(want_commit_seq);
3052 		wraparound_section(ic, &i);
3053 	}
3054 brk:
3055 
3056 	if (!journal_empty) {
3057 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3058 			    write_sections, write_start, want_commit_seq);
3059 		do_journal_write(ic, write_start, write_sections, true);
3060 	}
3061 
3062 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3063 		continue_section = write_start;
3064 		ic->commit_seq = want_commit_seq;
3065 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3066 	} else {
3067 		unsigned int s;
3068 		unsigned char erase_seq;
3069 
3070 clear_journal:
3071 		DEBUG_print("clearing journal\n");
3072 
3073 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3074 		s = write_start;
3075 		init_journal(ic, s, 1, erase_seq);
3076 		s++;
3077 		wraparound_section(ic, &s);
3078 		if (ic->journal_sections >= 2) {
3079 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3080 			s += ic->journal_sections - 2;
3081 			wraparound_section(ic, &s);
3082 			init_journal(ic, s, 1, erase_seq);
3083 		}
3084 
3085 		continue_section = 0;
3086 		ic->commit_seq = next_commit_seq(erase_seq);
3087 	}
3088 
3089 	ic->committed_section = continue_section;
3090 	ic->n_committed_sections = 0;
3091 
3092 	ic->uncommitted_section = continue_section;
3093 	ic->n_uncommitted_sections = 0;
3094 
3095 	ic->free_section = continue_section;
3096 	ic->free_section_entry = 0;
3097 	ic->free_sectors = ic->journal_entries;
3098 
3099 	ic->journal_tree_root = RB_ROOT;
3100 	for (i = 0; i < ic->journal_entries; i++)
3101 		init_journal_node(&ic->journal_tree[i]);
3102 }
3103 
3104 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3105 {
3106 	DEBUG_print("%s\n", __func__);
3107 
3108 	if (ic->mode == 'B') {
3109 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3110 		ic->synchronous_mode = 1;
3111 
3112 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3113 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3114 		flush_workqueue(ic->commit_wq);
3115 	}
3116 }
3117 
3118 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3119 {
3120 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3121 
3122 	DEBUG_print("%s\n", __func__);
3123 
3124 	dm_integrity_enter_synchronous_mode(ic);
3125 
3126 	return NOTIFY_DONE;
3127 }
3128 
3129 static void dm_integrity_postsuspend(struct dm_target *ti)
3130 {
3131 	struct dm_integrity_c *ic = ti->private;
3132 	int r;
3133 
3134 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3135 
3136 	del_timer_sync(&ic->autocommit_timer);
3137 
3138 	if (ic->recalc_wq)
3139 		drain_workqueue(ic->recalc_wq);
3140 
3141 	if (ic->mode == 'B')
3142 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3143 
3144 	queue_work(ic->commit_wq, &ic->commit_work);
3145 	drain_workqueue(ic->commit_wq);
3146 
3147 	if (ic->mode == 'J') {
3148 		queue_work(ic->writer_wq, &ic->writer_work);
3149 		drain_workqueue(ic->writer_wq);
3150 		dm_integrity_flush_buffers(ic, true);
3151 		if (ic->wrote_to_journal) {
3152 			init_journal(ic, ic->free_section,
3153 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3154 			if (ic->free_section) {
3155 				init_journal(ic, 0, ic->free_section,
3156 					     next_commit_seq(ic->commit_seq));
3157 			}
3158 		}
3159 	}
3160 
3161 	if (ic->mode == 'B') {
3162 		dm_integrity_flush_buffers(ic, true);
3163 #if 1
3164 		/* set to 0 to test bitmap replay code */
3165 		init_journal(ic, 0, ic->journal_sections, 0);
3166 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3167 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3168 		if (unlikely(r))
3169 			dm_integrity_io_error(ic, "writing superblock", r);
3170 #endif
3171 	}
3172 
3173 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3174 
3175 	ic->journal_uptodate = true;
3176 }
3177 
3178 static void dm_integrity_resume(struct dm_target *ti)
3179 {
3180 	struct dm_integrity_c *ic = ti->private;
3181 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3182 	int r;
3183 
3184 	DEBUG_print("resume\n");
3185 
3186 	ic->wrote_to_journal = false;
3187 
3188 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3189 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3190 		    ic->mode == 'B' &&
3191 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3192 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3193 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3194 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3195 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3196 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3197 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3198 		}
3199 
3200 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3201 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3202 		if (unlikely(r))
3203 			dm_integrity_io_error(ic, "writing superblock", r);
3204 	}
3205 
3206 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3207 		DEBUG_print("resume dirty_bitmap\n");
3208 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3209 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3210 		if (ic->mode == 'B') {
3211 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3212 			    !ic->reset_recalculate_flag) {
3213 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3214 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3215 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3216 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3217 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3218 					ic->sb->recalc_sector = cpu_to_le64(0);
3219 				}
3220 			} else {
3221 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3222 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3223 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3224 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3225 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3226 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3227 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3228 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3229 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3230 				ic->sb->recalc_sector = cpu_to_le64(0);
3231 			}
3232 		} else {
3233 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3234 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3235 			    ic->reset_recalculate_flag) {
3236 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3237 				ic->sb->recalc_sector = cpu_to_le64(0);
3238 			}
3239 			init_journal(ic, 0, ic->journal_sections, 0);
3240 			replay_journal(ic);
3241 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3242 		}
3243 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3244 		if (unlikely(r))
3245 			dm_integrity_io_error(ic, "writing superblock", r);
3246 	} else {
3247 		replay_journal(ic);
3248 		if (ic->reset_recalculate_flag) {
3249 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3250 			ic->sb->recalc_sector = cpu_to_le64(0);
3251 		}
3252 		if (ic->mode == 'B') {
3253 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3254 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3255 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3256 			if (unlikely(r))
3257 				dm_integrity_io_error(ic, "writing superblock", r);
3258 
3259 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3260 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3261 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3262 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3263 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3264 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3265 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3266 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3267 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3268 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3269 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3270 			}
3271 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3272 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3273 		}
3274 	}
3275 
3276 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3277 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3278 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3279 
3280 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3281 		if (recalc_pos < ic->provided_data_sectors) {
3282 			queue_work(ic->recalc_wq, &ic->recalc_work);
3283 		} else if (recalc_pos > ic->provided_data_sectors) {
3284 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3285 			recalc_write_super(ic);
3286 		}
3287 	}
3288 
3289 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3290 	ic->reboot_notifier.next = NULL;
3291 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3292 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3293 
3294 #if 0
3295 	/* set to 1 to stress test synchronous mode */
3296 	dm_integrity_enter_synchronous_mode(ic);
3297 #endif
3298 }
3299 
3300 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3301 				unsigned int status_flags, char *result, unsigned int maxlen)
3302 {
3303 	struct dm_integrity_c *ic = ti->private;
3304 	unsigned int arg_count;
3305 	size_t sz = 0;
3306 
3307 	switch (type) {
3308 	case STATUSTYPE_INFO:
3309 		DMEMIT("%llu %llu",
3310 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3311 			ic->provided_data_sectors);
3312 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3313 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3314 		else
3315 			DMEMIT(" -");
3316 		break;
3317 
3318 	case STATUSTYPE_TABLE: {
3319 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3320 
3321 		watermark_percentage += ic->journal_entries / 2;
3322 		do_div(watermark_percentage, ic->journal_entries);
3323 		arg_count = 3;
3324 		arg_count += !!ic->meta_dev;
3325 		arg_count += ic->sectors_per_block != 1;
3326 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3327 		arg_count += ic->reset_recalculate_flag;
3328 		arg_count += ic->discard;
3329 		arg_count += ic->mode == 'J';
3330 		arg_count += ic->mode == 'J';
3331 		arg_count += ic->mode == 'B';
3332 		arg_count += ic->mode == 'B';
3333 		arg_count += !!ic->internal_hash_alg.alg_string;
3334 		arg_count += !!ic->journal_crypt_alg.alg_string;
3335 		arg_count += !!ic->journal_mac_alg.alg_string;
3336 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3337 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3338 		arg_count += ic->legacy_recalculate;
3339 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3340 		       ic->tag_size, ic->mode, arg_count);
3341 		if (ic->meta_dev)
3342 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3343 		if (ic->sectors_per_block != 1)
3344 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3345 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3346 			DMEMIT(" recalculate");
3347 		if (ic->reset_recalculate_flag)
3348 			DMEMIT(" reset_recalculate");
3349 		if (ic->discard)
3350 			DMEMIT(" allow_discards");
3351 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3352 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3353 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3354 		if (ic->mode == 'J') {
3355 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3356 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3357 		}
3358 		if (ic->mode == 'B') {
3359 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3360 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3361 		}
3362 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3363 			DMEMIT(" fix_padding");
3364 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3365 			DMEMIT(" fix_hmac");
3366 		if (ic->legacy_recalculate)
3367 			DMEMIT(" legacy_recalculate");
3368 
3369 #define EMIT_ALG(a, n)							\
3370 		do {							\
3371 			if (ic->a.alg_string) {				\
3372 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3373 				if (ic->a.key_string)			\
3374 					DMEMIT(":%s", ic->a.key_string);\
3375 			}						\
3376 		} while (0)
3377 		EMIT_ALG(internal_hash_alg, "internal_hash");
3378 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3379 		EMIT_ALG(journal_mac_alg, "journal_mac");
3380 		break;
3381 	}
3382 	case STATUSTYPE_IMA:
3383 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3384 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3385 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3386 
3387 		if (ic->meta_dev)
3388 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3389 		if (ic->sectors_per_block != 1)
3390 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3391 
3392 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3393 		       'y' : 'n');
3394 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3395 		DMEMIT(",fix_padding=%c",
3396 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3397 		DMEMIT(",fix_hmac=%c",
3398 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3399 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3400 
3401 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3402 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3403 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3404 		DMEMIT(";");
3405 		break;
3406 	}
3407 }
3408 
3409 static int dm_integrity_iterate_devices(struct dm_target *ti,
3410 					iterate_devices_callout_fn fn, void *data)
3411 {
3412 	struct dm_integrity_c *ic = ti->private;
3413 
3414 	if (!ic->meta_dev)
3415 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3416 	else
3417 		return fn(ti, ic->dev, 0, ti->len, data);
3418 }
3419 
3420 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3421 {
3422 	struct dm_integrity_c *ic = ti->private;
3423 
3424 	if (ic->sectors_per_block > 1) {
3425 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3426 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3427 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3428 		limits->dma_alignment = limits->logical_block_size - 1;
3429 	}
3430 }
3431 
3432 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3433 {
3434 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3435 
3436 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3437 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3438 					 JOURNAL_ENTRY_ROUNDUP);
3439 
3440 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3441 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3442 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3443 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3444 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3445 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3446 }
3447 
3448 static int calculate_device_limits(struct dm_integrity_c *ic)
3449 {
3450 	__u64 initial_sectors;
3451 
3452 	calculate_journal_section_size(ic);
3453 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3454 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3455 		return -EINVAL;
3456 	ic->initial_sectors = initial_sectors;
3457 
3458 	if (!ic->meta_dev) {
3459 		sector_t last_sector, last_area, last_offset;
3460 
3461 		/* we have to maintain excessive padding for compatibility with existing volumes */
3462 		__u64 metadata_run_padding =
3463 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3464 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3465 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3466 
3467 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3468 					    metadata_run_padding) >> SECTOR_SHIFT;
3469 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3470 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3471 		else
3472 			ic->log2_metadata_run = -1;
3473 
3474 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3475 		last_sector = get_data_sector(ic, last_area, last_offset);
3476 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3477 			return -EINVAL;
3478 	} else {
3479 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3480 
3481 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3482 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3483 		meta_size <<= ic->log2_buffer_sectors;
3484 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3485 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3486 			return -EINVAL;
3487 		ic->metadata_run = 1;
3488 		ic->log2_metadata_run = 0;
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3495 {
3496 	if (!ic->meta_dev) {
3497 		int test_bit;
3498 
3499 		ic->provided_data_sectors = 0;
3500 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3501 			__u64 prev_data_sectors = ic->provided_data_sectors;
3502 
3503 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3504 			if (calculate_device_limits(ic))
3505 				ic->provided_data_sectors = prev_data_sectors;
3506 		}
3507 	} else {
3508 		ic->provided_data_sectors = ic->data_device_sectors;
3509 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3510 	}
3511 }
3512 
3513 static int initialize_superblock(struct dm_integrity_c *ic,
3514 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3515 {
3516 	unsigned int journal_sections;
3517 	int test_bit;
3518 
3519 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3520 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3521 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3522 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3523 	if (ic->journal_mac_alg.alg_string)
3524 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3525 
3526 	calculate_journal_section_size(ic);
3527 	journal_sections = journal_sectors / ic->journal_section_sectors;
3528 	if (!journal_sections)
3529 		journal_sections = 1;
3530 
3531 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3532 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3533 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3534 	}
3535 
3536 	if (!ic->meta_dev) {
3537 		if (ic->fix_padding)
3538 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3539 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3540 		if (!interleave_sectors)
3541 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3542 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3543 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3544 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3545 
3546 		get_provided_data_sectors(ic);
3547 		if (!ic->provided_data_sectors)
3548 			return -EINVAL;
3549 	} else {
3550 		ic->sb->log2_interleave_sectors = 0;
3551 
3552 		get_provided_data_sectors(ic);
3553 		if (!ic->provided_data_sectors)
3554 			return -EINVAL;
3555 
3556 try_smaller_buffer:
3557 		ic->sb->journal_sections = cpu_to_le32(0);
3558 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3559 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3560 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3561 
3562 			if (test_journal_sections > journal_sections)
3563 				continue;
3564 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3565 			if (calculate_device_limits(ic))
3566 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3567 
3568 		}
3569 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3570 			if (ic->log2_buffer_sectors > 3) {
3571 				ic->log2_buffer_sectors--;
3572 				goto try_smaller_buffer;
3573 			}
3574 			return -EINVAL;
3575 		}
3576 	}
3577 
3578 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3579 
3580 	sb_set_version(ic);
3581 
3582 	return 0;
3583 }
3584 
3585 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3586 {
3587 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3588 	struct blk_integrity bi;
3589 
3590 	memset(&bi, 0, sizeof(bi));
3591 	bi.profile = &dm_integrity_profile;
3592 	bi.tuple_size = ic->tag_size;
3593 	bi.tag_size = bi.tuple_size;
3594 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3595 
3596 	blk_integrity_register(disk, &bi);
3597 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3598 }
3599 
3600 static void dm_integrity_free_page_list(struct page_list *pl)
3601 {
3602 	unsigned int i;
3603 
3604 	if (!pl)
3605 		return;
3606 	for (i = 0; pl[i].page; i++)
3607 		__free_page(pl[i].page);
3608 	kvfree(pl);
3609 }
3610 
3611 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3612 {
3613 	struct page_list *pl;
3614 	unsigned int i;
3615 
3616 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3617 	if (!pl)
3618 		return NULL;
3619 
3620 	for (i = 0; i < n_pages; i++) {
3621 		pl[i].page = alloc_page(GFP_KERNEL);
3622 		if (!pl[i].page) {
3623 			dm_integrity_free_page_list(pl);
3624 			return NULL;
3625 		}
3626 		if (i)
3627 			pl[i - 1].next = &pl[i];
3628 	}
3629 	pl[i].page = NULL;
3630 	pl[i].next = NULL;
3631 
3632 	return pl;
3633 }
3634 
3635 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3636 {
3637 	unsigned int i;
3638 
3639 	for (i = 0; i < ic->journal_sections; i++)
3640 		kvfree(sl[i]);
3641 	kvfree(sl);
3642 }
3643 
3644 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3645 								   struct page_list *pl)
3646 {
3647 	struct scatterlist **sl;
3648 	unsigned int i;
3649 
3650 	sl = kvmalloc_array(ic->journal_sections,
3651 			    sizeof(struct scatterlist *),
3652 			    GFP_KERNEL | __GFP_ZERO);
3653 	if (!sl)
3654 		return NULL;
3655 
3656 	for (i = 0; i < ic->journal_sections; i++) {
3657 		struct scatterlist *s;
3658 		unsigned int start_index, start_offset;
3659 		unsigned int end_index, end_offset;
3660 		unsigned int n_pages;
3661 		unsigned int idx;
3662 
3663 		page_list_location(ic, i, 0, &start_index, &start_offset);
3664 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3665 				   &end_index, &end_offset);
3666 
3667 		n_pages = (end_index - start_index + 1);
3668 
3669 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3670 				   GFP_KERNEL);
3671 		if (!s) {
3672 			dm_integrity_free_journal_scatterlist(ic, sl);
3673 			return NULL;
3674 		}
3675 
3676 		sg_init_table(s, n_pages);
3677 		for (idx = start_index; idx <= end_index; idx++) {
3678 			char *va = lowmem_page_address(pl[idx].page);
3679 			unsigned int start = 0, end = PAGE_SIZE;
3680 
3681 			if (idx == start_index)
3682 				start = start_offset;
3683 			if (idx == end_index)
3684 				end = end_offset + (1 << SECTOR_SHIFT);
3685 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3686 		}
3687 
3688 		sl[i] = s;
3689 	}
3690 
3691 	return sl;
3692 }
3693 
3694 static void free_alg(struct alg_spec *a)
3695 {
3696 	kfree_sensitive(a->alg_string);
3697 	kfree_sensitive(a->key);
3698 	memset(a, 0, sizeof(*a));
3699 }
3700 
3701 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3702 {
3703 	char *k;
3704 
3705 	free_alg(a);
3706 
3707 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3708 	if (!a->alg_string)
3709 		goto nomem;
3710 
3711 	k = strchr(a->alg_string, ':');
3712 	if (k) {
3713 		*k = 0;
3714 		a->key_string = k + 1;
3715 		if (strlen(a->key_string) & 1)
3716 			goto inval;
3717 
3718 		a->key_size = strlen(a->key_string) / 2;
3719 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3720 		if (!a->key)
3721 			goto nomem;
3722 		if (hex2bin(a->key, a->key_string, a->key_size))
3723 			goto inval;
3724 	}
3725 
3726 	return 0;
3727 inval:
3728 	*error = error_inval;
3729 	return -EINVAL;
3730 nomem:
3731 	*error = "Out of memory for an argument";
3732 	return -ENOMEM;
3733 }
3734 
3735 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3736 		   char *error_alg, char *error_key)
3737 {
3738 	int r;
3739 
3740 	if (a->alg_string) {
3741 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3742 		if (IS_ERR(*hash)) {
3743 			*error = error_alg;
3744 			r = PTR_ERR(*hash);
3745 			*hash = NULL;
3746 			return r;
3747 		}
3748 
3749 		if (a->key) {
3750 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3751 			if (r) {
3752 				*error = error_key;
3753 				return r;
3754 			}
3755 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3756 			*error = error_key;
3757 			return -ENOKEY;
3758 		}
3759 	}
3760 
3761 	return 0;
3762 }
3763 
3764 static int create_journal(struct dm_integrity_c *ic, char **error)
3765 {
3766 	int r = 0;
3767 	unsigned int i;
3768 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3769 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3770 	struct skcipher_request *req = NULL;
3771 
3772 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3773 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3774 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3775 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3776 
3777 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3778 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3779 	journal_desc_size = journal_pages * sizeof(struct page_list);
3780 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3781 		*error = "Journal doesn't fit into memory";
3782 		r = -ENOMEM;
3783 		goto bad;
3784 	}
3785 	ic->journal_pages = journal_pages;
3786 
3787 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3788 	if (!ic->journal) {
3789 		*error = "Could not allocate memory for journal";
3790 		r = -ENOMEM;
3791 		goto bad;
3792 	}
3793 	if (ic->journal_crypt_alg.alg_string) {
3794 		unsigned int ivsize, blocksize;
3795 		struct journal_completion comp;
3796 
3797 		comp.ic = ic;
3798 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3799 		if (IS_ERR(ic->journal_crypt)) {
3800 			*error = "Invalid journal cipher";
3801 			r = PTR_ERR(ic->journal_crypt);
3802 			ic->journal_crypt = NULL;
3803 			goto bad;
3804 		}
3805 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3806 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3807 
3808 		if (ic->journal_crypt_alg.key) {
3809 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3810 						   ic->journal_crypt_alg.key_size);
3811 			if (r) {
3812 				*error = "Error setting encryption key";
3813 				goto bad;
3814 			}
3815 		}
3816 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3817 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3818 
3819 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3820 		if (!ic->journal_io) {
3821 			*error = "Could not allocate memory for journal io";
3822 			r = -ENOMEM;
3823 			goto bad;
3824 		}
3825 
3826 		if (blocksize == 1) {
3827 			struct scatterlist *sg;
3828 
3829 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3830 			if (!req) {
3831 				*error = "Could not allocate crypt request";
3832 				r = -ENOMEM;
3833 				goto bad;
3834 			}
3835 
3836 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3837 			if (!crypt_iv) {
3838 				*error = "Could not allocate iv";
3839 				r = -ENOMEM;
3840 				goto bad;
3841 			}
3842 
3843 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3844 			if (!ic->journal_xor) {
3845 				*error = "Could not allocate memory for journal xor";
3846 				r = -ENOMEM;
3847 				goto bad;
3848 			}
3849 
3850 			sg = kvmalloc_array(ic->journal_pages + 1,
3851 					    sizeof(struct scatterlist),
3852 					    GFP_KERNEL);
3853 			if (!sg) {
3854 				*error = "Unable to allocate sg list";
3855 				r = -ENOMEM;
3856 				goto bad;
3857 			}
3858 			sg_init_table(sg, ic->journal_pages + 1);
3859 			for (i = 0; i < ic->journal_pages; i++) {
3860 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3861 
3862 				clear_page(va);
3863 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3864 			}
3865 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3866 
3867 			skcipher_request_set_crypt(req, sg, sg,
3868 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3869 			init_completion(&comp.comp);
3870 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3871 			if (do_crypt(true, req, &comp))
3872 				wait_for_completion(&comp.comp);
3873 			kvfree(sg);
3874 			r = dm_integrity_failed(ic);
3875 			if (r) {
3876 				*error = "Unable to encrypt journal";
3877 				goto bad;
3878 			}
3879 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3880 
3881 			crypto_free_skcipher(ic->journal_crypt);
3882 			ic->journal_crypt = NULL;
3883 		} else {
3884 			unsigned int crypt_len = roundup(ivsize, blocksize);
3885 
3886 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3887 			if (!req) {
3888 				*error = "Could not allocate crypt request";
3889 				r = -ENOMEM;
3890 				goto bad;
3891 			}
3892 
3893 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3894 			if (!crypt_iv) {
3895 				*error = "Could not allocate iv";
3896 				r = -ENOMEM;
3897 				goto bad;
3898 			}
3899 
3900 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3901 			if (!crypt_data) {
3902 				*error = "Unable to allocate crypt data";
3903 				r = -ENOMEM;
3904 				goto bad;
3905 			}
3906 
3907 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3908 			if (!ic->journal_scatterlist) {
3909 				*error = "Unable to allocate sg list";
3910 				r = -ENOMEM;
3911 				goto bad;
3912 			}
3913 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3914 			if (!ic->journal_io_scatterlist) {
3915 				*error = "Unable to allocate sg list";
3916 				r = -ENOMEM;
3917 				goto bad;
3918 			}
3919 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3920 							 sizeof(struct skcipher_request *),
3921 							 GFP_KERNEL | __GFP_ZERO);
3922 			if (!ic->sk_requests) {
3923 				*error = "Unable to allocate sk requests";
3924 				r = -ENOMEM;
3925 				goto bad;
3926 			}
3927 			for (i = 0; i < ic->journal_sections; i++) {
3928 				struct scatterlist sg;
3929 				struct skcipher_request *section_req;
3930 				__le32 section_le = cpu_to_le32(i);
3931 
3932 				memset(crypt_iv, 0x00, ivsize);
3933 				memset(crypt_data, 0x00, crypt_len);
3934 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3935 
3936 				sg_init_one(&sg, crypt_data, crypt_len);
3937 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3938 				init_completion(&comp.comp);
3939 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3940 				if (do_crypt(true, req, &comp))
3941 					wait_for_completion(&comp.comp);
3942 
3943 				r = dm_integrity_failed(ic);
3944 				if (r) {
3945 					*error = "Unable to generate iv";
3946 					goto bad;
3947 				}
3948 
3949 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3950 				if (!section_req) {
3951 					*error = "Unable to allocate crypt request";
3952 					r = -ENOMEM;
3953 					goto bad;
3954 				}
3955 				section_req->iv = kmalloc_array(ivsize, 2,
3956 								GFP_KERNEL);
3957 				if (!section_req->iv) {
3958 					skcipher_request_free(section_req);
3959 					*error = "Unable to allocate iv";
3960 					r = -ENOMEM;
3961 					goto bad;
3962 				}
3963 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3964 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3965 				ic->sk_requests[i] = section_req;
3966 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3967 			}
3968 		}
3969 	}
3970 
3971 	for (i = 0; i < N_COMMIT_IDS; i++) {
3972 		unsigned int j;
3973 
3974 retest_commit_id:
3975 		for (j = 0; j < i; j++) {
3976 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3977 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3978 				goto retest_commit_id;
3979 			}
3980 		}
3981 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3982 	}
3983 
3984 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3985 	if (journal_tree_size > ULONG_MAX) {
3986 		*error = "Journal doesn't fit into memory";
3987 		r = -ENOMEM;
3988 		goto bad;
3989 	}
3990 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3991 	if (!ic->journal_tree) {
3992 		*error = "Could not allocate memory for journal tree";
3993 		r = -ENOMEM;
3994 	}
3995 bad:
3996 	kfree(crypt_data);
3997 	kfree(crypt_iv);
3998 	skcipher_request_free(req);
3999 
4000 	return r;
4001 }
4002 
4003 /*
4004  * Construct a integrity mapping
4005  *
4006  * Arguments:
4007  *	device
4008  *	offset from the start of the device
4009  *	tag size
4010  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4011  *	number of optional arguments
4012  *	optional arguments:
4013  *		journal_sectors
4014  *		interleave_sectors
4015  *		buffer_sectors
4016  *		journal_watermark
4017  *		commit_time
4018  *		meta_device
4019  *		block_size
4020  *		sectors_per_bit
4021  *		bitmap_flush_interval
4022  *		internal_hash
4023  *		journal_crypt
4024  *		journal_mac
4025  *		recalculate
4026  */
4027 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4028 {
4029 	struct dm_integrity_c *ic;
4030 	char dummy;
4031 	int r;
4032 	unsigned int extra_args;
4033 	struct dm_arg_set as;
4034 	static const struct dm_arg _args[] = {
4035 		{0, 18, "Invalid number of feature args"},
4036 	};
4037 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4038 	bool should_write_sb;
4039 	__u64 threshold;
4040 	unsigned long long start;
4041 	__s8 log2_sectors_per_bitmap_bit = -1;
4042 	__s8 log2_blocks_per_bitmap_bit;
4043 	__u64 bits_in_journal;
4044 	__u64 n_bitmap_bits;
4045 
4046 #define DIRECT_ARGUMENTS	4
4047 
4048 	if (argc <= DIRECT_ARGUMENTS) {
4049 		ti->error = "Invalid argument count";
4050 		return -EINVAL;
4051 	}
4052 
4053 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4054 	if (!ic) {
4055 		ti->error = "Cannot allocate integrity context";
4056 		return -ENOMEM;
4057 	}
4058 	ti->private = ic;
4059 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4060 	ic->ti = ti;
4061 
4062 	ic->in_progress = RB_ROOT;
4063 	INIT_LIST_HEAD(&ic->wait_list);
4064 	init_waitqueue_head(&ic->endio_wait);
4065 	bio_list_init(&ic->flush_bio_list);
4066 	init_waitqueue_head(&ic->copy_to_journal_wait);
4067 	init_completion(&ic->crypto_backoff);
4068 	atomic64_set(&ic->number_of_mismatches, 0);
4069 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4070 
4071 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4072 	if (r) {
4073 		ti->error = "Device lookup failed";
4074 		goto bad;
4075 	}
4076 
4077 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4078 		ti->error = "Invalid starting offset";
4079 		r = -EINVAL;
4080 		goto bad;
4081 	}
4082 	ic->start = start;
4083 
4084 	if (strcmp(argv[2], "-")) {
4085 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4086 			ti->error = "Invalid tag size";
4087 			r = -EINVAL;
4088 			goto bad;
4089 		}
4090 	}
4091 
4092 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4093 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4094 		ic->mode = argv[3][0];
4095 	} else {
4096 		ti->error = "Invalid mode (expecting J, B, D, R)";
4097 		r = -EINVAL;
4098 		goto bad;
4099 	}
4100 
4101 	journal_sectors = 0;
4102 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4103 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4104 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4105 	sync_msec = DEFAULT_SYNC_MSEC;
4106 	ic->sectors_per_block = 1;
4107 
4108 	as.argc = argc - DIRECT_ARGUMENTS;
4109 	as.argv = argv + DIRECT_ARGUMENTS;
4110 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4111 	if (r)
4112 		goto bad;
4113 
4114 	while (extra_args--) {
4115 		const char *opt_string;
4116 		unsigned int val;
4117 		unsigned long long llval;
4118 
4119 		opt_string = dm_shift_arg(&as);
4120 		if (!opt_string) {
4121 			r = -EINVAL;
4122 			ti->error = "Not enough feature arguments";
4123 			goto bad;
4124 		}
4125 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4126 			journal_sectors = val ? val : 1;
4127 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4128 			interleave_sectors = val;
4129 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4130 			buffer_sectors = val;
4131 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4132 			journal_watermark = val;
4133 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4134 			sync_msec = val;
4135 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4136 			if (ic->meta_dev) {
4137 				dm_put_device(ti, ic->meta_dev);
4138 				ic->meta_dev = NULL;
4139 			}
4140 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4141 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4142 			if (r) {
4143 				ti->error = "Device lookup failed";
4144 				goto bad;
4145 			}
4146 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4147 			if (val < 1 << SECTOR_SHIFT ||
4148 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4149 			    (val & (val - 1))) {
4150 				r = -EINVAL;
4151 				ti->error = "Invalid block_size argument";
4152 				goto bad;
4153 			}
4154 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4155 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4156 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4157 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4158 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4159 				r = -EINVAL;
4160 				ti->error = "Invalid bitmap_flush_interval argument";
4161 				goto bad;
4162 			}
4163 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4164 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4165 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4166 					    "Invalid internal_hash argument");
4167 			if (r)
4168 				goto bad;
4169 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4170 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4171 					    "Invalid journal_crypt argument");
4172 			if (r)
4173 				goto bad;
4174 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4175 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4176 					    "Invalid journal_mac argument");
4177 			if (r)
4178 				goto bad;
4179 		} else if (!strcmp(opt_string, "recalculate")) {
4180 			ic->recalculate_flag = true;
4181 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4182 			ic->recalculate_flag = true;
4183 			ic->reset_recalculate_flag = true;
4184 		} else if (!strcmp(opt_string, "allow_discards")) {
4185 			ic->discard = true;
4186 		} else if (!strcmp(opt_string, "fix_padding")) {
4187 			ic->fix_padding = true;
4188 		} else if (!strcmp(opt_string, "fix_hmac")) {
4189 			ic->fix_hmac = true;
4190 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4191 			ic->legacy_recalculate = true;
4192 		} else {
4193 			r = -EINVAL;
4194 			ti->error = "Invalid argument";
4195 			goto bad;
4196 		}
4197 	}
4198 
4199 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4200 	if (!ic->meta_dev)
4201 		ic->meta_device_sectors = ic->data_device_sectors;
4202 	else
4203 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4204 
4205 	if (!journal_sectors) {
4206 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4207 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4208 	}
4209 
4210 	if (!buffer_sectors)
4211 		buffer_sectors = 1;
4212 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4213 
4214 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4215 		    "Invalid internal hash", "Error setting internal hash key");
4216 	if (r)
4217 		goto bad;
4218 
4219 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4220 		    "Invalid journal mac", "Error setting journal mac key");
4221 	if (r)
4222 		goto bad;
4223 
4224 	if (!ic->tag_size) {
4225 		if (!ic->internal_hash) {
4226 			ti->error = "Unknown tag size";
4227 			r = -EINVAL;
4228 			goto bad;
4229 		}
4230 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4231 	}
4232 	if (ic->tag_size > MAX_TAG_SIZE) {
4233 		ti->error = "Too big tag size";
4234 		r = -EINVAL;
4235 		goto bad;
4236 	}
4237 	if (!(ic->tag_size & (ic->tag_size - 1)))
4238 		ic->log2_tag_size = __ffs(ic->tag_size);
4239 	else
4240 		ic->log2_tag_size = -1;
4241 
4242 	if (ic->mode == 'B' && !ic->internal_hash) {
4243 		r = -EINVAL;
4244 		ti->error = "Bitmap mode can be only used with internal hash";
4245 		goto bad;
4246 	}
4247 
4248 	if (ic->discard && !ic->internal_hash) {
4249 		r = -EINVAL;
4250 		ti->error = "Discard can be only used with internal hash";
4251 		goto bad;
4252 	}
4253 
4254 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4255 	ic->autocommit_msec = sync_msec;
4256 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4257 
4258 	ic->io = dm_io_client_create();
4259 	if (IS_ERR(ic->io)) {
4260 		r = PTR_ERR(ic->io);
4261 		ic->io = NULL;
4262 		ti->error = "Cannot allocate dm io";
4263 		goto bad;
4264 	}
4265 
4266 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4267 	if (r) {
4268 		ti->error = "Cannot allocate mempool";
4269 		goto bad;
4270 	}
4271 
4272 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4273 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4274 	if (!ic->metadata_wq) {
4275 		ti->error = "Cannot allocate workqueue";
4276 		r = -ENOMEM;
4277 		goto bad;
4278 	}
4279 
4280 	/*
4281 	 * If this workqueue weren't ordered, it would cause bio reordering
4282 	 * and reduced performance.
4283 	 */
4284 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4285 	if (!ic->wait_wq) {
4286 		ti->error = "Cannot allocate workqueue";
4287 		r = -ENOMEM;
4288 		goto bad;
4289 	}
4290 
4291 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4292 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4293 	if (!ic->offload_wq) {
4294 		ti->error = "Cannot allocate workqueue";
4295 		r = -ENOMEM;
4296 		goto bad;
4297 	}
4298 
4299 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4300 	if (!ic->commit_wq) {
4301 		ti->error = "Cannot allocate workqueue";
4302 		r = -ENOMEM;
4303 		goto bad;
4304 	}
4305 	INIT_WORK(&ic->commit_work, integrity_commit);
4306 
4307 	if (ic->mode == 'J' || ic->mode == 'B') {
4308 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4309 		if (!ic->writer_wq) {
4310 			ti->error = "Cannot allocate workqueue";
4311 			r = -ENOMEM;
4312 			goto bad;
4313 		}
4314 		INIT_WORK(&ic->writer_work, integrity_writer);
4315 	}
4316 
4317 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4318 	if (!ic->sb) {
4319 		r = -ENOMEM;
4320 		ti->error = "Cannot allocate superblock area";
4321 		goto bad;
4322 	}
4323 
4324 	r = sync_rw_sb(ic, REQ_OP_READ);
4325 	if (r) {
4326 		ti->error = "Error reading superblock";
4327 		goto bad;
4328 	}
4329 	should_write_sb = false;
4330 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4331 		if (ic->mode != 'R') {
4332 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4333 				r = -EINVAL;
4334 				ti->error = "The device is not initialized";
4335 				goto bad;
4336 			}
4337 		}
4338 
4339 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4340 		if (r) {
4341 			ti->error = "Could not initialize superblock";
4342 			goto bad;
4343 		}
4344 		if (ic->mode != 'R')
4345 			should_write_sb = true;
4346 	}
4347 
4348 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4349 		r = -EINVAL;
4350 		ti->error = "Unknown version";
4351 		goto bad;
4352 	}
4353 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4354 		r = -EINVAL;
4355 		ti->error = "Tag size doesn't match the information in superblock";
4356 		goto bad;
4357 	}
4358 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4359 		r = -EINVAL;
4360 		ti->error = "Block size doesn't match the information in superblock";
4361 		goto bad;
4362 	}
4363 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4364 		r = -EINVAL;
4365 		ti->error = "Corrupted superblock, journal_sections is 0";
4366 		goto bad;
4367 	}
4368 	/* make sure that ti->max_io_len doesn't overflow */
4369 	if (!ic->meta_dev) {
4370 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4371 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4372 			r = -EINVAL;
4373 			ti->error = "Invalid interleave_sectors in the superblock";
4374 			goto bad;
4375 		}
4376 	} else {
4377 		if (ic->sb->log2_interleave_sectors) {
4378 			r = -EINVAL;
4379 			ti->error = "Invalid interleave_sectors in the superblock";
4380 			goto bad;
4381 		}
4382 	}
4383 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4384 		r = -EINVAL;
4385 		ti->error = "Journal mac mismatch";
4386 		goto bad;
4387 	}
4388 
4389 	get_provided_data_sectors(ic);
4390 	if (!ic->provided_data_sectors) {
4391 		r = -EINVAL;
4392 		ti->error = "The device is too small";
4393 		goto bad;
4394 	}
4395 
4396 try_smaller_buffer:
4397 	r = calculate_device_limits(ic);
4398 	if (r) {
4399 		if (ic->meta_dev) {
4400 			if (ic->log2_buffer_sectors > 3) {
4401 				ic->log2_buffer_sectors--;
4402 				goto try_smaller_buffer;
4403 			}
4404 		}
4405 		ti->error = "The device is too small";
4406 		goto bad;
4407 	}
4408 
4409 	if (log2_sectors_per_bitmap_bit < 0)
4410 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4411 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4412 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4413 
4414 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4415 	if (bits_in_journal > UINT_MAX)
4416 		bits_in_journal = UINT_MAX;
4417 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4418 		log2_sectors_per_bitmap_bit++;
4419 
4420 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4421 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4422 	if (should_write_sb)
4423 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4424 
4425 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4426 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4427 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4428 
4429 	if (!ic->meta_dev)
4430 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4431 
4432 	if (ti->len > ic->provided_data_sectors) {
4433 		r = -EINVAL;
4434 		ti->error = "Not enough provided sectors for requested mapping size";
4435 		goto bad;
4436 	}
4437 
4438 
4439 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4440 	threshold += 50;
4441 	do_div(threshold, 100);
4442 	ic->free_sectors_threshold = threshold;
4443 
4444 	DEBUG_print("initialized:\n");
4445 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4446 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4447 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4448 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4449 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4450 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4451 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4452 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4453 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4454 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4455 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4456 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4457 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4458 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4459 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4460 
4461 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4462 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4463 		ic->sb->recalc_sector = cpu_to_le64(0);
4464 	}
4465 
4466 	if (ic->internal_hash) {
4467 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4468 		if (!ic->recalc_wq) {
4469 			ti->error = "Cannot allocate workqueue";
4470 			r = -ENOMEM;
4471 			goto bad;
4472 		}
4473 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4474 	} else {
4475 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4476 			ti->error = "Recalculate can only be specified with internal_hash";
4477 			r = -EINVAL;
4478 			goto bad;
4479 		}
4480 	}
4481 
4482 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4483 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4484 	    dm_integrity_disable_recalculate(ic)) {
4485 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4486 		r = -EOPNOTSUPP;
4487 		goto bad;
4488 	}
4489 
4490 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4491 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4492 	if (IS_ERR(ic->bufio)) {
4493 		r = PTR_ERR(ic->bufio);
4494 		ti->error = "Cannot initialize dm-bufio";
4495 		ic->bufio = NULL;
4496 		goto bad;
4497 	}
4498 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4499 
4500 	if (ic->mode != 'R') {
4501 		r = create_journal(ic, &ti->error);
4502 		if (r)
4503 			goto bad;
4504 
4505 	}
4506 
4507 	if (ic->mode == 'B') {
4508 		unsigned int i;
4509 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4510 
4511 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4512 		if (!ic->recalc_bitmap) {
4513 			r = -ENOMEM;
4514 			goto bad;
4515 		}
4516 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4517 		if (!ic->may_write_bitmap) {
4518 			r = -ENOMEM;
4519 			goto bad;
4520 		}
4521 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4522 		if (!ic->bbs) {
4523 			r = -ENOMEM;
4524 			goto bad;
4525 		}
4526 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4527 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4528 			struct bitmap_block_status *bbs = &ic->bbs[i];
4529 			unsigned int sector, pl_index, pl_offset;
4530 
4531 			INIT_WORK(&bbs->work, bitmap_block_work);
4532 			bbs->ic = ic;
4533 			bbs->idx = i;
4534 			bio_list_init(&bbs->bio_queue);
4535 			spin_lock_init(&bbs->bio_queue_lock);
4536 
4537 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4538 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4539 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4540 
4541 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4542 		}
4543 	}
4544 
4545 	if (should_write_sb) {
4546 		init_journal(ic, 0, ic->journal_sections, 0);
4547 		r = dm_integrity_failed(ic);
4548 		if (unlikely(r)) {
4549 			ti->error = "Error initializing journal";
4550 			goto bad;
4551 		}
4552 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4553 		if (r) {
4554 			ti->error = "Error initializing superblock";
4555 			goto bad;
4556 		}
4557 		ic->just_formatted = true;
4558 	}
4559 
4560 	if (!ic->meta_dev) {
4561 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4562 		if (r)
4563 			goto bad;
4564 	}
4565 	if (ic->mode == 'B') {
4566 		unsigned int max_io_len;
4567 
4568 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4569 		if (!max_io_len)
4570 			max_io_len = 1U << 31;
4571 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4572 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4573 			r = dm_set_target_max_io_len(ti, max_io_len);
4574 			if (r)
4575 				goto bad;
4576 		}
4577 	}
4578 
4579 	if (!ic->internal_hash)
4580 		dm_integrity_set(ti, ic);
4581 
4582 	ti->num_flush_bios = 1;
4583 	ti->flush_supported = true;
4584 	if (ic->discard)
4585 		ti->num_discard_bios = 1;
4586 
4587 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4588 	return 0;
4589 
4590 bad:
4591 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4592 	dm_integrity_dtr(ti);
4593 	return r;
4594 }
4595 
4596 static void dm_integrity_dtr(struct dm_target *ti)
4597 {
4598 	struct dm_integrity_c *ic = ti->private;
4599 
4600 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4601 	BUG_ON(!list_empty(&ic->wait_list));
4602 
4603 	if (ic->mode == 'B')
4604 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4605 	if (ic->metadata_wq)
4606 		destroy_workqueue(ic->metadata_wq);
4607 	if (ic->wait_wq)
4608 		destroy_workqueue(ic->wait_wq);
4609 	if (ic->offload_wq)
4610 		destroy_workqueue(ic->offload_wq);
4611 	if (ic->commit_wq)
4612 		destroy_workqueue(ic->commit_wq);
4613 	if (ic->writer_wq)
4614 		destroy_workqueue(ic->writer_wq);
4615 	if (ic->recalc_wq)
4616 		destroy_workqueue(ic->recalc_wq);
4617 	kvfree(ic->bbs);
4618 	if (ic->bufio)
4619 		dm_bufio_client_destroy(ic->bufio);
4620 	mempool_exit(&ic->journal_io_mempool);
4621 	if (ic->io)
4622 		dm_io_client_destroy(ic->io);
4623 	if (ic->dev)
4624 		dm_put_device(ti, ic->dev);
4625 	if (ic->meta_dev)
4626 		dm_put_device(ti, ic->meta_dev);
4627 	dm_integrity_free_page_list(ic->journal);
4628 	dm_integrity_free_page_list(ic->journal_io);
4629 	dm_integrity_free_page_list(ic->journal_xor);
4630 	dm_integrity_free_page_list(ic->recalc_bitmap);
4631 	dm_integrity_free_page_list(ic->may_write_bitmap);
4632 	if (ic->journal_scatterlist)
4633 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4634 	if (ic->journal_io_scatterlist)
4635 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4636 	if (ic->sk_requests) {
4637 		unsigned int i;
4638 
4639 		for (i = 0; i < ic->journal_sections; i++) {
4640 			struct skcipher_request *req;
4641 
4642 			req = ic->sk_requests[i];
4643 			if (req) {
4644 				kfree_sensitive(req->iv);
4645 				skcipher_request_free(req);
4646 			}
4647 		}
4648 		kvfree(ic->sk_requests);
4649 	}
4650 	kvfree(ic->journal_tree);
4651 	if (ic->sb)
4652 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4653 
4654 	if (ic->internal_hash)
4655 		crypto_free_shash(ic->internal_hash);
4656 	free_alg(&ic->internal_hash_alg);
4657 
4658 	if (ic->journal_crypt)
4659 		crypto_free_skcipher(ic->journal_crypt);
4660 	free_alg(&ic->journal_crypt_alg);
4661 
4662 	if (ic->journal_mac)
4663 		crypto_free_shash(ic->journal_mac);
4664 	free_alg(&ic->journal_mac_alg);
4665 
4666 	kfree(ic);
4667 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4668 }
4669 
4670 static struct target_type integrity_target = {
4671 	.name			= "integrity",
4672 	.version		= {1, 10, 0},
4673 	.module			= THIS_MODULE,
4674 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4675 	.ctr			= dm_integrity_ctr,
4676 	.dtr			= dm_integrity_dtr,
4677 	.map			= dm_integrity_map,
4678 	.postsuspend		= dm_integrity_postsuspend,
4679 	.resume			= dm_integrity_resume,
4680 	.status			= dm_integrity_status,
4681 	.iterate_devices	= dm_integrity_iterate_devices,
4682 	.io_hints		= dm_integrity_io_hints,
4683 };
4684 
4685 static int __init dm_integrity_init(void)
4686 {
4687 	int r;
4688 
4689 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4690 					     sizeof(struct journal_io), 0, 0, NULL);
4691 	if (!journal_io_cache) {
4692 		DMERR("can't allocate journal io cache");
4693 		return -ENOMEM;
4694 	}
4695 
4696 	r = dm_register_target(&integrity_target);
4697 	if (r < 0) {
4698 		kmem_cache_destroy(journal_io_cache);
4699 		return r;
4700 	}
4701 
4702 	return 0;
4703 }
4704 
4705 static void __exit dm_integrity_exit(void)
4706 {
4707 	dm_unregister_target(&integrity_target);
4708 	kmem_cache_destroy(journal_io_cache);
4709 }
4710 
4711 module_init(dm_integrity_init);
4712 module_exit(dm_integrity_exit);
4713 
4714 MODULE_AUTHOR("Milan Broz");
4715 MODULE_AUTHOR("Mikulas Patocka");
4716 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4717 MODULE_LICENSE("GPL");
4718